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NESTED ALGEBRAIC BETHE ANSATZ FOR OPEN SPIN CHAINS

WITH EVEN TWISTED YANGIAN SYMMETRY

ALLAN GERRARD, NIALL MACKAY, AND VIDAS REGELSKIS

Abstract. We present a nested algebraic Bethe ansatz for a one dimensional open spin chain whose bound-
ary quantum spaces are irreducible so2n- or sp

2n-representations and the monodromy matrix satisfies the
defining relations of the Olshanskii twisted Yangian Y ±(gl

2n). We use a generalization of the Bethe ansatz
introduced by De Vega and Karowski which allows us to relate the spectral problem of a so2n- or sp

2n-
symmetric open spin chain to that of a gln-symmetric periodic spin chain. We explicitly derive the structure
of the Bethe vectors and the nested Bethe equations.

1. Introduction

The algebraic Bethe ansatz (ABA) introduced in [STF] has proven to be a powerful method to study
quantum integrable models. It provides an effective approach for determining the spectrum of quantum
Hamiltonians by reducing the problem of diagonalizing the Hamiltonian to a set of algebraic equations, known
as the Bethe ansatz equations (BAE), that in many cases can be solved using numerical methods [BeRa1,
BeRa2, FKPR, KuRs, PRS1, Sk]. The key idea of ABA is to construct the so-called Bethe vectors that
depend on sets of complex parameters. In the case when these parameters satisfy BAE, the corresponding
Bethe vectors become eigenvectors of the quantum Hamiltonian [PRS1, PRS2]. Finding eigenvectors and
their eigenvalues provides the necessary first step that needs to be taken in the study of scalar products and
norms [HLPRS1, HLPRS2, Ko], correlation functions and form factors [IzKo, KKMST1, KKMST2, KMST,
KMT, Sl1]; see also the reviews [PRS3, Sl2] and references therein.

In this paper we construct a nested algebraic Bethe ansatz for a one-dimensional quantum spin chain
with open boundaries, whose underlying symmetry is the even Olshanskii twisted Yangian Y ±(gl2n) [Ol,
MNO]. Such integrable models have “soliton non-preserving” boundary conditions and can be described by
a Hamiltonian of an alternating type; they have been intensively studied using techniques of the analytic
Bethe ansatz in [AACDFR, ACDFR1, ACDFR2, ADK, Do]. The full quantum space of the model is a
tensor product of a finite number of arbitrary irreducible finite-dimensional “bulk” gl2n-representations and
an arbitrary irreducible finite-dimensional “boundary” so2n- or sp2n-representation. This space is then
equipped with the structure of a lowest weight Y ±(gl2n)-module, so that the double-row monodromy matrix
satisfies the defining relations of the twisted Yangian Y ±(gl2n). We will call this model a Y ±(gl2n)-system.

Studying the spectral problem of spin chains with orthogonal and symplectic symmetries requires elaborate
algebraic methods: the usual nesting approach for a gln-symmetric spin chain, put forward in [KuRs], fails
since there are no natural Yangian analogues of the chains of subalgebras so2n ⊃ so2n−2 ⊃ . . . ⊃ so2
and sp2n ⊃ sp2n−2 ⊃ . . . ⊃ sp2. (This problem for the Yangians Y (soN ) and Y (spN ) was addressed in
[JLM].) It was shown in [DVK, Rs] that the spectral problem of such a system can be addressed using the
algebraic Bethe ansatz if the R-matrix intertwining the monodromy matrices of the model can be written
in a six-vertex block-form. This approach has recently been used in [GoPa] to study orthogonal quantum
spin chains with open boundary conditions, whose monodromy matrix satisfies the defining relations of the
twisted Yangian of type so2n [GuRe]. Prior, in [LSY] a different method was used to study the spectral
problem of a symplectic quantum spin chain with open boundary conditions. Their approach follows ideas
from the ABA for the Izergin-Korepin model, introduced by Tarasov [Ta] for periodic boundary conditions
and further studied by Fan [Fa] for open boundary conditions.

Our strategy for solving the spectral problem of the Y ±(gl2n)-system is as follows. We interpret the
generating matrix of Y ±(gl2n) as the monodromy matrix of the model. Inspired by the ideas put forward in
[DVK, Rs], we write the defining relations of Y ±(gl2n) in a block-form, i.e., in terms of the matrix operators
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A, B, C and D, that are matrix analogous of the conventional creation, annihilation and diagonal operators
of the six-vertex model. Indeed, the exchange relations between these matrix operators turn out to be
reminiscent of those of the six-vertex model. We then introduce creation operators that are constructed
using matrix entries of the B operator. We define the vacuum sector of the quantum space as the subspace
annihilated by the C operator. The Bethe vector is constructed by acting with creation operators on vectors
in the vacuum sector. Then, following Sklyanin’s pioneering work [Sk], we require the Bethe vector to be
an eigenvector of the double-row transfer matrix. Surprisingly, this procedure reduces the initial Y ±(gl2n)-
system to a residual Y (gln)-system, the nested algebraic Bethe ansatz for which is well-known [KuRs]. Our
main results are construction of the Bethe vectors and derivation of their eigenvalues and nested Bethe
equations, see Theorems 4.3 and 4.4, and Proposition 4.7 stating a trace formula for the Bethe vectors. The
resulting Bethe equations are comparable to those obtained in [ACDFR1] for an open spin chain with a
one-dimensional boundary representation see Remark 4.6.

The plan of the paper is as follows. In Section 2 we provide the necessary preliminaries and definitions.
We recall the definition of the Yangian Y (gl2n), the twisted Yangian Y ±(gl2n) and relevant details of their
representation theory. We then obtain a six-vertex block-form of the Yang R-matrix and its twisted coun-
terpart, which allows us to write the defining relations of both Yangian and twisted Yangian in terms of
the matrix operators A, B, C and D. In Section 3 we provide the technical details of the main ingredients
necessary for the nested Bethe ansatz. We introduce the creation operator of multi-excitations and describe
its algebraic properties. We derive the exchange relations for the operators that lead to the so-called wanted
and unwanted terms. In Section 4 we present the nested Bethe ansatz, in two steps. First, we demonstrate
the method for a single top-level excitation. Then we generalize the method to multi-excitations at the
top-level and provide the complete set of Bethe equations and a trace formula for the Bethe vectors. In
Appendix A we provide in detail the nested algebraic Bethe ansatz for Y (gln), first presented in [KuRs], to
which the Bethe ansatz for Y ±(gl2n) reduces.

2. Definitions and preliminaries

2.1. Notation. Choose N ∈ N. Let glN denote the general linear Lie algebra and let Eij with 1 ≤ i, j ≤ N
be the standard basis elements of glN satisfying

[Eij , Ekl] = δjkEil − δilEkj .

The orthogonal Lie algebra soN or the symplectic Lie algebra spN can be regarded as a subalgebra of glN
as follows. For any 1 ≤ i, j ≤ N set θij = θiθj with θi = 1 in the orthogonal case and θi = δi>N/2 − δi≤N/2

in the symplectic case. Introduce elements Fij = Eij − θijĒ ı̄ with ı̄ = N − i+ 1 and ̄ = N − j + 1. These
elements satisfy the relations

[Fij , Fkl] = δjkFil − δilFkj + θij(δjl̄Fkı̄ − δik̄F̄ l),(2.1)

Fij + θijF̄ ı̄ = 0,(2.2)

which in fact are the defining relations of the Lie algebra soN or spN . Namely, we may identify soN or spN
with spanC{Fij : 1 ≤ i, j ≤ N} and we will use hN = spanC{Fii : 1 ≤ i ≤ ⌊N/2⌋} as a Cartan subalgebra.
In this work we will focus on the chains of Lie algebras gl2n ⊃ so2n ⊃ gln and gl2n ⊃ so2n ⊃ gln, hence we
will assume that N = 2n or N = n. Given a Lie algebra g its universal enveloping algebra will be denoted
by U(g).

Next, we need to introduce some operators acting on CN ⊗ CN , where the tensor product ⊗ is defined
over the field of complex numbers, that is ⊗ = ⊗C. Let eij ∈ End(CN ) be the standard matrix units with
entries in C, and let ei be the standard basis vectors of CN . Then P will denote the permutation operator
on C

N ⊗ C
N and we set Q = P t1 = P t2 , where the transpose t is defined by (eij)

t = θijē ı̄; explicitly,

P =
∑

1≤i,j≤N

eij ⊗ eji, Q =
∑

1≤i,j≤N

θij eij ⊗ eı̄ ̄.

Let I denote the identity matrix on CN ⊗ CN or CN (it will always be clear from the context which I is
used). Then P 2 = I, PQ = QP = ±Q, Q2 = NQ, which will be useful below. Here (and henceforth in this
paper) the upper sign in ± and ∓ corresponds to the orthogonal case and the lower sign to the symplectic
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case. Also note that P (eij ⊗ I) = (I ⊗ eij)P . Taking the transpose of this, we obtain a pair of relations for
Q and any M ∈ End(CN ):

(2.3) Q(M ⊗ I) = Q(I ⊗M t), (M ⊗ I)Q = (I ⊗M t)Q.

For a matrix X with entries xij in an associative algebra A we write

Xs =
∑

1≤i,j≤N

I ⊗ · · · ⊗ I︸ ︷︷ ︸
s−1

⊗ eij ⊗ I ⊗ · · · ⊗ I ⊗ xij ∈ End(CN )⊗k ⊗A.

Here k ≥ 2 and 1 ≤ s ≤ k; it will always be clear from the context what k is. Products of matrix operators
will be ordered using the following rules:

(2.4)

s∏

i=1

Xi = X1X2 · · ·Xs and

1∏

i=s

Xi = XsXs−1 · · ·X1.

2.2. The Yangian Y (gl2n) and twisted Yangian Y ±(gl2n). We briefly recall necessary details of the
Yangian Y (gl2n), the twisted Yangian Y ±(gl2n) and their representation theory, adhering closely to [Mo3].
Introduce a rational function acting on C2n ⊗ C2n

(2.5) R(u) = I − u−1P

called the Yang’s R-matrix. It satisfies R(u)R(−u) = (1 − u−2)I and is a solution of the quantum Yang-
Baxter equation,

(2.6) R12(u− v)R13(u− z)R23(v − z) = R23(v − z)R13(u − z)R12(u− v).

We introduce elements t
(r)
ij with 1 ≤ i, j ≤ 2n and r ≥ 0 such that t

(0)
ij = δij . Combining these into formal

power series tij(u) =
∑

r≥0 t
(r)
ij u

−r, we can then form the generating matrix T (u) =
∑

1≤i,j≤2n eij ⊗ tij(u).

Definition 2.1. The Yangian Y (gl2n) is the unital associative C-algebra generated by elements t
(r)
ij with

1 ≤ i, j ≤ 2n and r ∈ Z≥0 satisfying the relations

R12(u− v)T1(u)T2(v) = T2(v)T1(u)R12(u− v).(2.7)

The Hopf algebra structure of Y (gl2n) is given by

(2.8) ∆ : T (u) 7→ T (u)⊗ T (u), S : T (u) 7→ T−1(u), ε : T (u) 7→ I.

For the explicit form of (2.7) we refer the reader to Section 1.1 in [Mo3]. We now recall the definition of
the lowest weight representation of Y (gl2n). It is a historic tradition (but merely a convenion) to consider
lowest weight representations in the algebraic Bethe ansatz instead of the highest ones.

Definition 2.2. A representation V of Y (gl2n) is called a lowest weight representation if there exists a
nonzero vector η ∈ V such that V = Y (gl2n)η and

tij(u)η = 0 for 1 ≤ j < i ≤ 2n and

tii(u)η = λi(u)η for 1 ≤ i ≤ 2n,

where λi(u) is a formal power series in u−1 with a constant term equal to 1. The vector η is called the lowest
vector of V , and the 2n-tuple λ(u) = (λ1(u), . . . , λ2n(u)) is called the lowest weight of V .

The Yangian Y (gl2n) contains the universal enveloping algebra U(gl2n) as a Hopf subalgebra. An em-

bedding U(gl2n) →֒ Y (gl2n) is given by Eij 7→ −t
(1)
ji for all 1 ≤ i, j ≤ 2n. We will identify U(gl2n) with its

image in Y (gl2n) under this embedding. Conversely, the map t
(1)
ij 7→ −Eji and t

(s)
ij 7→ 0 for all s ≥ 2 defines

a surjective homomorphism ev : Y (gl2n) → U(gl2n) called the evaluation homomorphism. By composing the
map ev with the algebra automorphism called the shift automorphism,

σc : Y (gl2n) → Y (gl2n), T (u) 7→ T (u− c)

for any c ∈ C, we obtain the map

(2.9) evc : tij(u) 7→ δij − Eji(u − c)−1.
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Given an 2n-tuple λ = (λ1, . . . , λ2n) ∈ C2n we will denote by L(λ) the irreducible representation of the
Lie algebra gl2n with the highest weight λ. In particular, L(λ) is a cyclic U(gl2n)-module generated by a
nonzero vector 1λ such that

Eij 1λ = 0 for 1 ≤ i < j ≤ 2n and

Eii 1λ = λi 1λ for 1 ≤ i ≤ 2n.

The representation L(λ) is finite-dimensional if and only if λi − λi+1 ∈ Z≥0 for all 1 ≤ i ≤ 2n− 1. By the
virtue of the map ev, any gl2n-representation can be regarded as Y (gl2n)-module. Moreover, any irreducible
gl2n-representation remains irreducible over Y (gl2n), by surjectivity of ev. We will denote by L(λ)c the
Y (gl2n)-module obtained from the irreducible representation L(λ) of gl2n via the map (2.9). Clearly, L(λ)c
is a lowest weight Y (gl2n)-module with the components of the lowest weight given by

λi(u) = 1− λi(u− c)−1 for 1 ≤ i ≤ 2n.

Fix ℓ ∈ N and consider the tensor product of the Y (gl2n) evaluation modules

(2.10) L := L(λ(1))c1 ⊗ L(λ(2))c2 ⊗ . . .⊗ L(λ(ℓ))cℓ ,

where ci ∈ C are arbitrary complex numbers and each λ(i) is a partition of length not exceeding ℓ. Set
∆(1) := id and define recursively ∆(ℓ) = (id ⊗ · · · ⊗ id⊗∆) ◦∆(ℓ−1) with ∆(2) := ∆. The comultiplication
∆(ℓ) allows us to equip L with the structure of a lowest weight Y (gl2n)-module using the rule

tij(u) · L = (evc1 ⊗ · · · ⊗ evcl) ◦∆
(ℓ)(tij(u))L.

In particular, the generating matrix T (u) acts on the space L by

(2.11) Ta(u) · L =

(
ℓ∏

i=1

Lai(u− ci)

)
L ∈ End(C2n)⊗ L [[u−1]],

where

(2.12) L(u− c) := (id⊗ evc)(T (u)) =
2n∑

i,j=1

eij ⊗ (δij − Eji(u− c)−1)

are the Lax operators. The components of the lowest weight of L are

(2.13) λi(u) =

ℓ∏

j=1

(
1− λ

(j)
i (u − cj)

−1
)

for 1 ≤ i ≤ 2n.

The binary property of the tensor products of Yangian modules states that, for a suitable choice of weights

λ
(j)
i and parameters cj , the Y (gl2n)-module L is irreducible, see Theorem 6.5.8 in [Mo3].
We now focus on the twisted Yangian Y ±(gl2n) and its representation theory. Following [ACDFR1] we

introduce an additional “shift” parameter ρ ∈ C in the definition of Y ±(gl2n).

Definition 2.3. The twisted Yangian Y ±(gl2n) is the subalgebra of Y (gl2n) generated by the coefficients of
the entries of the matrix

(2.14) S(u) = T (u)T t(−u− ρ).

The “ρ-shifted” twisted Yangian defined above is isomorphic to the usual one studied in [Mo3]. The
isomorphism is provided by the mapping S(u) 7→ S(u+ ρ/2). The matrix S(u) defined in (2.14) satisfies the
reflection equation

(2.15) R12(u− v)S1(u)R
t
12(−u− v − ρ)S2(v) = S2(v)R

t
12(−u− v − ρ)S1(u)R12(u− v)

and the symmetry relation

(2.16) St(−u− ρ) = S(u)±
S(u)− S(−u− ρ)

2u+ ρ
.

The above two relations are in fact the defining relations of Y ±(gl2n). Their form in terms of matrix elements
sij(u) of S(u), for ρ = 0, can be found in (2.4) and (2.5) of [Ol] (note that indices i, j, k, l are indexed by
−n,−n+ 1, . . . , n− 1, n in loc. cit.); also see Section 4.1 in [Mo3].
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By Proposition 5.3 in [AACDFR], any invertible matrix solution of the reflection equation (2.15) (with
S(u) replaced by an element of End(C2n)(u)) is a constant, up to multiplication by a scalar function, matrix
K ∈ End(C2n) such that Kt = εK with ε = +1 or −1. Consider the subalgebra Y ±

K (gl2n) ⊂ Y (gl2n)
generated by coefficients of the entries of the matrix

(2.17) SK(u) = T (u)KT t(−u− ρ).

Without loss of generality we can assume that K = AIεAt, where Iε =
∑n

i=1(eii + εeı̄ı̄) and A ∈ End(C2n)
is an invertible matrix.

Proposition 2.4. The mapping

(2.18) ψK : S(u) 7→ ASK(u)AtIε,

where matrices Iε and A are as described above, defines an isomorphism of algebras Y ±(gl2n) → Y ±
K (gl2n)

if ε = +1 and Y ±(gl2n) → Y ∓
K (gl2n) if ε = −1.

