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ABSTRACT 

BACKGROUND: The marked increase in misuse and abuse of prescription opioids has 

greatly affected our society. One potential solution is to develop improved analgesics 

which have agonist action at both mu opioid peptide (MOP) and nociceptin/orphanin FQ 

peptide (NOP) receptors. BU10038 is a recently identified bifunctional MOP/NOP partial 

agonist. The aim of this study was to determine the functional profile of systemic or 

spinal delivery of BU10038 in primates after acute and chronic administration. 

METHODS: A series of behavioral and physiological assays have been established 

specifically to reflect the therapeutic (analgesia) and side effects (abuse potential, 

respiratory depression, itch, physical dependence, and tolerance) of opioid analgesics 

in rhesus monkeys.  

RESULTS: Following systemic administration, BU10038 (0.001-0.01 mg kg-1) dose-

dependently produced long-lasting antinociceptive and antihypersensitive effects. Unlike 

the MOP agonist oxycodone, BU10038 lacked reinforcing effects (i.e., little or no abuse 

liability), and BU10038 did not compromise the physiological functions of primates 

including respiration, cardiovascular activities, and body temperature at antinociceptive 

doses and a 10-30 fold higher dose (0.01-0.1 mg kg-1). Following intrathecal 

administration, BU10038 (3 μg) exerted morphine-comparable antinociception and 

antihypersensitivity without itch scratching responses. Unlike morphine, BU10038 did 

not cause the development of physical dependence and tolerance after repeated and 

chronic administration. 

CONCLUSIONS: These in vivo findings demonstrate the translational potential of 

bifunctional MOP/NOP receptor agonists like BU10038 as a safe, non-addictive 
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analgesic with fewer side effects in primates. This study strongly supports that 

bifunctional MOP/NOP agonists may provide improved analgesics and an alternative 

solution for the ongoing prescription opioid crisis. 
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INTRODUCTION  

 The opioid epidemic has greatly affected a large population worldwide.1 2 

Although mu opioid peptide (MOP) receptor agonists remain the most widely used 

analgesics, the abuse liability and respiratory arrest associated with MOP agonists have 

contributed to escalating medical and economic burdens in the global community.2  

Through decades of research, numerous scientific strategies have tried to develop safe, 

non-addictive analgesics, but none has been demonstrated in humans.3-5 

 The Nociceptin/Orphanin FQ (N/OFQ) peptide (NOP) receptor is the fourth opioid 

receptor subtype, which generally inhibits neuronal transmission.6-8 Unlike a partial 

MOP agonist buprenorphine alone producing respiratory depression,9 NOP agonists do 

not inhibit respiratory function.10 11 More importantly, NOP agonists interact with 

buprenorphine in a synergistic manner to produce antinociceptive effects without 

respiratory depression.9 Given the inhibitory regulation of dopamine neurotransmission 

by the NOP receptor,8 12 coactivation of both MOP and NOP receptors may produce 

analgesia with fewer side effects, i.e., a wider therapeutic window.11 13 Indeed, a 

recently developed tool compound, BU08028, with partial agonist activity at both MOP 

and NOP receptors produces analgesia without respiratory depression and abuse 

potential in primates.14 This is the first opioid-related compound to display a promising 

efficacy and tolerability profile in primate models with strong translational impact.3 11 14 

However, other in vivo characteristics of bifunctional MOP/NOP agonists, such as itch 

and tolerance after intrathecal delivery, are unknown.  

 Differences between rodents and primates in the functional profiles of MOP- and 

NOP-related compounds have been extensively documented.9 15-17 For example, 
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intrathecal morphine produces long-lasting itch sensation and pain relief simultaneously 

in both humans and non-human primates.18 19 However, such a functional profile does 

not generalize to rodents.20 21  N/OFQ, given supraspinally, produces hyperalgesia and 

anti-morphine action in rodents.7 8 In contrast, supraspinal N/OFQ produces analgesia 

and does not block morphine analgesia in primates.17 Given that primate models 

provide the most phylogenetically appropriate evaluation of receptor functions and drug 

effects,11 22 23 pharmacological studies using awake, behaving primates will provide a 

translational platform to understand the integrated outcomes of coactivation of MOP and 

NOP receptors, and establish functional efficacy and safety profiles of such dual acting 

ligands. We have identified a naltrexone derived bifunctional MOP/NOP agonist, 

BU10038 (Fig. 1A), which has partial MOP and NOP receptor agonist activities from the 

initial screening.24  Based on previous findings derived from mixed MOP/NOP agonist 

actions,9 14 25 we hypothesized that BU10038 may act as a safe analgesic with fewer 

side effects following systemic and intrathecal administration. With this in mind, this first-

in-primate study aims to investigate the functional profile of BU10038 after systemic and 

intrathecal delivery, i.e., 1) as a safe, non-addictive analgesic, 2) as an effective spinal 

analgesic without itch, and 3) whether repeated/chronic exposure to BU10038 causes 

physical dependence and tolerance.  
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METHODS 

