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ABSTRACT: Cyclin Dependent Kinases-2 (CDK2) are members of serine/threonine protein kinases family. They play an important 

role in the regulation events of the eukaryotic cell division cycle, especially during the G1 to S phase transition. Experimental 

evidences indicate that excessive expression of CDK2s should cause abnormal cell cycle regulation. Therefore, since long time, 

CDK2s have been considered potential therapeutic targets for cancer therapy. In this work, one-hundred and forty-nine complexes of 

inhibitors bound in the CDK2-ATP pocket were submitted to short MD simulations (10ns) and free energy calculation. Comparison 

with experimental data (Ki, Kd and pIC50) revealed that short simulations are exhaustive to examine the 

crucial ligand-protein interactions within the complexes. Information collected on MD 

simulations of protein−ligand complexes have been used to perform a molecular modelling 

approach that incorporates flexibility into structure-based pharmacophore modelling (Common Hits Approach, CHA). The high 

number of pharmacophore models resulting from the MD simulation was thus reduced to a few representative groups of 

pharmacophore models. The performance of the models have been assessed by using the ROC curves analysis. This definitive set of 

validated pharmacophore models could be used to screen in-house and/or commercial datasets for detection of new CDK-2 inhibitors. 

We provide the models to all the researchers involved in this field.  

Introduction 

The proliferation in mammalian cells is controlled by the cell 

cycle and protein phosphorylation is a crucial post-translational 

modification. The cyclin-dependent kinases (CDKs), proteins 

regulating cell division, are activated by serine/threonine 

kinases and control critical checkpoints in the G1/S and G2/M 

phase transitions. Cancer growth is associated with the loss of 

these checkpoints. This suggests that CDKs are a pivotal target 

for the development of pharmacologically interesting agents. 

For this reason, the interest in the development of CDK 

inhibitors is recently growing. CDKs are relatively small 

proteins, with molecular weights ranging from 34 to 40 kDa, 

and contain little more than the kinase domain. They express 

their activity upon binding a regulatory protein called cyclin; 

without cyclin, CDK has little kinase activity. They are also 

involved in other several physiological events such as 

transcription regulation, mRNA processing, and the nerve 

differentiation. Given the involvement of CDKs in multiple 

cellular processes, development of selective small molecule 

inhibitors for specific CDKs is expected to enhance their 

therapeutic potential in cancer treatment. 

CDK2 together with CDK1, CDK4, and CDK6[1–3], remains 

the most attractive target for oncology The design of novel 

chemical scaffold of potent CDK inhibitors was allowed by a 

large amount of structure-based and computational work. The 

interest in computer-aided methods' application has 

significantly increased, as confirmed by considerable increment 

in the number of available structures of cyclin-dependent 

kinases. A recent check (November 2018) on Protein Data Bank 

web page (www.PDB.org) retrieved 527 structures for CDKs, 

of which 441 published between 2005-2018[4]. Over 300 out of 

527 are complexes related to CDK2 bound with an inhibitor in 

the ATP binding pocket. The ATP-binding pocket is common 

to all kinases and it is often chosen as a reference target for the 

research of inhibitors. The CDKs’ family presents a conserved 

structure of the ATP-binding pocket, nevertheless, there are 

slight differences among them. This allows designing 

molecules that show a significant specificity for a given 

subclass of kinases. In CDK2 the ATP binding site is 

characterized by two amino acids, the Leu83 and the Glu81, 

both crucial in the binding of the ATP and, therefore, of all its 

competitive inhibitors. The ribose and phosphate groups form 

multiple polar interactions, one of which involves coordination 

to the catalytic magnesium via the phosphate groups along with 

Asp145 and Asn132 [5-7]. In past, only classical docking 

procedures and/or pharmacophore modelling were employed. 

More recent studies often report flexible docking outcomes 

combined also with MD simulations. Instead, pharmacophore 

modeling studies have been performed to generate 

pharmacophore maps based on a set of crystal structures of 

protein–ligand complexes, without the use of MD simulations. 

