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Abstract. The estimation of microphysical parameters of pollution (ef-
fective radius and complex refractive index) from optical aerosol param-
eters entails a complex problem. In previous work based on machine
learning techniques, Artificial Neural Networks have been used to solve
this problem. In this paper, the use of a classification and regression so-
lution based on the k-Nearest Neighbour algorithm is proposed. Results
show that this contribution achieves better results in terms of accuracy
than the previous work.
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1 Introduction

One of the main important factors that drive climate change is particulate pol-
lution [1]. To understand atmospheric temperatures changes that cause climate
change, it is necessary to study and characterise the optical, chemical and mi-
crophysical properties of these particles in the atmosphere. Some technologies
like radiometers or Light Detection and Ranging (LIDAR) make possible the
observation of aerosols. LIDAR has become a key tool for the characterization
of atmospheric pollution in the atmosphere. LIDAR is the only remote sensing
technique used in research on atmospheric pollution that allows for vertically-
resolved observations of particulate pollution, for example, [2]. Using LIDAR,
optical aerosol parameters can be extracted [3] but more information about par-
ticles is required to understand the impact of pollution on climate change.

Microphysical particle parameters are also of key interest to determine pol-
lution effects. In [4–8], inversion algorithms are used to estimate microphysical
information (particle size or complex refractive index) from optical data. Their
estimation is a very complex task because many factors such as ambient atmo-
spheric humidity, the condensation of gases on existing particles or the mixing
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of particles of different chemical properties modify the values of the optical data
[9]. Due to these difficulties, inversion algorithms are very complex and require
an extensive mathematical background as we are dealing with ill-posed inverse
problems [10].

Therefore, less complex solutions must be proposed as we need techniques
that a) allow for fast data processing in view of current and up-coming LIDAR
space missions; b) offer autonomous data retrieval in view of serious lack of
experts in this research field; and c) provide us with ways of exploiting the in-
formation content of these highly complex data sets in an optimum way. Using
synthetic optical data, authors in [9] have developed a computational model
using Artificial Neural Networks (ANNs) [11] to estimate the effective radius of
particles (reff) and the complex refractive index from combinations of extinction
(α) and backscatter (β) coefficients. Specifically, these authors use values of α
and β at different wavelengths (λ = 355, 532 and 1064 nm). These wavelengths
are currently used by most of the LIDAR system in the world for the investi-
gation of particualate pollution in the atmosphere. Most notably and in view of
advantages not further detailed in this contribution, there has been a push for
emitting all three wavelengths simultaneously in the past 20 years. Five combi-
nations of α and β were tested, resulting in finding the most suitable one which
uses the values of α at λ = 355 and 532 nm (α355 and α532) and the values of
β at λ = 355, 532 and 1064 nm (β355, β532and β1064). For technical reasons the
measurement of α at 1064 nm has become possible just recently. The quality of
these data, however, still needs to be improved before tests with this extended
set of β + α data can be carried out. Moreover, ANNs were evaluated for three
different size ranges of effective radii, that is, particles with reff between 10−100
nm, 110−250 nm and 260−500 nm, respectively. This separation was performed
by hand due to two reasons: a) to limit the computation time and b) to separate
particles according to their nature. Without going into further details particles
in these three different size ranges have different effect on climate change and
human health.

The aim of this work is to investigate whether we can develop a computational
method based on ML techniques which can first classify particles in to the three
categories, then, can estimate particle properties within each category, or not. In
addition, we look for a model with less computational cost than the one proposed
in [9].

2 Data Description

The dataset is the synthetic one used in [9], which was generated using a Mie
scattering algorithm [12]. It contains 1,665,343 particles. According to the three
ranges of reff, there are 330,480 particles with a radius between 10 nm and 100
nm, 503,155 samples with a radius between 110 nm and 250 nm and 831,708
particles with a radius between 260 nm and 500 nm.

The following information for each particle size distribution can be found:
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– Extinction and backscatter coefficients at different wavelengths (355, 532
and 1064 nm). As in [9], the best combination of α and β will be used (α355,
α532, β355, β532 and β1064).

– Mode width, from 1.4 to 2.5 in step of 0.1. The mode width is the geo-
metrical standard deviation of the theoretical model that describes in an
approximate manner the shape (number concentration versus particle size)
of naturally occurring atmospheric size distributions. This shape, referred
to as logarithmic-normal can be described as a Gauss distribution if particle
radius is plotted on a logarithmic scale. More details can be found in e.g.
[13]. The total number of particles in the atmosphere can be modelled by a
sum of sets (distributions) according to the radius. Particle size distributions
in the atmosphere can be described by 5-6 different modes. Each mode has
its own mean radius (or alternatively we can also use mode radius) which
is the value where the size distribution reaches its maximum value) and the
mode width. In the present case we simplified our simulations in the sense
that we did not use combinations of these modes in order to cover the vast
size range of particles from a few nanometers to several tens of micrometers.
In this first set of studies we mimicked these naturally-occurring multimodal
size distributions by the use of single-mode logarithmic-normal (log-normal)
distributions which not only cover the relevant particle radius range but
result in sufficiently realistic optical properties as well. Furthermore, effec-
tive radius is a commonly used number in climate modelling. It reduced the
complexity of size distribution information from mean radius and mode width
(in each mode) to a single number. Alternatively effective radius can also be
used for each individual mode. Optical properties of particle size distribu-
tions described in terms of effective radius are sufficiently close to optical
properties of the underlying size distribution when used in modelling.

