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ABSTRACT 

This paper presents analytical higher order approximations to limit cycles of an autonomous multi-
degree-of-freedom system based on an integro-differential equation method for obtaining periodic 
solutions to nonlinear differential equations. The stability of the limit cycles obtained was then 
investigated using a method for carrying out Floquet analysis based on developments to extensions of 
the method for solving Hill’s Determinant arising in analysing the Mathieu equation, which have 
previously been reported in the literature. The results of the Floquet analysis, together with the limit 
cycle predictions, have then been used to provide some estimates of points on the boundary of the 
domain of attraction of stable equilibrium points arising from a sub-critical Hopf bifurcation. This was 
achieved by producing a local approximation to the stable manifold of the unstable limit cycle that 
occurs. 

The integro-differential equation to be solved for the limit cycles involves no approximations. These 
only arise through the iterative approach adopted for its solution in which the first approximation is 
that which would be obtained from the harmonic balance method using only fundamental frequency 
terms. The higher order approximations are shown to give significantly improved predictions for the 
limit cycles for the cases considered. The Floquet analysis based approach to predicting the boundary 
of domains of attraction met with some success for conditions just following a sub-critical Hopf 
bifurcation. 

Although this study has focussed on cubic non-linearities, the method presented here could equally be 
used to refine limit cycle predictions for other non-linearity types. 

KEYWORDS: Limit cycle oscillations; Floquet Analysis; Stability Domains 
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1. Introduction 

Methods for the analysis of non-linear autonomous systems of ordinary differential equations have 
been the subject of considerable investigation over many years, from both a purely theoretical 
viewpoint but also in the context of practical applications. Non-linear ordinary differential equations 
may, of course, be solved numerically in the time domain. However, a drawback with this is that 
though it can yield a complete picture of system behaviour for a given set of initial conditions, it can 
be inefficient in providing an overall picture of system characteristics. Besides this, for non-linear 
autonomous systems that arise in practical applications, it is generally necessary to solve them for a 
wide range of system parameters. Analysis based on averaging or other methods of asymptotic 
analysis has the advantage of being able to yield both qualitative, and in many cases the most 
important quantitative, information about the system response relatively rapidly, thus enabling an 
understanding of the system's behaviour to be obtained more quickly. Of particular interest is the 
determination of limit cycles and their stability for autonomous systems. The literature on analytical 
methods for solving nonlinear systems is extensive and includes classical perturbation methods such 
as the Krylov-Bogoliubov, Krylov-Bogoliubov-Mitropolsky methods and generalised averaging [1, 
2]. Other approaches which combine analytical and numerical techniques include perturbation-
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incremental and perturbation-iterative methods [3 - 6]. There is a very large body of literature on 
wholly numerically-based approaches based on the harmonic balance method, very many concerned 
with development of algorithms, for example [7 – 15] while many are also concerned with 
applications, in particular in the field of non-linear aeroelasticity [16 – 26]. Other methods that have 
been developed are the differential transform method [27], the application of Floquet analysis as a 
computational tool for determining periodic solutions [28], and He’s homotopy method [29]. 
 
In this paper, an analytical approach is taken, the basis of which is the method of Schmidt and Schulz 
[30] which is then extensively applied in the text by Schmidt and Tondl [31]. The idea of this method 
is to turn the problem of finding periodic solutions of a non-linear system, including limit cycles, into 
an integro-differential equation which can then be solved by a Picard iteration approach starting with 
an approximate initial trial solution. In [31], weak non-linearities tend to be assumed in obtaining 
higher approximations. In this paper, this same iterative approach is applied, but no smallness 
assumptions are made. Having obtained approximations to the limit cycles of the non-linear system, 
Floquet analysis is applied to investigate their stability. The approach taken is to extend to a two 
degree-of-freedom second order, or equivalently, a four degree-of-freedom first order system, a 
method applied by Bonani [32] to Chua’s circuit, which is a three degree-of-freedom system. This in 
turn is based on the method for solving Hill’s Determinant arising in analysing the Mathieu equation 
[33]. Limit cycles appear as a consequence of a Hopf bifurcation. In particular, for a sub-critical Hopf 
bifurcation, an unstable equilibrium point becomes stable and is accompanied by an unstable limit 
cycle. For such unstable limit cycles, the results of the Floquet analysis then enable a local 
approximation to the stable manifold of the limit cycle to be found, from which information about the 
domain of attraction of the stable equilibrium point can be obtained, which may then be compared 
with time domain predictions. The particular case studied here is a two degree-of-freedom second 
order system with a cubic non-linearity based on an aeroelastic analysis of an all-moving control 
surface in supersonic flow where piston theory aerodynamics [34] may be applied. The layout of the 
paper is as follows: Section 2 outlines the general approach adopted for obtaining periodic solutions, 
including limit cycles, to a non-linear system. Section 3 derives higher order approximations to the 
limit cycles of the second order two-degree-of-freedom system with a cubic non-linearity. Section 4 
presents the approach taken to stability analysis of the limit cycles via Floquet theory. Section 5 
describes how to obtain a local approximation to the stable manifold of an unstable limit cycle and 
hence information on the domain of stability of a stable equilibrium point of the system following a 
sub-critical Hopf bifurcation. Sections 6 and 7 present results and Section 8 Concluding Remarks.  
 
2. Integro-Differential Equation Method 

The fundamental approach adopted here to determining approximations to limit cycles is based on the 
result in [30], [31] which may be expressed for a single degree of freedom system of the form: 

𝑦"" + 𝜆𝑦 = 𝛷(𝑦, 𝑦", 𝜏) (1) 
 

as follows. Every periodic solution of (1) is a solution of the integro-differential equation: 

𝑦(𝜏) = + 𝐺(𝜏, 𝜎)
./

0

𝛷(𝜎)𝑑𝜎 + 𝛿3
45(𝑟cos𝑛𝜏 + 𝑠sin𝑛𝜏) 

 

(2) 

where: 

 

𝐺(𝜏, 𝜎) =
1
𝜋
@
1
2𝜆
+B

cos𝜈(𝜏 − 𝜎)
E1 − 𝛿34

5F𝜆 − 𝜈.

G

HIJ

K 

 

(3) 

and 𝛿3
45  is the Kroneker Delta. 
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The values of r and s, which arise in the resonance case 𝜆 = 𝑛. may be obtained from the 
conditions: 

+ 𝛷(𝜏)cos𝑛𝜏
./

0

𝑑𝜏 = + 𝛷(𝜏)sin𝑛𝜏
./

0

𝑑𝜏 = 0 

 

(4) 

 

This result is derived in [31] and embraces both resonance and non-resonance cases. Equations (4) are 
the conditions for removing the secular terms which arise in the resonance case and effectively lead to 
the removal of the terms for 𝜈 = 𝑛 in the summation in Equation (3). [30] and [31] also give 
equivalent statements to Equations (2), (3) and (4) for the multi-degree-of-freedom case.  

