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ABSTRACT Spectroscopic methods in tandem with machine learning methodologies have attracted 
considerable research interest for the estimation of food quality. The objective of this study was the evaluation 
of Fourier transform infrared (FTIR) spectroscopy and multispectral imaging (MSI) coupled with appropriate 
machine learning regression algorithms for assessing meat microbiological quality. For this purpose, minced 
pork patties were stored aerobically and under modified atmosphere packaging (MAP) conditions, at 
isothermal and dynamic temperature conditions. At regular time intervals during storage, samples were 
subjected to (i) microbiological analysis, (ii) FTIR measurements and (iii) MSI acquisition. The collected 
FTIR data were processed by feature extraction methods to reduce dimensionality, and subsequently Support 
Vector Machines (SVM) regression models were trained using spectral features (FTIR and MSI) to estimate 
microbiological quality of meat (microbial population). The regression models were evaluated with different 
experimental replicates using distinct meat batches. The performance of the models was evaluated in terms 
of correlation coefficient (r), root mean square error (RMSE), mean absolute error (MAE) and residual 
prediction deviation (RPD). The RMSE values for the microbial population estimation models using FTIR 
were 1.268 and 1.024 for aerobic and MAP storage, respectively. The performance in terms of RMSE for the 
MSI-based models was 1.144 for aerobic and 0.923 for MAP storage, while the combination of FTIR and 
MSI spectra resulted in models with RMSE equal to 1.146 for aerobic and 0.886 for MAP storage. The 
experimental results demonstrated the potential of estimating the microbiological quality of minced pork meat 
from spectroscopic data. 

INDEX TERMS Food technology, microbiological quality, Fourier transform infrared spectroscopy, 
multispectral imaging, machine learning, support vector regression.

I. INTRODUCTION 
In the current Food Safety approach, a wide range of audits 
and inspections are applied to evaluate the quality or safety 
of raw or processed materials and food products [1].This is 
largely based on good design of processes, products and 
procedures, where the end or finished product testing is 
considered to be the control measure of the production 
process. In the case of microbiological food safety, specific 
microbiological analyses should be performed. In specific, 
microbiological analyses can be implemented with 
conventional microbiology approaches (e.g., colony 

counting methods) or molecular techniques that are 
considered more reliable and accurate [2], [3]. Chemical 
analyses are also used to monitor safety and quality of foods. 
These analyses have certain disadvantages, as they are (i) 
time-consuming in providing retrospective results, (ii) 
costly, (iii) some require high-tech molecular tools and thus, 
experienced and specialized personnel and commonly (iv) 
destructive to test products, limiting thus their potential to be 
used on-, in- or at-line [4], [5]. Due to these disadvantages, 
such analysis approaches cannot sufficiently guarantee 
consumer protection, since 100% inspection and sampling 
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B. MICROBIOLOGICAL ANALYSIS 
Minced pork patties were analyzed microbiologically on the 
day of arrival to the laboratory (time-zero) and at regular time 
intervals during storage as described in section II. A. For the 
purpose of microbiological analysis, 25-g minced pork 
portions were transferred aseptically to 400-ml sterile 
stomacher bags (Seward Medical, London, United Kingdom) 
containing 225 ml of quarter-strength Ringer’s solution (Lab 
M Limited, Lancashire, United Kingdom) and homogenized 
in a Stomacher apparatus (Lab Blender 400, Seward Medical) 
for 60 sec at room temperature. Appropriate serial decimal 
dilutions in Ringer’s solution were surface plated on tryptic 
glucose yeast agar (Plate Count Agar; Biolife, Milan, Italy) 
and incubated at 25°C for 72h, for the enumeration of total 
mesophiles (total viable counts, TVC). The obtained 
microbiological data were converted to log (colony forming 
units) per gram of meat (log CFU/g). 
1) AIR STORAGE 

The evolution of TVC of minced pork stored aerobically at 
4°C, 8°C, dynamic temperatures and 12°C for replicates 1, 
2, 3 and 4 is illustrated in Fig. 1 (a), (b), (c) and (d), 
respectively. The initial TVC in minced pork ranged from 