Proof. Let t+ (resp. t−) denote the orthogonal (resp. symplectic) transposition. Then I−(eij)
t±I− = (eij)

t∓ .
In other words, conjugation with the matrix Iε when ε = −1 interchanges the orthogonal and symplectic
transpositions. Recall that the mapping αA : T (u) 7→ AT (u)A−1 for any invertible matrix A ∈ End(C2n)
defines an automorphism of Y (gl2n). We may thus rewrite the image of the matrix S(u) under the mapping
ψK as

AS(u)At± = AT (u)A−1AAt±(At±)−1T (−u− ρ)))t±At±

= αA(T (u)KT
t±(−u− ρ))

∈ Y ±
K (gl2n)[[u

−1]]

if ε = +1 and

AS(u)At±I− = AT (u)A−1AI−I−At±(At±)−1T (−u− ρ)))t±At±I−

= αA(T (u)KI
−T t±(−u− ρ)I−)

∈ Y ∓
K (gl2n)[[u

−1]]

if ε = −1. �

Remark 2.5. In the algebraic Bethe ansatz approach the matrix K defines the right boundary conditions of
the open spin chain. Proposition 2.4 implies that it is sufficient to consider the case when K = I. However,
the mapping ψK has an effect on the left boundary conditions; this will be discussed in more detail in
Section 4.

We now turn to representation theory of Y ±(gl2n). As in the case of Y (gl2n), we will be interested in the
lowest weight representations.

Definition 2.6. A representation V of Y ±(gl2n) is called a lowest weight representation if there exists a
nonzero vector ξ ∈ V such that V = Y ±(gl2n)ξ and

sij(u)ξ = 0 for 1 ≤ j < i ≤ 2n and

sii(u)ξ = µi(u)ξ for 1 ≤ i ≤ n,

where µi(u) are formal power series in u−1 with constant terms equal to 1. The vector ξ is called the lowest
weight vector of V , and the n-tuple µ(u) = (µ1(u), . . . , µn(u)) is called the lowest weight of V .

Note that ξ is also an eigenvector for the action of sii(u) with n + 1 ≤ i ≤ 2n. Indeed, the symmetry
relation (2.16) implies that

sı̄ ı̄(u)ξ =

(
µi(−u− ρ)±

µi(u)− µi(−u− ρ)

2u+ ρ

)
ξ for 1 ≤ i ≤ n.

Writing sij(u) =
∑

r≥0 s
(r)
ij u

−r, the map Fij 7→ −s
(1)
ji defines an embedding U(g2n) →֒ Y ±(gl2n), where

g2n = so2n or sp2n. Conversely, the map

sij(u) 7→ δij − Fji(u+ (ρ± 1)/2)−1
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defines the evaluation homomorphism ev± : Y ±(gl2n) → U(g2n). (Note that there is no analogue of the shift
automorphism σc of Y (gl2n) for the twisted Yangian.)

Given an n-tuple µ = (µ1, . . . , µn) ∈ Cn we will denote by M(µ) the irreducible representation of the
Lie algebra g2n with the highest weight µ. That is, M(µ) is a cyclic U(g2n)-module generated by a nonzero
vector 1µ such that

Fij 1µ = 0 for 1 ≤ i < j ≤ 2n and

Fii 1µ = µi 1µ for 1 ≤ i ≤ n.

The representation M(µ) is finite-dimensional if and only if there exist integers µi satisfying

µi − µi+1 ∈ Z≥0 for 1 ≤ i ≤ n− 1,

µn−1 + µn ∈ Z≥0 if g2n = so2n,

µn ∈ Z≥0 if g2n = sp2n.

Using the evaluation homomorphism ev± we can extend each representation M(µ) to a lowest weight
Y ±(gl2n)-module with the lowest weight given by

(2.19) µi(u) = 1− µi(u+ (ρ± 1)/2)−1 for 1 ≤ i ≤ n.

The twisted Yangian Y ±(gl2n) is a left coideal subalgebra of Y (gl2n). In particular,

(2.20) ∆ : S(u) 7→ (T (u)⊗ 1)(1⊗ S(u))(T t(−u− ρ)⊗ 1),

which is an element in End(C2n)⊗ Y (gl2n)⊗ Y ±(gl2n)[[u
−1]]. This allows us to equip the space

(2.21) M := L⊗M(µ) = L(λ(1))c1 ⊗ L(λ(2))c2 ⊗ . . .⊗ L(λ(ℓ))cℓ ⊗M(µ)

with the structure of a lowest weight Y ±(gl2n)-module. In particular, S(u) acts on the space M by

(2.22) S(u) ·M =

(
ℓ∏

i=1

Li(u− ci)

)
L±(u)

(
1∏

i=ℓ

Lt
i(−u− ρ− ci)

)
M,

as an element of End(C2n)⊗M [[u−1]], where

(2.23) L±(u) := (id⊗ ev±)(S(u)) =

2n∑

i,j=1

eij ⊗ (δij − Fji(u+ (ρ± 1)/2)−1)

is the “boundary” Lax operator. Let ξ ∈M(µ) be a lowest vector. Denote by ηi the lowest vector of L(λ
(i))ci

and set ζ = η1 ⊗ . . . ⊗ ηℓ ⊗ ξ. Then the submodule Y ±(gl2n)ζ of Y ±(gl2n)-module M is a lowest weight
representation with a lowest vector ζ. It is given by

λi(u)λ2n−i+1(−ρ− u)µi(u) for 1 ≤ i ≤ n,

with λi(u) defined in (2.13) and µi(u) defined in (2.19), see Proposition 4.2.11 in [Mo3]. To the best
of our knowledge, there are currently no irreducibility criteria known for a tensor product of irreducible
representations of Y (gl2n) and Y

±(gl2n).

Remark 2.7. Let λ = (λ1, . . . , λn) and ν = (ν1, . . . , νn) be any gln-weights. Set λ′ = (λ2, . . . , λn) and
ν′ = (ν2, . . . , νn). The algebraic Bethe anstaz for Y (gln) relies on the fact that if the Y (glN )-module
L(λ) ⊗ L(µ) is irreducible, so is the Y (glN−1)-module L(λ′) ⊗ L(ν′), see Lemma 6.2.2 in [Mo3]. This
property combined with the binary property allows one to solve the spectral problem of a Y (glN )-system
recursively, via the chain of subalgebras Y (gln) ⊃ Y (gln−1) ⊃ · · · ⊃ Y (gl2). In this paper we will use
the fact that the restriction of an irreducible so2n- or sp2n-representation of weight µ = (µ1, . . . , µn) to its
natural gln subalgebra is irreducible. Moreover, any irreducible gl2n-module, upon restriction to the natural
gln ⊕ gln ⊂ gl2n subalgebra, factors as a tensor product of its natural irreducible gln-submodules. Hence,
starting with the Y ±(gl2n)-module M we can restrict to an irreducible Y (gln)-module M0 ⊂ M , provided
the binary property holds. This resctriction will allow us to solve the spectral problem for a Y ±(gl2n)-system
using the chain of subalgebras Y ±(gl2n) ⊃ Y (gln) ⊃ Y (gln−1) ⊃ · · · ⊃ Y (gl2).
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2.3. Block decomposition. In this section, inspired by the arguments presented in [Rs, DVK], we demon-
strate a block decomposition of the Yangian Y (gl2n) and the twisted Yangian Y ±(gl2n). We write matrices
T (u) and S(u) in the block form:

(2.24) T (u) =

(
A(u) B(u)
C(u) D(u)

)
, S(u) =

(
A(u) B(u)
C(u) D(u)

)
,

Our goal is to derive the algebraic relations between these smaller matrix operators (blocks), which is the
crucial first step of the algebraic Bethe ansatz. We will denote the matrix elements of A(u) by aij(u) with
1 ≤ i, j ≤ n, and similarly for matrices B(u), C(u) and D(u), and their barred counterparts.

Recall that C
2n ∼= C

2 ⊗ C
n. Let eij with 1 ≤ i, j ≤ 2n denote the standard matrix units of End(C2n).

Moreover, let xij with 1 ≤ i, j ≤ 2 (resp. eij with 1 ≤ i, j ≤ n) denote the standard matrix units of End(C2)
(resp. End(Cn)). Then, for any 1 ≤ i, j ≤ n, we may write

(2.25) eij = x11 ⊗ eij , en+i,j = x21 ⊗ eij ,

and similarly for ei,n+j and en+i,n+j . Hence any matrix M ∈ End(C2n) with entries (M)ij ∈ C can be
equivalently written as

M =
2∑

a,b=1

xab ⊗ [M ]ab ∈ End(C2)⊗ End(Cn),

where [M ]ab =
∑n

i,j=1(M)i+n(a−1),j+n(b−1) eij are blocks of M , viz. (2.24). Now let M ∈ End(C2n ⊗ C2n).
Then we may write

M =

2∑

a,b,c,d=1

xab ⊗ xcd ⊗ [M ]abcd ∈ End(C2 ⊗ C
2)⊗ End(Cn ⊗ C

n),

where [M ]abcd are obtained as follows. Writing M =
∑2n

i,j,k,l=1(M)ijkl eij ⊗ ekl we have

(2.26) [M ]abcd =
n∑

i,j,k,l=1

(M)i+n(a−1),j+n(b−1),k+n(c−1),l+n(d−1) eij ⊗ ekl.

Denote the R-matrix (2.5) acting on C
2n ⊗ C

2n by IR(u) and its t-transpose by IRt(u). Viewing them as
elements in End(C2 ⊗C2)⊗End(Cn ⊗Cn)[[u−1]] and using (2.26) we recover the six-vertex block structure

IR(u) =




R(u)
I −u−1P

−u−1P I
R(u)


 , IRt(u) =




I
Rt(u) ∓u−1Q
∓u−1Q Rt(u)

I


 ,(2.27)

where the operators inside the matrices are each acting on Cn ⊗ Cn; note that Rt(u) = I − u−1Q and
Q =

∑
1≤i,j≤n eij ⊗ē ı̄ in both cases of ∓ above are of the orthogonal type (recall the notation ı̄ = n− i+1).

In a similar way, the matrices T1(u) = T (u)⊗ I and T2(u) = I ⊗ T (u), as elements of End(C2 ⊗ C2) ⊗
End(Cn ⊗ Cn)⊗ Y (gl2n)[[u

−1]], take the form

T1(u) =




A1(u) B1(u)
A1(u) B1(u)

C1(u) D1(u)

C1(u) D1(u)


 , T2(u) =




A2(u) B2(u)
C2(u) D2(u)

A2(u) B2(u)

C2(u) D2(u)


 ,(2.28)

where A1(u) means A(u)⊗ I ∈ End(Cn⊗Cn)⊗Y (g2n)[[u
−1]] with I being the identity matrix, and similarly

for the other blocks. Substituting (2.27) and (2.28) to (2.7) allows us to rewrite the defining relations of
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Y (gl2n) in terms of the matrices A(u), B(u), C(u) and D(u). The relations that we will need are:

R12(u− v)A1(u)A2(v) = A2(v)A1(u)R12(u− v),(2.29)

R12(u − v)D1(u)D2(v) = D2(v)D1(u)R12(u − v),(2.30)

C1(u)A2(v) = A2(v)C1(u)R12(u− v) +
P12A1(u)C2(v)

u− v
,(2.31)

C1(u)D2(v) = R12(v − u)D2(v)C1(u)−
P12D2(u)C1(v)

u− v
,(2.32)

D1(u)A2(v)−A2(v)D1(u) =
P12B1(u)C2(v)−B2(v)C1(u)P12

u− v
.(2.33)

In particular, the coefficients of the matrix entries of A(u) generate a Y (gln) subalgebra of Y (gl2n). The
same is true for D(u).

We now repeat the same steps for the twisted Yangian Y ±(gl2n). We substitute (2.27) to (2.15) and view
matrices S1(u) and S2(u) as elements of End(C2 ⊗C2)⊗End(Cn ⊗Cn)⊗ Y ±(gl2n)[[u

−1]], so that they take
the same form as in (2.28). This allows us to write the defining relations of Y ±(gl2n) in terms of the matrices
A(u), B(u), C(u) and D(u). The relations that we will need are:

A2(v)B1(u) = R12(u− v)B1(u)R
t
12(−u− v − ρ)A2(v)

+
P12B1(v)R

t
12(−u− v − ρ)A2(u)

u− v
∓
B2(v)Q12D1(u)

u+ v + ρ
,(2.34)

R12(u− v)B1(u)R
t
12(−u− v − ρ)B2(v)

= B2(v)R
t
12(−u− v − ρ)B1(u)R12(u− v),(2.35)

R12(u− v)A1(u)A2(v)−A2(v)A1(u)R12(u− v)

= ∓
R12(u− v)B1(u)Q12C2(v) −B2(v)Q12C1(u)R12(u− v)

u+ v + ρ
,(2.36)

C1(u)A2(v) = A2(v)R
t
12(−u− v − ρ)C1(u)R12(u − v)

+
P12A1(u)R

t
12(−u− v − ρ)C2(v)

u− v
∓
D1(u)Q12C2(v)

u+ v + ρ
.(2.37)

It remains to cast the symmetry relation (2.16) in the block form. Observe that

St(u) =

(
Dt(u) ±Bt(u)
±Ct(u) At(u)

)
.

This allows us immediately to extract linear relations between matrices A(u), B(u), C(u) and D(u), of which
we will need the following two only:

Dt(−u− ρ) = A(u)±
1

2u+ ρ

(
A(u)−A(−u− ρ)

)
,(2.38)

±Bt(−u− ρ) = B(u)±
1

2u+ ρ
(B(u)−B(−u− ρ)).(2.39)

3. Exchange identities

In this section we derive algebraic relations between certain elements of the twisted Yangian Y ±(gl2n) that
will be used in the derivation of the nested Bethe equations in the section that follows below. In particular,
we recast the exchange relations (2.34-2.37) so that they can be applied directly to the algebraic Bethe
ansatz. We then introduce the nested monodromy matrix and show its relevant algebraic properties. We
note that all the operators in (2.34-2.37), viewed as matrices, will act on the vector spaces Va, Va1 , Va2 , . . . ,
and Vã, Vã1 , Vã2 , . . . , all isomorphic to Cn, which we call the auxiliary spaces. We will often make use of the
following rational function

(3.1) p(u) = 1±
1

2u+ ρ
.
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3.1. Creation operator for a single excitation. The key operators in the construction of the Bethe
vector will come from the B block, viz. (2.24). However, rather than use a matrix of creation operators, we
reinterpret B(u) as a row vector in two auxiliary spaces, with components given by the matrix elements of
B(u).

Definition 3.1. The creation operator is given by

(3.2) β(u) :=
∑

1≤i,j≤n

e∗i ⊗ e∗j ⊗ b̄ıj(u) ∈ (Cn)∗ ⊗ (Cn)∗ ⊗ Y ±(gl2n)[[u
−1]].

The two auxiliary spaces are labelled in the same order as the tensor product, that is, βãa(u) ∈ V ∗
ã ⊗

V ∗
a ⊗Y ±(gl2n)[[u

−1]]. The exchange and symmetry relations involving the B operator may now be rewritten
using the above notation.

Lemma 3.2. The creation operator satisfies the following identities:

βã1a1(u1)βã2a2(u2)Ra1ã2(−u1 − u2 − ρ)Řã1ã2(u1 − u2)

= βã1a1(u2)βã2a2(u1)Ra1 ã2(−u1 − u2 − ρ)Řa1a2(u1 − u2),(3.3)

βãiai
(u)Qaia = ±

(
p(−u− ρ)βãiai

(−u− ρ)±
βãiai

(u)

2u+ ρ

)
QãiaQaia,(3.4)

where Ř(u) := PR(u).

Proof. We start by proving (3.3). From (2.35), begin by acting from the left with P12, then use the defining
property of the permutation operator to move it to the right on the r.h.s. of the equation to obtain

(3.5) Ř12(u1 − u2)B1(u1)R
t
12(−u1 − u2 − ρ)B2(u2) = B1(u2)R

t
12(−u1 − u2 − ρ)B2(u1)Ř12(u1 − u2).

We want to rewrite this in terms of the creation operators defined in Definition 3.1. Choose bases for V1
and V2, then denote the matrix components of R12(−u1 − u2 − ρ) by ri1j1i2j2 , and the matrix components

of Ř12(u1 − u2) by ři1j1i2j2 . In components, (3.5) becomes

n∑

j1,j2,k1,k2=1

ři1j1i2j2 bj1k1(u1)rk1l1k̄2̄2 bk2l2(u2) =

n∑

j1,j2,k1,k2=1

bi1j1(u2)rj1k1̄2 ı̄2 bj2k2(u1) řk1l1k2l2 .

Relabelling i1 → ı̄1 and i2 → ı̄2, and relabelling the summation indices j1 → ̄1 and j2 → ̄2 yields an
equivalent expression:

n∑

j1,j2,k1,k2=1

b̄1k1(u1)bk̄2l2(u2)rk1l1k2j2 řı̄1 ̄1 ı̄2 ̄2 =

n∑

j1,j2,k1,k2=1

bı̄1j1(u2)b̄2k2(u1)rj1k1j2i2 řk1l1k2l2 .

Finally, we note that řı̄1 ̄1 ı̄2̄2 = řj1i1j2i2 , as Řab(u)
tatb = Řab(u). Then taking the tensor product with

e∗i1 ⊗ e∗l1 ⊗ e∗i2 ⊗ e∗l2 ∈ V ∗
ã1

⊗ V ∗
a1

⊗ V ∗
ã2

⊗ V ∗
a2

and summing over these indices yields

βã1a1(u1)βã2a2(u2)Ra1ã2(−u1 − u2 − ρ)Řã1ã2(u1 − u2)

= βã1a1(u2)βã2a2(u1)Ra1ã2(−u1 − u2 − ρ)Řa1a2(u1 − u2),

as required.
We now focus on (3.4). From (2.39) in matrix components, we make the assignment u 7→ −u − ρ and

multiply by ± to obtain

b̄ı̄(u) = ±p(−u− ρ)bij(−u− ρ) +
bij(u)

2u+ ρ
.