Subjects 

All animal care and experimental procedures were conducted in accordance with 

the Guide for the Care and Use of Laboratory Animals as adopted and promulgated by 

the US National Institutes of Health (Bethesda, MD, USA) and approved by the 

Institutional Animal Care and Use Committee of Wake Forest University (Winston-

Salem, NC, USA). This study is reported in accordance with the ARRIVE guidelines for 

reporting experiments involving animals.26 Sixteen adult male and female rhesus 

monkeys (Macaca mulatta), 10–19 years, 6.6–12.3 kg, were purchased from U.S. 

National Primate Centers for biomedical research and they were kept at an indoor 

facility accredited by the Association for Assessment and Accreditation of Laboratory 

Animal Care International (Frederick, MD, USA). Animals were individually housed in 

cages with 6-12 square feet (floor area) and 2.7-5.4 feet (height) in species-specific 

rooms with environmental controls set to maintain 21–25 °C, 40–60% relative humidity 

and a 12-h light-dark cycle. Their daily diet consisted of approximately 20–28 biscuits 

(Purina Monkey Chow; Ralston Purina Co., St. Louis, MO, USA), fresh fruit and water 

ad libitum. Small amounts of primate treats and various cage-enrichment devices were 

supplied as forms of environmental enrichment. Animals were not exposed to any opioid 

compounds for 1 month prior to experiments.  

 

In vitro characterization 

Receptor binding.  Affinities for the individual opioid receptors were determined in 

displacement binding assays in recombinant human opioid receptors transfected into 
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Chinese hamster ovary (CHO) cells as previously described.27 The displaced selective 

radioligands were [3H]N/OFQ (NOP), [3H]DAMGO (MOP), [3H]Cl-DPDPE (DOP, delta 

opioid peptide receptor), and [3H]U69593 (KOP, kappa opioid peptide receptor).  

[35S]GTPS binding.  The [35S]GTPS binding stimulation assay, like the receptor 

binding assay, was performed in human opioid receptors transfected CHO cells as 

described previously.27 Agonist efficacy at these opioid receptors was determined in 

comparison to the standard selective agonists, i.e., N/OFQ (NOP), DAMGO (MOP), 

DPDPE (DOP) and U69593 (KOP). 

 

Sensory assays 

Acute nociception.  The warm water tail-withdrawal assay was used to evaluate thermal 

antinociceptive effects of BU10038 and morphine. Through the positive reinforcement 

techniques, monkeys were trained to cooperate for the pole-and-collar transfer to a 

primate restraint chair.28 They were seated in primate restraint chairs and the lower 

parts of their shaved tails (~15 cm) were immersed in a thermal flask containing water 

maintained at 42, 46 or 50 °C, which was randomly presented. Through numerous 

training sessions, monkeys have become adapted to this experimental setting. Water at 

42 and 46 °C was used as non-noxious stimuli (i.e., no tail-withdrawal movement), and 

water at 50 °C was used as an acute noxious stimulus (i.e., 2-3 sec tail-withdrawal 

latency). All tail-withdrawal latencies were measured at each temperature using a 

computerized timer by individuals who were blinded to the experimental conditions. If a 

monkey did not remove its tail within 20 sec (cutoff), the flask was removed and a 

maximum time of 20 sec was recorded. Test sessions began with baseline 
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measurements at each temperature. Subsequent tail-withdrawal latencies were 

measured at multiple time points after subcutaneous or intrathecal administration of the 

test compound. For dose-response curves, the test compound was administered by a 

cumulative dosing procedure with a 30-min interinjection interval. Tail-withdrawal 

latencies were measured at 20 min after each injection. A single dose of MOP receptor-

selective antagonist naltrexone (0.03 mg kg-1, s.c.) or selective NOP receptor antagonist 

J-113397 (0.1 mg kg-1, s.c.) was administered 15 min before determination of dose-

response curves to determine the MOP and NOP receptor components mediating 

BU10038-induced antinociception. The doses and pretreatment time for naltrexone and 

J-113397 were chosen based on previous studies.10 9 

 

Capsaicin-induced thermal allodynia.  Antiallodynic effects of BU10038 were evaluated 

by using a 1-hr pretreatment regimen (i.e., 1 hr before capsaicin administration). 