Equation (2) may now be solved by an iterative method whereby an appropriate initial form for y is 
assumed in the righthand side of (2) resulting in a refined y. The question of the conditions under 
which convergence to the solution of (2) occurs is considered in [31]. However, it will become 
apparent when the method is applied whether convergence is occurring. 

It might be noted that Hu and Tang [35] also developed a convolution integral method for 
conservative second order single degree-of-freedom systems with strong nonlinearities where 
solutions are obtained by an iterative method. 

3. Application 

The integro-differential equation method of [30], [31] outlined in Section 2 is now applied to the 
following autonomous nonlinear system: 

 

�̈� + 𝐆�̇� + 𝐇𝐗 + 𝜀𝐬𝑓(𝐫V𝐗) = 𝟎 (5) 
 

where X is an n-dimensional column vector of dependent variables, G and H are n by n damping and 
stiffness matrices which are not necessarily symmetric, as might be the case in aeroelastic 
applications, for example. ε governs the strength of the nonlinearity which is characterised by the 
function f. r, s are n-dimensional constant vectors. Derivatives are with respect to time t. A non-
dimensional time τ is now introduced where τ = ωt, ω being the frequency of the periodic solution of 
(5) being sought. Equation (5) is now rewritten: 

 

𝐗"" + 𝐗 = 𝚽(𝐗, 𝐗′) (6) 
 

where " denotes differentiation with respect to τ, and: 

𝚽(𝐗, 𝐗′) = −
1
𝜔
𝐆𝐗" − [

1
𝜔. 𝐇 − 𝐈]𝐗 −

𝜀𝐬
𝜔. 𝑓(𝐫

V𝐗) 
 

(7) 

As a starting point, a first approximation for X is taken as: 

𝐗J = 𝛏𝑠𝑖𝑛𝜏 + 𝛈𝑐𝑜𝑠𝜏 (8) 
 

where, given that the system (5) is autonomous, ξ and η may, without loss of generality be written as: 
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𝐫V𝛏 = 𝐫V𝛈 =
𝐴
√2

 
(9) 

 

so that A denotes the amplitude of the motion defined by Equation (8). In the remaining part of this 
Section, periodic solutions of (5) are obtained for the cubic nonlinearity. 

For a cubic nonlinearity the function f in equation (5) is defined by: 

𝑓(𝐫V𝐗) = 𝐾(𝐫V𝐗)f (10) 
 
The reason for introducing a perhaps seemingly unnecessary parameter K	will become apparent when 
results are presented in Section 6. 
 
Substituting (8) and (10) into (7) and making use of (9) results in: 

𝚽 = −sin𝜏 i[
1
𝜔. 𝐇 − 𝐈] 𝛏 −

1
𝜔
𝐆𝛈j − cos𝜏 i[

1
𝜔. 𝐇 − 𝐈]𝛈 +

1
𝜔
𝐆𝛏j 

−
𝐾𝜀𝐬
𝜔.

𝐴f

4√2
{3(sin𝜏 + cos𝜏) + sin3𝜏 − cos3𝜏} 

 
 

(11) 

 

Applying the condition to eliminate secular terms (4) gives: 

[
1
𝜔. 𝐇 − 𝐈] 𝛏 −

1
𝜔
𝐆𝛈 +

𝜀𝐾𝐬
𝜔.

3𝐴f

4√2
= 𝟎 

[
1
𝜔. 𝐇 − 𝐈]𝛈 +

1
𝜔
𝐆𝛏 +

𝜀𝐾𝐬
𝜔.

3𝐴f

4√2
= 𝟎 

 

 
 

(12) 

 

Equations (12) may then be combined to give: 

[
1
𝜔. 𝐇 − 𝐈] (𝛏 + 𝑖𝛈) +

𝑖
𝜔
𝐆(𝛏 + 𝑖𝛈) +

𝜀𝐾𝐬
𝜔.

3𝐴f

4√2
(1 + 𝑖) = 0 

 

 
(13) 

 

Making use of Equations (9), Equations (13) may then be written as: 

o[
1
𝜔. 𝐇 − 𝐈] +

𝑖
𝜔
𝐆 +

3𝜀𝐾𝐴.

4𝜔. 𝐬𝐫Vp (𝛏 + 𝑖𝛈) = 0 
(14) 

 

The following determinantal equation is then solved for A and ω: 

q[
1
𝜔. 𝐇 − 𝐈] +

𝑖
𝜔
𝐆 +

3𝜀𝐾𝐴.

4𝜔. 𝐬𝐫Vq = 0 
(15) 

 

For the particular case when n = 2, the following two equations for A and ω then result: 

 



Page 5 

𝜔.(𝐺JJ + 𝐺..) − 𝐺JJ𝐻.. − 𝐺..𝐻JJ + 𝐺.J𝐻J. + 𝐺J.𝐻.J 

−
3
4
𝐴.𝜀𝐾(𝐺JJ𝑠.𝑟. + 𝐺..𝑠J𝑟J − 𝐺.J𝑠J𝑟. − 𝐺J.𝑠.𝑟J) = 0 

 
(16) 

 

𝜔s − 𝜔. t𝐻JJ + 𝐻.. +
3
4
𝜀𝐾𝐴.(𝑠J𝑟J + 𝑠.𝑟.) + 𝐺JJ𝐺.. − 𝐺J.𝐺.Ju 

+𝐻JJ𝐻.. − 𝐻.J𝐻J. +
3
4
𝜀𝐾𝐴.(𝐻..𝑠J𝑟J + 𝐻JJ𝑠.𝑟. − 𝐻J.𝑠.𝑟J − 𝐻.J𝑠J𝑟.) = 0 

 
 

(17) 

 

Equations (16) and (17) may then be solved for A and ω. Several points should be noted: (i) these 
equations are the same as would result from applying harmonic balance, (ii) 𝜔. and 𝜀𝐴. are functions 
of G, H, r and s only, (iii) 𝜔. is found from a quadratic equation, implying that up to two limit cycle 
oscillations are possible; (iv) the conditions that 𝜔. > 0 and 𝐴. > 0 will determine the number of 
limit cycle oscillations, (v) for given A and ω, Equation (13) may be used in conjunction with 
Equations (9) to determine ξ and η. The first approximation to any limit cycles is then fully 
determined. 

To obtain a refinement to the first approximation, the solution (8) is substituted into (2), noting that 
the function G(τ, σ) may be rewritten as: 

𝐺(𝜏, 𝜎) =
1
𝜋
B

cos(2𝜈 + 1)(𝜏 − 𝜎)
1 − (2𝜈 + 1).

