
Helen Partou (h.partou3@herts.ac.uk) & Lindsay Smith (l.1.smith@herts.ac.uk)

University of Hertfordshire, UK

Assessment Strategy to ‘Future Proof’ Students as Computing Practitioners

Development > Rollout > Evolution

• Motivation

• Team-based software development is core module delivery in 
computing at Hertfordshire
• Students need relevant software engineering experience(s)

• Previous software development platform not ‘fit for purpose’ 
teaching resource 
• Not compatible/upgradeable/adaptable

• Overly complicated for ‘Zero to Hero’ student assessment in a six 
week development cycle

2014-15 2015-16
2015-16 
Semester A

2015-16 
Semester B

2016-to-
date

Research
technical 
options & 
feasibility of 
platform

Build 
platform & 
supporting 
resources 

Pilot platform 
as teaching 
tool with 
small L7 
cohort 

Larger scale 
rollout for L5 

cohort(s) on-
campus & 
distance learning

Multiple 
module 
adoption & 
evolution of 
delivery

Assessment Strategies to Scope 
Student-based Solutions

• Teaching resources are customised to support assessment
• Demonstration videos, FAQs and supervision supports instructional scaffolding as 

students gradually increase technical expertise.

• An example ‘Orders’ application provides opportunities for formative feedback and 
minimises the student-tutor ‘expectation gap’ [2] of assessment deliverables.

• Applications built in the platform are potentially scalable to any real-world 
scenario
• Supports constructivism, e.g. cinema film showings

• Limitations for summative assessment include:
• Managing trade-offs between case study complexity and platform functionality to 

define project scope

• For example: matching deliverable technical competences with available 
assessment timeframe

• Summative assessment strategy has categorised marking criteria 
• Baseline = minimum engagement for a pass mark

• Advanced = independent tasks gain higher marks

• Example documentation for software: User Acceptance Tests (UATs)
• Staff simulate client role to check software is ‘fit for purpose’

• UATs support delegation of tasks to team members

• Promoting “T-Shaped” individuals (specialised generalists) [3]

• Timeline, Scope & Feasibility

• Development 

• Estimated 500 + staff hours

• Approximate take up to date

• In 7 modules 

• Delivered to 1000+ students 

• Assessed equivalent of 200 
student teams

Purpose-built Platform as a Teaching Tool

• Web-based
• We built an open-source development stack with an example ‘Orders’ system, 

utilising the Model-View-Controller (MVC) architecture for students to undertake 
data-driven web programming.

• Portable & robust
• The tool is ‘plug-and-play’ and can be integrated with cloud-based tools.

• Lightweight, compatible with multiple environments, re-usable and 100% reliable 
to-date .

• Students can experiment with impunity. Industry 4.0 and Future Developments

Current developments

• Technical 
• Exploring integration of the platform with Git-based systems, e.g. Azure DevOps, which 

facilitates sophisticated version control in the cloud.

• Compassion-focused pedagogy (CfP) [4]
• Supporting student team dynamics and task management.

Future developments

• Feasibility of adapting this approach to fast-moving technological change.
• How the approach and/or platform integrates with, or could transfer to, other fields and 

technologies

• Such as Internet of Things (IoT) e.g. ‘smart’/cognitive technologies/digitalisation.

References
[1] Matthews, D. (2016) ‘What should computer science degree students learn?’. Times Higher Education. 10 March 2016. Available at: https://www.timeshighereducation.com/news/what-should-computer-science-degree-students-learn

[2] Christenson, S., Reschly, A. & Wylie, C. (2012) Handbook of Research on Student Engagement. New York: Springer

[3] Rubin, K. (2012) ‘T-shaped Skills and Swarming Make for Flexible Scrum and Agile Teams’. Available at: http://www.scrumexpert.com/knowledge/t-shaped-skills-and-swarming-make-for-flexible-scrum-and-agile-teams/ 

[4] Gilbert, T. (2017) ‘When Looking Is Allowed: What Compassionate Group Work Looks Like in a UK University’. In Gibbs, P. (eds.) The Pedagogy of Compassion at the Heart of Higher Education. Cham, Switzerland: Springer. pp. 189-202.

Are Soft Skills Harder than Hard Skills in 
Software Development Projects?

• Problems

• A STEM educational challenge is inherent complexity in delivering software development 
skills
• Preparing students for employment in the computing industry

• Employers cannot put graduates ‘in front of a client’ [1]

• Teaching ‘hard’ skills focuses on technological constraints
• Keeping up with technological change and advances

• Teaching ‘soft’ skills focuses on team work
• Student participation: passengers (lack of interest, engagement and/or feeling of inferiority) vs. 

diligent isolation (poor delegation, perfectionism and/or presence of passengers)

• Solutions
• Reduction in technical complexity, e.g. robustness of platform enables ‘Zero to Hero’ 

solutions

• Agile approach, staff development and staff-student feedback

• Optimising teaching staff engagement with student teams

• Managing student team autonomy

• Student and staff teams collaboration

• Team clinics, tutorial triage

Application
architecture, 
e.g. framework

WAMP

Libraries

Generic Our platform

CodeIgniter

EasyPHP

Grocery
CRUD etc.

Customised
(advanced)

Constrained
(baseline)

Poster presented at Advance HE STEM 2019