Capsaicin (1.2 mg mL-1 x 0.3 mL) was administered topically via a bandage attached on 

the terminal 3–5 cm of the tail for 15 min.29 The allodynic response was manifested as 

reduced tail-withdrawal latency from a maximum value of 20 sec to ~2–3 sec in 46 °C 

water. This allodynic effect peaks at 15 min after removal of the capsaicin bandage, and 

this is the time point to measure the tail-withdrawal latency in 46 °C water (i.e., to 

determine the antiallodynic effects of the test compound).30 29  

 

Itch scratching responses.  Scratching activity as a behavioral response to itch 

sensation was recorded on videotapes when monkeys were in their home cages.18 

Each 15-min recording session was conducted at multiple time points after intrathecal 
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administration of BU10038 or morphine. A scratch was defined as one brief (<1 sec) 

episode of scraping contact of the forepaw or hind paw on the skin surface of other 

body parts. Total scratches were counted and summed for each 15-min time block by 

individuals who were unaware of the experimental conditions. 

 

Drug self-administration 

Monkeys with indwelling intravenous catheters and subcutaneous vascular access ports 

were used to evaluate the reinforcing effects of the test compound under a progressive-

ratio schedule as described previously.14 Briefly, the monkeys’ operant responding was 

evaluated by injections of 3 μg kg-1 oxycodone or saline until responding was stable 

(mean ± 3 injections for 3 consecutive sessions with no trend). Dose-response curves 

were determined in each monkey by substituting a range of doses of BU10038 (0.1‒3 

μg kg-1 per injection, i.v.) in a randomized order. Doses were available for at least 5 

consecutive sessions and until responding was deemed stable.  

 

Physiological responses 

Freely moving monkeys implanted with the D70-PCTR telemetry transmitter were 

used to evaluate the effects of BU10038 on physiological functions as described 

previously.14 Respiration, heart rate, blood pressure and temperature were measured 

and analyzed with Ponemah software version 5.2 (Data Sciences International, St. Paul, 

MN, USA). For acute drug effects, data from the 30-min interval before drug 

administration were collected as baseline and then at each time point (i.e., 1, 6, 24 and 

48 hr) after administration of BU10038 (0, 0.01, 0.1 mg kg-1, i.m.). For detecting 
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precipitated withdrawal signs following 3 days (i.e., 1 injection per day at ~09:00 AM) of 

BU10038 administration (0.01 mg kg-1, i.m.), data from the 30-min interval before 

antagonist were collected and then continuously for 2 hr after administration of 

antagonist J-113397 (0.03 mg kg-1, i.m.) and naltrexone (0.01 mg kg-1, i.m.) on Day 5. 

The mean value of each 15-min time block was generated from each subject to 

represent the measure outcome for each single data point.  

 

Surgical implantation 

 The surgical procedures, intrathecal catheterization and implantation of telemetry 

device, have been successfully conducted and the surgical details can be found in 

previous studies.14 17 Before surgery, animals were given atropine (0.04 mg kg-1, i.m.), 

buprenorphine (0.01-0.03 mg kg-1, i.m.), and cefotaxime (500 mg, i.v.) for pain relief and 

prevention of infection. Then animals were anaesthetized with ketamine (10 mg kg-1, 

i.m.) and intubated and maintained under anaesthesia with inhaled isoflurance (1-2% in 

1 L min-1 O2). A catheter was placed in a saphenous vein for administration of lactated 

Ringer’s solution during the surgery. Intraoperative monitoring was conducted to 

determine the depth of anaesthesia and physiological status. Vital signs, such as heart 

rate, respiration rate, indirect blood pressure, and body temperature, were recorded at 

the initiation of the surgery, periodically throughout the procedure, and in the immediate 

postoperative recovery period. Animals post-operatively received buprenorphine (0.003-

0.02 mg kg-1, i.m.) and meloxicam (0.15 mg kg-1, s.c.) to manage pain and inflammation, 

and ceftiofur (2.2 mg kg-1, i.m.) to manage post-surgical infections. Post-operative care 

and incision site observations were performed daily until healing was complete which 
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was evaluated by on-site veterinarians. In addition, attending veterinarians provided 

medical care on a round-the-clock basis including weekends and holidays. All animals 

were monitored daily by veterinarian and laboratory staff and maintained in good health 

throughout the entire study period. 

 

Data analysis 

Mean values (± S.E.M.) were calculated from individual data for all study 

endpoints. Comparisons were made for the same monkeys across all test sessions in 

the same experiment. Data were analyzed by either two-way ANOVA with repeated 

measures (data of telemetry and itch), or one-way ANOVA with repeated measures 

(data of drug self-administration), followed by Bonferroni’s multiple comparisons test. 

