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Abstract 

In this work, finite element simulations based on the analytical model derived with the MATLAB software were used 
to establish the temperature fields within the cutting tool and tool-chip interface. The average tool-chip interface 
temperature model was simulated and the simulation results were compared with experimental results for validation. 
At a maximum cutting speed of 90 m/min, the maximum temperature obtained from the experiment was 410 

o
C, at

same rake angle of 0
o
. However, the developed model predicted 490 

o
C under the same conditions. The higher value

obtained by the model can be attributed to the negligence of heat losses to the surrounding by both convection and 
radiation modes, as an assumption in the formulated model. A similar trend of these results was also recorded for the 
case of rake angle and feed rate of 30

o 
and 0.0635 mm/rev, respectively. It was observed that the simulation results

and experimental measurements for the average tool-chip interface temperature agreed significantly. 
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1. Introduction

The process of machining has been a subject of research over the last six decades (Kegg, 1965; Astakhov, 1999;

Altintas, 2000). Friction plays an important role during cutting of materials, as the cutting tool and workpiece

continuously rub or slide on each to transform the material from elastic stage to plastic phase, where permanent shear

or cutting takes place. Therefore, it is imperative to understanding the machining parameters that affect frictional

force. Also, cutting parameters must be optimised to minimise the friction since average of 55% of the energy

consumed during machining process is used to deform materials and causes chip formation. If it is non-optimised

process, greater part of the remaining energy is used for the conversion of the useful energy to the heat energy, from

interface temperature between tool-workpiece and chips (Astakhov, 2006). Consequently, a stable cutting machine,

less time, cutting and energy consumption/power are possible with when a cutting forced is reduced (Astakhov, 2005). 

The importance of the machining parameters cannot be undermined toward determination of the efficiency and

effectiveness of a machining operation.  The process of machining is affected by several parameters. These include,

but are not limited to, depth of cut, tool rake angle, cutting speed, cutting tool edge angle, feed rate and the properties

of the workpiece materials used (Bayoumi et al., 1994).
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As the advent of machining technology increases, many researchers have been attempting to establish a relationship 

between these parameters and process mechanics. They included sophisticated mathematical formulations of frictional 

behaviour on the cutting tool rake face, high temperature, high strain rate and work-hardening of the workpiece 

material. In addition, many techniques based on finite element methods have been adopted to establish several models 

and optimise the whole concept of machining technology. These methods include, but are not limited to, element 

separation, mesh rezoning, modeling worn cutting tool geometry and friction modeling. They were all used to predict 

the orthogonal metal cutting (Strenkowski et al., 1985; Strenkowski et al., 1987; Komvopoulos et al., 1991; Ueda et 

al., 1992; Shih et al., 1993; Shih et al., 1995;). For example, Shih et al. (1993) developed and implemented a finite 

element model for the simulation of plane strain continuous chip formation during orthogonal metal cutting process. 

Categorically, some of these studies were concentrated on tool wear (Hartung and Kramer, 1982; Gerez et al., 2009; 

Ezugwu and Wang, 1997; Yen et al., 2004; Dogra et al., 2011), cutting force (Babu et al., 2008; Kim and Ehmann, 

1993; Ozel and Altan, 2000) chip formation (Salem et al., 2012; Abushawasi et al., 2011) and cutting temperature or 

heat generation/transfer (Mottaghizadeh and Bagheri, 2012; Pittalà and Monno, 2011; Jam and Fard, 2011; Alabi et 

al., 2012; Kagnaya et al., 2011; Zhang et al., 2015) during machining processes. 

However, it must be noted that most of the extant works have been concentrated on several cutting parameters and 

conditions, with a very scarce and limited studies on effect of friction during orthogonal machining, especially on 

Al6061-T6 aluminum alloy material using combined approach. Hence, in this work, a combination of analytical 

and finite element methods (FEM) are adopted to examine the effects of several variables (related to tool-chip 

interface friction) on the average and maximum interface temperature between cutting tool and chip in orthogonal 

machining using a single point cutting tool. 

 
2. Models Development 

2.1   Friction force model 

Experiments conducted by several researchers have shown that the normal pressure acting at the tool-chip interface 

varies exponentially, such that it is maximum at the tool tip and diminishes to zero at the point where the chip separates 

from the rake face of the tool (Moufki et al., 1998; Tao et al., 2004; Childs, 2006), as illustrated in Figure 1. The 

normal stress is distributed along the rake face of the cutting tool. 
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Figure 1 Illustration of normal stress acting at tool-chip interface. 