Then, taking the tensor product with e∗j⊗e
∗
ı̄ ∈ V ∗

ãi
⊗V ∗

ai
, and summing over i, j yields the following expression

in terms of the creation operator:

βãiai
(u) = ±p(−u− ρ)βaiãi

(−u− ρ) +
βaiãi

(u)

2u+ ρ
= ±

(
p(−u− ρ)βãiai

(−u− ρ)±
βãiai

(u)

2u+ ρ

)
Pãiai

.

To obtain (3.4) from here, we multiply on the right by the operator Qaia and use the identity Pãiai
Qaia =

QãiaQaia. �
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3.2. Rewriting the AB exchange relation. We need to rewrite the AB exchange relation (2.34) in terms
of the creation operator (3.2). The form of this relation will be the cornerstone of the nesting procedure.

Lemma 3.3. The following identity holds:

Aa(v)βãiai
(u) = βãiai

(u)Rt
ãia(u− v)Rt

aia(−u−v−ρ)Aa(v)

+
βãiai

(v)

u− v
QãiaR

t
aia(−2u− ρ)Aa(u)

∓
p(−u− ρ)

u+ v + ρ
βãiai

(v)QãiaQaiaAa(−u− ρ).(3.6)

Proof. We introduce the following rule for obtaining expressions in terms of the β operator from those in
terms of B operator. Let Xã ∈ End(Vã) and Ya ∈ End(Va). Considering the components of βãa(u)X

t
ãYa,

we have

βãa(u)X
t
ãYa =

∑

1≤i,j,k,l,r,s≤n

(e∗k ⊗ e∗l ⊗ bk̄l(u))(eri ⊗ esj ⊗ xı̄r̄ ysj)

=
∑

1≤i,j,k,l≤n

ei ⊗ ej ⊗ bk̄l(u)xı̄k̄ ylj ,

so that (βãa(u)X
t
ãYa)ı̄j =

∑
1≤k,l≤n bkl(u)xik ylj . On the other hand, taking the (i, j)-th matrix element of

the expression XaBa(u)Ya for any Xa, Ya ∈ End(Va) we obtain

(3.7) (XaBa(u)Ya)ij =
∑

1≤k,l≤n

xik bkl(u)ylj = (βãa(u)X
t
ãYa)ı̄j .

Using this rule, we can rewrite (2.34) as

Aa(v)βãiai
(u) = βãiai

(u)Rt
ãia(u− v)Rt

aia(−u− v − ρ)Aa(v)

+
βãiai

(v)

u− v
QãiaR

t
aia(−u− v − ρ)Aa(u)

∓
βãiai

(v)

u+ v + ρ
QãiaQaiaD

t
a(u),

where the identities X1 = P12X2P12 and Q12X1 = Q12X
t
2 have been used. From here, the symmetry relation

(2.38) may be used to obtain

Aa(v)βãiai
(u) = βãiai

(u)Rt
ãia(u− v)Rt

aia(−u− v − ρ)Aa(v)

+
βãiai

(v)

u− v
QãiaR

t
aia(−u− v − ρ)Aa(u)

∓
βãiai

(v)

u+ v + ρ
QãiaQaia

(
p(−u− ρ)Aa(−u− ρ)±

Aa(u)

2u+ ρ

)
.

We note that

Rt
aia(−u− v − ρ)

u− v
−

Qaia

(2u+ ρ)(u+ v + ρ)
=

1

u− v

(
I +

(
1−

u− v

2u+ ρ

)
Qaia

u+ v + ρ

)
=
Rt(−2u− ρ)

u− v
.

Following these manipulations, we obtain

Aa(v)βãiai
(u) = βãiai

(u)Rt
ãia(u− v)Rt

aia(−u−v−ρ)Aa(v)

+
βãiai

(v)

u− v
QãiaR

t
aia(−2u− ρ)Aa(u)

∓
p(−u− ρ)

u+ v + ρ
βãiai

(v)QãiaQaiaAa(−u− ρ),(3.8)

as required. �

This relation (3.6) is convenient as it does not feature the D operator, so the relation can be used
repeatedly in the presence of multiple creation operators. However, to obtain the most convenient form of
(3.6), we must consider the action of p(v)Aa(v) + p(−v − ρ)Aa(−v − ρ) on βãiai

(u) rather than of Aa(v)
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alone (the motivation for this construction will be explained in Section 4). Introduce the following notation
for a symmetrised combination of functions or operators,

(3.9) {f(v)}
v
:= f(v) + f(−v − ρ).

Lemma 3.4. The following identity holds:

{p(v)Aa(v)}
v
βãiai

(u) = βãiai
(u)
{
p(v)Rt

ãia(u − v)Rt
aia(−u− v − ρ)Aa(v)

}v

+
1

p(u)

{
p(v)

u− v
βãiai

(v)

}v

Res
w→u

[ {
p(w)Rt

ãia(u− w)Rt
aia(−u− w − ρ)Aa(w)

}w ]
.(3.10)

Proof. Starting from (3.6), multiplying by p(v) and symmetrising using (3.9), we obtain

{p(v)Aa(v)}
v
βãiai

(u) = βãiai
(u)
{
Rt

ãia(u− v)Rt
aia(−u− v − ρ)p(v)Aa(v)

}v

+

{
p(v)

u− v
βãiai

(v)

}v

QãiaR
t
aia(−2u− ρ)Aa(u)

∓ p(−u− ρ)

{
p(v)

u+ v + ρ
βãiai

(v)

}v

QãiaQaiaAa(−u− ρ).(3.11)

We will show that this is equivalent to (3.10) term by term, separating the terms by the parameter carried by
Aa(·). Note that the term containing Aa(v) is already the same in both (3.10) and (3.11). For the remaining
terms, containing Aa(u) and Aa(−u− ρ), we will work backwards from (3.10). Let

U =
1

p(u)

{
p(v)

u− v
βãiai

(v)

}v

Res
w→u

[ {
p(w)Rt

ãia(u− w)Rt
aia(−u− w − ρ)Aa(w)

}w ]
.

Furthermore, expand the symmetriser inside the residue so that U = U+ + U−, where

U+ =
1

p(u)

{
p(v)

u− v
βãiai

(v)

}v

Res
w→u

[
p(w)Rt

ãia(u − w)Rt
aia(−u− w − ρ)Aa(w)

]
,

U− =
1

p(u)

{
p(v)

u− v
βãiai

(v)

}v

Res
w→u

[
p(−w − ρ)Rt

ãia(u + w + ρ)Rt
aia(w − u)Aa(−w − ρ)

]
.

Focussing first on U+, we evaluate the residue to obtain

U+ =

{
p(v)

u− v
βãiai

(v)

}v

QãiaR
t
aia(−2u− ρ)Aa(u).

This now matches the term containing Aa(u) in (3.11). It remains to show that U− is equal to the term
containing Aa(−u− ρ) in (3.11). Again evaluating the residue, we obtain

U− = −

{
p(v)

u− v
βãiai

(v)

}v
p(−u− ρ)

p(u)
Rt

ãia(2u+ ρ)QaiaAa(−u− ρ)

= −

{
p(v)

u− v

(
βãiai

(v)Qaia − βãiai
(v)

QãiaQaia

2u+ ρ

)}v
p(−u− ρ)

p(u)
Aa(−u− ρ).

We now apply the symmetry relation (3.4), so

U− = −

{
p(v)

u− v

(
± p(−v − ρ)βãiai

(−v − ρ) +
βãiai

(v)

2v + ρ
−
βãiai

(v)

2u+ ρ

)}v
p(−u− ρ)

p(u)
Qã1aQaiaAa(−u− ρ).

Since it lies within the symmetriser, the term containing βãiai
(−v− ρ) can be rewritten in terms of βãiai

(v)
to obtain

U− = −

{(
±
p(−v − ρ)

u+ v + ρ
+

1

u− v

(
1

2v + ρ
−

1

2u+ ρ

))
p(v)βãiai

(v)

}v
p(−u− ρ)

p(u)
QãiaQaiaAa(−u− ρ).
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All that remains are algebraic manipulations:

U− = −

{(
±
p(−v − ρ)

u+ v + ρ
+

2

(2v + ρ)(2u+ ρ)

)
p(v)βãiai

(v)

}v
p(−u− ρ)

p(u)
Qã1aQaiaAa(−u− ρ)

= −

{(
± 1−

1

2v + ρ
+

2u+ 2v + 2ρ

(2v + ρ)(2u+ ρ)

)
p(v)

u+ v + ρ
βãiai

(v)

}v
p(−u− ρ)

p(u)
Qã1aQaiaAa(−u− ρ)

= −

{(
± 1 +

1

2u+ ρ

)
p(v)

u+ v + ρ
βãiai

(v)

}v
p(−u− ρ)

p(u)
Qã1aQaiaAa(−u− ρ)

= ∓p(−u− ρ)

{
p(v)

u+ v + ρ
βãiai

(v)

}v

Qã1aQaiaAa(−u− ρ).

This matches the term containing Aa(−u− ρ) in (3.11) and completes the proof. �

3.3. Creation operator for multiple excitations. The next step is to generalize the creation operator
β defined in (3.2) for multiple excitation. Choose m ∈ N, the excitation number, and consider the tensor
product spaceW = Vã1⊗· · ·⊗Vãm

⊗Va1⊗· · ·⊗Vam
. Denote its dual byW ∗ = V ∗

ã1
⊗· · ·⊗V ∗

ãm
⊗V ∗

a1
⊗· · ·⊗V ∗

am

and introduce an m-tuple of formal parameters u = (u1, u2, . . . , um).

Definition 3.5. The creation operator for m excitations is given in terms of the ordered product of β
operators and R-matrices (cf., (2.4)):

βã1a1...ãmam
(u) =

m∏

i=1

(
βãiai

(ui)
1∏

j=i−1

Raj ãi
(−uj − ui − ρ)

)

∈W ∗ ⊗ Y ±(gl2n)[u1, . . . , um][[u−1
1 , . . . , u−1

m ]].(3.12)

Note that the creation operator for m excitations satisfies the following recursive relation

(3.13) βã1a1...ãmam
(u) = βã1a1...ãm−1am−1(u1, . . . , um−1)βãmam

(um)

1∏

j=m−1

Raj ãm
(−uj − um − ρ).

Given i ∈ {1, . . . ,m − 1} denote by ui↔i+1 the m-tuple obtained from u by interchanging its i-th and
(i+ 1)-th entries, namely

(3.14) ui↔i+1 = (u1, u2, . . . , ui−1, ui+1, ui, ui+2, . . . , um).

The Lemma below states a relation between the operators βã1a1...ãmam
(u) and βã1a1...ãmam

(ui↔i+1) that
will assist us in obtaining the explicit expressions of the so-called “unwanted terms” in Section 4.3.

Lemma 3.6. The following identity holds:

(3.15) βã1a1...ãmam
(u) = βã1a1...ãmam

(ui↔i+1)Řaiai+1(ui − ui+1)Ř
−1
ãiãi+1

(ui − ui+1)

for 1 ≤ i ≤ m− 1.

Proof. We use induction on m, with the basis case provided by (3.3). Assume the result holds for m − 1
excitations. There are two cases to consider, depending on the spaces ai, ai+1 on which Raiai+1(ui − ui+1)
acts nontrivially. Consider first the case where i < m− 1 and use the recursive relation (3.13):

βã1a1...ãmam
(u) = βã1a1...ãm−1am−1(u1, . . . , um−1)βãmam

(um)

1∏

j=m−1

Raj ãm
(−uj − um − ρ)

= βã1a1...ãm−1am−1(u1, . . . , ui+1, ui, . . . , um−1)Řaiai+1(ui − ui+1)

× Ř−1
ãiãi+1

(ui − ui+1)βãmam
(um)

1∏

j=m−1

Raj ãm
(−uj − um − ρ).

Notice that the matrix Ř−1
ãiãi+1

(ui − ui+1) commutes with all matrices to the right of it, so it can be moved

to the very right. The matrix Řaiai+1(ui − ui+1) may be moved through the product of R-matrices using
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the (braided) Yang-Baxter equation:

Řaiai+1(ui − ui+1)Rai+1ãm
(−ui+1 − um − ρ)Raiãm

(−ui − um − ρ)

= Rai+1ãm
(−ui − um − ρ)Raiãm

(−ui+1 − um − ρ)Řaiai+1(ui − ui+1).

This then gives (3.15) for i < m− 1. For i = m− 1, we factorise the excitations as follows:

βã1a1...ãmam
(u) = βã1a1...ãm−2am−2(u1, . . . , um−2)βãm−1am−1ãmam

(um−1, um)

×

1∏

j=m−2

(
Raj ãm−1(−uj − um−1 − ρ)Raj ãm

(−uj − um − ρ)
)

= βã1a1...ãm−2am−2(u1, . . . , um−2)βãm−1am−1ãmam
(um, um−1)

× Řam−1am
(um−1 − um)Ř−1

ãm−1ãm
(um−1 − um)

×
1∏

j=m−2

(
Raj ãm−1(−uj − um−1 − ρ)Raj ãm

(−uj − um − ρ)
)
.

The matrix Ř−1
ãm−1ãm

(um−1 − um) may be moved through the product of R-matrices using another variant

of the Yang-Baxter equation,

Ř−1
ãm−1ãm

(um−1 − um)Raj ãm−1(−uj − um−1 − ρ)Raj ãm
(−uj − um − ρ)

= Raj ãm−1(−uj − um − ρ)Raj ãm
(−uj − um−1 − ρ)Ř−1

ãm−1ãm
(um−1 − um).

Then, rearranging the commuting matrices in the expression, we reconstruct the full excitation vector and
arrive at (3.15) for i = m− 1. This completes the induction. �

Remark 3.7. By definition, the operator βã1a1...ãmam
(u) in (3.12) is an analogue of the fused boundary

operator of Theorem 4.1 in [BaRe] for the twisted reflection equation. More precisely, it is a solution to a
fused analogue of twisted reflection equation (2.35) in the sense of loc. cit.

3.4. The AB exchange relation for multiple excitations. We want to move {p(v)Aa(v)}
v through the

operator βã1a1...ãmam
(u). Each time {p(v)Aa(v)}

v
is moved through one of the excitations βãiai

(ui) using
(3.6), we obtain a term, where the parameter v of {p(v)Aa(v)}

v
is unchanged. We will call this term the

wanted term. All the additional terms will be called the unwanted terms ; we will denote them by UWT and
consider their exact form in Section 4.3. Focussing on the wanted term at each step, {p(v)Aa(v)}

v
accrues

R-matrices as it moves through the excitations. In the following lemma, we will show that these R-matrices
may be moved through those appearing in the operator βã1a1...ãmam

(u).

Lemma 3.8. The following exchange relation holds
(

i−1∏

k=1

Rt
ãka

(uk − v)

)(
i−1∏

l=1

Rt
ala

(−ul − v − ρ)

)
Aa(v)βãiai

(ui)
1∏

j=i−1

Raj ãi
(−uj − ui − ρ)

= βãiai
(ui)

(
1∏

j=i−1

Raj ãi
(−uj − ui − ρ)

)(
i∏

k=1

Rt
ãka(uk − v)

)(
i∏

l=1

Rt
ala(−ul − v − ρ)

)
Aa(v) + UWT.

Proof. We begin by using (3.6) and focus on the wanted terms only:
(

i−1∏

k=1

Rt
ãka(uk − v)

)(
i−1∏

l=1

Rt
ala(−ul − v − ρ)

)
Aa(v)βãiai

(ui)

1∏

j=i−1

Raj ãi
(−uj − ui − ρ)

=

(
i−1∏

k=1

Rt
ãka

(uk − v)

)(
i−1∏

l=1

Rt
ala

(−ul − v − ρ)

)
βãiai

(ui)R
t
ãia(ui − v)

×Rt
aia(ui − v)Aa(v)

1∏

j=i−1

Raj ãi
(−uj − ui − ρ) + UWT
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yielding

βãiai
(ui)

(
i−1∏

k=1

Rt
ãka

(uk − v)

)(
i−1∏

l=1

Rt
ala

(−ul − v − ρ)

)
Rt

ãia(ui − v)

×

(
1∏

j=i−1

Raj ãi
(−uj − ui − ρ)

)
Rt

aia(ui − v)Aa(v) + UWT.

All that remains is to rearrange the product of R-matrices in the centre of the expression. The matrices can
be reordered using the Yang-Baxter equation

Rt
ai−1a(−ui−1 − v − ρ)Rt

ãia(ui − v)Rai−1 ãi
(−ui−1 − ui − ρ)

= Rai−1ãi
(−ui−1 − ui − ρ)Rt

ãia(ui − v)Rt
ai−1a(−ui−1 − v − ρ).

