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ABSTRACT
We study the dust properties of 192 nearby galaxies from the JINGLE survey using photometric
data in the 22–850 μm range. We derive the total dust mass, temperature T, and emissivity
index β of the galaxies through the fitting of their spectral energy distribution (SED) using
a single modified blackbody model (SMBB). We apply a hierarchical Bayesian approach
that reduces the known degeneracy between T and β. Applying the hierarchical approach, the
strength of the T–β anticorrelation is reduced from a Pearson correlation coefficient R = −0.79
to R = −0.52. For the JINGLE galaxies we measure dust temperatures in the range 17−30 K
and dust emissivity indices β in the range 0.6−2.2. We compare the SMBB model with the
broken emissivity law modified blackbody (BMBB) and the two modified blackbody (TMBB)
models. The results derived with the SMBB and TMBB are in good agreement, thus applying
the SMBB, which comes with fewer free parameters, does not penalize the measurement of the
cold dust properties in the JINGLE sample. We investigate the relation between T and β and
other global galaxy properties in the JINGLE and Herschel Reference Survey (HRS) sample.
We find that β correlates with the stellar mass surface density (R = 0.62) and anticorrelates
with the H I mass fraction (MH I/M∗, R = −0.65), whereas the dust temperature correlates
strongly with the star formation rate normalized by the dust mass (R = 0.73). These relations
can be used to estimate T and β in galaxies with insufficient photometric data available to
measure them directly through SED fitting.

Key words: dust, extinction – galaxies: evolution – galaxies: ISM – submillimetre: ISM.

1 IN T RO D U C T I O N

Interstellar dust plays an important role in galaxies: it helps to
balance gas heating and cooling and the surface of dust grains
provides a favourable place for chemical reactions to occur. Dust
contributes only a small fraction of the mass of the interstellar
medium (ISM), but in normal star-forming galaxies it can re-radiate
up to ∼ 30 per cent of the stellar light in the infrared (e.g. Clements
et al. 1996).

The two main places where dust is formed are in the ejecta of
core-collapse supernovae and in the envelopes of asymptotic giant
branch (AGB) stars (Galliano, Galametz & Jones 2018). These
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two production mechanisms alone however cannot account for the
amount of dust observed in high-redshift galaxies (Bertoldi et al.
2003; Priddey et al. 2003; Rowlands et al. 2014; Michałowski 2015;
Watson et al. 2015). Grain growth is another mechanism that can
increase the dust content of a galaxy, but it is not well understood
how much this process can contribute to the total dust production
(Barlow 1978; Ferrara, Viti & Ceccarelli 2016; Ceccarelli et al.
2018). In order to resolve this tension, first we need to improve our
understanding of all the mechanisms of dust production and growth.
Secondly, it is necessary to have tools to accurately measure the dust
content of distant galaxies and have a good understanding of the
uncertainties on these measurements; this is the question this paper
tackles.

Dust masses are measured by fitting the spectral energy distri-
bution (SED) of galaxies in the far-infrared/sub-millimetre spectral
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range. The standard model used is a modified blackbody function
(MBB), which depends on the dust mass, temperature (T), and
emissivity index β. An anticorrelation between temperature and β

has been observed in galactic sources and luminous infrared galaxies
(Dupac et al. 2003; Yang & Phillips 2007; Désert et al. 2008).
However, it has been shown that noise in the data can introduce
an artificial anticorrelation between T and β (e.g. Shetty et al.
2009a,b). An incorrect estimate of T and β would consequently
bias the measurement of the dust mass. A way to overcome this
problem and break the T−β degeneracy is to use a hierarchical
Bayesian approach (Kelly et al. 2012; Juvela et al. 2013; Veneziani
et al. 2013; Galliano 2018). The hierarchical approach uses the
information from the parameter distribution of the entire sample of
galaxies to better constrain temperature and β for each single galaxy.
The hierarchical method has the advantage that it does not require
knowing the prior distribution of the parameters before the fitting,
but can infer the parameters describing the prior directly during
the fitting procedure, after assuming the shape of the distribution.
The limitation of this is that the prior is only valid for the sample
of galaxies under consideration, i.e. the prior depends on the
population that one is considering.

The Herschel Space Observatory1 (Pilbratt et al. 2010) has been
key for the study of dust in nearby galaxies, providing photometric
observations in the wavelength range 100–500 μm, that allowed
to characterize the shape of their far-infrared SED. The Herschel
Reference Survey (HRS; Boselli et al. 2010) is a guaranteed time
program that measured the far-infrared SED of ∼300 nearby
galaxies. Using HRS galaxies, Cortese et al. (2014) show that
their far-infrared and sub-mm colours are inconsistent with a single
modified blackbody (SMBB) model with the same emissivity index
β for all galaxies.

Dust continuum observations can also be used to infer the
molecular gas mass of a galaxy. It has been shown that the dust
continuum luminosity of galaxies correlates with the CO luminosity
(Hildebrand 1983; Eales et al. 2012; Magdis et al. 2012; Scoville
et al. 2014; Groves et al. 2015) and this relation can be used to
infer the molecular gas mass of a galaxy by applying a molecular
gas-to-dust ratio. This method can be extremely useful for faint
or high-redshift galaxies, since the dust emission is brighter and
therefore easier to observe than the CO line emission. This method
can therefore be beneficial for measuring the molecular gas content
of large samples of galaxies.

