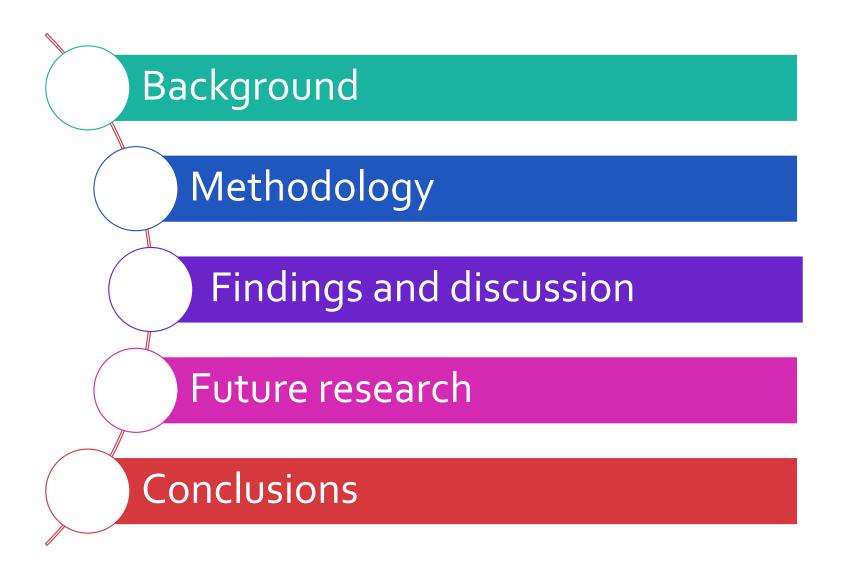
An Overview of Al Adoption in Business & Management


Marija Cubric

1st November 2019

Presentation Outline

600K academic papers in the area of AI (Shoham et al. 2019)

No SLRs that bring

together different

and application

areas

business disciplines

Increased number of systematic literature reviews (SLRs) on Al in different domains

No attempts to review the results of these SLRs in a systematic way

Important to understand drivers/and barriers for the AI adoption in Bus. & Mgmt.

£630bn by 2035 estimated value of Al for UK economy (Hall and Pesenti, 2017;

The aim

To produce a tertiary study that will provide an overview of results from the existing systematic literature reviews on AI adoption across different business sectors, B&M functions and to outline a roadmap for further research in this area.

Methodology

Systematic literature review (SLR) is a type of a literature review that follows a specific review protocol and quality procedures to select relevant (primary) studies, extract and analyse the relevant information from the studies to answer specific research questions.

A tertiary study compiles the evidence from other SLRs, using them as primary studies for further analysis. This type of review is also known as 'umbrella study', 'overview of systematic reviews', 'systematic review of systematic reviews' and 'meta-review'.

This study is based on the guidelines from Kitchenham and Charters (2004), Budgens et al (2015) and other examples of tertiary studies such as Kitchenham et al. (2010), and Hoda et al. (2017).

Research Questions

How many SLRs on AI in B&M were published since the re-birth of AI (2000) to date RQ1 (2019) and what is their quality? Which research areas are being addressed in AI for B&M? RQ₂ RQ3 What are the driver and the barriers for AI adoption in B&M? What importance is placed on human and social factors relevant to the AI RQ₄ application in B&M? What recommendations are made for further research on AI in B&M? What progress has been achieved with respect to prior recommendations for AI in RQ6 B&M

Search string 1:

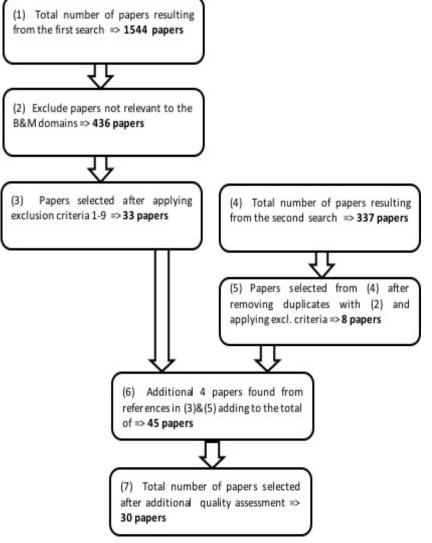
("systematic review" OR "systematic literature review" OR "systematic map" OR "systematic mapping" OR "mapping study" OR "scoping review" OR "meta-analysis") AND

("AI" OR " artificial intelligence" OR "machine learning" OR "neural network" OR "robot" OR "intelligent agent" OR "deep learning")

Search string 2:

<Search string 1> AND

("business" OR "management" OR "finance" OR "financial services" OR "high tech" OR "information technology" or "IT" OR "tourism" OR "hospitality" OR "travel" OR "transportation" OR "logistics" OR "energy" or "resources" or "healthcare" OR "education" OR "retail" OR "media" OR "entertainment" OR "automotive" OR "assembly" OR "smart cars" OR "smart cities" OR "consumer goods" OR "building" OR "accounting" OR "insurance")


The search process

Two searches were performed on the 18th of July 2019 using the University of Hertfordshire Online Library (UHOL) search facilities.

