# **Assessment Strategy to 'Future Proof' Students as Computing Practitioners** Helen Partou (h.partou3@herts.ac.uk) & Lindsay Smith (I.1.smith@herts.ac.uk) University of Hertfordshire, UK

## Development > Rollout > Evolution

- Motivation
  - Team-based software development is core module delivery in computing at Hertfordshire
    - Students need relevant software engineering experience(s)
  - Previous software development platform not 'fit for purpose' teaching resource
    - Not compatible/upgradeable/adaptable
    - Overly complicated for 'Zero to Hero' student assessment in a six week development cycle

| 2014-15                                                          | 2015-16                                        | 2015-16<br>Semester A                                            | 2015-16<br>Semester B                                                            | 2016-to-<br>date                                             |
|------------------------------------------------------------------|------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------|
| Research<br>technical<br>options &<br>feasibility of<br>platform | Build<br>platform &<br>supporting<br>resources | Pilot platform<br>as teaching<br>tool with<br>small L7<br>cohort | Larger scale<br>rollout for L5<br>cohort(s) on-<br>campus &<br>distance learning | Multiple<br>module<br>adoption &<br>evolution of<br>delivery |

- Timeline, Scope & Feasibility
  - Development
    - Estimated 500 + staff hours
  - Approximate take up to date
    - In 7 modules
    - Delivered to 1000+ students
    - Assessed equivalent of 200 student teams

## Assessment Strategies to Scope **Student-based Solutions**

Creart Counties D He Management Custom, additions, editing

- Teaching resources are customised to support assessment
  - Demonstration videos, FAQs and supervision supports instructional scaffolding as students gradually increase technical expertise.
    - An example 'Orders' application provides opportunities for formative feedback and minimises the student-tutor 'expectation gap' [2] of assessment deliverables.
- Applications built in the platform are potentially scalable to any real-world scenario
  - Supports constructivism, e.g. cinema film showings
- Limitations for summative assessment include:
  - Managing trade-offs between case study complexity and platform functionality to define project scope
    - For example: matching deliverable technical competences with available assessment timeframe
- Summative assessment strategy has categorised marking criteria
  - **Baseline** = minimum engagement for a pass mark
  - **Advanced** = independent tasks gain higher marks
- Example documentation for software: User Acceptance Tests (UATs)
  - Staff simulate client role to check software is 'fit for purpose'
- UATs support delegation of tasks to team members
  - Promoting "T-Shaped" individuals (specialised generalists) [3]

|                                                                 | Smart Counties R Us Management System: additions, editing,                     |      |      |      |
|-----------------------------------------------------------------|--------------------------------------------------------------------------------|------|------|------|
| 1                                                               | retrieval/display (via filter), and deletion of data by using the system       | Your | Max  |      |
| -                                                               | interface. N.B. This part can all be achieved with the default framework       |      | mark |      |
|                                                                 | implementation                                                                 |      |      |      |
|                                                                 | i) Add new product [1 mark],                                                   |      |      |      |
| a)                                                              | ii) Add new SME [1 mark],                                                      |      | /4   |      |
|                                                                 | iii) Associate a product with an SME [2 marks]                                 |      |      |      |
|                                                                 | i) Add new area [1 mark],                                                      |      |      |      |
| b)                                                              | ii) Add new resident [1 mark],                                                 |      | /4   |      |
| iii) Associate a resident with the area they live in [2 marks]. |                                                                                |      |      |      |
| c)                                                              |                                                                                |      |      |      |
|                                                                 | Section 1 subtotal                                                             | 0    | /20  |      |
| 2                                                               | Smart Counties R Us Management System interface: usability criteria            |      | Mark |      |
|                                                                 |                                                                                |      |      | 、 Us |
| a)                                                              | after user actions                                                             |      | /10  |      |
| b)                                                              | Error/validation messages are meaningful and helpful                           |      | /6   |      |
| c)                                                              |                                                                                |      |      |      |
|                                                                 | Section 2 subtotal                                                             | 0    | /30  |      |
| 3 1                                                             | Smart Counties R Us Management System: advanced features. Weighting of         |      |      |      |
|                                                                 | marks in this part reflect task difficulty. N.B. These all add up to MORE than |      | Mark |      |
|                                                                 | 25 marks, so choose features to implement wisely as 25 marks is the            |      |      |      |
|                                                                 | maximum.                                                                       |      |      |      |
| a)                                                              | Allows deletion and/or disabling of data (ability to reactivate data)          |      | /10  |      |
| b)                                                              | Prevents registering duplicate data, e.g. the same resident twice              |      | /5   |      |
| c)                                                              |                                                                                |      |      |      |
|                                                                 | Section 3 subtotal                                                             | 0    | /25  |      |
|                                                                 |                                                                                |      |      |      |

Are Soft Skills Harder than Hard Skills in

# Purpose-built Platform as a Teaching Tool



#### • Web-based

• We built an open-source development stack with an example 'Orders' system, utilising the Model-View-Controller (MVC) architecture for students to undertake data-driven web programming.