The vast amount of crystallographic data available is certainly 

an important starting point to use in Virtual High-Throughput 



 

Screenings (VHTSs) [8-9]. It is widely known that proteins and 

small molecules are dynamic entities which are able to perform 

a wide sort of movements. For this reason, using a single pose 

of a dynamic system provides scarce information about the 

conformational flexibility of the ligand and about the motion of 

the residues near the binding pocket[10]. Therefore a 

pharmacophore model generated from a single structure might 

include artificial features, caused either by crystal packing 

effects or simply by picking a single set of coordinates of the 

structure. Incorporating dynamic features in pharmacophore 

modelling represents a new frontier, and in a recent past some 

attempts were tried[11-13]. Among them is the “Common Hits 

Approach (CHA)” , which performs a consensus 

pharmacophore-based virtual screening on the conformational 

ensemble of the protein-ligand complexes obtained by means of 

MD simulations[14]. However, the simulation time of these 

approaches has not been standardized yet. Generally, the 

simulations are of medium length (over 20 ns) and repeated 

several times, in order to fully explore ligand-protein 

interaction, comporting a great expenditure of calculation time. 

Therefore, a possible solution to overcome and minimize the  

"time" issue could be carrying out short molecular dynamics 

simulations (10ns), calculate the ΔG values obtained from the 

trajectories (ΔGcalc) using MM-GBSA, and compare them 

with the experimental activity data (ΔGexp). In fact, if the 

experimental data can be simulated through short trajectories, 

this entails that the ligand-protein interaction could be explored 

exhaustively. Thus, short dynamics would be useful for the 

purposes of VHTS allowing to save calculation time, but 

guaranteeing equal effectiveness. , Despite the time factor plays 

a crucial role in the simulation, a longer simulation is not always 

necessary to obtain higher prediction accuracy[15]. For this 

reason, we performed an exhaustive MD simulations study on 

CDK2/inhibitor complexes in order to obtain definitive 

pharmacophore models to use in VHTS. Although a large 

number of allosteric CDK2 inhibitors were under 

investigation[16], we decided to focus attention on ATP 

competitive inhibitors.  

 

Results and Discussion 

Among the over 300 CDK2/ATP competitive inhibitors 

complexes, only the ones presenting an experimental activity 

data, such as Ki, Kd and/or pIC50, were selected (Supporting 

Information). Experimental data are fundamental to compare 

ΔGcalc. Thus, we collected 149 CDK2/ATP competitive 

inhibitors complexes, plus the CDK2/ATP complex (PDB 

ID:1B39). Starting from X-ray coordinates we performed short 

(10ns) MD simulations, and each frame was collected to 

calculate ΔGcalc. Finally, the average value of all the frames 

was calculated. A table with all the ΔGcalc values is reported in 

Supporting Information. In order to correlate experimental data 

and ΔGcalc, the experimental dataset has been separated in 

three different datasets: a first dataset of 42 complexes with 

known Ki; a second dataset of 23 complexes with known Kd; a 

third dataset of 121 complexes with known pIC50. For some 

inhibitors, more than one experimental data has been 

considered. Ki and Kd values have been converted in ΔGexp 

according to the equation 1. 

 

ΔGexp= - RT∙ln(K) (eq. 1) 

where R is the constant of the gases equal to 1.987 cals K-1 mol-1, T is 
the temperature in Kelvin and K it is the constant of the analyzed 

equilibrium, inhibition (Ki) or dissociation (Kd). 

 

In order to detect outlier data between the two independent 

variables (ΔGcalc and/or ΔGexp, pIC50), the ratio 

distribution[17] of the two variables has been calculated. Often 

the ratio distributions are heavy-tailed, and it could be 

challenging to work with such distributions to develop an 

associated statistical test. A method based on the median has 

been suggested as a "work-around"[18]. According to this 

method, a value outside of the interval: [Q1-k(Q3-Q1); Q3-

k(Q3-Q1)],where Q1 and Q3 are the first quartile and the third 

quartile, respectively, k is a constant that regulates the width of 

the interval, is defined as outlier. Normally, the width of the 

interval assumes the value of 1.5[19]. The detection of outliers 

reduced the samples to 114 complexes with known pIC50, 41 

complexes with known Ki and 22 complexes with known Kd. 