The JINGLE (JCMT dust and gas In Nearby Galaxies Legacy
Exploration), survey is a large program on the James Clerk Maxwell
Telescope (JCMT) which aims to characterize the dust and molec-
ular gas in nearby galaxies and study the relation between the two
(Saintonge et al. 2018). JINGLE combines dust observations from
the SCUBA-2 camera on the JCMT (and from Herschel), with the
cold gas measurements obtained with the JCMT RxA instrument.
With both measurements of the dust and cold gas properties for a
statistical sample of nearby galaxies, we can study the variations in
the dust-to-gas mass ratio as a function of galaxy and dust properties.

One of the objectives of the survey is to benchmark dust
scaling relations with other galaxy properties such as stellar mass,
metallicity, and star formation rate (SFR). These relations can be
used to estimate the dust temperature and dust emissivity index in
galaxies for which there are not enough photometric data available

1Herschel is an ESA space observatory with science instruments provided
by European-led Principal Investigator consortia and with important partic-
ipation from NASA.

to measure them directly through SED fitting. This can be useful
especially for high-redshift galaxies.

An excess of emission at wavelengths ≥500 μm with respect to
the MBB model has been observed in numerous dwarf galaxies
(e.g. Galametz et al. 2011; Rémy-Ruyer et al. 2013, 2015), in late-
type galaxies (Dumke, Krause & Wielebinski 2004; Bendo et al.
2006; Galametz et al. 2009), in the Magellanic Clouds (Bot et al.
2010; Israel et al. 2010), and in M33 (Hermelo et al. 2016; Relaño
et al. 2018). The origin of this ‘sub-mm’ excess is still an open
question. The SCUBA-2 observations at 850 μm can help to place
better constraints on the sub-mm slope and investigate the presence
of this excess in the JINGLE sample.

In this paper we take advantage of the large and homogeneous
JINGLE sample and apply a hierarchical Bayesian approach to
reduce the T−β degeneracy and obtain more accurate measure-
ments of the dust parameters using MBB models. The hierarchical
approach is crucial to disentangle dust temperature T and emissivity
index β and allows us for the first time to study the independent
relations of these two dust quantities with other galaxy global
properties.

This paper is organized as follows. In Section 2, we present the
sample and the data used in this paper. Then we describe the classical
and hierarchical Bayesian SED fitting methods and compare the two
methods using simulated SEDs (Section 3). Section 4 illustrates the
results of the SED fitting of the JINGLE sample, the T–β relation,
and comparison of different MBB models. In Section 5, we derive
scaling relations between dust quantities and other global galaxy
properties. Finally, in Section 6, we summarize the main results and
our conclusions. Readers who are less interested in the statistical
methods and tests of the fitting methods may wish to skip ahead to
Section 4.

2 SAMPLE AND DATA

2.1 JINGLE sample

The 192 galaxies in the JINGLE sample have stellar masses in the
range log M∗/M� = 9−11.3 and are in the redshift range 0.01 < z

< 0.05. The targets were selected from the H-ATLAS survey (Eales
et al. 2010; Maddox et al. 2018) with the requirement to have a
detection ≥3σ in the 250 and 350 μm SPIRE bands. Additionally,
they have been selected to have a flat logarithmic stellar mass
distribution. Due to these requirements, they are mainly main-
sequence star-forming galaxies with −1.5 < log SFR/[M� yr−1]
< 1.5 (see Fig. 1). A detailed description of the selection criteria is
provided in Saintonge et al. (2018). Most of the JINGLE objects are
late-type galaxies, with only seven classified as early-type galaxies
(Saintonge et al. 2018).

Properties of the JINGLE galaxies used in this work (such as SFR,
metallicity, distances, . . . ) are taken from the JINGLE catalogue
(Saintonge et al. 2018). In particular, we use the SFRs and stellar
masses measured with MAGPHYS (da Cunha, Charlot & Elbaz 2008).
In this paper, we refer to JINGLE galaxies using their corresponding
JINGLE ID, as described in the JINGLE catalogue (Saintonge et al.
2018).

2.2 HRS sample

To extend our analysis to a larger range in galaxy properties, we
include in our analysis also galaxies from the HRS (Boselli et al.
2010). The HRS is a volume-limited sample (15 Mpc ≤ D ≤ 25
Mpc) of 323 galaxies, with flux limits in the K band to minimize
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Figure 1. Distribution of the JINGLE and HRS sample in the SFR–M∗
plane. The position of the star formation main sequence (Saintonge et al.
2016) is shown as a dashed line, the 0.4 dex dispersion is shown by dotted
lines. The grey contours show the distribution of SDSS galaxies at redshift
z < 0.05.

selection effects due to dust and young high-mass stars. A large
fraction of HRS galaxies lie in clusters, with 47 per cent of the
HRS galaxies listed in the Virgo Cluster Catalogue alone. They
have stellar masses in the range log M∗/M� = 8.4−11.3. Galaxies
from the HRS have been observed in the five Herschel bands (at
100, 160, 250, 350, and 500 μm), but do not have observations at
850 μm. In our analysis we use the SFR and stellar masses measured
with MAGPHYS by De Vis et al. (2017), to be consistent with the
JINGLE measurements.

Fig. 1 shows the JINGLE and HRS galaxies on the SFR–M∗ plane.
With respect to the JINGLE galaxies, the HRS sample includes
galaxies which are less massive (log M∗ < 9) and with lower SFR
(−2 < log (SFR/[M� yr−1]) < 0.6, mean log (SFR/[M� yr−1]) =
−0.71) compared to JINGLE, which has a mean log (SFR/[M�
yr−1]) = 0.04. HRS galaxies are also less dusty than JINGLE targets
(De Looze et al., in preparation), since contrary to JINGLE they have
not been selected based on detection in the infrared bands. The HRS
sample includes also a large number of early-type galaxies (62/323;
Smith et al. 2012a), which are not well represented in the JINGLE
sample (7/192). Therefore by including this sample in our analysis,
we can test whether the dust scaling relations that we find with the
JINGLE sample hold also for other types of galaxies. Additionally,
increasing the dynamical range of galaxy properties will help to
constrain better the dust scaling relations.