G

HIJ

 
(18) 

 

since in this case, λ = 1, and as the nonlinearity is an odd function, only odd trigonometric terms are 
retained and the terms in cosτ and sinτ are zero due to Equation (4) being satisfied. Furthermore, only 
the terms for ν = 1 in Equation (18) and those for cos3τ and sin3τ in Equation (11) will contribute to 
the refined approximation for X1r, which may then be determined from: 

 

𝐗Jw = 𝛏𝑠𝑖𝑛𝜏 + 𝛈𝑐𝑜𝑠𝜏 +
1
𝜋
𝜀𝐾𝐬
𝜔.

𝐴f

4√2
+
cos3𝜎cos3𝜏 + sin3𝜎sin3𝜏

8

./

0

{𝑠𝑖𝑛3𝜎 − 𝑐𝑜𝑠3𝜎}𝑑𝜎 
(19) 

 

Hence X1r, the refined first approximation is: 

 

𝐗Jw = 𝛏𝑠𝑖𝑛𝜏 + 𝛈𝑐𝑜𝑠𝜏 −
𝜀𝐾𝐬
𝜔.

𝐴f

32√2
{𝑐𝑜𝑠3𝜏 − 𝑠𝑖𝑛3𝜏} 

(20) 

 

To obtain the next solution estimate, X1r from equation (20) is substituted into (7) to give: 

𝚽 = −sin𝜏 i[
1
𝜔. 𝐇 − 𝐈] 𝛏 −

1
𝜔
𝐆𝛈j − cos𝜏 i[

1
𝜔. 𝐇 − 𝐈]𝛈 +

1
𝜔
𝐆𝛏j 

 

−
𝜀𝐾𝐬
𝜔.

3𝐴f

4√2
(1 + 𝛽𝐴. + 2𝛽.𝐴s)(sin𝜏 + cos𝜏) + ⋯ .. 

 
 
 

(21) 
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where only the terms in cosτ and sinτ are given. β is given by: 

 

𝛽 =
𝜀𝐾𝐫V𝐬
32𝜔.  

(22) 

 

Applying the condition (4) to eliminate secular terms then gives: 

 

o[
1
𝜔. 𝐇 − 𝐈] +

𝑖
𝜔
𝐆 +

3𝜀𝐾𝐴.

4𝜔. (1 + 𝛽𝐴. + 2𝛽.𝐴s)𝐬𝐫Vp (𝛏 + 𝑖𝛈) = 0 
(23) 

 

and the following determinantal equation is then solved for A and ω: 

 

q[
1
𝜔. 𝐇 − 𝐈] +

𝑖
𝜔
𝐆 +

3𝜀𝐾𝐴.

4𝜔. (1 + 𝛽𝐴. + 2𝛽.𝐴s)𝐬𝐫Vq = 0 
(24) 

 

The following two equations for A and ω then result: 

 

𝜔.(𝐺JJ + 𝐺..) − 𝐺JJ𝐻.. − 𝐺..𝐻JJ + 𝐺.J𝐻J. + 𝐺J.𝐻.J 
 

−
3
4
𝐾𝜀𝐴.(1 + 𝛽𝐴. + 2𝛽.𝐴s)(𝐺JJ𝑠.𝑟. + 𝐺..𝑠J𝑟J − 𝐺.J𝑠J𝑟. − 𝐺J.𝑠.𝑟J) = 0 

 
(25) 

 

𝜔s − 𝜔. t𝐻JJ + 𝐻.. +
3
4
𝐾𝜀𝐴.(1 + 𝛽𝐴. + 2𝛽.𝐴s)(𝑠J𝑟J + 𝑠.𝑟.)u 

 
 +𝐺JJ𝐺.. − 𝐺J.𝐺.J + 𝐻JJ𝐻.. − 𝐻.J𝐻J. 
 

+
3
4
𝐾𝜀𝐴.(1 + 𝛽𝐴. + 2𝛽.𝐴s)(𝐻..𝑠J𝑟J + 𝐻JJ𝑠.𝑟. − 𝐻J.𝑠.𝑟J − 𝐻.J𝑠J𝑟.) = 0 

 

 
 

(26) 

 

These equations may be solved for ω by eliminating the function of A, 𝜀𝐾𝐴.(1 + 𝛽𝐴. + 2𝛽.𝐴.), 
which will result in the same equation for ω as for the first approximation. 

Thus the Equation for A will be a cubic in A2 of the form: 

 

𝑝(𝐴.) = 𝐴} +
1
2𝛽

𝐴s +
1
2𝛽.

𝐴. + 𝐵(𝜔) = 0 
(27) 

 

It may be readily shown that (27) only has one real root, as the function 𝑝(𝐴.), regarded as a cubic in 
A2, has no turning points, and hence will yield at most one value of A for a given ω. The resulting 



Page 7 

value of A may be used in Equation (20) to give a second approximation and ξ and η may in turn be 
updated. 

Substituting Equation (20) into (7) and noting that Equations (4) need to be satisfied gives: 

𝚽 = cos3𝜏 �−
3𝐾𝜖
𝜔f

𝐴f

32√2
𝐆𝐬 +

3𝐾𝜖
𝜔.

𝐴f

32√2
[
1
𝜔. 𝐇 − 𝐈] 𝐬 −

𝐾𝜖
𝜔.

𝐴f

√2
𝑆f𝐬�

+ sin3𝜏 �−
3𝐾𝜖
𝜔f

𝐴f

32√2
𝐆𝐬 −

3𝐾𝜖
𝜔.

𝐴f

32√2
[
1
𝜔. 𝐇 − 𝐈] 𝐬 −

𝐾𝜖
𝜔.

𝐴f

√2
𝑆f𝐬�

+
𝐾𝜖
𝜔.

𝐴f

√2
𝑆�(𝑐𝑜𝑠5𝜏 + 𝑠𝑖𝑛5𝜏)𝐬 +

𝐾𝜖
𝜔.

𝐴f

√2
𝑆�(𝑐𝑜𝑠7𝜏 − 𝑠𝑖𝑛7𝜏)𝐬

−
𝐾𝜖
𝜔.