Calculated binding energies were plotted against pIC50, and/or 

ΔGexp values for the series. The degree of correlation between 

the two parameters was evaluated using the Pearson’s 

correlation coefficient, Rp and the Spearman’s rank correlation 

coefficient, Rs, as reported. Rs compares the position of each 

inhibitor compound when ranked by binding energy to its 

position when ranked by its pIC50 or ΔGexp values value[20]. 

The Spearman’s rank correlation coefficient is defined as: 

 

, 

where di is difference in rank for the ith compound under the two different 

criteria, i.e., binding energy and experimental binding constant, and n is the 

number of compounds in the series. Significance of Rp and Rs was 

evaluated by means of t-Test and z-Test. 

 

Plots of binding energy versus pIC50 or ΔGexp values for 

each series are shown in Figure 1. Pearson’s correlation 

coefficient for the plots, as well as Spearman’s rank correlation 

coefficients, are reported for each series in Table 1. 

 

Table 1. Summary of results 

 n Rp Rs t z DOF Α 

pIC50 114 0.520 0.520 6.5 5.52 112 <0.001 

Ki 41 0.568 0.490 4.36 3.09 39 <0.001 

Kd 22 0.794 0.839 5.83 3.84 20 <0.001 

Legenda. t; student t test; z = normal standard distribution test; DOF, 

degrees of freedom.  

 

In all cases, the outcomes showed realistic correlation and 

significance (α<0.001) both in terms of Rp and Rs as 

demonstration that short MD simulations could lead to a 

reliable interpretation of protein/drug interactions. 

https://en.wikipedia.org/wiki/Heavy-tailed
https://en.wikipedia.org/wiki/Statistical_test
https://en.wikipedia.org/wiki/Median


 

 

Figure 1. Plots of binding energies (ΔGcalc) versus pIC50 (red 

circles) or ΔGexp values (Ki, cyan circles; Kd, green circles) 

 

Therefore, the snapshots, collected during the MD simulations, 

and the coordinates of the PDB file were processed according 

to the CHA. The pharmacophore models are generated starting 

from each single snapshot, and subsequently a feature vector 

(represented as a bit string) was generated for each 

pharmacophore model. This procedure results in 1001 feature 

vectors per protein−ligand complex (1000 pharmacophore 

models obtained from the MD simulation, plus the 

pharmacophore model obtained from the PDB crystallographic 

file). The feature vectors were aggregated into distinct vectors, 

counting how many times that particular combination of 

pharmacophore features was identified during MD simulations, 

in a process called “appearance count”. This reduces the 

number of relevant vectors, in fact, instead of using 1000 

individual feature vectors,  a smaller number of distinct feature 

vectors, observed one or more times during MD simulations, 

was obtained. Distinct feature vectors observed only once were 

discarded (and considered random artifacts). Only distinct 

feature vectors with an appearance count≥2 were considered, 

named Representative Pharmacophore Models (RPMs). The 

performance of about 30100 RPMs obtained from 149 ligand-

protein complex MD was assessed by means of the ROC 

(Receiver Operating Characteristic) curves analysis with a 

validation dataset obtained from the DUD-E site[21] containing 

molecules (676 Active and 28121 Decoys) generated 

specifically for  CDK-2. For each RPM, a hit-list was collected, 

so that for each ligand-protein complex several hit-lists were 

identified. The multiple RPM hit-lists have been combined into 

a single list named RPM-HIT-LIST, consisting only of unique 

compounds. The molecules in this list have been ranked 

according to the number of times they are recognized in the hit-

lists. For example, if a molecule is present in many hit-lists it is 

classified with a higher score than one that appears only in a 

few hit-lists. (Figure 2) 

 



 

 

Figure 2. Flowchart of the method from MD to CHA 

 

The ROC  curves have been calculated and analyzed plotting 

the number of True Positives (TPR) on False Positives (FPR). 