2.3 Data

2.3.1 JINGLE

Our data set consists of photometric points at 22 μm (WISE),
60 μm (IRAS), 100, 160 μm (Herschel/PACS), 250, 350, 500 μm
(Herschel/SPIRE), and 850 μm (SCUBA-2). A detailed description
of the JINGLE photometric data set is given in Smith et al. (2019)
and De Looze et al. (in preparation). Here, we summarize the most
important points. The fluxes of the WISE, Herschel, and SCUBA-2
bands have been extracted from matched apertures based on the

SPIRE 250 μm band. The flux extraction is described in detail by
Smith et al. (2019). One galaxy (JINGLE 62) has been removed
from the sample since it is not detected in the 250 μm band and
therefore it is not listed in the release version of the H-ATLAS DR2
catalogue (Maddox et al. 2018). Thus, the sample analysed in this
work consists of 192 galaxies.

We consider upper limits for fluxes with peak signal-to-noise ratio
(S/N) < 3. Since the CO(3–2) 345.79 GHz line emits in the 850 μm
band, we corrected the SCUBA-2 flux by subtracting the estimated
contribution of the CO(3–2) line (for details see Smith et al. 2019).
After subtracting the CO(3–2) emission, some of the fluxes become
negative, due to the uncertainties in the 850 μm fluxes and in the
CO(3–2) predictions. These fluxes are consistent with zero within
the uncertainties and are considered as upper limits. In our sample,
there are 66 galaxies with peak S/N < 3 and additionally four
galaxies have negative 850 μm flux, even though their peak S/N
> 3 before subtraction of the CO(3–2) contribution. For all these
cases, we use conservative upper limits equal to five times the flux
uncertainty in that band.

The IRAS 60 μm fluxes are derived using the Scan Processing
and Integration Tool (SCANPI2), following the strategy of Sanders
et al. (2003). In our sample, 69/192 galaxies have 5σ upper limits for
the 60 μm flux and 22/192 do not have IRAS 60 μm observations.

2.3.2 HRS

For the HRS sample, we have flux measurements in the
Herschel/PACS (Cortese et al. 2014) and Herschel/SPIRE bands
(Ciesla et al. 2012), from 100 to 500 μm. We note that, contrary
to JINGLE, this sample does not have observations at 850 μm,
therefore the long-wavelength slope of the SED can be constrained
only by the 500 μm point. In the case of non-detections, we consider
upper limits equal to five times the flux uncertainties as we do for
the JINGLE sample.

We exclude from the sample 39 galaxies which are not detected
in all of the Herschel bands, and therefore do not have constraints on
their dust properties. We also exclude four galaxies that do not have
SFR and stellar mass measurements from De Vis et al. (2017). They
were excluded from the sample because their SEDs show signs of
contamination from dust heated by an active galactic nucleus or a
hot X-ray halo or from synchrotron radiation emission (Eales et al.
2017). The final sample consists of 41 early-type and 239 late-type
galaxies, for a total of 280 galaxies.

3 M E T H O D

3.1 Models

To describe the far-infrared and sub-millimetre SED we adopt the
three models employed by Gordon et al. (2014) for the SED fit of
the Magellanic Clouds: single modified blackbody (SMBB), broken
emissivity law modified blackbody (BMBB), and two modified
blackbody (TMBB). We describe below the analytic functions and
the parameters used for the three models:

(i) SMBB: The SMBB model describes the dust emission Fλ

(in units of W m−2 Hz−1 sr−1) at each wavelength λ in the following
way (Hildebrand 1983):

Fλ = Mdust

D2
κλBλ(T ), (1)

2http://irsa.ipac.caltech.edu/applications/Scanpi/
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where Mdust is the dust mass in the galaxy and D is the distance
of the galaxy. Bλ(T) is the Planck function for the emission of a
blackbody with a dust temperature T given by

Bλ(T ) = 2hc2

λ5

1

exp
(

hc
kBT λ

)
− 1

. (2)

The dust mass absorption coefficient κ describes which dust mass
gives rise to an observed luminosity. The value of κ depends on
the physical properties of the dust, such as the mass density of the
constituent materials, the efficiency with which they emit, the grain
surface-to-volume ratio, and the grain size distribution (Köhler,
Ysard & Jones 2015; Ysard et al. 2018). The SMBB applies a dust
emissivity power law to characterize the behaviour of κ as a function
of wavelength:

κλ = κ0

(
λ0

λ

)β

. (3)

where κ0 is the reference dust mass absorption coefficient. Lab-
oratory studies found that the absorption coefficient depends also
on the dust temperature and dust emissivity index β, with higher
κ values observed for higher temperatures and lower β values
(Coupeaud et al. 2011). For simplicity, here we assume a constant
value κ0 = κ(500 μm) = 0.051 m2 kg−1 from Clark et al. (2016).
This model has three free parameters (Mdust, T, and β), and assumes
that the dust emission can be described by a dust component with a
single temperature. At wavelengths shorter than 100 μm, a second
warmer dust component can contribute to the FIR emission (e.g.
Relaño et al. 2018). Therefore for this model, we use only the
flux bands with wavelengths ≥100 μm. Additionally, we use the
60 μm point as an upper limit, in order to better constrain the dust
temperature.