 

Therefore, the mathematical equation of the curve in above Figure 1 is as follows: 

                            𝜎𝜎𝑁𝑁(𝑥𝑥) =   𝜎𝜎𝑁𝑁(𝑚𝑚𝑚𝑚𝑚𝑚) [   1 −   �𝑥𝑥
𝐿𝐿
�
𝑛𝑛

  ]                                                     (1) 

Where 𝜎𝜎𝑁𝑁(𝑥𝑥) represents the exponential pressure distribution, 𝜎𝜎𝑁𝑁(𝑚𝑚𝑚𝑚𝑚𝑚) represents the maximum pressure acting along 

the rake face of the cutting tool,  𝑥𝑥 is the distance measured from the cutting tool tip along the cutting tool rake face, 𝐿𝐿  

is the contact length of the interface between tool and chip and 𝑛𝑛 represents the control parameter for pressure 

distribution. 

The frictional resistance acting at the interface between tool and chip is not continuous along the cutting tool’s rake 

face. It consists of two components (Figure 2). These are:      
(i) Static component of friction   

(ii) Dynamic component of friction  

 
Figure 2 Friction force comprising of static and dynamic components in orthogonal cutting. 

   

The static component (FST) is due to the developed built-up edges which stick to the region around the cutting 

tool tip. This built-up edge induces a constant shear stress (τ) within the sticking length (LS). The total frictional 

resistance (FT) can then be expressed mathematically as: 

                                      FT   =    FST   +    FD                                                                                                   (2) 

Since FST is known to be constant along the sticking region, the static frictional force can be written as: 

                                      FST   =   ∫ 𝑤𝑤.
Ls

0
τ.d𝑥𝑥    =       ∫ 𝑤𝑤.

Ls

0
𝑘𝑘. d𝑥𝑥                                                 (3) 

                                      FST    =     w. LS. k                                                                                     (4) 

Where w represents the width of cut and τ is supposed to have the same value with the shear flow stress, k of 

the workpiece material.  The dynamic component (FD) depends on the sliding motion of chip along the rake 

face of the cutting tool. 

 
                                      FD      =    ∫ 𝑤𝑤. µ

𝐿𝐿

𝐿𝐿𝐿𝐿
. 𝜎𝜎𝑁𝑁(𝑥𝑥). 𝑑𝑑𝑑𝑑                                                                       (5) 
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By substituting Equation (1) into Equation (50, Equation (5) becomes: 

 

                                     FD      =       ∫    𝑤𝑤. µ
𝐿𝐿

𝐿𝐿𝐿𝐿
. 𝜎𝜎𝑁𝑁(𝑚𝑚𝑚𝑚𝑚𝑚). �   1 −   �𝑥𝑥

𝐿𝐿
�
𝑛𝑛

  � . 𝑑𝑑𝑑𝑑                                              (6) 

                                                                                   

                                     FD   =    𝑤𝑤. 𝜇𝜇𝑎𝑎.𝜎𝜎𝑁𝑁(𝑚𝑚𝑚𝑚𝑚𝑚)  { 
�𝑛𝑛𝑛𝑛− 𝐿𝐿𝐿𝐿 �(𝑛𝑛+1)−�𝐿𝐿𝐿𝐿𝐿𝐿 �

𝑛𝑛
�   �

𝑛𝑛+1
 }                                       (7) 

 

The total frictional force acting at the interface between tool and chip is therefore established after both 

Equations (7) and (4) are substituted into Equation (2). Thus, it becomes Equation (8): 

 

                  FT   =  𝑤𝑤.µa.𝜎𝜎𝑁𝑁(𝑚𝑚𝑚𝑚𝑚𝑚) .{ 
�𝑛𝑛𝑛𝑛− 𝐿𝐿𝑠𝑠 �(𝑛𝑛+1)−�𝐿𝐿𝑠𝑠𝐿𝐿 �

𝑛𝑛
�   �

𝑛𝑛+1
}   +   w. 𝐿𝐿𝑠𝑠.k                                          (8) 

 

2.1.1 Maximum normal pressure acted at tip of the cutting tool, 𝝈𝝈𝑵𝑵(𝒎𝒎𝒎𝒎𝒎𝒎)   

The highest normal pressure occurred at the cutting tool tip is calculated by applying slip-line field indentation 

theory. This theory is established on a plastic deformation of materials. It is geometrically self-constant and is 

stationary permissible. The planes of highest shear stress are slip lines. They exhibit 45o orientation to the 

principal stresses. This theory has some assumptions such as homogeneity and isotropy of the workpiece 

material, zero strain hardening, prevalence of deformation from plain strain, negligible effects of strain rate and 

temperature, among others.     