The performance of the RPM models was evaluated using the 

ROC curve at 2% and 100%, considering for each complexes 

the first 50 hits. Due to space limits, the table with the AUC 

values is reported in the supporting information. To improve the 

accuracy of the approach we carried out a consensus 

considering actives and molecules in common between the first 

ten, twenty and thirty RPM-HIT-LISTs, named RPM-

CONSENSUS-10 RPM-CONSENSUS-20, and RPM-

CONSENSUS-30 respectively (Figure 3 and Table 2).  



 

 

Figure 3. ROC curves at 2% and 100% for RPM-Consensus-10 

(up), RPM-Consensus-20 (middle), RPM-Consensus-30 

(down) 

Table 2.  

RPM 

Consensus 

Hits Actives Actives/hits 

rate  

AUC 

100% 

AUC  

2% 

10  226 123 54% 0.590 0.990 

20  420 164 39% 0.620 0.990 

30  442 166 37% 0.620 0.990 

 

Analyzing the results, it is worth noting the identical value of 

AUC 2% for all the consensus, whilea slight difference can be 

observed when considering the AUC 100% values.. We decided 

to perform a further analysis on the RPM-CONSENSUS-10 list, 

due to its higher rate of actives/hits, compared to the other two 

consensus lists. The RPM-CONSENSUS-10 list consists of 226 

hits, of which 123 actives, and 552 RPMs. The 552 RPMs have 

been clustered according to feature similarity, with a  maximum 

distance between them of 0.5 Å. 59 RPMs were obtained and 

re-submitted to the CHA. The CHA-HIT-LIST cluster obtained 

was compared with the actives resulting in a good matching for 

18 RPMs out of 59. Finally, the original DUD-E dataset was 

screened against the 18 RPMs selected, and the AUC 2% and 

100% were calculated. At the end, 11 RPMs showed AUC 2% 

> 0.90 (Table 3) proving to be the most consistent 

pharmacophore models among the ones considered, and valid 

for performing  VHTS in the search of new CDK2 ATP pocket 

binders inhibitors. These pharmacophore models consist of a 

number of features between 4 and 7. In particular, the identified 

features are hydrophobic moiety, H-bond acceptors and donors, 

and aromatic rings. In Figure 4, a representation of the 

superimposed features of all the selected 11 models can be 

observed; a detailed report of each pharmacophore feature for  

single models is attached in Supporting information. Moreover 

the .pml files will be available for all the researchers who are 

involved in this field. 

Table 3. 

RPM-

cluster  

Actives Decoys AUC 

100% 

AUC 2% 

10 66 160 0.55 0.98 

13 42 26 0.53 0.97 

18 31 13 0.52 0.96 

5 35 191 0.52 0.95 

1 44 182 0.53 0.94 

15 37 189 0.52 0.94 

9 35 191 0.52 0.94 

14 31 195 0.52 0.94 

6 34 192 0.52 0.92 

3 22 43 0.52 0.92 

8 19 2 0.51 0.92 

2 21 205 0.51 0.87 

11 13 19 0.51 0.87 

16 10 8 0.51 0.83 

12 14 212 0.51 0.78 

17 7 8 0.51 0.78 

4 4 11 0.50 0.69 

7 9 217 0.50 0.64 

 

 
Figure 4. Super-positioning of the 11 selected pharmacophore 

models  

 



 

Conclusion 

 

In summary, CDK2s, serine/threonine kinases involved in 

the cell cycle regulation and tumorigenesis, are to-date a 

very challenging target for the researchers involved in drug 

discovery. In literature, numerous attempts of molecular 

modelling studies, aimed to CDK2 inhibitors discovery and 

development, were reported. Most of these studies are limited 

to docking and MD of few molecules. At best of our knowledge, 

attempts of extensive molecular modelling studies regarding 

MD and pharmacophore modelling have not been performed. 