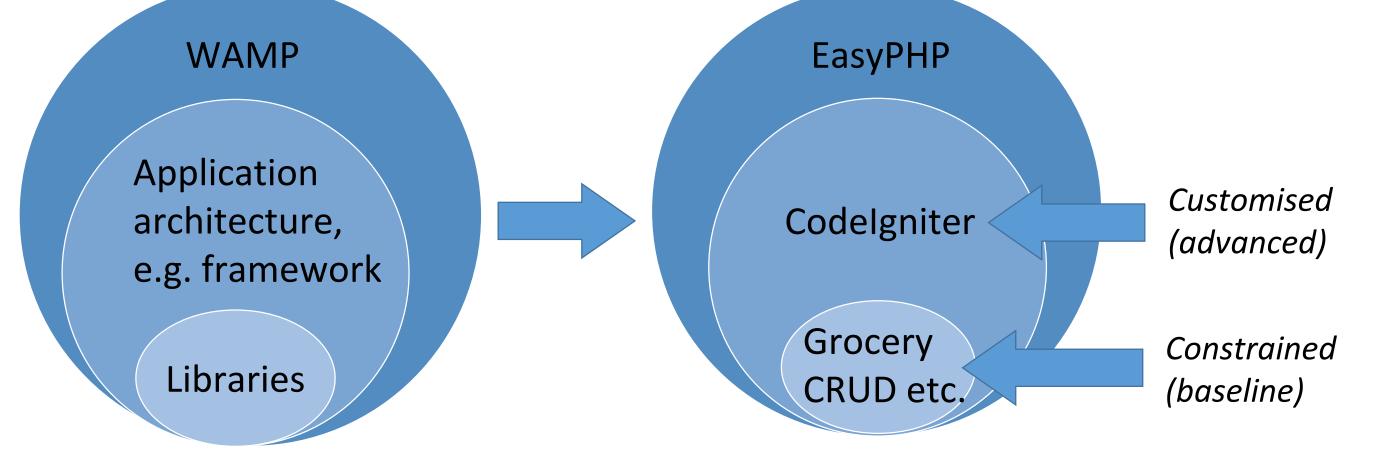


- Portable & robust
  - The tool is 'plug-and-play' and can be integrated with cloud-based tools.
    - Lightweight, compatible with multiple environments, re-usable and 100% reliable to-date.
    - Students can experiment with impunity.



#### Our platform

## Software Development Projects?


### • Problems

- A STEM educational challenge is inherent complexity in delivering software development skills
  - Preparing students for employment in the computing industry
    - Employers cannot put graduates 'in front of a client' [1]
- Teaching 'hard' skills focuses on technological constraints
  - Keeping up with technological change and advances
- Teaching 'soft' skills focuses on team work
  - Student participation: **passengers** (lack of interest, engagement and/or feeling of inferiority) vs. **diligent isolation** (poor delegation, perfectionism and/or presence of passengers)
- Solutions
  - Reduction in technical complexity, e.g. robustness of platform enables 'Zero to Hero' solutions
    - Agile approach, staff development and staff-student feedback
  - Optimising teaching staff engagement with student teams
    - Managing student team autonomy
    - Student and staff teams collaboration
      - Team clinics, tutorial triage

# Industry 4.0 and Future Developments

### **Current developments**

#### Technical



• Exploring integration of the platform with Git-based systems, e.g. Azure DevOps, which facilitates sophisticated version control in the cloud.

### Compassion-focused pedagogy (CfP) [4]

Supporting student team dynamics and task management.

### **Future developments**

• Feasibility of adapting this approach to fast-moving technological change. • How the approach and/or platform integrates with, or could transfer to, other fields and technologies

• Such as Internet of Things (IoT) e.g. 'smart'/cognitive technologies/digitalisation.

### References

[1] Matthews, D. (2016) 'What should computer science degree students learn?'. Times Higher Education. 10 March 2016. Available at: https://www.timeshighereducation.com/news/what-should-computer-science-degree-students-learn [2] Christenson, S., Reschly, A. & Wylie, C. (2012) *Handbook of Research on Student Engagement*. New York: Springer

[3] Rubin, K. (2012) 'T-shaped Skills and Swarming Make for Flexible Scrum and Agile Teams'. Available at: http://www.scrumexpert.com/knowledge/t-shaped-skills-and-swarming-make-for-flexible-scrum-and-agile-teams/

[4] Gilbert, T. (2017) 'When Looking Is Allowed: What Compassionate Group Work Looks Like in a UK University'. In Gibbs, P. (eds.) The Pedagogy of Compassion at the Heart of Higher Education. Cham, Switzerland: Springer. pp. 189-202.

### Poster presented at Advance HE STEM 2019