𝐴f

√2
𝑆�(𝑐𝑜𝑠9𝜏 + 𝑠𝑖𝑛9𝜏)𝐬 

 

 
 
 
 
 
 
 
 

(28) 

where: 

𝑆f = − i
1
4
+
3
2
𝛽𝐴. +

3
4
𝛽f𝐴}j ; 		𝑆� =

3
4
𝛽{𝐴. + 𝛽𝐴s} 

	𝑆� = −
3
4
𝛽.𝐴s;			 	𝑆� =

1
4
𝛽f𝐴} 

 

 
 

(29) 

Hence 𝚽 can be written in the form: 

𝚽 = 𝐔fcos3𝜏 + 𝐕fsin3𝜏 + 𝐔�cos5𝜏 + 𝐕�sin5𝜏+𝐔�cos7𝜏 + 𝐕�sin7𝜏+𝐔�cos9𝜏 + 𝐕�sin9𝜏 
 

(30) 

where 𝐔f, 𝐔�, 𝐔�, 𝐔�, 𝐕f, 𝐕�, 𝐕�, 𝐕� may be readily identified from Equations (28) and (29). The 
second refined approximation X2r, may be found by substituting (27) into (2) to give: 

𝐗.w = 𝛏𝑠𝑖𝑛𝜏 + 𝛈𝑐𝑜𝑠𝜏 −
𝐔f
8
𝑐𝑜𝑠3𝜏 −

𝐕f
8
𝑠𝑖𝑛3𝜏 −

𝐔�
24
𝑐𝑜𝑠5𝜏 −

𝐕�
24
𝑠𝑖𝑛5𝜏 −

𝐔�
48
𝑐𝑜𝑠7𝜏 −

𝐕�
48
𝑠𝑖𝑛7𝜏

−
𝐔�
80
𝑐𝑜𝑠9𝜏 −

𝐕�
80
𝑠𝑖𝑛9𝜏 

(31) 

Further refinements may be obtained by repeating the process. This will result in polynomial 
equations for amplitude A of increasingly higher order (which will need to be solved numerically) and 
additional terms in the series expansions for the limit cycle approximation. However, for the purposes 
of this study, the approximations obtained here will suffice. 

4. Stability Analysis 

The stability of the limit cycles obtained by the method in Section 3 are now determined by extending 
an approach developed in [32] for the analysis of Chua’s circuit, a first order three degree-of-freedom 
system. It is now assumed that X represents a limit cycle oscillation of (5) and ΔX a small 
perturbation of the limit cycle. Then to first order, ΔX, satisfies the equation: 

𝛥�̈� + 𝐆𝛥�̇� + 𝐇∆𝐗 + 𝜀𝐬𝐫V𝑓′(𝐫V𝐗)∆𝐗 = 𝟎 (32) 
 

Following [32] a solution for ΔX is now sought by writing: 
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𝛥𝐗 =B𝐻�𝐯�(𝑡)
s

�IJ

𝑒3�� 
 

(33) 

 

where Hl are scalar constants whose values would be dependent on initial conditions, vl are two-
dimensional vector functions of period 2π/ω and the λl are complex numbers which will determine the 
stability of the limit cycle.  

Denoting by v(t) any of the functions vl(t) for l = 1, 2, 3, 4, v may be written: 

𝐯(𝜏) = B 𝐕�

�G

�I�G

𝑒���� 
 

(34) 

and writing: 

𝜀𝐬𝐫V𝑓"(𝐫V𝐗) = B 𝐆�

�G

�I�G

𝑒���� 
 

(35) 

 

where ω is the known limit cycle frequency and 𝑓"(𝐫V𝐗) is periodic in ω. Vk is a two-dimensional 
column vector and Gk is 2 by 2 matrix; both have complex elements. 

Substituting (33), (34) and (35) into (32) gives: 

B {(𝑖𝜔 + 𝜆).𝐈 + (𝑖𝜔 + 𝜆)𝐆 + 𝐇}𝐕�

�G

�I�G

𝑒���� + B B 𝐆�𝐕�

�G

�I�G

𝑒��(���)�
�G

�I�G

= 0 
 

(36) 

 

Equating coefficients in 𝑒��� then leads to an infinite set of linear simultaneous homogeneous 
equations in Vk. The requirement for a non-trivial solution to these equations results in the following 
determinantal equation for λ: 

Det(𝐌) = 0 (37) 
 

where Equations (36) have been written as:	

𝐌𝐕� =

⎣
⎢
⎢
⎢
⎡
⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
⋯ 𝐆¢ ⋯ 𝐆J 𝐆£�J 𝐆�J ⋯ 𝐆�¢ ⋯ ⋯ ⋯
⋯ ⋯ 𝐆¢ ⋯ 𝐆J 𝐆£0 𝐆�J ⋯ 𝐆�¢ ⋯ ⋯
⋯ ⋯ ⋯ 𝐆¢ ⋯ 𝐆J 𝐆£J 𝐆�J ⋯ 𝐆�¢ ⋯
⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯⎦

⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
…
…
𝐕�𝐍
…
𝐕�𝟏
𝐕𝟎
𝐕𝟏
…
𝐕𝐍
…
… ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

= 𝟎 

 (38) 
with: 

𝐆£� = (𝑖𝜔𝑘 + 𝜆).𝐈 + (𝑖𝜔𝑘 + 𝜆)𝐆 + 𝐇 + 𝑮0 (39) 
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The determinantal equation (37) will have infinitely many solutions of the form 𝜆� ± 𝑖𝜔𝑘. In 
principle, Equation (37) could be solved approximately by taking a finite number of rows and 
columns in the determinant. However, a better approach is to proceed as in [32], which in turn builds 
on the approach of Whittaker and Watson [33] in the analysis of Mathieu’s equation, and define a new 
matrix M1 by: 

𝐌J = diag°𝐆£��J±𝐌 (40) 
 

The determinantal equation Det(M1) = 0 will have the same roots as (34). However, it will also 
possess infinitely many simple poles located at 𝜆 = 𝜆²J ± 𝑖𝜔𝑘; 𝜆². ± 𝑖𝜔𝑘; 𝜆²f ± 𝑖𝜔𝑘; 𝜆²s ± 𝑖𝜔𝑘, 
where 𝜆²J, 𝜆².,	𝜆²f,	𝜆²s are solutions of the equation Det(𝐆£0) = 0. Furthermore, all poles located at 
𝜆²� ± 𝑖𝜔𝑘 for a given l will have the same residue for all k. 𝜆²J, 𝜆².,	𝜆²f,	𝜆²s will be complex 
conjugate pairs, and so it is then possible to write 𝜆²f = 	𝜆²J∗ , 𝜆²s = 	𝜆².∗ .  One of the solutions of (37) 
will be λ = 0, corresponding to the limit cycle, and hence the determinantal equation Det(M1) = 0 may 
be written in terms of a Mittag-Leffler expansion as follows: 

Det(𝐌J) = 	B𝑐� B t
1

𝜆 − (𝜆²� + 𝑖𝑘𝜔)
+

1
(𝜆²� + 𝑖𝑘𝜔

u
�G

�I�G

s

�IJ

 

 

 
(41) 

 

where cl is the residue of the pole λsl. (41) may then be written: 

Det(𝐌J) = 	
𝑖𝜔
𝜋
B𝑐�

s

�IJ

tcot [
𝑖(𝜆 − 𝜆²�)𝜋

𝜔 ] + cot [
𝑖𝜆²�𝜋
𝜔 ]u = 0 

 

 
(42) 

 

In order to determine the residues of Det(M1), first note that this may be written as: 

Det(𝐌J) = Det(𝐌) ´ Det°𝐆£��J±
�G

�I�G

 

 

 
(43) 

 

where the residues arise due to the term Det°𝐆£0�J±. Details of the determination of these residues may 
be found in Appendix B. 