For this reason, we exploited the big amount of data available 

in the PDB to build definitive pharmacophore models with the 

aim to improve virtual screenings of new chemical entities. 

Short MD simulations and free energy calculation were applied 

on 149 CDK2 structures complexed with an ATP pocket binder;  

comparing  ΔGcalc values obtained with experimental activity 

data revealed that these short simulations are exhaustive to 

explore all the host-guest interactions. The MD trajectories 

snapshots were then processed by means of the CHA. The 

representative pharmacophore models obtained (RPMs) were 

re-processed to validate them and to identify the most reliable. 

At the end of the study, we proposed 11 pharmacophore models 

showing AUC 2% > 0.92. They consist of 4-6 features (H-bond 

donors and acceptors, hydrophobic moiety and aromatic ring), 

and could be considered as the ultimate models to perform 

VHTS. The 3D features coordinates of each model (Supporting 

Information) will be available for every researcher involved in 

this field, interested in testing new chemical entities.  

ASSOCIATED CONTENT  

Supporting Information 

 

Methods (SI S2) 

Preparation of the Proteins (SI S2) 

Molecular Dynamics Simulations (SI S2) 

MM-GBSA free energy calculations (SI S2) 

Conversion of MD trajectories (SI S2) 

Pharmacophore Models Generation by means of CHA and 

Virtual Screenings (SI S3) 

Pharmacophore Models (SI S5) 

PDB IDs of CDK2/ATP competitive inhibitors and related 

experimental data (SI S7) 

Table 1. Average ΔGcalc values and standard deviation for all 

the CDK2 complexes. (SI S10) 

Table 2. ΔGcalc and pIC50 values (SI S12) 

Table 3. ΔGcalc and ΔGexp derived from Ki values (SI S14) 

Table 4. ΔGcalc and ΔGexp derived from Kd values (SI S15) 

Table 5. ROC values of CHA hit-list RPMs (SI 16) 

References (SI S19) 

AUTHOR INFORMATION 

Corresponding Author 

*Marco Tutone email: marco.tutone@unipa.it  

Author Contributions 

The manuscript was written through contributions of all authors. 

All authors have given approval to the final version of the 

manuscript.  

 

ACKNOWLEDGMENT  

CG would like to thank Dr. Arthur Garon, and Prof T. Langer 

University of Vienna, for the use of facilities during her leave of 

absence from the University of Palermo.  

 

REFERENCES 

(1)  Chohan T A, Qian H, Pan Y, Chen J.-Z. Cyclin-Dependent 

Kinase-2 as a Target for Cancer Therapy: Progress in the 

Development of CDK2 Inhibitors as Anti-Cancer Agents. Curr 
Med Chem 2015; 22 (2): 237–263. 

(2)  Sánchez-Martínez C, Gelbert L M, Lallena M J, De Dios A. 

Cyclin Dependent Kinase (CDK) Inhibitors as Anticancer Drugs. 
Bioorg Med Chem Lett 2015; 25 (17): 3420–3435. 

(3)  Bose P, Simmons G L, Grant S. Cyclin-Dependent Kinase 

Inhibitor Therapy for Hematologic Malignancies. Expert Opin 
Investig Drugs 2013; 22 (6): 723–738. 

(4)  Tutone M, Almerico A M. Recent Advances on CDK Inhibitors: 

An Insight by Means of in Silico Methods. Eur J Med Chem 2017; 
142: 300-315. 

(5)  Tripathi S K, Muttineni R, Singh S K. Extra Precision Docking, 
Free Energy Calculation and Molecular Dynamics Simulation 

Studies of CDK-2 Inhibitors. J Theor Biol 2013; 334: 87-100. 