(ii) BMBB: When fitting the FIR SED with an SMBB model,
some galaxies show an excess in the flux at wavelengths ≥500 μm,
called ‘sub-millimetre’ excess (Lisenfeld et al. 2002; Galliano et al.
2003; Dumke et al. 2004; Bendo et al. 2006; Galametz et al. 2009;
Bot et al. 2010; Israel et al. 2010; Hermelo et al. 2016). The BMBB
model assumes that the sub-mm excess is due to variations in the
wavelength dependence of the dust emissivity law. These variations
are parametrized by a broken power law:

κλ =

⎧⎪⎨
⎪⎩

κ0

(
λ0
λ

)β1
if λ < λb

κ0

(
λ0
λb

)β1
(

λb
λ

)β2
if λ > λb

, (4)

where λb is the wavelength of the break. This model has five free
parameters: Mdust, T, β1, β2, and λb. Also for this model, we use
only the flux bands with wavelengths ≥100 μm. In order to have
good constraints on the fitting parameters, it is crucial to have a
detection of the 850 μm flux. If the SCUBA-2 point is not detected,
an upper limit is not enough to constrain the parameters of this
model. Without the 850 μm flux point, the 500 μm flux point is the
only one that can be used to determine β2 and λb, leading to large
uncertainties on their values.

(iii) TMBB: The TMBB model assumes that the FIR SED is
emitted by two dust populations with different temperatures. The
dust emission is parametrized by TMBB: one for the cold dust
(indicatively T < 40 K) and one for the warm dust (indicatively T >

40 K):

Fλ = F
SMBBcold
λ + F

SMBBwarm
λ , (5)

where the two SMBB components are defined as above. In order
to reduce the number of free parameters, we fix the β value of

the warm component to 1.5 (Coupeaud et al. 2011; Boselli et al.
2012), while we leave the β value of the cold component as a free
parameter. So in this model we have five free parameters: Mcold,
Tcold, βcold, Mwarm, and Twarm. For the fitting, we use the fluxes in all
available bands from 22 to 850 μm.

All these models assume that dust grains are optically thin.
According to dust models, this assumption holds for wavelengths
≥100 μm, while at shorter wavelengths it is possible that dust is
optically thick (Draine & Li 2007). Casey (2012) modelled the SED
of 65 luminous infrared galaxies from the GOALS survey (Armus
et al. 2009) and found that even if the dust is optically thick, the
difference in the SED shape at 22 μm would be small. Utomo et al.
(2019) studied the dust emission at resolved scales in four nearby
galaxies (Small and Large Magellanic Clouds, M31, and M33)
and found that most of the dust emitting at wavelengths longer
than 100 μm is optically thin. They observe that at wavelengths
∼20 μm some regions of the galaxies become optically thick, but
on global galaxy scales we do not expect these regions to dominate
the emission.

We apply the SMBB model to both the JINGLE and HRS sample,
while we apply the BMBB and TMBB models only to the JINGLE
sample. We make this decision because for the HRS sample we do
not have the 850 μm flux point, and therefore we do not have enough
flux points for models with a large number of free parameters.
Additionally, for the BMBB model it is very important to have the
850 μm point to constrain the emissivity index β2 after the break.
Fig. 2 shows an example of the SED fitting of one galaxy from the
JINGLE sample using the three models.

3.2 Introduction to the Bayesian SED fitting method

In this section, we briefly describe the Bayesian approach used for
the SED fitting (we follow the same notation as in Galliano 2018).
Readers who are less interested in the statistical methods may wish
to go directly to the results presented in Section 4. The observed
SED of a galaxy (Fobs) can be described in the following way:

F obs(λj ) = F mod(λj , θ ) + ε(λj ) · F err(λj ), (6)

where Fobs(λj) is the flux observed at the wavelength λj and
F mod(λj , θ ) is the flux described by our model with parameters θ .
The last term describes the deviation of the observed flux from the
model due to random noise: Ferr(λj) is the amplitude of the noise
and ε(λj) is a random variable with mean 〈ε〉 = 0 and standard
deviation σ (ε) = 1. We can reverse the previous formula to express
ε(λj) as a function of the other quantities:

ε(λj ) = F obs(λj ) − F mod(λj , θ )

F err(λj )
. (7)

The goal is to find the best parameters to fit the data by minimizing
the offset between the model and the data. From a Bayesian point
of view, this is equivalent to maximizing the likelihood of the
model, given the data. The probability of the data given the model
parameters θ can be expressed as

p(Fobs|θ ) =
m∏

j=1

p(ε(λj , θ )), (8)

where Fobs = (
F obs(λ1), . . . , F obs(λm)

)
, is the vector containing

the flux emission at each waveband j = 1, . . . , m. We are interested in
the probability of the model parameters, knowing the observations.
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Figure 2. Example of FIR SED of one galaxy from the JINGLE sample, fitted with the non-hierarchical approach using the three models: SMBB (left-hand
panel), BMBB (middle panel), and TMBB (right-hand panel). The shaded regions show the lower and upper 1σ uncertainties on the SED models, defined by
taking the maximum and minimum flux values of the models with likelihood values in the highest 68th percentile.

Thus, we can use the Bayes’ theorem to write the expression:

p(θ |Fobs) = p(Fobs|θ ) · p(θ)

p(Fobs)
∝ p(Fobs|θ ) · p(θ), (9)

where p(θ) is the ‘prior’ distribution and p(θ |Fobs) is the ‘posterior’
distribution. The denominator p(Fobs) can be neglected since it is
constant for a given set of observed fluxes. By sampling the posterior
distribution in the parameter space we can construct the posterior
probability density function (PDF). Examples of posterior PDFs
are shown in the appendix (Fig. D1). The figure shows the PDFs
obtained from the SED fit of one galaxy using the SMBB, BMBB,
and TMBB models.