The criterion for significance for all tests was set at p < 0.05. To analyze nociceptive 

responses, individual tail-withdrawal latencies were converted to the percentage of 

maximum possible effect (MPE) by using the formula defined as [(test latency ‒ control 

latency)/(cutoff latency, 20 s ‒ control latency)] × 100. Because MPE data are not 

normally distributed as 100% MPE cannot be exceeded and also our sample size is 

limited, at each time point, we used the Kruskal-Wallis test to compare the MPE across 

treatment groups and to compare each treatment group to the vehicle group. MPE data 

are displayed as median values with interquartile ranges in the Supplemental Tables. 

Kruskal-Wallis test is a one-way ANOVA on ranks and does now assume a normal 

distribution. To compare the time effect in each treatment group, we used the repeated 

measures one-way ANOVA on ranks for analysis. This approach is similar to repeated 

measures one-way ANOVA but uses ranks instead of original values for analysis. To 
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calculate both treatment effect and time effect, we used the repeated measures two-

way ANOVA on ranks. 

 

Drugs 

BU10038 HCl (provided by Dr. Stephen M. Husbands, University of Bath, Bath, UK) 

was dissolved in a solution of dimethyl sulfoxide/10% (mass/vol) (2-hydroxypropyl)--

cyclodextrin in a ratio of 3:97. Morphine sulfate, oxycodone HCl and naltrexone HCl 

(National Institute on Drug Abuse (NIDA), Bethesda, MD, USA) were dissolved in sterile 

water. J-113397 (Tocris Bioscience, Minneapolis, MN, USA) was dissolved in a solution 

of dimethyl sulfoxide/Tween 80/sterile water in a ratio of 1:1:8. Capsaicin (Sigma-

Aldrich, St. Louis, MO, USA) was dissolved in 70% (vol/vol) ethanol. For systemic 

administration, drugs were administered at a volume of 0.1 mL kg-1. The systemic 

delivery route depends on the setting of primate subjects and the safety of laboratory 

personnel performing the injection procedure. When monkeys were sitting in the primate 

chair (e.g., for measurement of tail-withdrawal responses), the test compound was 

delivered subcutaneously in the back (i.e., around the scapular region). When monkeys 

were in their home cages (e.g., for measurement of physiological responses by the 

telemetry device), the test compound was delivered intramuscularly into the thigh. For 

intrathecal administration, monkeys with intrathecal catheters and subcutaneous access 

ports were used.17 A total volume of 1 mL was administered through the access port 

followed by 0.35 mL of sterile saline to flush out the dead volume of the port and 

catheter. For acute administration, there was a minimum of 1-week interval between 

drug administrations. Based on our prior experience across different ligands and study 
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endpoints and systemic and intrathecal delivery routes,14 17 18 31 a 1-week inter-injection 

interval is sufficient to avoid potential confounding factors, i.e., baseline responses and 

the potency and magnitude of drug effects can be repeatedly observed in the same 

subjects. For chronic administration, morphine was administered intrathecally twice 

daily (1st injection at ~09:00 AM and 2nd injection at ~04:00 PM) and BU10038 was 

administered intramuscularly or intrathecally once every two days (injection at ~09:00 

AM) for 4 weeks. This chronic dosing strategy was selected based on the duration of 

analgesic action between BU10038 (>24 hours) and morphine (~6 hours), i.e., 

approximate four-fold difference. As the analgesic is re-administered to patients after its 

analgesia is subsiding in the clinical setting, we used this repeated dosing regimen to 

compare and determine if BU10038 and morphine retain their analgesic effects after 

animals were repeatedly exposed to and maintained under a similar duration of 

analgesic action.  
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RESULTS 

Receptor and [35S]GTPS binding profile of BU10038. 

 BU10038 is a C14-O-naltrexone derivative (Fig. 1A). Table 1 shows that 

BU10038 has binding Ki values between 1 and 15 nM at all opioid receptor subtypes. 

Distinct from naltrexone, BU10038 has a relatively good binding affinity at the NOP 

receptor, i.e., 14.8 nM vs. >10,000 nM. Table 2 shows the in vitro functional activity of 

BU10038 as measured by the [35S]GTPS binding assay. BU10038 does not have 

detectable efficacy at DOP and KOP receptors. At the MOP receptor, BU10038 has 

approximately 18% stimulation relative to DAMGO, which is similar to that of 

buprenorphine.27 At the NOP receptor, BU10038 has approximately 34% stimulation 

relative to N/OFQ. Overall, these findings indicate that BU10038 is a bifunctional 

MOP/NOP partial agonist.  

 

Systemic BU10038 produces potent and long-lasting antinociceptive and 

antiallodynic effects.  