Thus the product of R-matrices becomes
(

i−1∏

l=1

Rt
ala

(−ul − v − ρ)

)
Rt

ãia(ui − v)

(
1∏

j=i−1

Raj ãi
(−uj − ui − ρ)

)

=

(
i−2∏

l=1

Rt
ala(−ul − v − ρ)

)
Rai−1ãi

(−ui−1 − ui − ρ)Rt
ãia(ui − v)

×Rt
ai−1a(−ui−1 − v − ρ)

(
1∏

j=i−2

Raj ãi
(−uj − ui − ρ)

)

= Rai−1ãi
(−ui−1 − ui − ρ)

(
i−2∏

l=1

Rt
ala(−ul − v − ρ)

)
Rt

ãia(ui − v)

×

(
1∏

j=i−2

Raj ãi
(−uj − ui − ρ)

)
Rt

ai−1a(−ui−1 − v − ρ)

=

(
1∏

j=i−1

Raj ãi
(−uj − ui − ρ)

)
Rt

ãia(ui − v)

(
i−1∏

l=1

Rt
ala(−ul − v − ρ)

)
,

where the last equality is achieved by inductively applying the same argument. Putting this together, and
noting that the Rt-matrices all commute with the R-matrices, we arrive to
(

i−1∏

k=1

Rt
ãka

(uk − v)

)(
i−1∏

l=1

Rt
ala

(−ul − v − ρ)

)
Aa(v)βãiai

(ui)
1∏

j=i−1

Raj ãi
(−uj − ui − ρ)

= βãiai
(ui)

(
1∏

j=i−1

Raj ãi
(−uj − ui − ρ)

)(
i∏

k=1

Rt
ãka(uk − v)

)(
i∏

l=1

Rt
ala(−ul − v − ρ)

)
Aa(v) + UWT

as required. �

Applying this result to the product of m such excitations in (3.12) yields

Aa(v)βã1a1...ãmam
(u) = βã1a1...ãmam

(u)

(
m∏

k=1

Rt
ãka

(uk − v)

)(
m∏

l=1

Rt
ala

(−ul − v − ρ)

)
Aa(v) + UWT.

We define the matrix on the right side to be the nested monodromy matrix,

Ta(v;u) :=

(
m∏

k=1

Rt
ãka

(uk − v)

)(
m∏

l=1

Rt
ala

(−ul − v − ρ)

)
Aa(v).(3.16)

Its matrix entries will be denoted by tij(v;u). The matrix Ta(v;u) allows us to write the above identity
more compactly,

Aa(v)βã1a1...ãmam
(u) = βã1a1...ãmam

(u)Ta(v;u) + UWT,

which leads to the following result.
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Corollary 3.9. The AB exchange relation for the creation operator of multiple excitations has the form

{p(v)Aa(v)}
v βã1a1...ãmam

(u) = βã1a1...ãmam
(u) {p(v)Ta(v;u)}

v + UWT. �

3.5. Exchange relations for the nested monodromy matrix. In this section we introduce a vector
space M ′, called the nested vacuum sector, on which the nested monodromy matrix T (v;u) satisfies the
usual RTT relation, viz. (2.7). This allows us to identify T (v;u) as the monodromy matrix for a residual
Y (gln)-system. The spaceM ′ is then interpreted as the full quantum space of this residual system. We start
by introducing certain subspaces of the evaluation modules M(µ) and L(λ(i))ci that will be building blocks
of the space M ′.

Denote byM0(µ) the subspace of the evaluation moduleM(µ) of the twisted Yangian Y ±(gl2n) consisting
of vectors annihilated by the operator C(u) of the matrix S(u), namely

M0(µ) := {ζ ∈M(µ) : cij(u)ζ = 0 for 1 ≤ i, j ≤ n}.

The subspace M0(µ) corresponds to the natural embedding gln ⊂ g2n with g2n = so2n or sp2n (generated
by Fij with 1 ≤ i, j ≤ n, viz. (2.1-2.2)) and is an irreducible gln-representation of the highest weight
µ = (µ1, . . . , µn). The space M0(µ) is stable under the action of the operator A(u) of the matrix S(u).
Moreover, A(u) satisfies the usual RTT relation on this space. Indeed, applying equality (2.37) to M0(µ)
yields C1(v)A2(u)M

0(µ) = 0. Applying (2.36) instead we obtain

R(u− v)A1(u)A2(v)ζ = A2(v)A1(u)R(u − v)ζ

for all ζ ∈M0(µ). We thus have the following.

Lemma 3.10. The mapping
Y (gln) → Y ±(gl2n), T (u) 7→ A(u)

equips the space M0(µ) with a structure of a lowest weight Y (gln)-module with the lowest weight given
by (2.19). �

Note that the operator A(u) of the matrix S(u) acts on the space M0(µ) via the Lax operator

(3.17) L±,0(u) :=

n∑

i,j=1

eij ⊗ (δij − Fji(u+ (ρ± 1)/2)−1),

which is the restriction of L±(u) defined in (2.23) to the operator A(u).
Next, we denote by L0(λ(k))ck the subspace of the evaluation module L(λ(k))ck of Y (gl2n) consisting of

vectors annihilated by the operator C(u) of the matrix T (u), namely

(3.18) L0(λ(k))ck := {ζ ∈ L(λ(k))ck : cij(u)ζ = 0 for 1 ≤ i, j ≤ n}.

The subspace L0(λ(k))ck corresponds to the natural embedding gln ⊕ gln ⊂ gl2n (generated by Eij with
1 ≤ i, j ≤ n and n < i, j ≤ 2n) and is isomorphic to a tensor product of irreducible gln-representations

L(λ′ (k)) ⊗ L(λ′′ (k)) with the highest weights λ′ (k) = (λ
(k)
1 , . . . , λ

(k)
n ) and λ′′ (k) = (λ

(k)
n+1, . . . , λ

(k)
2n ). Indeed,

applying equality (2.31) to L0(λ(k))ck yields C1(u)A2(v)L
0(λ(k))ck = 0. Applying (2.32) instead we obtain

C1(u)D2(v)L
0(λ(k))ck = 0. Moreover, applying (2.33) to L0(λ(i))ci we get [D1(u), A2(v)]L

0(λ(k))ck = 0.
This, together with (2.29) and (2.30), implies the following.

Lemma 3.11. Each of the mappings

Y (gln) → Y (gl2n), T (u) 7→ A(u) and T (u) 7→ D(u)

is a homomorphism of algebras. Moreover, these mappings equip the spaces L(λ′ (k)) and L(λ′′ (k)) with a

structure of a lowest weight Y (gln)-module with the lowest weight given by λ
′ (k)
k (u) = λ

(k)
k (u) and λ

′′ (k)
k (u) =

λ
(k)
n+k(u), respectively, for 1 ≤ k ≤ n. �

Denote the corresponding Y (gln)-modules by L0(λ′ (k))ck and L0(λ′′ (k))ck , respectively. The operator
A(u) of the matrix T (u) of Y (gl2n) acts on the space L0(λ′′ (k))ck as the identity operator, and on the space

L0(λ′ (k))ck via the restriction of the Lax operator (2.12),

(3.19) L0(u− ck) :=
n∑

i,j=1

eij ⊗ (δij − Eji(u− ck)
−1).
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Likewise, the operator Dt(u) of the transposed matrix T t(u) acts on the space L0(λ′ (k))ck as the identity
operator, and on the space L0(λ′′ (k))ck via the transposed Lax operator (L0(u− ck))

t.
We are now ready to introduce the vacuum sector M0 ⊂M by

(3.20) M0 := L0(λ(1))c1 ⊗ · · · ⊗ L0(λ(ℓ))cℓ ⊗M0(µ).

Lemma 3.12. The space M0 is stable under the action of the operator A(u) of the matrix S(u).

Proof. We start by showing that operator C(u) of the matrix S(u) annihilates the spaceM0: cij(v)·M
0 = 0.

We use induction on ℓ. For ℓ = 0 we have M0 =M0(µ) and cij(v)M
0(µ) = 0, by definition (3.20). For any

ℓ ≥ 1 denote M (ℓ−1) := L0(λ(1))c1 ⊗ · · · ⊗ L0(λ(ℓ−1))cℓ−1
⊗M0(µ). Let ζ ∈ M (ℓ−1) and ζ′ ∈ L0(λ(ℓ))cℓ be

any nonzero vectors. Using (2.20) and the notation (2.24) we find

cij(u) · (ζ
′ ⊗ ζ) =

n∑

k,l=1

(
cik(u)d̄ l̄(−u− ρ)ζ′ ⊗ akl(u) · ζ ± cik(u)c̄ l̄(−u− ρ)ζ′ ⊗ bkl(u) · ζ

+ dik(u)d̄ l̄(−u− ρ)ζ′ ⊗ ckl(u) · ζ ± dik(u)c̄ l̄(−u− ρ)ζ′ ⊗ dkl(u) · ζ
)

=
n∑

k,l=1

(
cik(u)d̄ l̄(−u− ρ)ζ′ ⊗ akl(u) · ζ + dik(u)d̄ l̄(−u− ρ)ζ′ ⊗ ckl(u) · ζ

)
,

by definition (3.18); here we used the notation ı̄ = n− i + 1. Assuming induction, ckl(u)ζ = 0. Finally, by
(2.32) and (3.18), we have that

cik(u)d̄ l̄(−u− ρ)ζ′ = d̄ l̄(−u− ρ)cik(u)ζ
′ = 0.

Hence cij(u) · (ζ
′ ⊗ ζ) = 0, as required. Next, we need to show that aij(u) ·M

0 ⊆M0[u−1]. The base case
is given by Lemma 3.10. For ℓ ≥ 1 we have

aij(u) · (ζ
′ ⊗ ζ) =

n∑

k,l=1

(
aik(u)d̄ l̄(−u− ρ)ζ′ ⊗ akl(u) · ζ ± aik(u)c̄ l̄(−u− ρ)ζ′ ⊗ bkl(u) · ζ

+ bik(u)d̄ l̄(−u− ρ)ζ′ ⊗ ckl(u) · ζ ± bik(u)c̄ l̄(−u− ρ)ζ′ ⊗ dkl(u) · ζ
)

=
n∑

k,l=1

aik(u)d̄ l̄(−u− ρ)ζ′ ⊗ akl(u) · ζ,

by definition (3.18) and the result above. Assuming induction, akl(u) · ζ ∈ M (ℓ−1)[u−1] and, by Lemma
3.11, aik(u)d̄ l̄(−u− ρ)ζ′ ∈ L0(λ(ℓ))cℓ [u

−1]. Hence aij(u) · (ζ
′ ⊗ ζ) ∈M0[u−1]. This proves the claim. �

The last ingredients we will need are the auxiliary spaces Vãi
and Vai

. They are vector representations of
gln of weight λ(ãi) = λ(ai) = (1, 0, . . . , 0). Denote by Lt(λ)c the evaluation module of Y (gln) obtained from
the gln-representation L(λ) by composing the evaluation map evc in (2.9) with the algebra automorphism
T (u) → T t(−u). The spaces Vãi

and Vai
can thus be viewed as evaluation modules Lt(λ(ãi))−ui

and
Lt(λ(ai))ui

of Y (gln), respectively, with the lowest weights given by

(3.21)
λ
(ãi)
j (u) = λ

(ai)
j (u) = 1 for 1 ≤ j ≤ n− 1 and

λ(ãi)
n (v) =

v − ui + 1

v − ui
, λ(ai)

n (v) =
v + ui + 1

v + ui
.

In particular, the matrix Ta(v) of Y (gln) acts on the space Lt(λ(ãi))−ui
as Rt

aãi
(ui − v) and on the space

Lt(λ(ai))ui
as Rt

aai
(−ui − v); here note that Rt

ab(u) = Rt
ba(u).

We define the nested vacuum sector as a tensor product the auxiliary spaces and the vacuum sector M0:

(3.22) M ′ :=W ⊗M0, W = Vã1 ⊗ · · · ⊗ Vãm
⊗ Va1 ⊗ · · · ⊗ Vam

.

Proposition 3.13. Let T (v) be the generating matrix of Y (gln). Then the mapping

Y (gln) → End(W )⊗ Y ±(gl2n), T (v) 7→ T (v;u)
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equips the space M ′ with the structure of a lowest weight Y (gln)-module with the lowest weight given by

(3.23) λi(v;u) = λi(u)λ2n−i+1(−u)µi(u)

m∏

j=1

λ
(aj)
i (v)λ

(ãj )
i (v)

for 1 ≤ i ≤ n with λi(v) defined in (2.13), µi(v) in (2.19) and λ
(aj)
i (v), λ

(ãj)
i (v) in (3.21).

Proof. It follows from the definition (3.16) and Lemma 3.12, that the space M ′ is stable under the action of
Ta(v;u). Moreover, for any ζ ∈M ′, we have that

Rab(v − w)Ta(v;u)Tb(w;u) · ζ = Tb(w;u)Ta(v;u)Rab(v − w) · ζ.

Indeed, we can interleave the matrices on the l.h.s. of the equality above, then use the transposed Yang-Baxter
equation to reorder the product of matrices:

Rab(v − w)Ta(v;u)Tb(w;u)

= Rab(v − w)

(
m∏

k=1

Rt
ãka

(uk − v)Rt
ãkb

(uk − w)

)(
m∏

l=1

Rt
ala

(−ul − v)Rt
alb

(−ul − w)

)
Aa(v)Ab(w)

=

(
m∏

k=1

Rt
ãkb(uk − w)Rt

ãka(uk − v)

)(
m∏

l=1

Rt
alb(−ul − w)Rt

ala(−ul − v)

)
Rab(v − w)Aa(v)Ab(w).

From here we use (2.36) to obtain the result, plus additional terms. However, C(u) appears as the rightmost
operator acting nontrivially onM0 ⊂M ′ in each of these additional terms. Since C(u) annihilates all vectors
in M0, these additional terms vanish. Its lowest vector is

(3.24) η := eã1 ⊗ · · · ⊗ eãm
⊗ ea1 ⊗ · · · ⊗ eam

⊗ η1 ⊗ · · · ⊗ ηℓ ⊗ ξ,

where ξ is a lowest vector of M0(µ), each ηi is a lowest vector of L(λ(i))0ci for 1 ≤ i ≤ ℓ, and each eãi

(resp. eai
) is a lowest vector of Vãi

(resp. Vai
) for 1 ≤ i ≤ m (viewed as an evaluation module Lt(λ(ãi))−ui

(resp. Lt(λ(ai))−ui
)). Finally, acting with tii(v;u) on η for 1 ≤ i ≤ n and using (2.13), (2.19) and (3.21)

yields (3.23). �

Remark 3.14. (i) Recall that L0(λ(i))ci
∼= L0(λ′ (i))ci⊗L

0(λ′′ (i))ci with A(u) (resp.D
t(u)) acting non-trivially

on the first (resp. second) tensorand only. We may thus rewrite the space M0 as

M0 ∼= L0(λ′ (1))c1 ⊗ · · · ⊗ L0(λ′ (ℓ))cℓ ⊗M0(µ)⊗ L0(λ′′ (ℓ))cℓ ⊗ · · · ⊗ L0(λ′′ (1))c1 .

By Proposition 3.13, we may view this space as a lowest weight Y (gln)-module. Provided the binary property
holds, it is an irreducible Y (gln)-module, see Theorem 6.5.8 in [Mo3]. (ii) Enumerate the tensorands of M0

above by 1, 2, . . . , 2ℓ, 2ℓ+ 1. Then the matrix Ta(v;u) acts on the space M ′ =W ⊗M0 via the operator
(

m∏

k=1

Rt
aãk

(uk − v)

)(
m∏

l=1

Rt
aal

(−ul − v − ρ)

)

×

(
ℓ∏

i=1

L0
ai(u− ci)

)
L±0
a,ℓ+1(µ)

(
1∏

i=ℓ

(
L0
a,2ℓ−i+1(−u− ρ− ci)

)t
)
,

where the Lax operators are those defined in (3.19) and (3.17).

We end this section with one more technical lemma which will assist us in finding the explicit expressions
of the unwanted terms in Section 4.3.

Lemma 3.15. The following identities hold:

Řaiai+1(ui − ui+1)Ř
−1
ãiãi+1

(ui − ui+1)tkl(w;u) = tkl(w;ui↔i+1)Řaiai+1(ui − ui+1)Ř
−1
ãiãi+1

(ui − ui+1).

Řaiai+1(ui − ui+1)Ř
−1
ãiãi+1

(ui − ui+1)η = η.
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Proof. The first identity is achieved by moving the Ř-matrices through each matrix in the definition of the
nested monodromy matrix. Indeed, the Ř-matrices each commute with all but a pair of adjacent R-matrices
in (3.16), for which we use the Yang Baxter equations,

Řaiai+1(ui − ui+1)R
t
aia(−ui − v)Rt

ai+1a(−ui+1 − v) = Rt
aia(−ui+1 − v)Rt

ai+1a(−ui − v)Řaiai+1(ui − ui+1),

Ř−1
ãiãi+1

(ui − ui+1)R
t
ãia(ui − v)Rt

ãi+1a(ui+1 − v) = Rt
ãia(ui+1 − v)Rt

ãi+1a(ui − v)Ř−1
ãiãi+1

(ui − ui+1),

and the result follows.
To see why the second identity is true, notice that the lowest weight vector η (3.24) is an eigenvector

of Paiai+1 , and therefore also of Řaiai+1(ui − ui+1). This is true also for Pãiãi+1 . Thus, acting with both

Řaiai+1(ui − ui+1) and Ř
−1
ãiãi+1

(ui − ui+1), the eigenvalues cancel, which gives the result. �

4. Nested algebraic Bethe ansatz for Y ±(gl2n)

We are now ready to consider the nested algebraic Bethe ansatz for a one-dimensional spin chain with open
boundary conditions and having twisted Yangian Y ±(gl2n) as its underlying symmetry. The full quantum
space is the lowest weight Y ±(gl2n)-module M defined in (2.21):

M = L(λ(1))c1 ⊗ L(λ(2))c2 ⊗ · · · ⊗ L(λ(ℓ))cℓ ⊗M(µ).

The generating matrix S(u) of Y ±(gl2n) acts on this space via a product of Lax operators (2.22):

Sa(v) ·M =

(
ℓ∏

i=1

Lai(v − ci)

)
L±
a,ℓ+1(v)

(
1∏

i=ℓ

Lt
ai(−v − ρ− ci)

)
M.

Taking the trace of the generating matrix we obtain a double-row transfer matrix

(4.1) τ(v) := tr S(v) = trA(v) + trD(v) = trA(v) + trDt(v).