The UHOL performs a search over 278 different library databases, including Scopus which has the widest coverage of peer-reviewed journals.

The study selection process

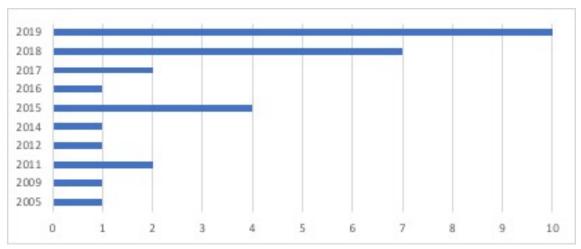
Quality ranking criteria	Yes (1.0 score)	Partial (0.5 score)	No (o score)	
Publisher's reputation	Top publishers	Others	-	
The role of AI	Primary	One of the two main techniques	One of many	
Type of SLR	SLR	Mapping or scoping study	Other	
Number of studies	Reported	Could be derived	Not reported	
Number databases	3 or more	2 or less or top journals/conf.	Not reported	
Years covered	Reported	Could be derived	Not reported	
Specific SLR guidelines	Reported	Based on other reviews	Not reported	
Search string	Reported	Yes (1-2 terms)	Not reported	
Data analysis	Reported	Could be derived	Not reported	
Research questions	Reported	Only objectives	Not reported	

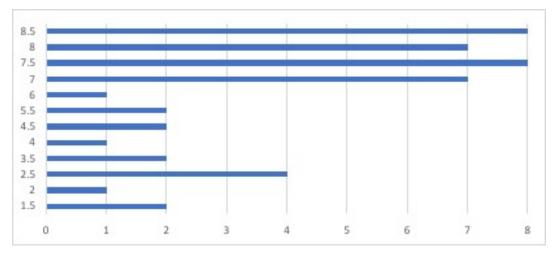
Quality assessment

Data extraction

Thematic analysis was performed on qualitative data such as abstracts, findings, recommendations etc

Bibliographic information such as: 1)citation, 2) title, 3) abstract, 4)publication year, 5)publication type, 6)publication title, 7)publisher, and 8)keywords.


SLR quality related information: 1)type of review, 2)number of primary studies, 3)online databases, 4)years covered, 5)SLR guidelines, 6)search string (only AI related portion), 7)data analysis method, 8)business sector/ or business function, 9)AI role, 10) research questions.



Research questions related information: 1)main findings, 2)bias, 3)ethics, 4) other human and social consideration such as such as trust, privacy, 5)barriers for AI adoption, 6)drivers for AI adoption, and 7)recommendations.

Findings

Number of SLRs per year

Distribution of the quality scores of the SLRs

RQ1: Thirty SLRs on the use of AI in B&M domains were found to match the selection criteria with a quality score between 7 and 8.5 out of 10 (m=7.77, sd=0.57). These SLRs were published between 2005 and 2019.

RQ2: Business sectors, business functions and research areas covered in the SLRs

Bus. sector	Al type	Bus. Fun./res. area	Review topic	
Healthcare	Robots	HSM	The role of SARs in elderly wellbeing	
	Robots	HSM	SAR in elderly care	
	Robots	HSM	Robotics in nursing	
	CA	HSM	Conversational agents in healthcare	
	CA	HSM	Conversational agents in healthcare	
	Robots	Tech. acceptance	Acceptance of healthcare robots for the older population	
	Robots	Teamwork	Comms and dec. making in robot-assisted surgical teams	
	ML	HRM	ML for assessing physician competences	
	ML	DSS	Applications of ANN in healthcare org. decision-making	
Various	Robots	Customer service	Al and robots in value co-creation	
	Robots	Health & Safety	Safety certification practices in robots s/w development	
	Robots	Tech. acceptance	Social acceptance of robots in different occupational fields	
	Al	DSS	Application of Al in decision support systems	
	Al	SCM	AI potential and use in ("self-thinking") supply chain	
	ML	DSS	Application of ML in decision support systems	
	ML	SCM	Use of AI in supply chain risk management	
	ML	BPI	Process mining through ANN and SVM	
IT	ML	SW Project Mgmt.	SW code smell detection	
	ML	SW Project Mgmt.	ML techniques for software fault prediction	
	ML	SW Project Mgmt.	ML for software optimization of parallel comp. systems	
	ML	SW Project Mgmt.	ML-based sw development effort estimation models	
	GP	SW Project Mgmt.	Effectiveness of GP for quality/cost predictions/estimations	
Energy	ML	Systems Mgmt.	ML models in energy systems	
	ML	Systems Mgmt.	Electrical load forecasting models	
Agriculture	Al	DSS	Al in precision agriculture for grain crops	
Apparel ind.	Al	DSS	Applications of AI in the apparel industry	
Engineering	ML	Systems Mgmt.	Application of DL in mech. systems' health management	
Smart cities	ML	Smart cities	ML techniques for supporting smart cities	
Tourism	ML	Customer service	Online reviews on sustainability of hotels	
dshire Busin	ess School	Systems Mgmt.	Intelligent intersection management systems with AV	

RQ3: The drivers and the barriers for Al adoption

Drivers

- **Economic**: innovation, productivity, efficiency, cost, customer satisfaction, accuracy, decision making, and predictions.
- Social: sustainability, well-being.