MOP agonists are known to change nociceptive threshold and produce 

antinociception in primates and humans. 32-34 Therefore, the warm water tail-withdrawal 

assay was used to determine the functional efficacy of BU10038 for changing the 

nociceptive threshold. BU10038 (0.001-0.01 mg kg-1, s.c.) produced antinociceptive 

effects against an acute noxious stimulus, 50 °C water, in a dose-dependent [F(3, 9) = 

25.5; p < 0.05] and time-dependent [F(9, 27) = 13.8; p < 0.05] manner (Fig. 1B). The 

minimum effective dose of BU10038 to produce full antinociception was 0.01 mg kg-1. 

The duration of action produced by this dose was 30 hr and subsided by 48 hr. To 
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determine the antihypersensitive efficacy of BU10038, we used a clinically relevant 

model, capsaicin-induced allodynia, which has been widely applied to evaluate 

analgesics in humans.35 36  BU10038 attenuated capsaicin-induced thermal allodynia in 

46 °C water dose- [F(3, 9) = 5.1; p < 0.05] and time-dependently [F(3, 9) = 30.2; p < 

0.05] (Fig. 1C). Next, we conducted antagonist studies by using the MOP-selective 

dose of the opioid receptor antagonist naltrexone and the NOP antagonist J-113397.30 

10 Pretreatment with naltrexone (0.03 mg kg-1) or J-113397 (0.1 mg kg-1) produced 

similar degrees (i.e., ~3-fold dose ratio) of the rightward shift of the dose-response 

curve for BU10038-induced antinociception (Fig. 1D). These findings indicate that both 

MOP and NOP receptors contributed to the antinociceptive effects of BU10038. The 

antinociceptive duration of BU10038 (0.01 mg kg-1, s.c.) was much longer than that of 

morphine (1.8 mg kg-1, s.c.) (i.e., >24 hr vs. 6 hr) (Fig. 1E). Based on the dose-

response curves, BU10038 was more potent than morphine (ED50 = 0.003 mg kg-1 vs. 

1 mg kg-1) (Fig. 1F). Overall, systemic BU10038 displays a favorable analgesic profile in 

primates. 

 

BU10038 does not produce reinforcing effects. 

To examine and compare the reinforcing strengths of compounds, we used a 

progressive-ratio schedule of reinforcement which has been commonly used for 

evaluating abuse potential.37 Monkeys were given the opportunities to intravenously 

self-administer oxycodone and various doses of BU10038 (0.1-3 μg kg-1 per injection). 

Substitution of saline between test compounds resulted in a low number of reinforcers 

(i.e., three or fewer injections). Oxycodone (3 μg kg-1 per injection) produced strong 



16 
 

reinforcing effects (Fig. 2A-E). In contrast, there was no significant difference between 

the reinforcing strengths of saline and BU10038 (F = 1.6; p > 0.1) (Fig. 2A-E). 

Collectively, BU10038 may have much less abuse liability than the MOP analgesic 

oxycodone. 

 

Higher doses of BU10038 do not compromise physiological functions.  

In order to characterize the safety window of BU10038, we measured a variety of 

physiological parameters in monkeys implanted with radio-telemetric transmitters.14 A 

systemic dose (0.01 mg kg-1, i.m.) of BU10038 that produced full antinociception did not 

affect the respiratory function (respiration rate and minute volume), cardiovascular 

activity (heart rate, QRS interval and blood pressure), and body temperature of 

monkeys (Fig. 3A-F). At a dose (0.1 mg kg-1, i.m.) approximately 10-30 times higher 

than its antinociceptive doses, BU10038 also did not significantly change any 

physiological parameters (all F values: 0.5-4, p > 0.1) during the 48-hr period (Fig. 3A-

F). These findings indicate that BU10038 is a safe analgesic without respiratory and 

cardiovascular concerns in primates. 

 

Intrathecal BU10038 produces potent antinociceptive and antiallodynic effects.  

Following intrathecal administration, BU10038 (0.3-3 μg) produced 

antinociceptive effects against an acute noxious stimulus, 50 °C water, in a dose-

dependent [F(3, 9) = 17.5; p < 0.05] and time-dependent [F(4, 12) = 12.6; p < 0.05] 

manner (Fig. 4A). The minimum effective dose of BU10038 to produce full 

antinociception was 3 µg. The duration of action produced by this dose was 30 hr and 
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subsided by 48 hr. Intrathecal BU10038 also attenuated capsaicin-induced thermal 

allodynia in 46 °C water dose-dependently [F(3, 9) = 18.9; p < 0.05] and time-

dependently [F(3, 9) = 19.9; p < 0.05] (Fig. 4B). The antinociceptive duration of 

intrathecal BU10038 3 µg was much longer than that of morphine 30 µg (Fig. 4C). To 

examine whether intrathecal BU10038 elicits itch sensation, we compared its effects 

with morphine, which elicits scratching responses in monkeys.18 Although BU10038 (3 

µg) produced potent antinociception and antihypersensitivity, it did not significantly 

increase scratching responses [F(1, 3) = 0.6; p = 0.5]. In contrast, morphine (30 µg) 

elicited scratching responses in the same subjects [F(1, 3) = 12.1; p < 0.05] (Fig. 4D). 