– Mean radius (nm), from 10 nm to 500 nm in step size of 10.

– Real (from 1.2 to 2 in step size of 0.025) and imaginary part (from 0 to
−0.1 in step size of 9.99 · 10−6) of the complex refractive index. This index
indicates the attenuation suffered by light when passing through a particle.

Figure 1 shows how α and β vary with respect to λ for a mode width equal
to 1.4. Looking at this figure, the reader can note that α has quite similar values
at the different wavelengths, while β decreases as the wavelength increases. It
must be said that similar behaviour is observed in the rest of the mode widths
(from 1.5 to 2.5). It can be seen that the backscatter coefficient increases as the
effective radius increases. Those variations are larger for higher mode widths.
Similar observations can be found in the variations of α.

Furthermore, the variation of α and β across the particle effective radius in
different width modes are also investigated. Figures 2 and 3 show the variation
of β in two different width modes, 2.0 and 2.5, namely. It can be seen that the
backscatter coefficient increases as the effective radius increases. These variations
are larger when the value of the mode width is higher. Similar observations can
also be found in the variations of α.
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Fig. 1. Variation of α and β in mode width 1.4 at the different values of λ.

Fig. 2. Variation of β with respect to effective radius in mode width equal to 2.0.
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Fig. 3. Variation of β with respect to effective radius in mode width equal to 2.5.

To determine which ML techniques can be applied to the classification and
estimation stages, first Principal Component Analysis (PCA) has been applied.
Figure 4 shows a PCA plot of the original synthetic data. It can be seen that
the class of 110 − 250 nm overlaps with the class of 10 − 100 nm and the class
of 260 − 500 nm, but the class of 10 − 100 nm and the class of 260 − 500 nm do
not overlap between them.

According to Figure 4, k-NN [14]) can be considered as a solution because
the three classes are not strongly overlapped. In addition, Extreme Learning
Machine (ELM) [15] has been chosen to be a potential solution since this deep
learning solution uses a similar ANNs architecture to the one used in [9] and it
can have a lower computational cost.

3 Retrieval of Microphysical Parameters

The estimation of microphysical parameters using ANNs was addressed in [9].
Due to the computational cost and the nature of particles, this estimation was
performed in three different ranges of particle sizes separately. Taking this into
account, we propose two solutions in this paper. The first one is a single regres-
sion solution, which uses an ML technique to estimate microphysical parameters
for all the particles together. This technique must outperform ANNs in terms of
accuracy. The second one includes two steps: 1) a classification that will sepa-
rate particles into the three classes and then 2) a regression that will estimate
microphysical parameters.
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Fig. 4. PCA2 versus PCA1.

3.1 Single regression solution

In work [9], a Multi-Layer Perceptron (MLP) with one hidden layer was used to
estimate microphysical parameters. Specifically, different configurations of MLPs
(training algorithms, number of neurons in the hidden layer, activation functions)
were tested. They concluded that the most suitable MLP contains five neurons
in the hidden layer and uses the Levenberg Marquardt training algorithm. In
this sense, we have implemented the same MLP to be compared with ELM and
k-NN both in terms of accuracy and computational cost.

3.2 Combined solution

Figure 5 shows a flow diagram of this combined solution. It can be seen that
five-feature vectors are classified into three classes according to reff first. Then
one single regression estimation model is trained within each class. In both clas-
sification and estimation stages, the suitability of using ELM and K-NN will be
evaluated. The detailed solution is given as follows:

1. The whole dataset has been split into training (75%) and test (25%) sets.
2. Training a classification model using the training set.
3. The test set has been split into the three classes.
4. Within each class, a regression model is trained.
5. Finally, the regression models in step 4 were used to estimate microphysical

parameters on the test set.
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Fig. 5. Scheme of the full solution combining classification and regression estimation.

4 Experiments

In this section the results of both solutions are provided. To evaluate the classi-
fication solution, precision, recall and F1-score [16] are calculated for each class
since the three classes are imbalanced. To test the suitability of each microphys-
ical parameter estimation solution, the Root Mean Square Error (RMSE) has
been used. The computational cost of each technique is evaluated with CPU
time.

4.1 Single regression solution

In Table 1, ELM and k-NN are compared with the MLP configuration in the
previous work, when all the particles are analysed together. For the MLP, the
whole dataset has been split into training (65%), validation (15%) (where the
validation set is used to control overfitting) and test (25%) sets while for k-NN
and ELM, the dataset has been split into training (75%) and test (25%). Note
that the results for the different classes are also extracted from the total results
and shown in the table.