Barriers

- **Technical**: cost, data, model re-use, problem selection, support infrastructure.
- **Social**: dependence on non-humans, jobs, lack of knowledge, s/h perspectives, safety, trust.

RQ4: Importance of human and social factors in Al applications

Many SLRs (N=19, 63.3%) do not consider **bias** in the primary studies.

• "none of the articles has directly attempted to evaluate the proposed models. This is in particular remarkable since it is well understood that decisions are biased by psychological and social factors" (Merkert et al. 2017; DSS)

Even less studies (N=6, 20%) consider ethics as an important element in the AI design.

• A robot needs to be ethical for trustworthiness which relies on modelling the robot as well as the environment, an issue in a dynamic environments... (Ingibergsson et al. 2015; AFR).

Outside of healthcare human/or social factors or implications are rarely considered in the research objectives or recommendations

• Reporting of the results in these studies is overly optimistic, while evaluation methods reveal a degree of immaturity (Ng)

All studies from the **healthcare management** domain recommend increased focus on human and social factors, such as, stakeholders' (patents, nurses, doctors, family) perspectives.

• there are currently no agreed methods to assess the long-term effects of this technology (AI) on human populations, including the "unintended consequences". (Laranjo et al. 2018)

Recommendation categories	Count	%
Methodology improvements	17	30.36%
Focus on organisational and human aspects	16	28.57%
New application areas for AI	8	14.29%
More research (primary studies)	6	10.71%
Al technique improvements	6	10.71%
Quantification of the impact	3	5.36%
Total	56	100.00%

RQ5: Recommendations for future research

Limitations

The nature of tertiary studies

- overlap in primary studies related to the same topic
- quality of the original primary studies considered in the SLRs
- The research questions not addressed in the SLRs
- Lack of SLRs outside of the healthcare management and IT domains (e.g. financial service, retail etc)

The scope

- Some of the business and management aspects such as quality, time and cost of product/service etc, have been included in many publications that are outside of the B&M domain.
- The SLRs that considered technical improvements in a specific AI tool or technique (e.g. recommender systems) were not included.

And,

- Only one person (the author) has been involved in the selection and review process.
- Lack of other similar studies makes it difficult to assess the progress made in the field

Conclusions

Despite the limitation of the research, this study provides a timely identification and categorisation of some important findings from 30 SLRs (directly) and 2135 primary studies (indirectly), on the AI adoption in business and management field and it helps in raising awareness on human, organisational and wider societal implications of the AI adoption.

Budgen, D., Brereton, P., Drummond, S., & Williams, N. (2018). Reporting systematic reviews: Some lessons from a tertiary study. *Information and Software Technology*, 95, 62-74.

Chui, M., Manyika, J., & Miremadi, M. (2018). What AI can and can't do (yet) for your business. McKinsey Quαrterly. January 2018.

Hall, W., & Pesenti, J. (2017). Growing the artificial intelligence industry in the UK. Department for Digital, Culture, Media & Sport and Department for Business, Energy & Industrial Strategy. Part of the Industrial Strategy UK and the Commonwealth.

Kitchenham, B., Brereton, O. P., Budgen, D., Turner, M., Bailey, J., & Linkman, S. (2009). Systematic literature reviews in software engineering—a systematic literature review. Information and software technology, 51(1), 7-15.

References

Kitchenham, B.A. & Charters, S. (2007) Procedures for Performing Systematic Literature Review in Software Engineering, EBSE Technical Report version 2.3, EBSE-2007-01, Software Eng. Group.

Ingibergsson, J.T.M., Schultz, U.P. and Kuhrmann, M., 2015. On the use of safety certification practices in autonomous robot software development: A systematic mapping study. Lecture Notes in Computer Science, pp. 335-352.

Laranjo, I., Dunn, A. G., Tong, H. L., Kocaballi, A. B., Chen, jJ, Bashir, R., ... & Coiera, E. (2018). Conversational agents in healthcare: a systematic review. Journal of the American Medical Informatics Association, 25(9), 1248-1258.

Merkert, J., Mueller, M., & Hubl, M. (2015). A survey of the application of machine learning in decision support system 2015 Completed Research Papers. Paper 133.

Metaxiotis, K., & Psarras, J. (2004). The contribution of neural networks and genetic algorithms to business decision support academic myth or practical solution?. *Mαπαgement Decision*, 42(2), 229-242.

Shahid, N., Rappon, T. and Berta, W., 2019. Applications of artificial neural networks in health care organizational making: A scoping review. PloS one, 14(2).