Taken together, BU10038 displays a promising spinal analgesic profile in primates. 

 

Repeated exposure to BU10038 is devoid of physical dependence. 

Following repeated exposure to opioid analgesics, primates and humans quickly 

develop physical dependence.16 38 39 In particular, antagonist-precipitated withdrawal 

signs are manifested as changes in respiratory and cardiovascular activities in 

primates.14 16 Following repeated administration of BU10038 (0.01 mg kg-1, i.m., daily 

for 3 days), a combination of naltrexone (0.01 mg kg-1, i.m.) and J-113397 (0.03 mg kg-

1, i.m.) did not precipitate withdrawal signs, i.e., no changes in all physiological 

parameters measured herein (all F values < 3, p > 0.1) (Fig. 5A-E). Therefore, 

BU10038 does not produce physical dependence following 3 days of repeated 

administration. 

 

Chronic exposure to BU10038 does not cause tolerance.  
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After repeated exposure to opioid analgesics, animals and humans may develop 

tolerance.40 41 Following a long-term exposure to systemic morphine (i.e., 2 injections of 

1.8 mg kg-1 daily for 4 weeks), morphine-treated monkeys developed tolerance to 

antinociception.42 In the same group of animals, following the same duration of chronic 

administration, BU10038 (0.01 mg kg-1, i.m.)-treated monkeys did not show tolerance to 

antinociception produced by 0.003 and 0.01 mg kg-1 (Fig. 6A). Similarly, chronic 

exposure to intrathecal morphine (i.e., 2 injections of 30 µg daily for 4 weeks) led to a 

significant decrease in the antinociceptive effects of morphine [F(1, 3) = 32.5; p < 0.05] 

(Fig. 6B). There was no change in the antinociceptive effects of BU10038 after chronic 

exposure to intrathecal BU10038 (3 µg) for 4 weeks (Fig. 6C). These results 

demonstrate that unlike morphine, chronic administration of systemic or intrathecal 

BU10038 does not develop tolerance. 
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DISCUSSION 

This study provides four significant findings indicating the therapeuticl potential of 

BU10038, a novel bifunctional MOP/NOP agonist, as a safe, non-addictive analgesic 

with reduced side effects. First, BU10038 produces potent and long-lasting 

antinociception and antihypersensitivity by activating MOP and NOP receptors. Second, 

BU10038 lacks reinforcing effects (i.e., little or no abuse potential), and it is safe and 

does not compromise respiratory and cardiovascular functions at, or 10 times above, 

analgesic doses. Third, BU10038 exerts spinal analgesic action without itch. Fourth, 

unlike morphine, BU10038 may not produce physical dependence or tolerance following 

repeated and chronic administration.  

 We have identified derivatives of the opioid receptor antagonist naltrexone with 

additional NOP receptor affinity and efficacy with low efficacy at the MOP receptor. 

BU10038 is one of these compounds, specifically the 14-O-phenylpropanoyl ester of 

naltrexone. We believe the phenylpropanoyl side chain of BU10038 extends into the 

region occupied by the t-butyl group of buprenorphine, which may explain the similar, 

but non-identical pharmacological profile.43; 44 Buprenorphine is a partial MOP agonist, 

but it is commonly used in both human and veterinary medicine to effectively treat 

various pain conditions.45 46 Since MOP agonists increase nociceptive threshold and 

inhibit capsaicin-induced allodynia in humans,32 35 full antinociceptive and antiallodynic 

effects of BU10038 suggest that its functional efficacy as an analgesic may be similar to 

MOP agonists. It is worth noting that NOP antagonists enhanced antinociceptive effects 

of bifunctional MOP/NOP agonists in rodents.47 However, NOP antagonists attenuated 

those of bifunctional MOP/NOP agonists in primates.14 As drugs that work in rodents 
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often fail when tried in humans, the non-human primates could serve as a surrogate 

species for humans to further investigate and develop bifunctional MOP/NOP agonists 

as analgesics.11 23 

 Compared to highly abused drugs like MOP agonists and psychostimulants,14 48 

BU10038 does not produce reinforcing effects. In our intravenous drug self-

administration procedure in primates, considered a gold standard to evaluate the abuse 

liability of drugs,49 50 BU10038 shows little to no abuse potential.  In addition, BU10038 

at antinociceptive doses and a 10-30 fold higher dose did not cause respiratory 

depression or affect cardiovascular function. Given the respiratory depression or arrest 

caused by MOP agonists,10 48 BU10038 demonstrates a wider safety window in 

primates. Overall, the functional profile of systemic BU10038 is similar to that of 