Equation (42) may be solved by writing, as in [32]: 

𝜇 = exp [
2𝜋𝜆
𝜔 ] ;	𝜇²� = exp [−

2𝜋𝜆²�
𝜔 ] ; 

 

 
(44) 

 

This leads to a quartic equation in μ, where one solution will be μ = 1, so that the remaining values of 
μ may be found from a cubic equation: 

𝑎𝜇f + 𝑏𝜇. + 𝑐𝜇 + 𝑑 = 0 
 

(45) 

 

The values of the coefficients a, b, c, d are given in Appendix C. 
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5. Local Stable Manifold and Stability Domain Estimation 

Following a sub-critical Hopf bifurcation, the stability domain of the stable equilibrium point that 
arises is given by the stable manifold of the unstable limit cycle [36]. From the analysis in Section 4, 
the solution of Equations (5) in the neighbourhood of the limit cycle may be written as: 

𝐗£ = 𝐗 + 𝛥𝐗 = 𝐗 +B𝐻�𝐯�(𝑡)
s

�IJ

𝑒3�� 

 

 
(46) 

with X denoting the limit cycle from Equation (31) and three of the 𝜆� being determined from 
Equations (44) and (45) with the remaining 𝜆�, which corresponds to the limit cycle being 0. If the 
limit cycle is unstable, one of the other 𝜆� will be positive. Hence the local stable manifold may be 
determined from: 

𝐗£ = 𝐗 + 𝛥𝐗 =B𝐻�𝐯�(𝑡)
.

�IJ

𝑒3�� 

 

 
(47) 

 

where 𝜆J, 𝜆. will possess negative real parts. Substituting from equation (31) then gives: 

𝐗£ = 𝐗 + 𝐻J B 𝐕J�

�G

�I�G

𝑒(����3º)�+𝐻. B 𝐕.�

�G

�I�G

𝑒(����35)� 

 

 
(48) 

 

The vectors 𝐕J� and 𝐕.� are obtained from the homogenous simultaneous Equations (38) with 𝜆 = 𝜆J 
and 𝜆 = 𝜆. respectively. In doing so, note that the right hand side of equation (38) is real and so a 
switch is made from working in complex numbers to working in real numbers. Define the matrix J as 
follows: 

 

𝐉 =

⎣
⎢
⎢
⎢
⎢
⎡
… … … … … … … … … … …
… 𝟎 𝟎 𝐈 𝟎 𝟎 𝟎 −𝐈𝑖 𝟎 𝟎 …
… 𝟎 𝟎 𝟎 𝐈 𝟎 −𝐈𝑖 𝟎 𝟎 𝟎 …
… 𝟎 𝟎 𝟎 𝟎 𝐈 𝟎 𝟎 𝟎 𝟎 …
… 𝟎 𝟎 𝟎 𝐈 𝟎 𝐈𝑖 𝟎 𝟎 𝟎 …
… 𝟎 𝟎 𝐈 𝟎 𝟎 𝟎 𝐈𝑖 𝟎 𝟎 …
… … … … … … … … … … …⎦

⎥
⎥
⎥
⎥
⎤

 

 

 
 
 

(49) 

where in Equation (49), I denotes a 2 x 2 identity matrix and 0 a 2 x 2 zero matrix. It is then possible 
to rewrite equation (38) as: 

 

𝐉�𝟏𝐌𝐕� = 𝐉�𝟏𝐌𝐉𝐉�𝟏𝐕� = 𝐍𝐉�𝟏𝐕� = 𝐍𝐖 = 𝟎 
 

(50) 

Where 𝐍 = 𝐉�𝟏𝐌𝐉 will now be a real matrix and hence 𝐖 = 𝐉�𝟏𝐕� will be a real solution to Equations 
(50).  

Suppose k = N terms are taken in the series expansion (33). Then the matrices M and N will be 4N+2 
× 4N+2 and V and W will be column vectors of dimension 4N + 2. Now take some element of W as 
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1.0, Equations (50) may then be rewritten to obtain the remaining elements of W. The resulting 
vectors are then taken as  𝐕J� and 𝐕.� in equation (45) for 𝜆 = 𝜆J and 𝜆 = 𝜆. respectively. 

To determine approximations to points on the stable manifold of the unstable limit cycle, and hence to 
the stability domain, initial conditions in 𝑑𝐗£/𝑑𝑡 may be first specified. A particular point on the limit 
cycle corresponding to time 𝜏0 = 𝜔𝑡0 can be chosen so that at this point, the initial conditions are 
satisfied. Thus:  

¿
𝑑𝐗£
𝑑𝑡
À
�I�Á

= [
𝑑𝐗
𝑑𝑡]�I�Á

+ 𝐻J B 𝐕J�(𝑖𝜔𝑘 + 𝜆J)
�G

�I�G

𝑒(����3º)�Á+𝐻. B 𝐕.�

�G

�I�G

(𝑖𝜔𝑘 + 𝜆.)𝑒(����35)�Á  

 (51) 
 

Equations (51) may then be solved for 𝐻J and  𝐻..	 𝐗£ at 𝜏0 = 𝜔𝑡0	may then be determined from 
equation (47). This process may be repeated for 0 ≤ 𝜏0 ≤ 2𝜋. 

6. Limit Cycle Analysis 

In this section, examples of limit cycle predictions are given and comparisons with time domain 
results are made. . In the time domain approach, Equations (5) are solved numerically using a variable 
step Runge-Kutta method. All the examples are based on an aeroelastic analysis of an all-moving 
control surface with a non-linearity in the torsional degree-of-freedom of the root support. Supersonic 
airflow was considered and the aerodynamic loadings were modelled using third order piston theory 
aerodynamics [34]. Because of the simple form of the aerodynamics arising from the use of piston 
theory, the resulting aeroelastic equations take the form of Equations (5) with the matrices G and H 
being asymmetric and combining aerodynamic and structural damping and stiffness terms. 
Displacements of the control surface are expressed in terms of its modes of vibration in the absence of 
the non-linearity so that X is a vector of generalised displacements.  
 