One can show using the usual methods that [τ(u), τ(v)] = 0; see Section 2 in [ACDFR1], also [Sk]. We
seek an eigenvector of Ψ ∈ M of τ(v), which we will refer to as the Bethe vector. The problem of finding
an eigenvector of the transfer matrix (4.1) can be substantially simplified with the help of the symmetry
relation (2.38) which allows us to write the transfer matrix τ(v) in a symmetric form

τ(v) = p(v) trA(v) + p(−v − ρ) trA(−v − ρ) = {p(v) trA(v)}v,

where p(v) is given by (3.1). Here we used the notation introduced in (3.9). It will therefore be sufficient to
focus on the action of A(v), without needing to consider D(v).

The last ingredient we will need is the nested transfer matrix, see (3.16):

t(v;u) := trT (v;u).

It will play the role of τ(v) at the nested level of the ansatz. Since we will only consider the action of T (v;u)
on a finite-dimensional vector space, we can thus specialize the parameters ui of m-tuple u to nonzero
complex numbers. Hence we will further assume that u ∈ Cm is an m-tuple of distinct nonzero complex
numbers.

Remark 4.1. Recall from Section 2.2 that K ∈ End(C2n) satisfying Kt = εK with ε = +1 or ε = −1 is a
matrix solution to the reflection equation. The dual reflection equation is obtained by redefining u→ −u−ρ

and v → −v− ρ and therefore has the same set of solutions, denoted by K̃ ∈ End(C2n), satisfying K̃t = ε̃K̃
with ε̃ = +1 or ε̃ = −1. The transfer matrix for an open spin chain with generic (invertible) boundary

conditions is then given by τ K̃,K(v) := tr(K̃SK(v)), where SK(v) is defined by (2.17) and both K, K̃
are assumed to be invertible. Write K = AIεAt for some invertible A ∈ End(C2n). By Proposition

2.4, we have that ψ−1
K (τ K̃,K(v)) = tr(GS(v)) =: τG,I(v) with G = Iε(At)−1K̃A−1. In other words, the

spectrum of an open spin chain with generic boundary conditions coincides, up to an isomorphism, with
the spectrum of a spin chain with generic left and trivial right boundary conditions. The nesting method
presented in this paper can be applied to the cases when G is a block-diagonal matrix, viz. (2.24). Denoting

S̃(v) := S(v)G we can then apply the decomposition (4.1). Moreover, the exchange relations for the blocks

of S̃(v) remain unchanged, thus allowing us to reduce the diagonalization problem of τG,I(v) to that of
tG(v;u) := tr(T (v;u)[G]A), a transfer matrix for a gln-symmetric spin chain with periodic twisted boundary
conditions; here [G]A denotes the upper-left block of G. The residual diagonalisation problem for tG(v;u)
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may then be solved by the nested algebraic Bethe ansatz only if [G]A is a diagonal matrix. For a non-diagonal
[G]A some other methods, such as separation of variables or functional relations, need to be used; for the
six-vertex models see e.g., [BBRY, Ga], for the higher rank cases see [WYCS].

Remark 4.2. The open spin chains of this type (with “soliton non-preserving” open boundary conditions)
were first considered by Doikou in [Do]. Let ℓ ∈ 2N. Then, for each i ∈ {1 . . . , ℓ/2} let L(λ(2i−1))c2i−1

(resp. L(λ(2i))c2i) be the fundamental (resp. the anti-fundamental) representation of gl2n. Fix the boundary
representationM(µ) to be a one-dimensional representation of so2n or sp2n. Doikou showed that such a spin
chain can be equipped with a local Hamiltonian having interactions up to four nearest neighbours.

4.1. Bethe vector for a single excitation. To introduce the nesting technique, we start by constructing
the Bethe vector with a single excitation, i.e., m = 1, as this case allows us to expose the main idea of
our approach while keeping the technical difficulties to the minimum; for example, in this case we find the
unwanted terms without additional computations. Recall the definition of the vacuum sector M0 (3.20) and
the nested vacuum sector M ′ (3.22). For m = 1 we have M ′ = Vã1 ⊗ Va1 ⊗M0. Let Φ ∈ M ′, which we
will refer to as the nested Bethe vector. The vector Φ may depend on u ∈ C, hence we will write Φ = Φ(u).
Using the creation operators defined in Definition 3.1, we write an ansatz for the Bethe vector with a single
excitation

(4.2) Ψ(u) := βã1a1(u) · Φ(u) ∈M.

We now compute the action of the transfer matrix τ(v) on this Bethe vector. Using Lemma 3.4 we have

τ(v) ·Ψ(u) = {p(v) trA(v)}v βã1a1(u) · Φ(u)

= βã1a1(u) tra

({
p(v)Rt

ã1a(u − v)Rt
a1a(−u− v − ρ)Aa(v)

}v )
· Φ(u)

+
1

p(u)

{
p(v)

u− v
βã1a1(v)

}v

Res
w→u

tra

({
p(w)Rt

ã1a(u− w)Rt
a1a(−u− w − ρ)Aa(w)

}w )
· Φ(u)

= βã1a1(u) {p(v)t(v;u)}
v · Φ(u)

+
1

p(u)

{
p(v)

u− v
βã1a1(v)

}v

Res
w→u

{p(w)t(w;u)}w · Φ(u).(4.3)

The first term in the r.h.s. of the equality above is the wanted term, as the parameter carried by βã1a1(u) is
unchanged. The second term has βã1a1(v) and is the unwanted term, which we will require to vanish.

Let us now make the additional requirement, which we will justify later, that vector Φ(u) is an eigenvector
of the nested transfer matrix t(v;u) with an eigenvalue Γ(v;u):

(4.4) t(v;u) · Φ(u) = Γ(v;u)Φ(u).

This allows us to rewrite (4.3) as

τ(v) ·Ψ(u) = {p(v)Γ(v;u)}
v
Ψ(u) +

1

p(u)
Res
w→u

{p(w)Γ(w;u)}
w

{
p(v)

u− v
βã1a1(v)

}v

· Φ(u)

= Λ(v;u)Ψ(u) + Res
w→u

Λ(w;u)
1

p(u)

{
p(v)

u− v
βã1a1(v)

}v

· Φ(u),

where Λ(v;u) := {p(v)Γ(v;u)}
v
. We thus conclude that Φ(u) is an eigenvector of τ(v) with eigenvalue

Λ(v;u) if

Res
w→u

Λ(w;u) = 0.

This is the Bethe equation for u, solutions of which, by (4.2), give a set of possible eigenvectors of τ(v).
It remains to find a nested Bethe vector Φ(u) satisfying (4.4): we seek an eigenvector Φ(u) ∈ M ′ of

t(v;u). By Proposition 3.13, the nested monodromy matrix Ta(v;u) and the nested vacuum sector M ′ form
a Y (gln)-system. The spectral problem of this system can be solved by means of the usual nested algebraic
Bethe ansatz presented in [KuRs], which we have recalled in detail in Appendix A. For example, the ansatz
for Φ(u) has the form

Φ(u) = Φ(u′;u) := B′
a′
1
(u′1) · · ·B

′
a′
m′
(u′m′) · Φ′(u′;u),



20 ALLAN GERRARD, NIALL MACKAY, AND VIDAS REGELSKIS

where u′ = (u′1, . . . , u
′
m′) ∈ Cm′

and B′
a′
j
(u′j) are creation operators taken from the Ta(v;u). Continuing this

nesting procedure, we obtain an eigenvector Φ(u;u′) with eigenvalue, see (A.22),

Γ(v;u) = λ1(v;u)

m′∏

i=1

v − u
(1)
i + 1

v − u
(1)
i

+ λn(v;u)

m(n−1)∏

i=1

v − u
(n−1)
i − 1

v − u
(n−1)
i

+

n−1∑

k=2

λk(v;u)

m(k−1)∏

i=1

v − u
(k−1)
i − 1

v − u
(k−1)
i

m(k)∏

j=1

v − u
(k)
j + 1

v − u
(k)
j

,

where λk(v;u) are given by (3.13) and the u
(k)
i with 1 ≤ k ≤ n− 1 are parameters introduced at level k of

nesting when diagonalizing the gln-symmetric periodic spin chain. These parameters are fixed to be solutions
of their respective Bethe equations, given in (A.23).

The boundary eigenvalue Λ(v;u) and Bethe equation for u can then be found by substituting the values
for λk(v;u) from (3.23) into the above expression. These are given explicitly for multiple excitations by
Theorem 4.3 in Section 4.4.

4.2. Bethe vector for multiple excitations. For multiple excitations the argument proceeds similarly
to the previous section. Recall that m ∈ N is the excitation number and u ∈ C

m is an m-tuple of distinct
nonzero complex parameters. Let Φ, the nested Bethe vector, be a vector from the lowest weight Y (gln)-
module M ′ defined in (3.22):

Φ ∈M ′ = Vã1 ⊗ · · · ⊗ Vãm
⊗ Va1 ⊗ · · · ⊗ Vam

⊗M0.

The vector Φ may also depend on the parameters u, and we will write Φ = Φ(u). From the nested Bethe
vector, we make the following ansatz for the full Bethe vector:

(4.5) Ψ(u) := βã1a1...ãmam
(u) · Φ(u) ∈M.

We now act with the transfer matrix τ(v) on this Bethe vector. Using Corollary 3.9 we find

τ(v) ·Ψ(u) = βã1a1...ãmam
(u) {p(v)t(v;u)}

v
· Φ(u) + UWT.

The unwanted terms UWT are less simple than in the m = 1 case, and will be discussed in detail in the
section below. With the expectation that the u may be chosen such that the unwanted terms vanish, the
Bethe vector Φ(u) will be an eigenvector of τ(v) if we take the additional requirement, as for m = 1, that

(4.6) t(v;u) · Φ(u) = Γ(v;u)Φ(u).

We therefore seek an eigenvector Φ(u) ∈ M ′ of t(v;u). This is found again by the algebraic Bethe ansatz
for Y (gln) with the full quantum space M ′ and monodromy matrix T (v,u).

From here, proceeding as we did in the m = 1 case, we have that

(4.7) τ(v) ·Ψ(u) = Λ(v;u)Ψ(u) + UWT, where Λ(v;u) = {p(v)Γ(v;u)}
v
.

4.3. Dealing with unwanted terms. In this section, we will find an exact expression for the unwanted
terms from the action of τ(v) on the Bethe vector and, by setting these terms to zero, we will obtain the
Bethe equations.

We begin by introducing some notation for the unwanted terms. Let U(v;u) denote the terms initially
excluded from the expression in

τ(v)βã1a1...ãmam
(u) = βã1a1...ãmam

(u) {p(v)t(v;u)}v + U(v;u).

To find an expression for U(v;u), begin by acting on βã1a1...ãmam
(u). By repeated applications of (3.10), as in

Lemma 3.8, we may move Aa(·) through each of the remaining creation operators in βã1a1...ãmam
(u), generat-

ing a sum of terms in which the rightmost operator is a matrix element of Aa(u) for u ∈ {v, u1, . . . , um,−v−
ρ,−u1−ρ, . . . ,−um−ρ}. To find a more concise expression for U(v;u), it will be useful to partition the terms
by the parameter appearing in Aa(·). Let B denote the subalgebra of Y ±(gl2n) generated by coefficients of
bij(u) for 1 ≤ i, j ≤ n, the closure of which is guaranteed by (2.35). Then

U(v;u) =
m∑

j=1

(
U+,j(v;u) + U−,j(v;u)

)
,
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where

U+,j(v;u) =

n∑

k,l=1

B+,j,klakl(uj), U−,j(v;u) =

n∑

k,l=1

B−,j,klakl(−uj − ρ)

for some B±,j,kl ∈ B⊗ (Cn)⊗2m. Additionally, let us define Uj(v;u) := U+,j(v;u)+U−,j(v;u). We will now
proceed to find U1(v;u) using the standard techniques. Indeed, consider moving τ(v) through only the first
creation operator. From (3.10),

τ(v)βã1a1...ãmam
(u)

=

(
βã1a1(u1) tra

{
p(v)Rt

ã1a(u1 − v)Rt
a1a(−u1 − v − ρ)Aa(v)

}v

+
1

p(u1)

{
p(v)

u1 − v
βã1a1(v)

}v

Res
w→u1

tra
{
p(w)Rt

ã1a(u1 − w)Rt
a1a(−u1 − w − ρ)Aa(w)

}w
)

×

m∏

i=2

(
βãiai

(ui)

1∏

j=i−1

Raj ãi
(−uj − ui − ρ)

)
.

We focus on the second term here, which, upon taking the residue, contains Aa(u1) and Aa(−u1− ρ). As all
the entries of the m-tuple u are distinct, all contributions to U1(v;u) must originate from moving Aa(u1) and
Aa(−u1−ρ) through the remaining creation operators without any further parameter exchanges. Therefore,
by repeated applications of Lemma 3.8,

U1(v;u) =
1

p(u1)

{
p(v)

u1 − v
βã1a1(v)

}v m∏

i=2

(
βãiai

(ui)
1∏

j=i−1

Raj ãi
(−uj − ui − ρ)

)
Res
w→u1

{p(w)t(w;u)}w .

It now remains to find similar expressions for Uj(v;u) for 2 ≤ j ≤ m. Recall Lemma 3.6. By repeatedly
applying such transpositions, we may apply an arbitrary permutation to the parameters u in them-excitation
creation operator. For σ ∈ Sm, let uσ denote the ordered set (uσ(1), uσ(2), . . . , uσ(m)). Additionally, let σj
denote the cyclic permutation σj : (1, 2, . . . ,m) 7→ (j, j + 1, . . . , j − 1). We have

βã1a1...ãmam
(u) = βã1a1...ãmam

(uσj
)Řa1...am

[σj ](u)Ř
−1
ã1...ãm

[σj ](u)

where Ř[σj ](u) is the product of Ř-matrices that generates this permutation. Using this expression for
βã1a1...ãmam

(u) and following the argument above, we obtain an expression for Uk(v;u):

Uk(v;u) =
1

p(uk)

{
p(v)

uk − v
βã1a1(v)

}v m∏

i=2

(
βãiai

(uσk(i))
1∏

j=i−1

Raj ãi
(−uσk(j) − uσk(i) − ρ)

)

× Res
w→uk

{p(w)t(w;uσk
)}w Řa1...am

[σk](u)Ř
−1
ã1...ãm

[σk](u).

By applying this to the nested Bethe vector, we obtain an expression for all the unwanted terms from the
action of τ(v) on Ψ(u). However, in order to obtain the Bethe equations, we must assume one additional
property of the nested Bethe vector Φ. We require Φ = Φ(u) such that:

Řaiai+1(ui − ui+1)Ř
−1
ãiãi+1

(ui − ui+1)Φ(u) = Φ(ui↔i+1) for 1 ≤ i ≤ n− 1.

By Proposition 3.13 and Lemma 3.15, this is true for a vector generated by acting with the nested monodromy
matrix on the lowest vector

Φ(u) ∈ spanC
{
ti1j1(w1;u) · · · tiKjK (wK ;u) · η : K ≥ 0, 1 ≤ i1, j1, . . . , iK , jK ≤ n− 1, w ∈ C

K
}
.

The Φ(u) constructed using the nested Bethe ansatz for Y (gln) will have this form, so we may simultane-
ously assume (4.6). Note that the action of Ř-matrices may be combined with (3.15) in such a way that
transpositions of the parameters u leave the full Bethe vector Ψ(u) unchanged. Therefore, Ψ(u) = Ψ(uσ)



22 ALLAN GERRARD, NIALL MACKAY, AND VIDAS REGELSKIS

for all σ ∈ Sm. Acting on Φ(u) with the expression for Uk(v;u) above, and summing over k, we obtain

U(v;u) · Φ(u) =
m∑

k=1

1

p(uk)

{
p(v)

uk − v
βã1a1(v)

}v m∏

i=2

(
βãiai

(uσk(i))
1∏

j=i−1

Raj ãi
(−uσk(j) − uσk(i) − ρ)

)

× Res
w→uk

{p(w)t(w;uσk
)}

w
· Φ(uσk

)

=

m∑

k=1

1

p(uk)
Res

w→uk

{p(w)Γ(w;uσk
)}

w

{
p(v)

uk − v
βã1a1(v)

}v

×

m∏

i=2

(
βãiai

(uσk(i))

1∏

j=i−1

Raj ãi
(−uσk(j) − uσk(i) − ρ)

)
· Φ(uσk

).

Note that we may use Ř-matrices to permute the parameters in (4.6) to show that Γ(v;uσ) = Γ(v;u) for all
σ ∈ Sm. The Bethe equations are then extracted by demanding U(v;u) ·Φ(u) = 0. Since each summand is
independent, we obtain

Res
w→uk

{p(w)Γ(w;u)}
w
= 0 for 1 ≤ k ≤ m

or, more concisely

(4.8) Res
w→uk

Λ(w;u) = 0 for 1 ≤ k ≤ m.

4.4. Boundary eigenvalues and Bethe equations. From the algebraic Bethe ansatz for a Y (gln)-system,
we have explicit values for the eigenvalues of the nested system, see (A.22),

Γ(v;u) = λ1(v;u)

m(1)∏

i=1

v − u
(1)
i + 1

v − u
(1)
i

+ λn(v;u)

m(n−1)∏

i=1

v − u
(n−1)
i − 1

v − u
(n−1)
i

+
n−1∑

k=2

λk(v;u)
m(k−1)∏

i=1

v − u
(k−1)
i − 1

v − u
(k−1)
i

m(k)∏

i=1

v − u
(k)
i + 1

v − u
(k)
i

,

where λk(v;u) are given by Proposition 3.13. (Note that the (i + 1)-th level of nesting for Y ±(gl2n) corre-

sponds to i-th level for Y (gln).) The parameters u
(k)
i satisfy the appropriate Bethe equations of Y (gln) given

in (A.23). The full eigenvalues Λ(v;u) = {p(v)Γ(v;u)}
v
of the Bethe vectors, cf., (4.7), are then obtained

by substituting our values for λk(v;u) from (3.23). This leads to the following statement.