3.3 Hierarchical Bayesian method

The difference between the classical and hierarchical Bayesian
method is that in the former the prior distribution is an assumption
and in the latter it is defined by the data sample (e.g. Gelman et al.
2004; Galliano 2018). Hierarchical methods require therefore a pop-
ulation of objects, which are used to define the prior distributions.
In the case of SED fitting, the sample can be formed by multiple
spatially resolved regions of the same galaxy or by a sample of
galaxies with similar properties. The entire sample is then fitted
simultaneously, in order to extract both the information about the
prior distribution of the sample and the posterior distribution of the
single elements of the sample.

Kelly et al. (2012) showed that the hierarchical method can be
used to reduce the degeneracy between T and β. This approach
has subsequently been used in other studies to reduce the T–β

degeneracy (Juvela et al. 2013; Veneziani et al. 2013; Galliano
2018). The key assumption behind the hierarchical approach is that
the dust parameters of our sample of galaxies follow a common
distribution. In our case we assume that they follow a Student’s
t-distribution. Thanks to this assumption, we are able to better
constrain model parameters, especially for galaxies with low S/N,
where a large range of combinations of T and β provide reasonably
good fits to the data. In those cases, the prior helps to constrain
the range of possible T and β. The key point of the hierarchical
approach is that we do not need to specify the mean and standard
deviation of the prior distribution before doing the fit, but they can
be inferred by the data.

The new parameters describing the prior distribution of the
parameters θ are called hyper-parameters. The commonly used
hyper-parameters are

(i) μ: the average of the parameter vector θ ;

(ii) �: the covariance matrix describing the standard deviation
and correlation of θ .

Using this formalism, the posterior distribution of the parameters
given the data p(θ |Fobs) for the ith galaxy in the sample becomes

p(θi |Fi
obs, μ, �) ∝ p(Fi

obs|θi ) · p(θi |μ, �). (10)

This is the hierarchical equivalent of equation (9). The posterior
distribution of the parameters and hyper-parameters for the entire
sample of n galaxies is

p(θ1, . . . , θn, μ, �|F1
obs, ..., Fn

obs) ∝
n∏

i=1

p(θi |Fi
obs, μ, �) · p(μ) · p(�)

∝
n∏

i=1

p(Fi
obs|θi ) · p(θi |μ, �) · p(μ) · p(�), (11)

where p(μ) and p(�) are the prior distributions of the hyper-
parameters. When compared to the classical Bayesian method, the
hierarchical method is able to recover the distribution of parameters
with better precision, especially if the noise in the data is high (Kelly
et al. 2012; Galliano 2018). In that case, the hierarchical approach
uses the information about the parameter distribution obtained
from the rest of the sample to better constrain the parameters for
the particular objects where the quality of the data is low. The
hierarchical method will not necessarily perform better in measuring
the parameter of a single object, but it will be less biased when
measuring the distribution of parameters of the entire population.

3.4 Noise distribution

In this section, we describe the functions used to model the noise dis-
tribution for both the non-hierarchical and hierarchical approaches.
The noise is usually modelled with a normal distribution or a
Student’s t-distribution. The Student’s t-distribution has a higher
probability in the tails with respect to the normal distribution,
allowing for more outliers. Its shape is described by the number
of degrees of freedom f: as f decreases, more probability will be in
the tails of the distribution. The normal distribution is a special case
of the t-distribution with the number of the degrees of freedom that
goes to infinity, f → ∞.

The probability density of a normal distribution is defined as

Normal(y|μ, σ ) = 1√
2πσ

exp

(
− 1

2

(
y − μ

σ

)2
)

, (12)

where μ is the mean and σ is the standard deviation. The multivariate
normal distribution is the generalization of the one-dimensional

MNRAS 489, 4389–4417 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/489/3/4389/5552673 by :: user on 26 Septem
ber 2019



4394 I. Lamperti et al.

Table 1. Prior parameter ranges assumed
for the Bayesian non-hierarchical SED mod-
elling using the SMBB function.

Parameter Range

log Mdust/M� (5, 9)
T (K) (5, 50)
β (0.1, 3)

normal distribution to a higher dimension m:

MultiNormal(y|μ, �) = 1

(2π)m/2

1√|�|

× exp

(
− 1

2
( y − μ)T �−1( y − μ)

)
, (13)

where m is the dimension of the vector �y, � is the m × m covariance
matrix, and ( y − μ)T indicates the transpose of the vector ( y − μ).

The Student’s t-distribution is defined as

Student(y|μ, σ, f ) = 
((f + 1)/2)


(f /2)

1√
f πσ

(
1 + 1

f

(
y − μ

σ

)2
)− f +1

2

, (14)

where f is the number of degrees of freedom. The multivariate
Student’s t-distribution is the generalization of the one-dimensional
distribution to a higher dimension m:

MultiStudent(y|μ, �, f ) = 
((f + m)/2)


(f /2)

1

(f π)m/2

1√|�|

×
(

1 + 1

f
( y − μ)T �−1( y − μ)

)− f +m
2

, (15)

where m is the dimension of the vector y.
We expect to observe a flux excess at 850 μm for some galaxies,

given the fact that the sub-mm excess has been reported in numerous
studies (e.g. Galametz et al. 2011; Rémy-Ruyer et al. 2013,
2015; Hermelo et al. 2016). Since the 850 μm fluxes have usually
larger uncertainties than the other points, if we use a Student’s
t-distribution, the SMBB model will assume that every change in
slope at 850 μm is due to the error being underestimated, rather than
to a physical effect. The model will then ‘ignore’ the 850 μm point,
and produce a fit considering only the Herschel points. Since we
believe that there is information in the longer wavelength points,
we therefore decide to use a normal distribution for the error. In
Appendix A, we compare the results obtained using the Student
and normal distribution.