 

The normal pressure at the tool tip is given as: 

                 
                                 𝝈𝝈𝑵𝑵(𝒎𝒎𝒎𝒎𝒎𝒎)  =    2k (ø− α) +   k                                                                              (9) 

 
Where Ø, expressed in terms of α, is 

 

                                   Ø   =   tan −1 � 𝑟𝑟 cos 𝛼𝛼

1−𝑟𝑟 sin 𝛼𝛼
�                                                                                                                         (10) 

Where, ø represents shear angle, α is the rake angle and 𝑟𝑟 is the chip thickness ratio. 

 

2.1.2 Contact length of the interface, L between tool and chip 

The contact length of the interface between tool and chip can be determined from triangle AOE in Figure 3       

                                  L =       to  [
  sin [𝜋𝜋4+∅−𝛼𝛼] 

 sin∅ sin𝜋𝜋4
]                                                                        (11) 

 

2.1.3 Sticking length of the interface, LS between tool and chip 

The sticking size of the built-up edge is approximately equal to the length or line AD on triangle AOD (Figure 

3).                                 
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                                 LS   =   to  
sin(∅−𝛼𝛼)

sin ∅
                                                                                           (12) 

 

2.1.4 Sliding frictional force at interface, FD between tool and chip 

Considering Equation (7), the total frictional force FD becomes:  

𝑭𝑭𝑫𝑫   =  𝒘𝒘 𝒕𝒕𝒐𝒐 tan [α + tan−1(Fc / Ft ) ] [2𝑘𝑘 (ø− α) + 𝑘𝑘] 
𝑛𝑛+1

 {n�
  sin [

𝜋𝜋
4

+∅−𝛼𝛼] 

 sin ∅ sin
𝜋𝜋
4

� [ 
sin(∅−𝛼𝛼)

sin ∅
�(𝑛𝑛 + 1) −   �

sin(∅−𝛼𝛼) sin 
𝜋𝜋
4

sin [
𝜋𝜋
4

+∅−𝛼𝛼] 
�
𝑛𝑛

� ] }     

                                                                                                                                            (13)                                              

 
Figure 3 Schematic for slip-line field in orthogonal cutting. 

 

2.2    Frictional heat and temperature modelling 

Production of heat energy during orthogonal machining is primarily due to plastic deformation, occurs at the 

primary shear plane (shear zone) and friction at the interface between tool and chip. The tool-chip interfacial 

friction and plastic deformation at primary shear region affect the average interfacial temperature generated 

between the tool and chip.  

 

2.2.1    Average interfacial temperature, Tint between tool and chip 

During orthogonal cutting processes, the rate at which mechanical energy (as a results of the dynamic friction 

developed at the interface between chip and tool) is converted to heat, Q. This can be expressed mathematically 

as: 

                                         FD   VC   = Q                                                                                            (14) 

The quantity of the frictional heat energy rate (Q) assigned to the chip is determined by the coefficient of heat 

barrier (µ) such that, 0 ≤ 𝜃𝜃 ≤ 1 occurs at the interface between tool and chip. Hence, 

 

                                 FD   VC (1 −  θ ) =   ṁ Cp ΔT = (1 −  θ)Q                                                    (15)                                                                                                                                                     
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                                 ṁ   =   ρ to 𝑤𝑤V                                                                                                (16)  

Therefore,                      ΔT   =   
  F𝐷𝐷 (1 − θ )  sin ∅

ρ 𝐶𝐶𝑝𝑝 t𝑜𝑜 𝑤𝑤 cos(∅−𝛼𝛼) 
                                                                           (17) 

 
FD   is the average dynamic friction force at the interface between tool and chip, VC   is the velocity experienced 

by the chip usually along the rake face, V denotes cutting speed, ρ represents the density of the workpiece, ṁ 

represents chip mass flow rate of the chip, Cp represents the specific heat capacity of the material (workpiece) 

and to denotes the depth of cut. 

The average interfacial temperature, Tint, between tool and chip can be estimated as the sum of the average shear 

plane temperature Ts and the average interfacial temperature rise between the tool and chip is represented by 

ΔT.   