(6)  Noble M E M, Endicott J A. Chemical Inhibitors of Cyclin-

Dependent Kinases Insights into Design from X-Ray 

Crystallographic Studies. In Pharmacology and Therapeutics 

1999; 82: 269-278. 
(7)  Wyatt P G, Woodhead A J, Berdini V, et al. Identification of N-

(4-Piperidinyl)-4-(2,6-Dichlorobenzoylamino)-1H-Pyrazole-3-

Carboxamide (AT7519), a Novel Cyclin Dependent Kinase 
Inhibitor Using Fragment-Based X-Ray Crystallography and 

Structure Based Drug Design. J Med Chem 2008; 51 (16): 4986–

4999. 
(8) Abdulghani H, Sliman F. Virtual Screening and Molecular 

Docking Studies for the Discovery of Novel CDK2 Inhibitors. Int 

J Pharm 2018; 50 (05): 25–33.  
(9) Zou J, Xie H, Yang S, Chen J, Ren J, Wei Y. Towards more 

accurate pharmacophore modeling : Multicomplex-based 

comprehensive pharmacophore map and most-frequent-feature 
pharmacophore model of CDK2. J Mol Graph & Model 2008; 27 

(4): 430–438. 

(10)  Mirjalili V, Feig M. Protein Structure Refinement through 
Structure Selection and Averaging from Molecular Dynamics 

Ensembles. J Chem Theory Comput 2013; 9 (2): 1294-1303. 

(11) Wieder M, Perricone U, Boresch S, Seidel T, Langer T. 
Evaluating the Stability of Pharmacophore Features Using 

Molecular Dynamics Simulations. Biochem Biophys Res 

Commun 2016; 470 (3): 685–689. 
(12) Perricone U, Wieder M, Seidel T, et al. A Molecular Dynamics-

Shared Pharmacophore Approach to Boost Early-Enrichment 

Virtual Screening: A Case Study on Peroxisome Proliferator-
Activated Receptor α. Chem Med Chem 2017; 12 (16): 1399-

1407. 

(13) Tutone M, Pantano L, Lauria A, Almerico A M. Molecular 
Dynamics, Dynamic Site Mapping, and Highthroughput Virtual 

Screening on Leptin and the Ob Receptor as Anti-Obesity Target. 

J Mol Model 2014; 20 (5): 2247. 
(14)  Wieder M, Garon A, Perricone U, et al. Common Hits Approach: 

Combining Pharmacophore Modeling and Molecular Dynamics 

Simulations. J Chem Inf Model 2017; 57 (2): 365-385. 
(15) Wang W, Donini O,  Reyes C M, Kollman P A. Biomolecular 

Simulations: Recent Developments in Force Fields, Simulations 

of Enzyme Catalysis, Protein-Ligand, Protein-Protein, and 
Protein-Nucleic Acid Noncovalent Interactions. Annu Rev 

Biophys Biomol Struct 2001; 30: 211-243. 

(16) Richardson C M, Nunns C L, Williamson D S, et al. Discovery 
of a Potent CDK2 Inhibitor with a Novel Binding Mode, Using 

Virtual Screening and Initial, Structure-Guided Lead Scoping. 

Bioorg Med Chem Lett 2007; 17 (14): 3880-3885. 
(17) Geary R C. The Frequency Distribution of the Quotient of Two 

Normal Variates. J R Stat Soc 1930; 93: 442-446. 
(18) Brody J P, Williams B A, Wold B J, Quake S R. Significance and 

Statistical Errors in the Analysis of DNA Microarray Data. Proc 

Natl Acad Sci 2002; 99 (20): 12975–12978. 
(19) Devore J. Statistics for Business and Economics. Am Stat 2006; 



 

60 (4): 342-343. 
(20) Wei H Y, Tsai K C, Lin T H. Modeling Ligand-Receptor 

Interaction for Some MHC Class II HLA-DR4 Peptide Mimetic 

Inhibitors Using Several Molecular Docking and 3D QSAR 
Techniques. J Chem Inf Model 2005; 45 (5): 1343-1351. 

(21) Mysinger M M, Carchia M, Irwin J J, Shoichet B K. Directory of 

Useful Decoys, Enhanced (DUD-E): Better Ligands and Decoys 
for Better Benchmarking. J Med Chem 2012; 55 (14): 6582-6594. 

 

 

Graphical Abstract 

 

 

 

 

 

  

 

 

 

 

 

 

 