In both the non-hierarchical and hierarchical case, we model the
noise as

p(Fobs|Fmod(θ), C) = MultiNormal(Fobs|Fmod(θ ), C), (16)

where C is the covariance matrix, which describes the uncertainties
associated with the flux densities in the different wavebands (see
Section 3.6 for the definition of the covariance matrix).

3.5 Prior distributions

In this section, we describe the prior distributions assumed for the
hierarchical and non-hierarchical method.

Non-hierarchical: For the prior distribution of the parameters θ ,
we assume uniformly distributed (‘flat’) priors, i.e. p(θ ) = 1, in the
ranges described in Table 1.

Hierarchical: For the definition of the prior distributions in the
hierarchical framework, we follow Kelly et al. (2012), Galliano
(2018), and the STAN manual (Stan Development Team 2017).

(i) Parameters: For the definition of the prior distributions of
the parameters given the hyper-parameters, we follow Kelly et al.

Table 2. Ranges of the priors on the hyper-
parameter μ (sample mean) for the Bayesian
hierarchical SED modelling using the SMBB,
BMBB, and TMBB functions.

Hyper-parameter Range

SMBB
μ(log Mdust/M�) (6, 9)
μ(T) (K) (15, 50)
μ(β) (0.5, 3)

BMBB
μ(log Mdust/M�) (5, 9)
μ(T) (K) (5, 50)
μ(β1) (0, 5)
μ(β2) (0, 5)
μ(λb) (μm) (420, 500)

TMBB
μ(log Mcold/M�) (6, 10)
μ(Tcold) (K) (5, 40)
μ(βcold) (0.5, 5)
μ(log Mwarm/M�) (2, 7)
μ(Twarm) (K) (50, 90)

(2012) and Galliano (2018). We assume a multivariate Student’s
t-distribution with f = 8 degrees of freedom:

p(θi |μ, �) = MultiStudent(θi |μ, �, f = 8). (17)

We also tried to vary the number of degrees of freedom and did
not see any differences in the results. Assuming a Student’s t-
distribution allows one to have more galaxies with dust parameters
that are ‘outliers’ from the mean of the sample. In this way, we
make sure that our assumption that the galaxies belong to the same
population is not too stringent. We note that the parameters θi are
not constrained within a certain range but they are allowed to take
any value. Their distribution is described by the prior distribution
and we set some constraints on the allowed range of the hyper-priors
(mean and standard deviation) that determine the shape of the priors
(see next point).

(ii) Hyper-parameters: For the mean μ of the parameters, we
assume a uniform prior with a large parameter range. In this way
we ensure that the prior is proper (i.e.

∫
p(θ )dθ < ∞), and at the

same time we maintain the prior vague enough to not constrain the
results (Gelman & Hill 2007; Tak, Ghosh & Ellis 2018). The prior
ranges for μ are shown in Table 2. We note that we set the prior
range of μ(Twarm) to be >50 K, because we want the distribution
of warm temperatures to be well separated from the distribution
of cold temperatures. For the covariance matrix �, we use the
separation strategy from Barnard, McCulloch & Meng (2000). This
formalism ensures that the prior distributions of the correlations
between parameters are uniform over the range [ − 1, 1], meaning
that all values of the correlations are equally likely. The separation
strategy breaks down the covariance matrix in

� = SRS, (18)

where S is a diagonal matrix with the values of the standard deviation
and R is the correlation matrix. Both S and R have dimension q ×
q, where q is the number of free parameters in the model. The prior
distribution of the hyper-parameters is then

p(μ) · p(�) ∝ p(μ) · p(S) · p(R). (19)

For the priors on the S and R, we follow the recommendations given
by the STAN manual (Stan Development Team 2017). For the priors
on the diagonal elements of S, we use a weakly informative prior,

MNRAS 489, 4389–4417 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/489/3/4389/5552673 by :: user on 26 Septem
ber 2019



JINGLE – V. Dust properties 4395

parametrized by a half-Cauchy distribution with a small scale σ

= 2.5 (Stan Development Team 2017):

p(Sk,k) = Cauchy(0, σ ) = 1

πσ

1

1 +
(

Sk,k

σ

)2 , (20)

where Sk, k > 0, for k = 1, . . . , q. For the priors on the correlation
matrix R, we use an LKJ correlation distribution with shape ν = 2:

p(R) = LKJ Corr(R, ν) ∝ det(R)ν−1 (21)

(see Lewandowski, Kurowicka & Joe 2009 for definitions). The
basic idea of the LKJ correlation distribution is that as ν increases,
the prior increasingly concentrates around the identity matrix.