                                          Tint =    Ts   + ΔT                                                                                      (18)                                                             

Where the average temperature at shear plane Ts can be determined by equating the heat energy absorbed by 

the chip along the shear plane with the shearing work along the shear plane as follows:                  

                                    (1 − β)  FS   VS     =   ṁ Cp (T1 – To)                                    

Hence,  

                                 Ts   =   To   +    
    (𝟏𝟏−𝛃𝛃)  𝑭𝑭𝒔𝒔   𝐜𝐜𝐜𝐜𝐜𝐜∝

𝛒𝛒 𝑪𝑪𝒑𝒑 𝐭𝐭𝟎𝟎 𝒘𝒘 𝐜𝐜𝐜𝐜𝐜𝐜(∅−𝜶𝜶) 
                                                                         (19)                  

                                 Tint   =   To   +    
  (𝟏𝟏−𝛃𝛃) 𝑭𝑭𝒔𝒔   𝐜𝐜𝐜𝐜𝐜𝐜∝   +  (1 − θ ) 𝑭𝑭𝑫𝑫 𝐬𝐬𝐬𝐬𝐬𝐬 ∅

𝛒𝛒 𝑪𝑪𝒑𝒑 𝐭𝐭𝟎𝟎 𝒘𝒘 𝐜𝐜𝐜𝐜𝐜𝐜(∅−𝜶𝜶) 
                                                                         (20) 

Where 𝛽𝛽 represents the amount of the energy produced in the primary region, absorbed by the Al6061-T6 

aluminum alloy/workpiece (Oxley, 1989). 

And  

             𝛽𝛽 = 0.5 − 0.35 log(𝑅𝑅𝑇𝑇 tan∅) for 0.04 ≤  𝑅𝑅𝑇𝑇 tan∅  ≤ 10.0  

            𝛽𝛽 = 0.3 − 0.15 log(𝑅𝑅𝑇𝑇 tan∅) for  𝑅𝑅𝑇𝑇 tan∅  > 10.0                (Oxley, 1989) 

 
 Where  𝑅𝑅𝑇𝑇  is generally represented as:  𝑹𝑹𝑻𝑻  =  

𝝆𝝆𝑪𝑪𝑷𝑷𝑽𝑽𝒕𝒕𝒐𝒐
𝑲𝑲𝒕𝒕

 

 
From Equations (20) and (21), To is the initial workpiece temperature which is supposed to be equal to room 

temperature in this study, 𝐹𝐹𝑠𝑠 denotes the shear force acting along the shear plane, 𝑤𝑤 denotes the chip width and   

ΔT represents average interfacial temperature rise in between the tool and chip. 

 

2.2.2    Steady-state tool temperature distribution  

Based on the conservation of energy, a very small fraction of the differential control volume of the cutting tool 

is expressed on the condition that the tool has orthogonal cutting geometry. Assuming two-dimensional steady 

heat conduction, without internal heat generation. The quantities QX and QY representing the conduction heat 

rates are at right angle to both control surfaces, at coordinate locations of x and y, respectively. Using the Taylor 

935



Proceedings of the International Conference on Industrial Engineering and Operations Management 
Bangkok, Thailand, March 5-7, 2019 

© IEOM Society International 

series expansion to express these rates at opposite surfaces, while terms of higher order are neglected to produce 

Equations (21) and (22), as thus: 

                             Qx + dx    =   Qx +  
𝜕𝜕

𝜕𝜕𝜕𝜕
 (Qx) dx                                                                            (21) 

                               Qy + dy     =   Qy +  
𝜕𝜕

𝜕𝜕𝑌𝑌
 (Qy) dy                                                                        (22) 

From the principle of conservation of energy, 

                            Qin   -   Qout + Qg   = 0                                                                                    (23) 

Therefore, knowing that the conduction rates establish the energy inflow, Qin; energy outflow, Qout; and 

energy generated, Qg = 0; substituting Equations (21) and (22) into (23), we obtain 

 

                        Qx + Qy - Qx + dx - Qy + dy     = 0                                                                            (24)        

                         

                                            𝜕𝜕2 T    +    𝜕𝜕2 T     =   0                                                                   (25) 

Which simplifies to:           𝜕𝜕x2           𝜕𝜕y2 

Equation (25) is a two-dimensional elliptic partial differential equation (PDE). This Equation can be solved 

numerically by FEM with the MATLAB software, subject to the following boundary conditions at the interface 

between tool and chip, as depicted in Figure 4:     

                                                                                 
                     

Where 𝐴𝐴𝑆𝑆 and 𝐴𝐴𝐿𝐿  represent the cross-sectional areas of the sticking and sliding regions at the the interface 

between tool and chip, and 𝑄𝑄(0,   𝑌𝑌) represents the frictional heat flux along the interface between tool and chip. 