Theorem 4.3. The eigenvalues of the Bethe vectors for a Y ±(gl2n)-system are given by

(4.9) Λ(v;u) =

(
1±

1

2v + ρ

)
Γ(v;u) +

(
1∓

1

2v + ρ

)
Γ(−v − ρ;u),

where

Γ(v;u) =

(
ℓ∏

j=1

v − cj − λ
(j)
1

v − cj
·
v + ρ+ cj + λ

(j)
2n

v + ρ+ cj

)(
m(1)∏

i=1

v − u
(1)
i + 1

v − u
(1)
i

)(
v + (ρ± 1)/2− µ1

v + (ρ± 1)/2

)

+

(
ℓ∏

j=1

v − cj − λ
(j)
n

v − cj
·
v + ρ+ cj + λ

(j)
n+1

v + ρ+ cj

)(
m∏

i=1

v − ui + 1

v − ui
·
v + ρ+ ui + 1

v + ρ+ ui

)

×

(
m(n−1)∏

i=1

v − u
(n−1)
i − 1

v − u
(n−1)
i

)(
v + (ρ± 1)/2− µn

v + (ρ± 1)/2

)

+

n−1∑

k=2

(
ℓ∏

j=1

v − cj − λ
(j)
k

v − cj
·
v + ρ+ cj + λ

(j)
2n−k+1

v + ρ+ cj

)

×

(
m(k−1)∏

i=1

v − u
(k−1)
i − 1

v − u
(k−1)
i

)(
m(k)∏

i=1

v − u
(k)
i + 1

v − u
(k)
i

)(
v + (ρ± 1)/2− µk

v + (ρ± 1)/2

)
.(4.10)
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By (4.8), the Bethe equations for u are found by demanding that the residue of the eigenvalue (4.9)
vanishes at each of the uk with 1 ≤ k ≤ m. Evaluating this residue and using the fact that the Y ±(gl2n)-
system reduces to a Y (gln)-system we obtain the following.

Theorem 4.4. The Bethe equations for a Y ±(gl2n)-system are given by (A.23) and

uk + (ρ− 1)/2

uk + (ρ+ 1)/2
·
uk + (ρ∓ 1)/2 + µn

uk + (ρ± 1)/2− µn

(
∏

i6=k

uk − ui − 1

uk − ui + 1
·
uk + ui + ρ− 1

uk + ui + ρ+ 1

)

=

(
ℓ∏

j=1

uk − cj − λ
(j)
n

uk − cj − λ
(j)
n+1

·
uk + ρ+ cj + λ

(j)
n+1

uk + ρ+ cj + λ
(j)
n

)(
m(n−1)∏

i=1

uk + ρ+ u
(n−1)
i

uk + ρ+ u
(n−1)
i + 1

·
uk − u

(n−1)
i − 1

uk − u
(n−1)
i

)
(4.11)

for 1 ≤ k ≤ m.

Remark 4.5. The condition (A.21) is equivalent to the vanishing of the residue of Λ(v;u) in (4.9) at each of

the u
(k)
i , which is the expected Bethe equation for a system of equations.

Remark 4.6. The eigenvalue Λ(v;u) for a Y ±(gl2n)-system, when the evaluation module M(µ) of Y ±(gl2n)
in (2.21) is a one-dimensional, was calculated in [ACDFR1] by means of the analytical Bethe ansatz. By
shifting the roots of the equations and introducing the assumption that the roots come in pairs, one can
recover the eigenvalue found in [ACDFR1] from (4.10) and (4.9). However, this assumption appears to be
unnecessary for the algebraic Bethe ansatz.

4.5. A trace formula for the Bethe vectors. Recall the trace formula for the Bethe vectors for the
closed gln-symmetric spin chain [BeRa1, TaVa]. This formula allows us to write an expression of the nested
Bethe vector of the residual Y (gln)-system in terms of a trace of elements of the nested monodromy matrix
as follows:

Φa1,...,am,ã1,...,ãm
(u,u(1), . . . ,u(n−1))

= trV

[(
n−1∏

k=1

m(k)∏

i=1

Tak
i
(u

(k)
i ,u)

)(
n−1∏

k=2

k−1∏

l=1

m(k)∏

i=1

1∏

j=m(l)

Rak
i
al
j
(u

(k)
i −u

(l)
j )

)

× (e21)
⊗m(1)

⊗ · · · ⊗ (en,n−1)
⊗m(n−1)

]
· η,(4.12)

where the trace is taken over the space V := Va1
1
⊗ · · · ⊗ Van−1

m(n−1)

∼= (Cn)⊗m with m =
∑n−1

i=1 m
(i) and η is

the lowest vector (3.24) of the nested vacuum sector M ′, c.f. (3.22). Our goal is to extended this formula for
Bethe vectors (4.5) of the Y ±(gl2n)-system.

Recall the notation from Section 2.3. The R-matrix (2.5) acting on C2n⊗C2n is denoted by IR(u) and the
matrix units of End(C2n) (resp. EndU (C

2)) by eij for 1 ≤ i, j ≤ 2n (resp. xij for 1 ≤ i, j ≤ 2). We will use
symbols Wa (Wai

, Wãi
, Wak

i
, ...) to denote copies of C2n; symbols Va (Vai

, Vãi
, Vak

i
, ...) will be reserved for

copies of Cn. When necessary, we will write (eij)a to indicate that eij ∈ End(Wa), and similarly for (xij)a
and (eij)a; here recall (2.25).

Proposition 4.7. The Bethe vector for the Y ±(gl2n)-system can be written as

Ψ(u,u(1), . . . ,u(n−1))

= trW

[
m∏

l=1

((
l−1∏

j=1

IRt
ajal

(−uj − ul − ρ)

)
Ŝal

(ul;u
(1), . . . ,u(n−1))

)(
n−1∏

k=1

m(k)∏

i=1

Sak
i
(u

(k)
i )

)

×

(
n−1∏

k=2

k−1∏

l=1

m(k)∏

i=1

1∏

j=m(l)

IRak
i a

l
j
(u

(k)
i −u

(l)
j )

)
(en+1,n)

⊗m ⊗ (e21)
⊗m(1)

⊗ · · · ⊗ (en,n−1)
⊗m(n−1)

]
· ξ,(4.13)
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where the trace is taken over the space W :=Wa1 ⊗ · · · ⊗Wam
⊗Wa1

1
⊗ · · · ⊗Wan−1

m(n−1)

∼= (C2n)⊗(m+m) with

m =
∑n−1

i=1 m
(i), and

Ŝa(u;u
(1), . . . ,u(n−1)) =

(
1∏

k=n−1

1∏

i=m(k)

IRaak
i
(−u−u

(k)
i −ρ)

)
Sa(u)

(
n−1∏

k=1

m(k)∏

i=1

IRt
aak

i
(u−u

(k)
i )

)
,(4.14)

and ξ is the lowest vector of the Y ±(gl2n)-module M defined in (2.21).

Proof. We start from (4.5), with Φ replaced by (4.12),

Ψ(u,u(1), . . . ,u(n−1))

= trV

[
m∏

l=1

(
βãlal

(ul)
1∏

j=l−1

Raj ãl
(−uj − ul − ρ)

)( n−1∏

k=1

m(k)∏

i=1

Tak
i
(u

(k)
i ;u)

)

×

(
n−1∏

k=2

k−1∏

l=1

m(k)∏

i=1

1∏

j=m(l)

Rak
i
al
j
(u

(k)
i − u

(l)
j )

)
(e21)

⊗m(1)

⊗ · · · ⊗ (en,n−1)
⊗m(n−1)

]
· η.(4.15)

The proof shall proceed in two steps. First, we shall rewrite the above formula in terms of the B-block
operator, c.f. (2.24), rather than creation operators β, which will allow us to introduce a trace over the
corresponding auxiliary spaces. Then, from this formula, we will argue that the n× n matrix operators B,
T and R may be replaced by their 2n× 2n counterparts to complete the proof.

Note that, by commuting matrices which act on different spaces, the creation operator and the product
of nested monodromy matrices may be reordered as follows:

m∏

l=1

(
βãlal

(ul)

1∏

j=l−1

Raj ãl
(−uj − ul − ρ)

)
=

(
m∏

l=1

βãlal
(ul)

)(
m∏

l=1

1∏

j=l−1

Raj ãl
(−uj − ul − ρ)

)

and

n−1∏

k=1

m(k)∏

i=1

Tak
i
(u

(k)
i ;u) =

n−1∏

k=1

m(k)∏

i=1

[(
m∏

l=1

Rt
ãlak

i
(ul − u

(k)
i )

)(
m∏

l=1

Rt
alak

i
(−ul−u

(k)
i −ρ)

)
Aak

i
(u

(k)
i )

]

=

(
m∏

l=1

(
Rãl

(ul)
)tãl

)(
m∏

l=1

(
Ral

(−ul − ρ)
)tal

)(
n−1∏

k=1

m(k)∏

i=1

Aak
i
(u

(k)
i )

)
,

where we have introduced

(4.16) Ra(u) =
1∏

k=n−1

1∏

i=m(k)

Raak
i
(u− u

(k)
i ).

Dependence on u(1), . . . ,u(n−1) has been omitted for clarity. Note also that, as a product of R-matrices,
Ra(u) satisfies the RTT relation

Rab(u − v)Ra(u)Rb(v) = Rb(v)Ra(u)Rab(u− v).

Including these new expressions in (4.15), we make the following reordering,

(
m∏

l=1

1∏

j=l−1

Raj ãl
(−uj − ul − ρ)

)(
m∏

l=1

R
tãl

ãl
(ul)

)(
m∏

l=1

R
tal
al

(−ul − ρ)

)

=

(
m∏

l=1

(
1∏

j=l−1

Raj ãl
(−uj − ul − ρ)

)
R

tãl

ãl
(ul)

)(
m∏

l=1

R
tal
al

(−ul − ρ)

)
.
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We now proceed to make repeated applications of the RTT relation, in a similar manner to the proof of
Lemma 3.8. For example we have, at the centre of the expression,
(

1∏

j=m−1

Raj ãm
(−uj − um − ρ)

)
R

tãm

ãm
(um)R

ta1
a1 (−u1−ρ) · · ·R

tam
am (−um−ρ)

= R
ta1
a1 (−u1 − ρ) · · ·R

tam−1
am−1 (−um−1 − ρ)R

tãm

ãm
(um)

(
1∏

j=m−1

Raj ãm
(−uj − um − ρ)

)
R

tam
am (−um − ρ).

Continuing inductively, we obtain the equality

m∏

l=1

((
1∏

j=l−1

Raj ãl
(−uj − ul − ρ)

)
R

tãl

ãl
(ul)

)(
m∏

l=1

R
tal
al (−ul − ρ)

)

=

m∏

l=1

(
R

tãl

ãl
(ul)

(
1∏

j=l−1

Raj ãl
(−uj − ul − ρ)

)
R

tal
al (−ul − ρ)

)
.

Therefore, (4.15) is equivalent to

Ψ(u,u(1), . . . ,u(n−1))

= trV

[
m∏

l=1

(
βãlal

(ul)R
tãl

ãl
(ul)

(
1∏

j=l−1

Raj ãl
(−uj − ul − ρ)

)
R

tal
al

(−ul − ρ)

)(
n−1∏

k=1

m(k)∏

i=1

Aak
i
(u

(k)
i )

)

×

(
n−1∏

k=2

k−1∏

l=1

m(k)∏

i=1

1∏

j=m(l)

Rak
i
al
j
(u

(k)
i − u

(l)
j )(e21)

⊗m(1)

⊗ · · · ⊗ (en,n−1)
⊗m(n−1)

]
· η.(4.17)

To obtain an expression in terms of the B-block operator (as opposed to the creation operator β), we utilise
(3.7). Indeed,

Ψ(u,u(1), . . . ,u(n−1))

= trV







n∑

r1,...,rm,
s1,...,sm=1

(
m∏

l=1

((
l−1∏

j=1

Rt
ajal

(−uj − ul − ρ)

)
Ral

(−ul − ρ)Bal
(ul)R

tal
al

(ul)

))

s1,r̄1,...,sm,r̄m

⊗ e∗r1 ⊗ · · · ⊗ e∗rm ⊗ e∗s1 ⊗ · · · ⊗ e∗sm



(

n−1∏

k=1

m(k)∏

i=1

Aak
i
(u

(k)
i )

)

×

(
n−1∏

k=2

k−1∏

l=1

m(k)∏

i=1

1∏

j=m(l)

Rak
i
al
j
(u

(k)
i − u

(l)
j )

)
(e21)

⊗m(1)

⊗ · · · ⊗ (en,n−1)
⊗m(n−1)


 · η.

Recall that η = (e1)
⊗m ⊗ (e1)

⊗m ⊗ ξ. After contracting the dual vectors with the vector η, the resulting

matrix element may then be written in terms of a trace over Ṽ := Va1 ⊗ · · · ⊗ Vam
∼= (Cn)⊗m, using the

identity (M)ji = tr(Meij). This gives the expression

Ψ(u,u(1), . . . ,u(n−1))

= trṼ ,V

[
m∏

l=1

((
l−1∏

j=1

Rt
ajal

(−uj − ul − ρ)

)
Ral

(−ul − ρ)Bal
(ul)R

tal
al (ul)

)(
n−1∏

k=1

m(k)∏

i=1

Aak
i
(u

(k)
i )

)

×

(
n−1∏

k=2

k−1∏

l=1

m(k)∏

i=1

1∏

j=m(l)

Rak
i
al
j
(u

(k)
i − u

(l)
j )

)
(e1n)

⊗m ⊗ (e21)
⊗m(1)

⊗ · · · ⊗ (en,n−1)
⊗m(n−1)

]
· ξ.(4.18)

It remains to show that this expression may be rewritten in terms of the original monodromy matrix
S(u) and the R-matrix IR(u). We will do this by showing that the expression (4.13) reduces to the above
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expression (4.18). We put Ŝa := Ŝa(u;u
(1), . . . ,u(n−1)) and rewrite the r.h.s. of (4.13) as

trW

[(
m∏

l=1

(
l−1∏

j=1

IRt
ajal

(−uj − ul − ρ)

)
Ŝal

)
(en+1,n)

⊗m

⊗
(
ÂR̂

(
(e21)

⊗m(1)

⊗ · · · ⊗ (en,n−1)
⊗m(n−1)

))]
· ξ,(4.19)

where operators Â and R̂ denote the products in the third line of (4.13). Recall (2.25) and write (en+1,n)
⊗m =

(x21)
⊗m ⊗ (e1n)

⊗m and

(e21)
⊗m(1)

⊗ · · · ⊗ (en,n−1)
⊗m(n−1)

= (x11)
⊗m ⊗ (e21)

⊗m(1)

⊗ · · · ⊗ (en,n−1)
⊗m(n−1)

.

From (2.27) we see that

IRak
i
al
j
(u

(k)
i − u

(l)
j )(x11)ak

i
(x11)al

j
= (x11)ak

i
(x11)al

j
Rak

i
al
j
(u

(k)
i − u

(l)
j ) .

Moreover,

Sak
i
(u

(k)
i )(x11)ak

i
= (x11)ak

i
Aak

i
(u

(k)
i ) + (x21)ak

i
Cak

i
(u

(k)
i ).

Since Cak
i
(u

(k)
i ) · ξ = 0, we can neglect the C operator above. Therefore we can replace ÂR̂

(
(e21)

⊗m(1)

⊗

· · ·⊗(en,n−1)
⊗m(n−1)

)
in (4.19) with (x11)

m⊗
(
ÂR̂

(
(e21)

⊗m(1)

⊗· · ·⊗(en,n−1)
⊗m(n−1)

))
, where operators Â

and R̂ denote the operators in the third line of (4.18). Now set U := (C2)⊗(m+m) and consider the expression

(4.20) trU

[(
m∏

l=1

(
l−1∏

j=1

IRt
ajal

(−uj − ul − ρ)

)
Ŝal

)
(x21)

⊗m ⊗ (x11)
m

]
.

To complete the proof we need to show that the trace above is equivalent to the operators in the second
line of (4.18). Observe from (2.27) that operators IR and IRt acting on tensor products of x11’s and x21’s

preserve their numbers in the tensor product. Hence the trace (4.20) is only nonzero when each Ŝal
maps

(x21)al
to (x11)al

. In particular, using (2.27), and the notation (4.16), we find that

Ŝal
(x21)

⊗(l) ⊗ (x11)
m−l+m = (x21)

⊗(l−1) ⊗ (x11)
m−l+1+m

Ral
(−ul − ρ)Bal

(ul)R
tal
al

(ul) + (...),

where (...) denotes the terms that do not contribute to the trace. Moreover,
(

l−1∏

j=1

IRt
ajal

(−uj − ul − ρ)

)
(x21)

⊗(l) ⊗ (x11)
m−l+m

= (x21)
⊗(l) ⊗ (x11)

m−l+m

(
l−1∏

j=1

Rt
ajal

(−uj − ul − ρ)

)
+ (...),

where we have used the same notation as above. Hence the trace (4.20) is indeed equivalent to the operators
in the second line of (4.18). This completes the proof. �

The trace formula (4.13) allows us to obtain the explicit form of the Bethe vectors in terms of the matrix
elements of the monodromy matrix Sa(u).

Example 4.8. Let n ≥ 2, m ≥ 1 and m(1) = · · · = m(n−1) = 0. Then

Ψ(u1, . . . , um) =

(
m∏

i=1

(
i−1∏

j=1

ui + uj + ρ+ 1

ui + uj + ρ

)
sn,n+1(ui)

)
· ξ.