In this example, G and H are given by: 
 

𝐆 = Ã0.018444 0.002490
0.000398 0.018122Ä + 𝐶 Ã

1.8949752 2.2453181
0.3591434 0.4255418Ä 

(52) 

 

𝐇 = Ã0 0
0 1.4107697Ä + 𝐾 Ã

0.105276 0.1247399
0.019952 0.0236412Ä + 𝑉 Ã

0.02281027 0.02293653
−0.0331607 −0.0351129Ä 

(53) 

 
r and s are given by: 
 

𝐫 = Ã 1
1.18488Ä 										𝐬 = Ã0.10527640.0199525Ä										 

(54) 

 
Where C, K are parameters related to linear torsional damping and stiffness of the lifting surface 
support and V is a speed parameter. The nonlinearity parameter ε will be taken as positive throughout 
(signifying a hardening non-linearity) and characterises a deviation from a linear support stiffness K. 
 
The bifurcational behaviour of the system as C, K and V are varied is first considered. The system (5) 
has an equilibrium point X = 0. Combinations of C, K and V where the stability of the equilibrium 
point changes indicate where bifurcations occur, and determining whether limit cycles occur for C, K 
and V in the neighbourhood of the bifurcation is through using the analysis of Section 3. Their 
stability is determined using the theory of Section 4 and establishes whether a sub-critical or super-
critical Hopf bifurcation occurs. 
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The bifurcational behaviour of the system is indicated in Fig. 1 in terms of K and V for two values of 
C. Considering the case C = 0, the equilibrium point is unstable for combinations of K and V above 
the curve and to the left of its minimum. For V below this part of the curve, a sub-critical Hopf 
bifurcation occurs whereby the equilibrium point becomes stable and an unstable limit cycle appears. 
On the other hand, the equilibrium point is stable for combinations of K and V below the curve and to 
the right of its minimum. For V above this part of the curve, a super-critical Hopf bifurcation occurs 
whereby the equilibrium point becomes unstable and a stable limit cycle appears.  

The minimum of the curve, where approximately, K = 8 and V = 6, corresponds to a co-dimension 2 
bifurcation where the stable equilibrium point becomes unstable and a stable and unstable limit cycle 
appear simultaneously.  

A similar pattern of behaviour occurs for C = 0.1 as can also be seen in Fig. 1. 

 

Fig. 1 Bifurcational Behaviour of Nonlinear System 

The bifurcational behaviour of the system is also illustrated in Table 1, which summarises limit cycle 
characteristics for combinations of K and V for C = 0 in terms of amplitude of the fundamental 
frequency component, fundamental frequency and maximum modulus of the Floquet exponent. The 
behaviour of the system was also confirmed through time domain analysis as indicated in Fig. 1. It 
will be noted that for K < 8 two limit cycles occur (one stable and one unstable) arise. 

K V 𝐴J 𝜔J max	(𝜇J) 𝐴. 𝜔. max	(𝜇.) 
1 10 0.515 0.872 2.536 2.675 1.273 0.954 
3 8 0.194 0.935 1.522 1.309 1.219 0.951 
5 6 0.474 1.060 1.432 0.617 1.102 0.940 
7 6 0.099 1.060 1.069 0.351 1.102 0.940 
9 7 - - - 0.390 1.180 0.949 
11 7 - - - 0.171 1.180 0.948 
13 8 - - - 0.086 1.219 0.947 

 

Table 1. Illustration of Limit Cycle Behaviour Following Hopf Bifurcation  

A number of examples of limit cycles determined by the method of Section 3 and time domain 
analysis are now presented to indicate the effectiveness of the method. 

5
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13
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K
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As a first example, limit cycle predictions are shown in Figs. 2 to 5 for the case K = 0.5, V = 6.9, C = 
0, ε = 2.5. Fig. 2 compares the time domain prediction and first approximation for the unstable limit 
cycle, while Figs. 3 to 5 show results for the stable limit cycle using the first approximation, first 
refined approximation and second refined approximation. For the unstable limit cycle, where the 
amplitudes of motion are small, the first approximation is very accurate. This is not the case for the 
stable limit cycle and Fig. 3 shows the influence of higher harmonics on the limit cycle are quite 
significant. Figs. 4 and 5 show that the first refined approximation gives a significant improvement 
and the second refined approximation gives still closer agreement with time domain predictions. 
Figures 6 to 8 show the corresponding results where now C = 0.1.  
 

 
 

 
 
 
 
 
        X2 
 
 
 
 
 
 
 
      X1 
 
Fig. 2 First Approximation Unstable Limit Cycle Prediction. K = 0.5, V = 6.9, C = 0, ε= 2.5 
 

 
 
 
 
 
 
            X2 
 
 
 
 
 
 
 
      X1 
 
Fig. 3 First Approximation Stable Limit Cycle Prediction. K = 0.5, V = 6.9, C = 0, ε= 2.5 
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  X2 
 
 
 
 
 
 
 
                X1 
 
Fig. 4 Refined Stable Limit Cycle Prediction. K = 0.5, V = 6.9, C = 0, ε= 2.5 (Displacements) 
 
 
 
 
 
 
 
 
 
  
  �̇�. 
 
 
 
 
 
 
       �̇�J 
 
Fig. 5 Refined Stable Limit Cycle Prediction. K = 0.5, V = 6.9, C = 0, ε= 2.5 (Velocity  
 Components) 
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        X2 
 
 
 
 
 
 
 
      X1 
 
Fig. 6 First Approximation Unstable Limit Cycle Prediction. K = 0.5, V = 6.9, C = 0.1, ε= 2.5 
 
 
 
 
 
 
 
 
        X2 
 
 
 
 
 
 
 
 
      X1 
 
Fig. 7 Refined Stable Limit Cycle Prediction. K = 0.5, V = 6.9, C = 0.1, ε = 2.5 (Displacements) 
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  �̇�. 
 
 
 
 
 
 
 
 
       �̇�J 
 
Fig. 8 Refined Stable Limit Cycle Prediction. K = 0.5, V = 6.9, C = 0.1, ε = 2.5 (Velocity  
 Components) 
 
As a further example, Figs. 9 and 10 show results for case K = 4, V = 9 and C = 0. The first refined 
approximation shows close agreement with time domain approximations and the second refined 
approximation gives yet closer agreement. 
 
 
 
 
 
 
 
 
  X2 
 
 
 
 
 
 
 
 
 
      X1 
 
Fig. 9 Refined Stable Limit Cycle Prediction. K = 4, V =  9, C = 0.0, ε = 2.5   
 (Displacement Components) 
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  �̇�. 
 
 
 
 
 
 
 
 
       �̇�J 
 
Fig. 10  Refined Stable Limit Cycle Prediction. K = 4, V =  9, C = 0.0, ε = 2.5 (Velocity 
  Components) 
 
Figs. 11 and 12 show stable limit cycle predictions for the case K = 4, V = 9, C = 0.1. Again, 
comparisons are made between time domain and the first and second refined approximation. 
Agreement is good and show the ability of the method to capture the effects of higher harmonics. 
 