          
Moreover, the two-dimensional domain (OABC) in both Figures 4(a) and (b) of the cutting tool is set as at 

orthogonal geometry, neglecting the nose radius. Then, OABC is discretised into, Ns sub-regions of triangular 

elements, which is not essentially of the similar dimensions. The locations of Nn nodes are specified and 

numbered beginning from the boundary nodes, n = 1, 2, 3, 4, 5…, Nb, while the interior nodes similarly follow 

the pattern, as n = Nb + 1, Nb + 2, Nb + 3,…, Nn so that a reliable solution from iteration operation for the temperature 

fields within the cutting tool (OABC) can be obtained. 

 

 

          
(26) 
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(a)    (b)      

Figure 4 Schematic representation of heat flow and boundary conditions of the cutting tool. 

 

3.   Results and discussion 

3.1 The average interfacial temperature, (Tint) between tool and chip 

Both significant properties and cutting conditions of Al6061-T6, aluminum alloy used as a workpiece are stated 

in Tables 1(a) and (b), respectively. These quantities are used for the model validation. 

 
Table 1(a) Mechanical and Thermal properties      
of Al6061-T6 (Strentowski and Moon, 1990). 

 
 

 
The model derived for the average interfacial temperature between tool and chip, Tint , as started in Equation 

(20) is simulated with MATLAB software and the corresponding results obtained are compared to experimental 

results from Strenkowski and Moon (1990), for validation. They experimentally measured the average 

interfacial temperature between tool and chip with thermocouples. Also, they machined Al6061-T6 tubes at 

different cutting situations. The cutting speeds were varied from 30 m/min to150 m/min for a rake angle of 30o 

and 30 m/min to 90 m/min for a rake angle of 0o. Furthermore, simulation was performed with the temperature 

model derived (Equation 20) in this study. The same machining conditions: workpiece conductivity of 204 

W/(m·K), density of 2700 kg/m3 and thermal capacity of 896 J/(kg°C)  as well as Al6061-T6 aluminum alloy 

Material 
Constants   

Value Unit 

Density 2700 Kg/m3 

Thermal 
Conductivity 

204 W/m.k 

Specific 
Heat 

896 J/kg.k 

 
Yield 
Strength 

 
276 

 
MPa 

Table 1(b) Cutting conditions of Al6061-T6, 
aluminum alloy (Strentowski and Moon, 
1990). 

 
 
Parameters  
 

 
Value 

          
Unit 

Rake Angle   0, 
  30 

Degrees 
Degrees 

Feed Rate   0.13, 
  0.0635 

mm/rev 
mm/rev 

Speed   30 to 90, 
  30 to 150 

m/min 
m/min 
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workpiece material were used in order to compare and validate the model. Figures 5(a) and (b) evidently depicts 

that simulation results have a close similarity with the experimental measurement, as reported by Strenkowski 

and Moon (1990). 

                                                                            

 
Figure 5 Comparison of model predictions and experimentally measured values, showing the effect of both 

rake angles of (a) 0o and (b) 30o and cutting speeds on the interfacial temperature between tool and chip.  

 
The minimum temperature from the experiment by Strenkowski and Moon is approximately 250 oC (for rake 

angle = 0o, at cutting speed = 30 m/min) while the model predicted 305 oC under the same conditions. This 

discrepancy could be as a result of inaccuracy in determining the initial temperature of the primary shear region 

during simulation, since the heat produced in the primary shear area directly influences the interfacial 

temperature between tool and chip. But, as the cutting speed is further increased to a maximum cutting speed 

of 90 m/min, the temperature from the experiment was 400 oC (at rake angle = 0o, at cutting speed = 90 m/min) 

while the model predicted 365 oC under the same conditions. The underestimation by the model can be 

attributed to the inaccuracy in predicting the temperature of the primary shear area in the assumptions of the 

formulated model.  A similar trend of the result was also recorded when rake angle of 30o and feed rate of 

0.0635 mm/rev were used. Though the model result overestimates the average interfacial temperature at the 

inception of the cutting at speed of 30 m/min, it still approximately agrees with the experimental values as 

cutting speed rises. 