BU08028.14 These in vivo findings in primates support the scientific strategy11 14 that 

bifunctional MOP/NOP agonists are alternative analgesics which may have a direct 

impact on the worsening opioid crisis.1 2 

 Neuraxial/Spinal drug administration is the procedure that delivers drugs in close 

proximity to the spinal cord. To date, intrathecal delivery of opioids has become one of 

standard procedures for perioperative analgesia and is used successfully in different 

clinical contexts.51 However, itch is one of side effects associated with the spinal use of 

MOP agonists and compromises the use of opioid analgesics in pain management.19 

Lack of itch scratching responses by intrathecal BU10038 reinforces the hypothesis that 

coactivation of MOP and NOP receptors synergistically exerts analgesia with fewer side 

effects.9 11 13 The spinal dorsal horn is the major locus not only for the integration of 

peripheral sensory input and descending supraspinal modulation, but also for regulating 
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peripherally and centrally elicited pain.52 Given that intrathecal drug delivery can provide 

effective pain intervention as an alternative delivery route,51 bifunctional MOP/NOP 

agonists can be used as spinal analgesics to substantially advance human medicine.   

Following repeated administration, opioid analgesics often cause adverse events, 

such as physical dependence and tolerance.39-41 After short-term exposure (i.e., 3 

days), morphine-treated primates displayed precipitated withdrawal signs.14 16 In 

contrast, BU10038-treated primates did not develop physical dependence. After long-

term exposure (i.e., 4 weeks), morphine-treated primates developed tolerance to 

antinociceptive effects of morphine.42 In contrast, BU10038-treated primates did not 

show tolerance by either systemic or intrathecal route, even after 4 weeks of chronic 

administration. Although more frequent dosing and longer durations of treatment could 

result in tolerance, these findings may indicate that bifunctional MOP/NOP agonists like 

BU10038 have advantages over morphine in repeated or chronic dosing regimens. 

Given the neuroplasticity of NOP receptors under chronic pain states,53 54 future studies 

are warranted to investigate whether bifunctional NOP/MOP agonists cause tolerance to 

develop more slowly compared to MOP agonists in patients with chronic pain.  

 Collectively, the therapeutic potential of BU10038 extends from that of a recently 

reported BU08028 with partial agonist activity at MOP and NOP receptors. Systemic or 

spinal delivery of BU10038 is devoid of several adverse effects associated with clinically 

used MOP agonists following acute and chronic administration. It is pivotal to further 

investigate the functional profiles of bifunctional MOP/NOP ligands by using a variety of 

pharmacological tools with different efficacy at MOP versus NOP receptors.7 43 55 56 For 

example, cebranopadol is a newly developed analgesic with mixed MOP and NOP full 
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agonist activity and has been in several clinical trials for its analgesic efficacy.57 58 

However, cebranopadol generalizes to a morphine discriminative stimulus.59 It will be 

important to know the similarities and differences between bifunctional partial and full 

MOP/NOP agonists in terms of their abuse potential, safety window, and tolerability 

profile. Primate models will continue to be a translational bridge to facilitate the research 

and development of bifunctional MOP/NOP agonists as safe, non-addictive analgesics. 
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Table 1:  Affinities of compounds binding to recombinant human opioid and NOP 

receptors expressed in CHO cellsa 

 

 

Compound 

 

 

 

NOP 

Ki/nM 

MOP 

 

DOP 

 

KOP 

Naltrexone 

BU10038 

 >10K 

14.8  

0.66  

0.86  

10.7  

1.18 

1.1  

10.5 

 

aData are the average from two experiments, each carried out in triplicate. Tritiated 

ligands were [3H]DAMGO (MOP), [3H]N/OFQ (NOP), [3H]Cl-DPDPE (DOP), and 

[3H]U69593(KOP). 
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Table 2:  Opioid agonist stimulation of [35S]GTPS binding in CHO cells expressing recombinant human opioid receptors or 

NOP receptorsa     

 