 
 
 
 
 
 
 
 
  X2 
 
 
 
 
 
 
 
 
      X1 
 
Fig. 11  Refined Stable Limit Cycle Prediction. K = 4, V = 9, C = 0.1, ε = 2.5   
 (Displacement  Components) 
 
 



Page 18 

 
 
 
 
 
 
 
 
  �̇�. 
 
 
 
 
 
 
 
 
       �̇�J 
 
Fig. 12  Refined Stable Limit Prediction. K = 4, V =  9, C = 0.1, ε = 2.5 (Velocity  
  Components) 
 
7. Stability Domain Study 

The bifurcation study shows how for the system described by equations (52) to (54) a subcritical Hopf 
bifurcation can occur whereby the unstable equilibrium point becomes stable and an unstable limit 
cycle appears. There is then associated with the stable equilibrium point a domain of attraction, the 
boundary of which is the stable manifold associated with the unstable limit cycle [36]. A local 
approximation to this stable manifold, and hence the domain of attraction, may then be determined as 
outlined in Section 5. It is emphasised that the resulting stability domains of attraction can only be 
anticipated to have any validity in the neighbourhood of the limit cycle. Nevertheless, this provides a 
way to indirectly further validate behaviour of the system predicted by the Floquet analysis. 

A number of comparisons are now presented between stability domain predictions based on numerical 
integration of the system equations and based on Floquet analysis results using the method of Section 
5. Points on the domain of attraction are determined in the time domain by a trial-and-error process. 
All the examples chosen are for conditions where the sub-critical Hopf bifurcation has just occurred. 

Figs. 13 to 15 show stability domain estimates wherefor the case �̇�J = 0 and �̇�. = 0 for K between 4 
and 6, C = 0, ε = 2.5 and V chosen such that bifurcation has just occurred in each case. It may be seen 
that agreement is good in all cases.  
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  X2 
 
 
 
 
 
 
 
 
      X1 

Fig. 13  Stability Domain for K = 4, V = 7.32, �̇�𝟏=0, �̇�𝟐=0 
 
 
 
 
 
 
 
 
 
 
 
  X2 
 
 
 
 
 
 
 
 
      X1 

 
Fig. 14  Stability Domain for K = 5, V = 6.67, �̇�𝟏=0, �̇�𝟐=0 
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  X2 
 
 
 
 
 
 
 
 
      X1 

 
Fig. 15  Stability Domain for K = 6, V = 6.24, �̇�𝟏=0, �̇�𝟐=0 

 

Figs. 16 to 18 show some further results for non-zero values of �̇�J and �̇�.. Again the correspondence 
between the time domain results and predictions derived from the Floquet analysis are reasonable. 
 
 
 
 
 
 
 
 
 
 
  X2 
 
 
 
 
 
 
 
 
 
      X1 
 

Fig. 16  Stability Domain for K = 4, V = 7.32, �̇�𝟏=0.1, �̇�𝟐=0.05 
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  X2 
 
 
 
 
 
 
 
 
      X1 
 

Fig. 17  Stability Domain for K = 5, V = 6.67, �̇�𝟏=0.17, �̇�𝟐=0.06 
 
 
 
 
 
 
 
 
 
 
 
  X2 
 
 
 
 
 
 
 
 
      X1 

 
Fig. 18  Stability Domain for K = 6, V = 6.24, �̇�𝟏= -0.15, �̇�𝟐= -0.05 
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As noted in Section 4, the Floquet analysis is based on ΔX being small compared to X in Equation 
(32). The results in Figs 13 to 18 were actually obtained subject to the condition: 

 
|∆𝐗|
𝐴

< 1 
(55) 

 
where A is the amplitude of the fundamental harmonic of the unstable limit cycle. It was therefore 
noticeable that for the cases considered, reasonable stability domain predictions could be obtained 
even when the smallness condition was relaxed.  

 

8. Concluding Remarks 

Analytical higher order approximations to limit cycles of an autonomous multi-degree-of-freedom 
system have been obtained using a method based on that of [30] and [31] and have been shown to 
give improved results over first approximation results which were identical to what would be obtained 
using harmonic balance based on the fundamental frequency component alone. Further iterations may 
be obtained in a similar manner resulting in higher order polynomial equations for A which would 
need to be solved numerically. 

A method for carrying out Floquet analysis originally developed in [32] for a first order three degree-
of-freedom system has been extended to a second order two-degree-of-freedom system. The method 
has then been used to provide some estimates of points on the boundary of the domain of attraction of 
the stable equilibrium point arising from, and just following, a sub-critical Hopf bifurcation. This is 
achieved by producing a local approximation to the stable manifold of the unstable limit cycle that 
arises. 

The integro-differential equation to be solved for the limit cycles involves no approximations. These 
only arise through the iterative approach to its solution adopted here. Potentially it could form the 
basis for a numerical algorithm for limit cycle determination. In [32], the Floquet analysis was able to 
identify period doubling bifurcations in the analysis presented there. It might be expected that the 
extension used in the present work can do so also. 

Although this study has focussed on cubic non-linearities, the method presented here could equally be 
used to refine limit cycle predictions for other non-linearity types arising in engineering applications. 
Furthermore, many non-linear aeroelastic analysis studies adopt a state-space representation for the 
unsteady aerodynamics, which is possible using reduced order models, as in [37], for example. The 
method presented here would be anticipated to be applicable in these cases also. 
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APPENDIX A Determination of the Matrices Gk in Equation (35) 

The coefficients Gk in Equation (35) may be found by from a Fourier expansion of:  

 
𝑓"(𝑟V𝑋) = 3𝐾(𝑟V𝑋). 

 
(A1) 

 

with X given by Equation (31). This Fourier expansion will be of the form:  

𝑓"E𝐫𝐓𝐗F = 3𝐾 Ï𝑈0 +B𝑈Ñ.𝑐𝑜𝑠2𝑘𝜏 +B𝑈².𝑠𝑖𝑛2𝑘𝜏
G

�I.

G

�I.

Ò 

 

 
(A2) 

Noting that as 𝐫𝐓𝐗 has a Fourier series in odd terms,		𝑓"E𝐫𝐓𝐗F will therefore have an expansion in 
even terms. As the right hand side of Equation (35) is expressed in complex form, the following 
equations then result for the matrices G2k, G-2k, G0: 

 
𝐆0 = 3𝐾𝜀𝐬𝐫V𝑈Ó	

𝐆.Ô = 	
3
2
	𝐾𝜀𝐬𝐫V i𝑈Ñ. +

𝑈².
𝑖
j	

𝐆�.Ô = 	
3
2
	𝐾𝜀𝐬𝐫V i𝑈Ñ. −

𝑈².
𝑖
j 

 
 

(A3) 

for k = 1, 2, 3, …. 