In addition, in order to examine the influence of rake angle on the average temperature of the secondary shear 

zone, the cutting speed and depth of cut are set as 60 m/min and 2 mm, respectively, while the rake angle varies 

from -5o to 25o.  It is observed from Figure 6 that as the rake angle increases, while the average interfacial 

temperature between the tool and chip decreases. This is due to the reduction in the friction force along the 

interface between the tool and chip as well as reduction in plastic deformation along the primary shear area. 

The reduction in the friction force is brought about by the decrease in the normal pressure and contact length 
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of the tool-chip interface along the rake face. Therefore, using large rake angles in machining operations 

minimises energy consumption by reducing frictional effect which occurs along the rake face.  

 

 
Figure 6 Influence of cutting tool rake angle on average interfacial temperature between the tool and chip. 

 
3.2   Maximum tool temperature and tool temperature distribution 

The effects of workpiece material yield strength, cutting speed as well as the feed rate on the maximum 

temperature of the cutting tool are depicted respectively in Figures 7, 8 and 9. The tool thermal conductivity 

and depth of cut used in the simulations are 40 W/m.K and 2 mm, respectively. It can be observed from the 

simulation results show that the maximum temperature, generates along the tool-chip interface occurs not at the 

tip of the cutting tool, but occurs at a particular region away from the tool tip. This implies that this region along 

the rake face of an orthogonal cutting tool is more susceptible to wear than the tool tip, due to excessive thermal 

loading. 
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Figure 7 Influence of Al6061-T6 yield strength on the maximum temperature of the cutting tool. 

 

 
Figure 8 Influence of cutting speed on the maximum temperature of the cutting tool. 
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Figure 9 Influence of feed rate on the maximum temperature of the cutting tool. 

 
From Figure 7, it is observed that an increase in the workpiece yield strength from 276 MPa (typical aluminum 

alloy) to 415 MPa (steel), while keeping other cutting parameters constant, increases the maximum temperature 

of the cutting tool along the interface between tool and chip. Also, Figure 8 shows that a rise in cutting speed, 

while keeping other cutting parameters (rake angle, feed, depth of cut, workpiece material and cutting tool) 

constant, produces a commensurate increase in the maximum cutting tool temperature along the interface 

between tool and chip. Similarly, Figure 9 depicts that the tool feed rate increased with the temperature at the 

interface between tool and chip. Summarily, before any cutting operation is implemented appropriate cutting 

conditions be selected and tested with this proposed mathematical model to ensure an optimised machining 

process, provided the cutting tool is not thermally loaded beyond limit. 

  
4.   Conclusions 

This present study has reported an analytical model for friction and average interfacial temperature between 

tool and chip, derived by analysis of the mechanics of metal cutting in the orthogonal direction, as a function 

of the shear flow stress, rake angle, shear angle, cutting speed, depth of cut, as well as the length of the interface 

between tool and chip. The temperature fields within the cutting tool and along the tool-chip interface was 

established by using finite element method based on the analytical model derived with the MATLAB software. 

The simulation/model and experimental results were obtained and compared. The model was validated using 

experimental properties and cutting conditions of Al6061-T6 aluminum alloy (workpiece material). The model 

predictions showed a similar pattern to the experimental results. The minimum temperature obtained from the 

model was 220 oC, at rake of 0o and cutting speed of 30 m/min. But, as the cutting speed was further increased 

to a maximum value of 90 m/min, the maximum temperature from the experiment and developed model were 

410 oC and 490 oC respectively, at same rake angle of 0o. The minimum temperature from the predictive model 

was 140 oC at rake angle of 30o and cutting speed of 30 m/min.  
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Based on the simulation results obtained, it was evident that the maximum temperature of the cutting tool (along 

the tool-chip interface) does not occur at the tool tip where pressure is maximum, but at a particular region 

away from the tool tip, which is consequently more susceptible to wear due to excessive thermal loading. Also, 

the effect of variation in workpiece material yield strength, cutting speed and feed rate on the maximum 

temperature of an orthogonal cutting tool showed that an increase in any of these independent variables 

significantly increased the temperature of the cutting tool. Therefore, before any cutting operation is 

implemented, appropriate cutting conditions should be selected and tested with this developed model to achieve 

an optimized cutting process, if the thermal load of the cutting tool is not exceeded. 

Though, the simulation results underestimated the average interface temperature at the initial cutting speed of 

30m/min, but significantly, the proposed mathematical models are in close agreement with the reported 

experimental results. 
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