3.6 Covariance matrix, beam, and filter corrections

In order to perform an accurate fit, it is important to take into account
correctly the uncertainties associated with each flux measurement as
well as the correlation between these uncertainties. The covariance
matrix C describes the uncertainties associated with the flux
densities in the different wavebands, and includes both calibration
and measurement uncertainties. Calibration uncertainties can be
correlated between bands observed with the same instrument. For
the definition of the covariance matrix, we follow Gordon et al.
(2014). The calibration covariance matrix is defined as

Ccal
j,k = [Acor,j ,k + Auncor,j ,k] = [σ 2

cor,j ,k + δj,kσ 2
uncor,j ,k], (22)

where Acor is the matrix of the noise correlated between bands,
Auncor is the diagonal matrix of repeatability that is uncorrelated
between bands. σ cor,j,k and σ uncor,j,k are thepercentage of correlated
and uncorrelated uncertainties, respectively, between the jth and kth
band, and δj,k is one for j = k and zero otherwise. The calibration
uncertainty values that we use are reported in Table 3, given
inpercentage of the flux.

The total covariance matrix C is a combination of the calibration
and measurement uncertainties:

Cj,k = Ccal
j,k · Fj · Fk + F err

j · F err
k , (23)

where Fj and Fk are the fluxes in the jth and kth waveband, and F err
j

and F err
k are the corresponding measurement uncertainties.

The colour and beam corrections applied to our data are described
in detail in De Looze et al. (in preparation).

Non-hierarchical: The filter corrections are applied to the model
SED by convolving the model flux points with the appropriate
filter response curve in each band. The Herschel/SPIRE fluxes
were corrected also for the effective beam area, which depends
on the shape of the spectrum due to the absolute SPIRE calibration
in units of flux density per beam. The SED shape is described
by the dust temperature T and the emissivity index β. At each
step of the Markov chain Monte Carlo (MCMC) algorithm, the
Herschel/SPIRE fluxes are corrected according to the two model
parameters, before comparing them to the fluxes of the SED model.
For the BMBB model, we applied the beam and colour corrections
using β1 or β2 depending on the wavelength position of the break λb.
For the TMBB model, we calculate which of the two components
(warm or cold) contribute the most to the flux in every band. Then
we calculate the corrections using the temperature T and β values
of the dominant component in each band.

Hierarchical: The beam and filter corrections make it more
difficult for the code to converge, since in every MCMC step
the fluxes are slightly modified. This is more problematic for
the hierarchical approach, because it has a larger number of

free parameters. Therefore, in order to achieve convergence in a
reasonable amount of time, we apply a slightly different approach
to implement the beam and filter corrections in the hierarchical case.
We first do the hierarchical fit without beam and filter corrections.
Then we apply the beam and filter corrections on the fluxes based
on the values of T and β measured from the fit with no corrections,
and finally we repeat the hierarchical fit using the ‘corrected’ fluxes.
The beam and filter corrections are generally small compared to the
flux uncertainties, therefore this approximation of the corrections
does not affect the results significantly.

3.7 Implementation of the SED fitting

Non-hierarchical method: For the implementation of the classical
Bayesian SED fitting method, we employ the affine-invariant
ensemble sampler for MCMC (Metropolis et al. 1953) code EMCEE

(Goodman & Weare 2010; Foreman-Mackey et al. 2013). The
MCMC algorithm is designed to sample the posterior distribution
of the unknown parameters, i.e. the probability of the parameters
given the data. The values of the parameters with the corresponding
uncertainties can then be inferred from the posterior distribution. We
consider as results the median values of the marginalized posterior
probability distributions, and we estimate the uncertainties from the
values corresponding to the 16th and 84th percentiles.

To monitor the convergence we look at the effective sample size
(Neff), which is defined as the number of iterations divided by the
integrated autocorrelation time Neff = Niter/τ int. The autocorrelation
time τ int measures the number of steps after which the drawings are
truly independent (Foreman-Mackey et al. 2013). It is recommended
to have at least Neff > 10, to ensure that the sequence has converged
(Gelman et al. 2004).

Hierarchical method: For the implementation of the hierar-
chical Bayesian fitting we use STAN (Carpenter et al. 2017, http:
//mc-stan.org/), a software for Bayesian inference which employs
the No-U-Turn sampler, a variant of Hamiltonian Monte Carlo
(HMC) sampler. The HMC sampling (Duane et al. 1987; Neal
1994, 2011) is a form of MCMC sampling which uses the gradient
of the logarithmic probability function to accelerate the parameter
exploration and the convergence to the stationary distribution (Stan
Development Team 2017). The HMC algorithm is more efficient
than other MCMC algorithms (as for example the Metropolis–
Hastings algorithm) in sampling the parameter space and in finding
the region of high likelihood, because it samples the probability
distribution with fewer samples. Therefore, it is particularly well
suited for problems with high dimension, as is the case for
hierarchical models. For example, for the hierarchical fit of 100
galaxies using the SMBB model, which has three free parameters,
the dimension is of the order of ∼300. Another advantage of STAN

is that it can sample simultaneously the posterior distribution of
parameters and hyper-parameters. STAN allows to define the model
by specifying the probability distribution of each parameter (or
hyper-parameter) independently, without the need of computing the
full posterior distribution. For the practical implementation, we used
PYSTAN,3 which is the PYTHON interface to STAN (Stan Development
Team 2018).

The recommended method for monitoring the convergence of the
MCMC chains in STAN is computing the potential scale reduction
statistics R̂ (Gelman & Rubin 1992), which gives an estimate of
the factor by which the scale of the posterior distribution may be

3http://pystan.readthedocs.io/en/latest/http://mc-stan.org
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Table 3. Percentage of correlated and uncorrelated uncertainties for the different instruments.