Example 4.9. Let n ≥ 2, m = m(i) = 1 and m(j) = 0 for all j 6= i. Then

Ψ(u1, u
(i)
1 ) =

(
sn,n+1(u1)si,i+1(u

(i)
1 )

+
1

u1 − u
(i)
1

(
u1 − u

(i)
1 − 1

u1 + u
(i)
1 + ρ

si,n+1(u1)− sn,2n−i+1(u1)

)
sn,i+1(u

(i)
1 )

)
· ξ.
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Example 4.10. Let n ≥ 2, m = 2, m(i) = 1 and m(j) = 0 for all j 6= i. Then

Ψ(u1, u2, u
(i)
1 ) =

u1 + u2 + ρ+ 1

u1 + u2 + ρ

(
sn,n+1(u1)sn,n+1(u2)si,i+1(u

(i)
1 )

−

(
1

u2 − u
(i)
1

sn,n+1(u1)sn,2n−i+1(u2)

−
u2 − u

(i)
1 − 1

u2 − u
(i)
1

·
1

u2 + u
(i)
1 + ρ

(
sn,n+1(u1)si,n+1(u2) +

u2 + u
(i)
1 + ρ+ 1

u1 − u
(i)
1

×

(
u1 − u

(i)
1 − 1

u1 + u
(i)
1 + ρ

si,n+1(u1)− sn,2n−i+1(u1)

)
sn,n+1(u2)

)
sn,i+1(u

(i)
1 )

))
· ξ.

Remark 4.11. Note that in Examples 4.9 and 4.10 sn,i+1(u
(i)
1 ) · ξ = 0 unless i = n− 1.

Appendix A. Nested algebraic Bethe ansatz for Y (gln)

In this appendix we give, in full detail, the nested algebraic Bethe ansatz for the Yangian Y (gln), first
constructed by Kulish and Reshetikhin in [KuRs], to which the algebraic Bethe ansatz for the twisted Yangian
Y ±(gl2n) reduces. Many technical details are omitted in loc. cit. (especially the steps required to derive the
explicit form of the unwanted terms; these steps are also omitted in [BeRa1]). Our aim is to fill in these
gaps and provide the reader with complete details. We assume that the full quantum space L of the system
is a tensor product of the evaluation modules of Y (gln), as defined in (2.10),

(A.1) L := L(λ(1))c1 ⊗ L(λ(2))c2 ⊗ . . .⊗ L(λ(ℓ))cℓ ,

with the lowest weight λ(u) given by (2.13) for 1 ≤ i ≤ n.

A.1. Exchange relations. Consider the Yangian Y (gln), as defined in Section 2.2. The R-matrix is R(u) =
I − u−1P ∈ End(Cn ⊗Cn)[[u−1]], and the generating matrix Ta(u) ∈ End(Va)⊗ Y (gln)[[u

−1]]; here Va = Cn

is an auxiliary space. We will refer to Ta(v) as the monodromy matrix.

Let V ′
a = Cn−1 and V

(k)
a = Cn−k for any 0 ≤ k < n, so that Va = V

(0)
a and V ′

a = V
(1)
a . We begin by

splitting the auxiliary space Va = C+ V ′
a. Accordingly, the monodromy matrix Ta(u) splits as follows:

Ta(u) =


 a(u) Ba(u)

Ca(u) Da(u)


 ,

where a(u) = t11(u) and

Ba(u) = (t12(u), . . . , t1n(u)) ∈ (V ′
a)

∗ ⊗ Y (gln)[[u
−1]],

Ca(u) = (t21(u), . . . , tn1(u))
T

∈ V ′
a ⊗ Y (gln)[[u

−1]],

Da(u) =




t22(u) . . . t2n(u)
...

. . .
...

tn2(u) . . . tnn(u)


 ∈ End(V ′

a)⊗ Y (gln)[[u
−1]].

In particular, Ba(u) is a row-vector and Ca(u) is a column-vector. It will be convenient to denote the matrix
entries of Ba(u) by bi(u) with 1 ≤ i ≤ n− 1, and similarly for Ca(u) and Da(u). Additionally, we introduce
a reduced R-matrix R′(u) acting on Cn−1 ⊗ Cn−1,

R′(u) := I − u−1
n−1∑

i,j=1

e′ij ⊗ e′ji = I − u−1P ′.
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The defining relations of Y (gln) imply the following exchange relations for a(v), Ba(v) and Da(v):

a(v)Ba1(u) =
v − u+ 1

v − u
Ba(u)a(v)−

1

v − u
Ba(v)a(u),(A.2)

Da(v)Ba1(u) = Ba1(u)Da(v)R
′
aa1

(v − u) +
1

v − u
Ba1(v)Da(u)P

′
aa1

,(A.3)

Ba1(v)Ba2(u) =
v − u

v − u− 1
Ba2(u)Ba1(v)R

′
a1a2

(v − u),(A.4)

along with an RTT relation

(A.5) R′
a1a2

(u − v)Da1(u)Da2(v) = Da2(v)Da1 (u)R
′
a1a2

(u− v).

In particular, the coefficients of the matrix entries of Da(v) generate a subalgebra Y (gln−1) ⊂ Y (gln) (note
that this is not a Hopf subalgebra). Two additional relations will be used, which can be stated more clearly
in terms of individual matrix entries of Ta(u). For any 1 ≤ i, j, k ≤ n− 1,

ck(u)dij(v) = dij(v)ck(u)−
1

u− v

(
dkj(u)ci(v)− dkj(v)ci(u)

)
,(A.6)

[a(v),dij(u)] =
1

v − u

(
bj(u)ci(v)− bj(v)ci(u)

)
.(A.7)

A.2. Exchange relations. We now use the exchange relations stated above to establish algebraic relations
that will be important in the nested algebraic Bethe ansatz.

Choose m ∈ N and introduce an m-tuple u = (u1, . . . , um) of formal parameters. Let V ′
a1
, . . . , V ′

am
be

copies of V ′
a . The creation operator for m excitations is

Ba1...am
(u) := Ba1(u1) · · ·Bam

(um).

The operatorBa1...am
(u) is a row-vector in (V ′

a1
)∗⊗. . .⊗(V ′

am
)∗ with entries in Y (gln)[u1, . . . , um][[u−1

1 , . . . , u−1
m ]].

The parameters carried by Ba1...am
(u) may be exchanged by the braided R-matrix defined by

(A.8) Ř′(u) :=
u

u− 1
R′(u)P ′.

This R-matrix allows us to rewrite (A.4) in a more elegant form,

Ba1(u1)Ba2(u2) = Ba1(u2)Ba2(u1)Ř
′
a1a2

(u1 − u2).

Consequently, for m excitations, we have that

(A.9) Ba1...am
(u) = Ba1...am

(ui↔i+1)Ř
′
aiai+1

(ui − ui+1) for 1 ≤ i ≤ m− 1,

where we used the notation (3.14).
We now move the a(v) and Da(v) operators through the m-excitation creation operator. Consider first

the action of a(v) on Ba1...am
(u),

a(v)Ba1...am
(u) =

(
v − u1 + 1

v − u1
Ba1(u1)a(v)−

1

v − u1
Ba1(v)a(u1)

)
Ba2(u2) · · ·Bam

(um).

Note that we may repeatedly apply this relation to move a(v) through each of the excitations, resulting in
a sum of 2m terms in which a(·) is the rightmost operator. From this sum we note that there is a unique
term in which a(v) retains its parameter each time we apply (A.2). We will refer to this term as the wanted
term, and the other terms as unwanted terms (UWT). Then,

(A.10) a(v)Ba1...am
(u) =

m∏

i=1

v − ui + 1

v − ui
Ba1...am

(u)a(v) + UWT.

The unwanted terms will be discussed in detail in Section A.4.
The wanted term for the action of Da(v) on Ba1...am

(u) is found similarly. From repeated applications
of (A.3),

Da(v)Ba1...am
(u) = Ba1...am

(u)Da(v)R
′
aam

(v − um) · · ·R′
aa1

(v − u1) + UWT.

Here note that the rightmost matrix acting on the auxiliary space V ′
a is

(A.11) T ′
a;a1...am

(v;u) := Da(v)R
′
aam

(v − um) · · ·R′
aa1

(v − u1).
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We will refer to this matrix as the nested monodromy matrix. The nontrivial action on the auxiliary spaces
V ′
a1
, . . . , V ′

am
will often be omitted for clarity, and we will write instead simply T ′

a(v;u). Using this notation
we get

(A.12) Da(v)Ba1...am
(u) = Ba1...am

(u)T ′
a(v;u) + UWT.

The nested monodromy matrix satisfies the following properties.

Lemma A.1. The matrix T ′
a(v;u) satisfies the RTT relation,

R′
ab(v − w)T ′

a(v;u)T
′
b(w;u) = T ′

b(w;u)T
′
a(v;u)R

′
ab(v − w).

Proof. Starting from the l.h.s. of the equation and using the definition (A.11) of T ′
a(v;u),

l.h.s. = R′
ab(v − w)Da(v)R

′
aam

(v − um) · · ·R′
aa1

(v − u1)Db(w)R
′
bam

(w − um) · · ·R′
ba1

(w − u1)

= R′
ab(v − w)Da(v)Db(w)R

′
aam

(v − um)R′
bam

(w − um) · · ·R′
aa1

(v − u1)R
′
ba1

(w − u1)

= Db(w)Da(v)R
′
ab(v − w)R′

aam
(v − um)R′

bam
(w − um) · · ·R′

aa1
(v − u1)R

′
ba1

(w − u1) by (A.5)

= Db(w)Da(v)R
′
bam

(w − um)R′
aam

(v − um) · · ·R′
ba1

(w − u1)R
′
aa1

(v − u1)R
′
ab(v − w) by YBE

= T ′
b(w;u)T

′
a(v;u)R

′
ab(v − w). �

By the above Lemma, the matrix T ′
a(v;u) is a homomorphic image of the generating matrix T ′

a(v) of
Y (gln−1). We may use R-matrices Ř′ to exchange the ordering of the parameters in u.

Lemma A.2. Matrix elements t′ij(v;u) of T
′
a(v;u) satisfy the relation:

Ř′
aiai+1

(ui − ui+1)t
′
jk(v;u) = t′jk(v;ui↔i+1)Ř

′
aiai+1

(ui − ui+1).

Proof. Moving Ř′
aiai+1

(ui − ui+1) from left to right through each of the R-matrices in the definition (A.11),
the R-matrices with which it does not commute will undergo parameter exchange ui ↔ ui+1 due to the
(braided) Yang-Baxter equation:

Ř′
aiai+1

(ui − ui+1)R
′
aai+1

(v − ui+1)R
′
aai

(v − ui) = R′
aai+1

(v − ui)R
′
aai

(v − ui+1)Ř
′
aiai+1

(ui − ui+1).

The required identity is now immediate. �

We now construct a finite-dimensional vector space, called the nested vacuum sector, which the matrix
T ′
a(v;u) will act on. Denote by L(λ(i))0ci the subspace of the Y (gln)-evaluation module L(λ(i))ci consisting

of vectors annihilated by all operators cj(u), namely

L(λ(i))0ci := {ζ ∈ L(λ(i))ci : cj(u)ζ = 0 for 1 ≤ j ≤ n− 1}.

This subspace corresponds to the natural embedding gln−1 ⊂ gln and is an irreducible lowest weight Y (gln−1)-
module with the lowest weight given by

(A.13) λi(u)
0 = λi+1(u) for 1 ≤ i ≤ n− 1

and λi(u) defined in (2.13).
We define the vacuum sector L0 ⊂ L by

L0 = L(λ(1))0c1 ⊗ L(λ(2))0c2 ⊗ . . .⊗ L(λ(ℓ))0cℓ .

By the initial assumption, the space L is an irreducible Y (gln)-module. Then, by Lemma 6.2.2 and Theorem
6.5.8 in [Mo3], the space L0 is an irreducible Y (gln−1)-module. In particular, the space L0 is annihilated by
all operators ci(u),

L0 = {ζ ∈ L : ci(u) · ζ = 0 for 1 ≤ i ≤ n− 1},

and is stable under the action of the operators dij(u) for 1 ≤ i, j ≤ n− 1, see (A.6).
Each auxiliary space V ′

ai
is a vector representation of the Lie algebra gln−1 of weight λ′ = (1, 0, . . . , 0)

and may be viewed as an evaluation module L(λ′)ui
of Y (gln−1) with the lowest weight given by

(A.14) λ′1(u) =
u− ui − 1

u− ui
and λ′j(u) = 1 for 2 ≤ j ≤ n− 1.

In particular, the generating matrix T ′
a(u) of Y (gln−1) acts on L(λ

′)ui
as R′

aai
(u − ui).

We have now all the necessary ingredients to define the nested vacuum sector

(A.15) L′ := L0 ⊗ V ′
am

⊗ · · · ⊗ V ′
a1
.
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Proposition A.3. Let T ′(v) denote the generating matrix of Y (gln−1). Then the map

(A.16) Y (gln−1) → Y (gln)⊗ End(V ′
am

⊗ · · · ⊗ V ′
a1
), T ′(v) 7→ T ′(v;u)

is a homomorphism of algebras. Moreover, it equips the space L′ with a structure of a lowest weight Y (gln−1)-
module with the lowest weight given by

(A.17)

λ′1(v;u) =

ℓ∏

j=1

v − λ
(j)
2 − cj − 1

v − λ
(j)
2 − cj

m∏

k=1

v − uk − 1

v − uk
and

λ′i(v;u) =

ℓ∏

j=1

v − λ
(j)
i+1 − cj − 1

v − λ
(j)
i+1 − cj

for 2 ≤ i ≤ n− 1.

Proof. The homomorphism property follows from Lemma A.1. We already know that L0 is an irreducible
Y (gln−1)-module. It follows from (A.11) and (A.15) that the space L′ is stable under the action of T ′

a(v;u).
Thus the map (A.16) equips the space L′ with a structure of Y (gln−1)-module with each tensorand a lowest
weight Y (gln−1)-module. The lowest vector is

(A.18) η = η1 ⊗ · · · ⊗ ηℓ ⊗ e′1 ⊗ · · · ⊗ e′1,

where each ηi is a lowest vector of L(λ(i))0ci for 1 ≤ i ≤ ℓ and each e′1 is a lowest vector of Vai
for 1 ≤ i ≤ m

(viewed as an evaluation module L(λ′)ui
). Finally, acting with t′ii(v;u) on η for 1 ≤ i ≤ n and using (A.13)

and (A.14) yields (A.17). �

Lemma A.4. For any vector ζ ∈ L′ we have that a(u) · ζ = λ1(u)ζ, where λ1(u) is defined by (2.13).

Proof. By Proposition A.3 we know that L′ = Y (gln−1)η for η defined in (A.18) and ci(u) · L
′ = 0. Using

(A.7) and definition of t′ij(v;u), we find that [a(u), t′ij(v;u)] · ζ = 0 for any 1 ≤ i, j ≤ n. Hence it is enough

to act with a(u) on the lowest vector η, which yields the required result. �

A.3. Nested algebraic Bethe ansatz. We are now ready to consider the nested algebraic Bethe ansatz
for a Y (gln)-system. The monodromy matrix Ta(v) acts on the space L in (A.1) by

Ta(v) · L =

(
ℓ∏

i=1

Lai(v − ci)

)
L ∈ End(Cn)⊗ L[[v−1]].

The transfer matrix is defined as

t(v) := tra Ta(v) ∈ Y (gln)[[v
−1]].

Taking the trace of the RTT relation reveals that [t(v), t(u)] = 0, and so t(v) is a generating series for
conserved quantities. We diagonalise t(v) by means of the nested algebraic Bethe ansatz, adhering closely
to [KuRs]. In particular, we construct an ansatz for our eigenvector recursively, at each stage reducing
the diagonalisation problem to a similar problem with a smaller symmetry algebra, relying on the chain
of subalgebras Y (gln) ⊃ Y (gln−1) ⊃ · · · ⊃ Y (gl2) and the irreducibility criterion of a tensor product of
evaluation modules.

Recall the definition of the full quantum space (A.1) and the nested vacuum sector (A.15). Let Φ′ ∈ L′.
We will refer to this as the nested Bethe vector, imposing additional properties in a later section. The ansatz
for the eigenvector of the transfer matrix, the Bethe vector, is given by

Φ(u) := Ba1...am
(u) · Φ′ ∈ L.

Since L is a finite dimensional vector space, the parameters ui ∈ u can be evaluated to nonzero complex
numbers, hence from now on we will assume that u ∈ Cm is an m-tuple of nonzero complex numbers. To
find the eigenvalues and Bethe equations, we act on the Bethe vector with t(v) = a(v) + traDa(v). Using
(A.10) and (A.12) we write

t(v) · Φ(u) = Ba1...am
(u)

(
m∏

i=1

v − ui + 1

v − ui
a(v) + tra T

′
a(v;u)

)
· Φ′ + UWT.



BETHE ANSATZ FOR TWISTED YANGIAN 31

By Lemma A.4, a(v) ·Φ′ = λ1(v)Φ
′. We now impose that Φ′ is an eigenvector of the nested transfer matrix

t′(v;u) := tra T
′
a(v;u), with the eigenvalue Γ′(v;u), namely

(A.19) t′(v;u) · Φ′ = Γ′(v;u)Φ′.

With this condition, the full action of the transfer matrix is diagonal, plus unwanted terms,

(A.20) t(v) · Φ(u) = Γ(v;u)Φ(u) + UWT, where Γ(v;u) = λ1(v)

m∏

i=1

v − ui + 1

v − ui
+ Γ′(v;u).