Due to the space limit, only the results for the best configuration of each
method are presented in the table. For instance, the methodology based on k-
NN has been tested for different number of neighbours (1, 3, 4, 5, 7, 11, 15, 19, 29
and 39), resulting in k = 1 being the best choice. In the case of ELM, different
activation functions (sigmoid, sine or hard limit) and number of neurons in the
hidden layer (N = 2, 3, 4, 5, 7, 10, 20, 30, 50, 75, 100, 150, 200 and 300) have been
tested. Sigmoid function and N = 300 achieve the best results.

Looking at Table 1, it is clear that k-NN produces the best results (the lowest
values of RMSE) for all the parameters and across all class of particles.
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Table 1. RMSE obtained by MLP [9], ELM and k-NN based solutions when reff, real
and imaginary part of the complex index are estimated.

Param. Method Whole data 10 - 100 nm 110 - 250 nm 260 - 500 nm

reff

MLP [9] 43.40 14.51 37.97 53.03
kNN (k=1) 31.18 6.17 27.80 38.24

ELM (N=300) 44.37 15.29 39.82 53.74

Real Part
MLP [9] 0.15 0.19 0.14 0.14

kNN (k=1) 0.08 0.13 0.07 0.07
ELM (N=300) 0.19 0.23 0.17 0.18

Imag. Part
MLP [9] 0.18 0.25 0.16 0.15

kNN (k=1) 0.08 0.10 0.09 0.06
ELM (N=300) 0.26 0.29 0.27 0.26

Another aspect to be considered is the computational cost associated with
each solution. In some applications, study of the atmospheric pollution must be
in real-time and so, it is important to have fast algorithms. Bearing this in mind,
Table 2 shows the mean values of CPU times of each solution for training and
test. These experiments have been carried out on a computer with a 2, 8 GHz
Intel Core i7 processor and 8 Gb RAM.

Table 2. Mean values of CPU time (s) associated with MLP [9], ELM and k-NN based
solutions.

MLP [9] k-NN ELM

Training 753.86 7.25 181.79

Test 0.44 3.00 5.29

It is clear that the solution based on k-NNs is less expensive in terms of
CPU time when training. In test, the MLP needs less time but it is less accurate
obtaining parameters. In the case of ELM, larger values of CPU time are required
and it achieves worst RMSE values. For these reasons, larger number of neurons
have not been studied with ELM.

4.2 Combined solution

As it is shown in Figure 5, the combined solution allows us to split particles into
the three classes (10 - 100 nm, 110 - 250 nm, 260 - 500 nm) before estimating
parameters. At the classification stage, MLP, k-NN and ELM based classifiers
have been studied with k-NN giving the highest accuracy (96.09%) when k = 3.
Since classes are unbalanced, precision, recall and F1- scores are also provided
for each class in Table 3.
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Table 3. Precision, recall and F1- scores obtained by the solution based on k-NNs
(k = 3) for each particle class.

Class Precision (%) Recall (%) F1-score

Class 1 (10 - 100 nm) 98.76 97.69 0.98

Class 2 (110 - 250 nm) 93.63 93.43 0.94

Class 3 (260 - 500 nm) 96.52 97.07 0.97

Very good results are achieved, the worst being for class 2, what makes sense,
since it overlaps with the rest of the classes (Figure 5).

Once particles in the test set have been separated using k-NN, the estimation
models must be applied. Obtained RMSE scores are presented in Table 4.

Table 4. RMSE obtained by MLP [9], ELM and k-NN based solutions when reff, real
and imaginary part of the complex index are estimated for Combined solution.

Parameter Method 10 - 100 nm 110 - 250 nm 260 - 500 nm

reff

MLP [9] 10.56 30.29 51.17
kNN (k=1) 5.86 27.83 37.82

ELM (N=300) 11.01 32.38 50.79

Real MLP [9] 0.22 0.16 0.17
Part kNN (k=1) 0.09 0.07 0.07

ELM (N=300) 0.21 0.15 0.17

Imaginary MLP [9] 0.27 0.27 0.15
Part kNN (k=1) 0.06 0.08 0.07

ELM (N=300) 0.24 0.25 0.23

It can be seen from this table, the combined solution based on k-NN achieves
the best results for all the classes and microphysical parameters. If we compare
these results with those in Table 1, we can see that in general the combined
method performs better or similar to the single regression solution when the
classification stage has been applied previously. Moreover, it shows ELM per-
forms much better after classification is done first, that is, it performs better
within each class. As for the computational cost, similar conclusions as those
from Table 2 can be made.

5 Discussion & Conclusions

Estimating microphysical parameters from optical data can be done using ML
techniques. [9] is a very interesting paper and from it, two objectives have been
met in our work. Firstly, we provide a solution that produces lower RMSE and
computational cost when estimating microphysical parameters. Secondly, a new
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combined solution, which produces high accuracy at the classification stage, has
been implemented.
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