Instrument Waveband Correlated Uncorrelated Reference
(μm) uncertainty uncertainty

(per cent) (per cent)

WISE 22 – 5.7 Jarrett et al. (2011)
IRAS 60 – 20 Sanders et al. (2003); Miville-Deschênes & Lagache (2005)
PACS 100, 160 5 2 Balog et al. (2014), Decin & Eriksson (2007)
SPIRE 250, 350, 500 4 1.5 Bendo et al. (2013)
SCUBA 850 – 10 Smith et al. (2019)

reduced as the number of iterations goes to infinity. If R̂ is large, it
means that increasing the number of iterations is likely to improve
the inference. If R̂ ∼ 1, then we can be confident that the number
of iterations that we are using is large enough. Thus, we set the
requirement that for our runs R̂ < 1.15. We also check that the
effective sample size Neff is always larger than 10.

3.8 Validation of the method with simulations of mock SEDs

We test our fitting methods using simulated FIR SEDs. For the mock
SEDs, we know the input parameter values, thus we can assess how
well our fitting procedure is able to recover them. The simulation
code takes as input parameters the dust mass (log Mdust), temperature
T, and emissivity index β, and it uses these parameters to generate
an SED assuming an SMBB model. Then it extracts the flux density
in the selected wavebands and it adds random noise at each flux
point. We assume the noise to be Gaussian distributed around zero,
with amplitude equal to the noise level. We assume a different noise
level in every band. For the wavebands (100, 160, 250, 350, 500,
850) μm, we use the following noise levels, given aspercentages of
the flux: (20, 10, 5, 10, 20, 25) per cent, respectively. We estimate
these values by taking the mean of the error fraction in each band
from our data.

The goal of the test is to assess how well the non-hierarchical
Bayesian approach can measure the values of temperature and β.
We simulate 100 SEDs with the same input parameters (log Mdust =
8 M�, T = 30 K, β = 1.5), adding to every SED random noise in
every band as explained above. Fig. 3 shows the results in the T–β

plane. As we can see from the figure, an artificial anticorrelation
is generated only from the effect of adding noise to the fluxes.
This suggests that the non-hierarchical Bayesian approach will
always measure a T–β anticorrelation, even if it is not present
in the data. Thus, in order to asses if the T–β anticorrelation is
indeed present in our sample, we need a more sophisticated fitting
method.

We run the same simulation, but this time we use the hierarchical
code to fit the SEDs. The results are in better agreement with
the input value, and do not show any artificial correlation or
anticorrelation between T and β. The non-hierarchical method
measures a large range of temperatures (T = 22−42 K) and β values
(β = 0.8−2.3). The hierarchical method measures smaller ranges
of T = 27−30 K and β = 1.50−1.55, which are closer to the input
values. Consequently, also the dust masses are better measured with
the hierarchical method. The dust masses measured with the non-
hierarchical method are in the range log Mdust/M� = 7.87−8.23,
with typical uncertainties of ∼0.13 dex, while the ones measured
with the hierarchical method are in the range log Mdust/M� =
8.06−8.09, with typical uncertainties 0.02 dex.

We also test whether the codes can recover a positive or negative
T–β correlation. In both cases, the hierarchical method perform

equally or better than the non-hierarchical code. Details of these
simulations can be found in Appendix C.

4 R ESULTS

4.1 JINGLE sample: non-hierarchical versus hierarchical
results

In the previous section we have demonstrated, using simulated
SEDs, that the hierarchical method works better than the non-
hierarchical approach. Here, we apply both methods to the 192
galaxies of the JINGLE sample and we show the advantages of
using the hierarchical method.

We start by using the simplest model, the SMBB. Fig. 4 shows
the comparison of the dust masses, dust temperatures and β derived
with the two approaches. In general, dust masses agree quite well
between the two methods (median difference = 0.07 dex). The dust
masses derived using the hierarchical method are slightly smaller,
and this is probably due to the variations in dust temperatures.
For a given constant flux, higher dust temperatures correspond to
lower dust masses. In the range 15−25 K the dust temperatures
from the hierarchical approach are indeed slightly higher. At
high temperatures, the differences between the two methods are
larger and the non-hierarchical method measures much higher
temperatures (T > 30 K) than the hierarchical method. This is
because as the dust temperature increases, the peak of the SED
moves to shorter wavelengths. If the SED peaks at wavelengths
shorter than 100 μm, it is not sampled by the flux bands considered
in the fit, since for the SMBB we are considering the 60 μm point
as an upper limit. Therefore, it is more difficult to constrain the
temperature. If we were to include flux points at shorter wavelengths
we would need to consider a second MBB component with a warmer
temperature, because the assumption of a single temperature MBB
does not hold over such a large wavelength range. Instead, in the
hierarchical framework, the code uses the information from the
temperature distribution of the galaxy population to constrain T,
and it will consider more likely for the galaxy to have a temperature
close to the population mean temperature than an extreme value.
Therefore, the hierarchical method can better constrain the dust
temperature.

The range of temperatures is smaller in the hierarchical case
(T = 17−30 K), than in the non-hierarchical case (T = 15−48 K).
The same is true for the range of β: in the hierarchical case β =
0.6−2.2, while in the non-hierarchical case β = 0.0−2.5. In the
hierarchical approach, we assume that the population follows a
common distribution, thus the fitting is less likely to return extreme
values of β. However, the hierarchical code can accommodate some
outliers, since we do not define a priori the standard deviation
of the prior distribution. Thus, if the data require it, the standard
deviation can be large, allowing for more ‘extreme’ values of β.

MNRAS 489, 4389–4417 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/489/3/4389/5552673 by :: user on 26 Septem
ber 2019



D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/489/3/4389/5552673 by :: user on 26 Septem
ber 2019



D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/489/3/4389/5552673 by :: user on 26 Septem
ber 2019