Finding Φ′ satisfying (A.19) defines another transfer matrix diagonalisation problem, namely for the Yangian
Y (gln−1). The monodromy matrix in this case is given by T ′

a(v;u) and the full quantum space is the lowest
weight Y (gln−1)-module L′ defined in (A.15), so the problem may again be reduced by means of the nested
algebraic Bethe ansatz; this is ensured by Proposition A.3. For example, constructing the ansatz for the
nested Bethe vector, we fix m′ ∈ N and introduce an m′-tuple u′ = (u′1, . . . , u

′
m′) of distinct complex

parameters, so that

Φ′ = Φ′(u′;u) = B′
a′
1
(u′1;u) · · ·B

′
a′
m′
(u′m′ ;u) · Φ′′,

where, upon decomposing the nested transfer matrix T ′(v,u) in the same way as we did for T (v),

Φ′′ ∈ L′0 ⊗ V ′′
a′
m′

⊗ · · · ⊗ V ′′
a′
1
.

Here L′0 is the vacuum sector of L′ defined analogously to that of L, and each V ′′
a′
i′

is a gln−2-module of

weight λ′′ = (1, 0, . . . , 0). Repeating this process, we reduce the problem to a Y (gl2)-system, the solution of
which is well known, see e.g., [FdTk].

The transfer matrix will therefore act diagonally on Φ(u) if all the unwanted terms vanish. We will show
in the next section how this requirement leads to a set of Bethe equations for u.

A.4. Dealing with unwanted terms. Recall (A.10) and (A.12). Introduce the following notation for the
unwanted terms:

a(v)Ba1...am
(u) =

m∏

i=1

v − ui + 1

v − ui
Ba1...am

(u)a(v) + U1(v;u),

traDa(v)Ba1...am
(u) = Ba1...am

(u) tra T
′
a(v;u) + U2(v;u).

By applying (A.2) repeatedly, we obtain an expression for U1(v;u) as a sum of 2m terms, in each of which
a(·) is the rightmost operator. This inspires a further partition of the unwanted terms. Let B denote the
subalgebra of Y (gln) generated by the coefficients of the series bi(u) for 1 ≤ i ≤ n − 1, whose closure is
guaranteed by (A.4). We decompose the unwanted terms U1(v;u) and U2(v;u) by

U1(v;u) =

m∑

j=1

U1,j(v;u) such that U1,j(v;u) = B1,j a(uj) and

U2(v;u) =

m∑

j=1

U2,j(v;u) such that U2,j(v;u) =

n−1∑

k,l=1

B2,j;kl dkl(uj)

for some B1,j , B2,j;kl ∈ B ⊗ (Cn−1)⊗m[[v−1]].
To find U1,1(v;u), we begin by acting on Ba1...am

(u) with a(v). From (A.2), we have

a(v)Ba1...am
(u) =

(
v − u1 + 1

v − u1
Ba1(u1)a(v)−

1

v − u1
Ba1(v)a(u1)

)
Ba2(u2) · · ·Bam

(um).

Now, moving a(v) through the remaining creation operators, we note that the only contribution to U1,1(v;u)
will be from the second term in the above expression, in the instance when there are no further parameter
swaps in the remaining commutations. Therefore,

U1,1(v;u) = −
1

v − u1

m∏

j=2

v − uj + 1

v − uj
Ba1(v)Ba2 (u2) · · ·Bam

(um)a(u1).
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We can find U2,1(v;u) in a similar way. Acting with traDa(v) on Ba1...am
(u),

traDa(v)Ba1...am
(u) =

(
Ba1(u1) traDa(v)R

′
aa1

(v − u1)

−
1

v − u1
Ba1(v) traDa(u1)P

′
aa1

)
Ba2(u2) · · ·Bam

(um).

As above, we move the Da(u1) operator through the remaining creation operators, and the only contribution
to U2,1(v;u) is

U2,1(v;u) = −
1

v − u1
Ba1(v)Ba2(u2) · · ·Bam

(um) tra

(
Da(u1)R

′
aam

(u1 − um) · · ·R′
aa2

(v − u2)P
′
aa1

)
.

Note that the operators to the right of Da(u1) act trivially on L, so this is indeed in the correct form. It
will be useful to rewrite this in terms of a residue as follows

U2,1(v;u) =
1

v − u1
Ba1(v)Ba2 (u2) · · ·Bam

(um)

× Res
w→u1

tra

(
Da(w)R

′
aam

(w − um) · · ·R′
aa2

(w − u2)R
′
aa1

(w − u1)
)

=
1

v − u1
Ba1(v)Ba2 (u2) · · ·Bam

(um) Res
w→u1

tra T
′
a(w;u).

Proceeding this way we can find the remaining unwanted terms. Consider the relation (A.9). We may use
this relation to transpose the parameters u and, since the transpositions generate the symmetric group Sm,
we can apply an arbitrary permutation to the parameters prior to acting with a(v). Indeed for σ ∈ Sm,
let uσ denote the ordered set (uσ(1), uσ(2), . . . , uσ(m)). Additionally, let σj denote the cyclic permutation
σj : (1, 2, . . . ,m) 7→ (j, j + 1, . . . , j − 1). We have

Ba1...am
(u) = Ba1...am

(uσj
)Ř′

a1...am
[σj ](u),

where Ř′
a1...am

[σj ](u) is the product of Ř′-matrices required to realise this permutation. Acting now with
a(v) on the r.h.s. and following the argument above, we obtain an exact expression for U1,j(v;u), namely

U1,j(v;u) = −
1

v − uj

∏

k 6=j

uj − uk + 1

uj − uk
Ba1...am

(uσj ,uj→v)a(uj)Ř
′
a1...am

[σj ](u),

where Ba1...am
(uσj ,uj→v) = Ba1(v)Ba2 (uj+1) · · ·Bam

(uj−1). The expression for U2,j(v;u) obtained by the
same method. Indeed,

U2,j(v;u) = −
1

v − uj
Ba1...am

(uσj ,uj→v) Res
w→u1

t′(w;uσj
)Ř′

a1...am
[σj ](u).

Having found these expressions, the next step is to act with them on the nested Bethe vector to find the
full expression for the action of the transfer matrix on the Bethe vector. However, we will first make an
assumption about the form of Φ′(u′;u), namely

Ř′
aiai+1

(ui − ui+1)Φ
′(u′;u) = Φ′(u′;ui↔i+1) for 1 ≤ i ≤ m− 1.

This may be achieved if the nested Bethe vector is of the form

Φ′(u′;u) ∈ spanC
{
t′i1j1(w1;u) · · · t

′
iKjK (wK ;u) · η′ : K ≥ 0, 1 ≤ i1, j1, . . . , iK , jK ≤ n− 1, w ∈ C

K
}
,

where η′ is a lowest weight vector of L′. Indeed, for any such vector we may use Lemma A.2 to move
Řaiai+1(ui−ui+1) through the t′ikjk(wk;u), exchanging ui with ui+1. Then, by definition and (A.8), η′ is an

eigenvector of Řaiai+1(ui − ui+1) with eigenvalue 1. The nested Bethe vector constructed using the nested
algebraic Bethe ansatz is exactly of this form.

Note that this, combined with the relation (A.9), gives the parameter symmetry of the full Bethe vector
Φ(u) = Φ(uσ) for all σ ∈ Sm. Applying the expressions for the unwanted terms to the nested Bethe vector,
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noting (A.19) and Lemma A.4,

U1,j(v;u) · Φ
′(u′;u) = −

1

v − uj
λ1(uj)

∏

k 6=j

uj − uk + 1

uj − uk
Ba1...am

(uσj ,uj→v) · Φ
′(u′;uσj

),

U2,j(v;u) · Φ
′(u′;u) = −

1

v − uj
Res
w→uj

Γ′(w;uσj
)Ba1...am

(uσj ,uj→v) · Φ
′(u′;uσj

).

In fact, by acting with Ř′-matrices on t′(v;u) ·Φ′(u′;u) = Γ′(v;u)Φ′(u′;u), we obtain Γ′(v;u) = Γ′(v;uσ).
Putting everything together, we have

U1(v;u) + U2(v;u) = −

m∑

j=1

1

v − uj

[
λ1(uj)

∏

k 6=j

uj − uk + 1

uj − uk
+ Res

w→uj

Γ′(w;u)

]

×Ba1...am
(uσj ,uj→v) · Φ

′(u′;uσj
)

= −
m∑

j=1

1

v − uj
Res
w→uj

Γ(w;u)Ba1...am
(uσj ,uj→v) · Φ

′(u′;uσj
).

From (A.20), Φ(u) is an eigenvector of the transfer matrix t(v) if the parameters u are chosen such that the
above expression vanishes. Since each summand is independent, we require

(A.21) Res
w→uj

Γ(w;u) = 0 for 1 ≤ j ≤ m.

These are the Bethe equations for u.

A.5. End of recursion. Upon reducing to the residual Y (gl2)-system, we have the familiar 2×2 monodromy
matrix

T (n−2)
a (v) =

(
a(n−2)(v) b(n−2)(v)

c
(n−2)(v) d

(n−2)(v)

)
.

Dependence on parameters u,u′, . . . ,u(n−3) has been suppressed. The RTT relation yields the relations

a
(n−2)(v)b(n−2)(u) =

v − u+ 1

v − u
b
(n−2)(u)a(n−2)(v) −

1

v − u
b
(n−2)(v)a(n−2)(u),

d
(n−2)(v)b(n−2)(u) =

v − u− 1

v − u
b
(n−2)(u)d(n−2)(v) +

1

v − u
b
(n−2)(v)d(n−2)(u),

[b(n−2)(v), b(n−2)(u)] = 0.

The Bethe vector with m(n−2) excitations is

Φ(n−2)(u) = b
(n−2)(u

(n−2)
1 ) · · · b(n−2)(u

(n−2)

m(n−2)) · η
(n−2),

where η(n−2) is a lowest vector of the nested vacuum sector L(n−2). The associated eigenvalue of the transfer
matrix t(n−2)(v) is

Γ(n−2)(v;u, . . . ,u(n−2)) = λ
(n−2)
1 (v;u, . . . ,u(n−3))

m(n−2)∏

i=1

v − u(n−2) + 1

v − u(n−2)

+ λ
(n−2)
2 (v;u, . . . ,u(n−3))

m(n−2)∏

i=1

v − u(n−2) − 1

v − u
(n−2)
i

,

provided the u(n−2) satisfy the Bethe equations

Res
w→u

(n−2)
j

Γ(n−2)(w;u, . . .u(n−2)) = 0 for 1 ≤ j ≤ m(n−2).
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A.6. Full expressions for eigenvalues and Bethe equations. In this section, we unpack the recursion
steps to give the explicit expressions for the eigenvalues of the transfer matrix in terms of the parameters
of the Y (gln)-system. In order to match the notation used in the Bethe ansatz for the Y ±(gl2n) chain, we

begin by relabelling the spectral parameters as follows. For the initial step, relabel parameters ui → u
(1)
i

and excitation number m → m(1), and for subsequent levels of nesting u
(k)
i → u

(k+1)
i and m(k) → m(k+1).

We use Proposition A.3 to rewrite the weights λ
(k)
1 (v;u, . . . ,u(k−1)) of the nested system in terms of the

weights of the initial Y (gln)-system,

λ
(k)
1 (v;u(1), . . . ,u(k)) = λk+1(v)

m(k)∏

i=1

v − u
(k)
j − 1

v − u
(k)
j

for 1 ≤ k ≤ n− 1 and

λ
(k)
l (v;u(1), . . . ,u(k)) = λk+l(v) for l > 1, 1 ≤ k ≤ n− l.

From the recursion relation in (A.20), a general expression can be found for Γ(k)(v;u(1), . . . ,u(n−1)), for
1 ≤ k ≤ n− 2:

Γ(k)(v;u(1), . . . ,u(n−1))

= λ
(n−2)
2 (v;u(1), . . . ,u(n−2))

m(n−1)∏

i=1

v − u
(n−1)
i −1

v − u
(n−1)
i

+
n−2∑

l=k

λ
(l)
1 (v;u(1), . . . ,u(l))

m(l+1)∏

i=1

v − u(l+1)+1

v − u(l+1)

= λn(v)

m(n−1)∏

i=1

v − u
(n−1)
i − 1

v − u
(n−1)
i

+

n−2∑

l=k

λl+1(v)

m(l)∏

i=1

v − u
(l)
i − 1

v − u
(l)
i

m(l+1)∏

i=1

v − u
(l+1)
i + 1

v − u
(l+1)
i

.

We have thus shown the following.

Theorem A.5. The eigenvalues of the Bethe vectors for a Y (gln)-system are given by

Γ(v) = λ1(v)

m(1)∏

i=1

v − u
(1)
i + 1

v − u
(1)
i

+ λn(v)

m(n−1)∏

i=1

v − u
(n−1)
i − 1

v − u
(n−1)
i

+

n−2∑

l=1

λl+1(v)

m(l)∏

i=1

v − u
(l)
i − 1

v − u
(l)
i

·

m(l+1)∏

i=1

v − u
(l+1)
i + 1

v − u
(l+1)
i

.(A.22)

Recall also the Bethe equations (A.21) satisfied by parameters u
(k)
j . In fact, comparing the above two

expressions, we note that equivalent Bethe equations can be obtained by demanding instead that the residue

of the full eigenvalue Γ(v) vanishes at each u
(k)
j for 1 ≤ k ≤ n−1, 1 ≤ j ≤ m(k). This is exactly the condition

that the eigenvalue of the transfer matrix is analytic. We may now evaluate the residue to obtain the Bethe
equations in terms of λk(v) with 1 ≤ k ≤ n leading to the following statement.

Theorem A.6. The Bethe equations for a Y (gln)-system are

(A.23)

λk(u
(k)
j )

λk+1(u
(k)
j )

=
m(k−1)∏

i=1

u
(k)
j − u

(k−1)
i

u
(k)
j − u

(k−1)
i − 1

·
∏

i6=j

u
(k)
j − u

(k)
i − 1

u
(k)
j − u

(k)
i + 1

·
m(k+1)∏

i=1

u
(k)
j − u

(k+1)
i + 1

u
(k)
j − u

(k+1)
i

,

λ1(u
(1)
j )

λ2(u
(1)
j )

=
∏

i6=j

u
(1)
j − u

(1)
i − 1

u
(1)
j − u

(1)
i + 1

·

m(2)∏

i=1

u
(1)
j − u

(2)
i + 1

u
(1)
j − u

(2)
i

,

λn−1(u
(n−1)
j )

λn(u
(n−1)
j )

=

m(n−2)∏

i=1

u
(n−1)
j − u

(n−2)
i

u
(n−1)
j − u

(n−2)
i − 1

·
∏

i6=j

u
(n−1)
j − u

(n−1)
i − 1

u
(n−1)
j − u

(n−1)
i + 1

,

for 1 ≤ k ≤ n− 1 and 1 ≤ j ≤ m(k).
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006, arXiv:1711.03867.

[IzKo] A. G. Izergin, V. E. Korepin, The quantum inverse scattering method approach to correlation functions, Comm. Math.
Phys. 94 (1984) 67–92.

[JLM] N. Jing, M. Liu, A. Molev, Isomorphism between the R-matrix and Drinfeld presentations of Yangian in types B, C
and D, arXiv:1705.08155.

[KKMST1] N. Kitanine, K. Kozlowski, J. M. Maillet, N. A. Slavnov, V. Terras, A form factor approach to the asymptotic
behavior of correlation functions, J. Stat. Mech. (2011) P12010, arXiv:hep-th/1110.0803.

[KKMST2] , Form factor approach to dynamical correlation functions in critical models, J. Stat. Mech. (2012) P09001,
arXiv:1206.2630.

[KMST] N. Kitanine, J. M. Maillet, N. A. Slavnov, V. Terras, Master equation for spin-spin correlation functions of the XXZ
chain, Nucl. Phys. B712 (2005) 600–622, arXiv:hep-th/0406190.

[KMT] N. Kitanine, J. M. Maillet, V. Terras, Form factors of the XXZ Heisenberg spin-1/2 finite chain, Nucl. Phys. B554

(1999) 647–678, arXiv:math-ph/9807020.
[Ko] V. E. Korepin, Calculation of norms of Bethe wave functions, Comm. Math. Phys. 86, no. 3 (1982) 391–418.
[KuRs] P. P. Kulish, N. Yu. Reshetikhin, Diagonalisation of GL(N) invariant transfer matrices and quantum N-wave system

(Lee model), J. Phys. A: Math. Gen. 16 (1983) 591–596.
[LSY] Li Guang-Liang, Shi Kang-Jie, Yue Rui-Hong, Algebraic Bethe Ansatz Solution to CN Vertex Model with Open

Boundary Conditions, Commun. Theor. Phys. 44, no. 1 (2005) 89–98.
[MNO] A. Molev, M. Nazarov, G. Olshanskii, Yangians and classical Lie algebras, Russ. Math. Surv. 51, no. 2 (1996) 205–282,

arXiv:hep-th/9409025.
[Mo1] A. Molev, Finite-dimensional irreducible representations of twisted Yangians, J. Math. Phys. 39 (1998) 5559–5600,

arXiv:q-alg/9711022

[Mo2] , Irreducibility criterion for tensor products of Yangian evaluation modules, Duke Math. J. 112 (2002) 307–341.
arXiv:math/0009183.

[Mo3] , Yangians and Classical Lie Algebras, Mathematical Surveys and Monographs 143, American Mathematical
Society, Providence, RI, 2007, xviii+400 pp.

[Ol] G. Olshanskii, Twisted Yangians and infinite-dimensional classical Lie algebras, Quantum groups (Leningrad, 1990),
104–119, Lecture Notes in Math. 1510, Springer, Berlin 1992.



36 ALLAN GERRARD, NIALL MACKAY, AND VIDAS REGELSKIS

[PRS1] S. Pakuliak, E. Ragoucy, N. Slavnov, Bethe vectors of quantum integrable models based on Uq(ĝln), J. Phys. A47
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