 NOP MOP DOP KOP 

Ligand EC50/nM % stim EC50/nM % stim EC50/nM % stim EC50/nM % stim 

DAMGO 

N/OFQ 

DPDPE 

U69,593 

BU10038 

----- 

8.1 

----- 

----- 

44 

----- 

100 

----- 

----- 

34  

35  

----- 

----- 

----- 

* 

100 

----- 

----- 

----- 

18  

----- 

----- 

6.9 

----- 

>10,000 

----- 

----- 

100 

----- 

----- 

----- 

----- 

----- 

79  

>10.000 

----- 

----- 

----- 

100 

---- 

 

aData are the average from two experiments, each carried out in triplicate  

* = Too little stimulation to determine EC50  
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FIGURE LEGENDS 

Figure 1. Effects of systemic administration of BU10038 on nociceptive responses in 

monkeys. (A) Chemical structure of BU10038. (B) Antinociception against acute noxious 

stimulus, 50 C water. (C) Antihypersensitivity against capsaicin-induced allodynia in 46 

C water. (D) Effects of MOP receptor antagonist naltrexone (0.03 mg kg-1) and NOP 

receptor antagonist J-113397 (0.1 mg kg-1) on BU10038-induced antinociception. (E) 

Comparison of antinociceptive duration of BU10038 (0.01 mg kg-1) and morphine (1.8 

mg kg-1). (F) Comparison of antinociceptive potency of BU10038 and morphine. Each 

data point represents mean ± SEM (n = 4). All compounds were delivered 

subcutaneously. p < 0.05, significantly different from vehicle condition from the first 

time point to the corresponding time point. 

  

Figure 2. Comparison of reinforcing effects of oxycodone and BU10038 as measured 

by drug self-administration in monkeys. (A-E) Number of injections received as a 

function of dose in monkeys responding to oxycodone (O, 3 μg kg-1 per injection), saline 

(S, ~0.14 mL kg-1 per injection) or BU10038 (0.1‒3 μg kg-1 per injection) under a 

progressive-ratio schedule of reinforcement. (A-D) Data of individual monkey (M1-M4).  

Each data point represents mean ± SEM (n = 3-5 sessions). (E) Data of grouped 

monkeys. Each data point represents mean ± SEM (n = 4). p < 0.05, a significant 

difference from saline. 
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Figure 3. Effects of systemic administration of BU10038 on physiological functions of 

freely moving monkeys implanted with telemetric probes. (A) Respiration rate. (B) 

Minute volume. (C) Heart rate. (D) Mean arterial pressure. (E) QRS interval. (F) Body 

temperature. Each data point represents mean ± SEM (n = 4) from each individual data 

averaged from a 15-min time block. All compounds were delivered intramuscularly. 

Open symbols represent baselines of different dosing conditions for the same monkeys 

before administration. 

 

Figure 4. Effects of intrathecal administration of BU10038 on modulating sensory 

processing in monkeys. (A) Antinociception against acute noxious stimulus, 50 C 

water. (B) Antihypersensitivity against capsaicin-induced allodynia in 46 C water. (C) 

Comparison of antinociceptive duration of BU10038 (3 μg) and morphine (30 μg). (D) 

Comparison of itch scratching responses elicited by BU10038 (3 μg) and morphine (30 

μg). Each data point represents mean ± SEM (n = 4). All compounds were delivered 

intrathecally. p < 0.05, significantly different from vehicle condition from the first time 

point to the corresponding time point. 

 

Figure 5. Lack of physical dependence on BU10038 in monkeys following short-term 

repeated administration. BU10038 (0.01 mg kg-1) was administered once daily for 3 

days. On day 5, the antagonists naltrexone (0.01 mg kg-1) and J-113397 (0.03 mg kg-1) 

were used to precipitate withdrawal signs that were measured in monkeys implanted 

with telemetric probes before and after antagonist treatment. (A) Respiration rate. (B) 

Minute volume. (C) Heart rate. (D) Mean arterial pressure. (E) Body temperature. Data 
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are shown as changes from baseline values (i.e., before antagonist treatment). Each 

data point represents mean ± SEM (n = 4) from each individual data averaged from a 

15-min time block. All compounds were delivered intramuscularly. 

 

Figure 6. Development of tolerance in monkeys following chronic administration of 

morphine or BU10038. (A) BU10038 (0.01 mg kg-1) was administered intramuscularly 

for 4 weeks. Tail withdrawal latencies in 50 °C water before (BL) and after (Day 30) 

repeated administration were measured by two different doses of BU10038. (B, C) 

Morphine (30 μg) or BU10038 (3 μg) was administered intrathecally for 4 weeks. Time 

course of tail withdrawal latencies in 50 °C water were determined before (BL) and after 

(Day 30) repeated administration. Each data point represents mean ± SEM (n = 4). p < 

0.05, significantly different from BL values. 
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