 
APPENDIX B Determination of Residues of Det°𝑮£𝟎�𝟏±. 
 
These may be found in the following way. First, note that from Equation (39), 𝐆£0  may be written: 
 

𝐆£0 = 𝜆.𝐈 + 𝜆𝐆 + 𝐇 + 𝐬𝐫V𝐆0 (B1) 
 
Now write: 
 

𝐔 = t−𝐇 − 𝐬𝐫
V𝐆0 𝟎

𝟎 𝐈
u  

(B2) 
 

𝑽 = t 𝟎 −𝐇 − 𝐬𝐫V𝐆0
−𝐇 − 𝐬𝐫V𝐆0 −𝐆

u 
 

(B3) 
 
Then 𝜆²J, 𝜆².,	𝜆²f,	𝜆²s will also be solutions to the eigenvalue problem: 
 

𝐕 Ã
𝛘
𝜆𝛘Ä = 𝜆𝐔 Ã

𝛘
𝜆𝛘Ä 

 
(B4) 

 
Defining 𝚲 = diag[𝜆²J 𝜆².], left-hand and right-hand eigenvector matrices of (B4), �̅�, 𝐑� may be 
written: 
 

�̅� = Ã 𝐋 𝚲𝐋
𝐋∗ 𝚲∗𝐋∗Ä 

 
(B5) 
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𝐑� = Ã 𝐑 𝐑∗
𝐑𝚲 𝐑∗𝚲∗Ä 

 
(B6) 

 
Where 𝐿Þ and 𝑅Þ are normalised such that: 
 

�̅�𝐔𝐑� = 𝐈 (B7) 
 
It is then possible to write the inverse of a matrix of the type in (B1) as [38]:  
 

𝐆£0�J = [𝜆.𝐈 + 𝜆𝐆 + 𝐇 + 𝐬𝐫V𝐆0]�J = [𝐋 𝐋∗] t
[𝜆𝐈 − 𝚲]�J 0

0 [𝜆𝐈 − 𝚲∗]�J
u Ã 𝚲𝐑𝚲∗𝐑∗Ä 

 
(B8) 

 
The residues R1, R2, R3, R4 of Det°𝐆£0�J± for each of 𝜆²J 𝜆². 𝜆²f 𝜆²s may then be found by expanding 
the determinant and may be written: 
 

𝑅J = B à𝐿
ÞJJ 𝐿ÞJ�
𝐿Þ.J 𝐿Þ.�

à à𝑅
ÞJJ 𝑅ÞJ.
𝑅Þ�J 𝑅Þ�.

à
1

(𝜆²� − 𝜆²J)�I.,f,s

 
 

(B9) 

 

𝑅. = B à𝐿
ÞJ. 𝐿ÞJ�
𝐿Þ.. 𝐿Þ.�

à à𝑅
Þ.J 𝑅Þ..
𝑅Þ�J 𝑅Þ�.

à
1

(𝜆²� − 𝜆².)�IJ,f,s

 

 

 
(B10) 

 

𝑅f = B à𝐿
ÞJf 𝐿ÞJ�
𝐿Þ.f 𝐿Þ.�

à à𝑅
ÞfJ 𝑅Þf.
𝑅Þ�J 𝑅Þ�.

à
1

(𝜆²� − 𝜆²f)�IJ,.,s

 

 

 
(B11) 

 

𝑅s = B à𝐿
ÞJs 𝐿ÞJ�
𝐿Þ.s 𝐿Þ.�

à à𝑅
ÞsJ 𝑅Þs.
𝑅Þ�J 𝑅Þ�.

à
1

(𝜆²� − 𝜆²s)�IJ,.,f

 

 

 
(B12) 

 
from which the residues c1, c2, c3, c4 in Equation (42) may be determined. 
 
Appendix C Determination of Coefficients of Equation (45) 
 
The coefficients a, b, c, d of Equation (45) for the Floquet multipliers are given by the following 
equations: 
 

𝑎 = −	𝑐J𝜇²J𝜇².𝜇²f𝜇²s(𝜇². − 1)(𝜇²f − 1)(𝜇²s − 1) 							
− 𝑐.𝜇²J𝜇².𝜇²f𝜇²s(𝜇²J − 1)(𝜇²f − 1)(𝜇²s − 1)
− 𝑐f𝜇²J𝜇².𝜇²f𝜇²s(𝜇²J − 1)(𝜇². − 1)(𝜇²s − 1)
− 𝑐s𝜇²J𝜇².𝜇²f𝜇²s(𝜇²J − 1)(𝜇². − 1)(𝜇²f − 1)	 

 
 

(C1) 

 
𝑏 = 𝑐J𝜇²J(𝜇². − 1)(𝜇²f − 1)(𝜇²s − 1)(𝜇².𝜇²f + 𝜇²f𝜇²s + 𝜇²s𝜇².)	
							+𝑐.𝜇².(𝜇²J − 1)(𝜇²f − 1)(𝜇²s − 1)(𝜇²J𝜇²f + 𝜇²J𝜇²s + 𝜇²s𝜇²f)	
								+𝑐f𝜇²f(𝜇²J − 1)(𝜇². − 1)(𝜇²s − 1)(𝜇²J𝜇². + 𝜇².𝜇²s + 𝜇²s𝜇²J)	
								+𝑐s𝜇²s(𝜇²J − 1)(𝜇². − 1)(𝜇²f − 1)(𝜇²J𝜇². + 𝜇².𝜇²f + 𝜇²s𝜇²f) 

 
 

(C2) 
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𝑐 = −	𝑐J𝜇²J(𝜇². − 1)(𝜇²f − 1)(𝜇²s − 1)(𝜇². + 𝜇²f + 𝜇²s)	
							−𝑐.𝜇².(𝜇²J − 1)(𝜇²f − 1)(𝜇²s − 1)(𝜇²J + 𝜇²f + 𝜇²s)	
								−	𝑐f𝜇²f(𝜇²J − 1)(𝜇². − 1)(𝜇²s − 1)(𝜇²J + 𝜇². + 𝜇²s)	
								−	𝑐s𝜇²s(𝜇²J − 1)(𝜇². − 1)(𝜇²f − 1)(𝜇²J + 𝜇². + 𝜇²f) 

 
 

(C3) 

 
𝑑 = 𝑐J𝜇²J(𝜇². − 1)(𝜇²f − 1)(𝜇²s − 1) + 𝑐.𝜇².(𝜇²J − 1)(𝜇²f − 1)(𝜇²s − 1)	
								+𝑐f𝜇²f(𝜇²J − 1)(𝜇². − 1)(𝜇²s − 1) + 𝑐s𝜇²s(𝜇²J − 1)(𝜇². − 1)(𝜇²f − 1) 

 
(C4) 
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