3.00 to 3.86 log CFU/g (Fig. 1), a concentration which is in 
accordance with the range of 2.0 to 4.2 log CFU/g reported 
in the scientific literature [17], [18]. Similar microbial 
growth trends were observed among independent replicates, 
with replicate 1 being associated with lower values of 
microbial counts compared to the other replicates in most 
sampling times, an observation that is most likely related to 
the better initial microbiological quality of meat (Fig. 1). It 
has been demonstrated that excessive quality deterioration of 
minced meat during aerobic storage, including off-odours’ 
development and slime production, is evident when TVC is 
7-8 log CFU/g [19], [20]. Mean (± standard deviation, n=8) 
TVC of samples reached 7-8 log CFU/g at 4°C in 158h (7.63 
± 0.79 log CFU/g), at 8°C in 96h (7.93 ± 0.48 log CFU/g), at 
dynamic temperatures in 96h (7.66 ± 0.43 log CFU/g) and at 
12°C in 62h (7.57 ± 0.32 log CFU/g). The microbial growth 
recorded at 8°C was similar with that recorded at dynamic 
temperature conditions. The microbial groups that 
contributed mainly to the spoilage of minced pork were 
Pseudomonas spp., Brochothrix thermosphacta and lactic 
acid bacteria, with Pseudomonas spp. constituting the 
dominant spoilage microorganisms (data not shown), 

  

  

FIGURE 1.  Total mesophilic microbial populations (mean ± standard deviation, n=2) of minced pork stored aerobically at 4°C (a), 8°C (b), 
dynamic temperatures (c) and 12°C (d) for replicates 1 (R1), 2 (R2), 3 (R3) and 4 (R4). 
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III. DATA ANALYSIS 
Data (spectra, microbial populations) were collected and 
Support Vector Machines (SVM) regression models were 
developed for each sensor and packaging condition 
(FTIR_AIR, MSI_AIR, FTIR_MAP, MSI_MAP) and 
evaluated. Spectral data (FTIR, MSI) were used as input 
variables (X) and TVC as output (target) variables (Y). In the 
case of FTIR, where the number of variables is greater than 
the number of samples [25], different dimensionality 
reduction methods were applied (Principal Component 
Analysis, Partial Least Squares, ReliefF, Descriptive statistics, 
Autoencoders). The acquired FTIR variables were used as X 
variables. The training of the models was performed using 
three replicates, while the fourth replicate was used to evaluate 
the SVM regression models. A 4-fold cross validation 
experimental protocol was followed in order to avoid overlap 
between training and test replicates. The train and test sets 
used for the 4-fold cross validation experimental protocol are 
presented in Tables I and II. 

Several well-known and widely used classifiers were 
evaluated and the results demonstrated that SVM offer 
competitive performance in most setups and was thus, selected 
for our analysis. Also, since SVM has good generalization 
ability and do not suffer from the curse of dimensionality [26], 
[27], it is regarded as an appropriate approach for comparison 
of datasets with different dimensionality. The performance of 
the regression models was evaluated in terms of Root Mean 
Square Error (RMSE). Except RMSE which was considered 
as the main numerical estimation metric as also in [10], [11], 
[12], [14], also were calculated the Mean Absolute Error 
(MAE), the correlation coefficient (r) and the Residual 
Prediction Deviation (RPD). 
 
Table I. Train and test data sets used for model development, 
collected during AIR storage. R stands for replicate and TVC 
for total viable count (i.e. microbial population). 

Train Set 
(number of 
samples) 

Train TVC Range 
log CFU/g 

Test Set 
(number of 
samples) 

Test TVC Range 
log CFU/g 

R2, R3, R4 
(336) 

3.08 – 10.32 R1 (113) 3.08 – 9.45 

R1, R3, R4 
(336) 

2.00 – 9.93 R2 (118) 3.60 – 9.90 

R1, R2, R4 
(348) 

2.00 – 10.32 R3 (108) 3.36 – 9.93 

R1, R2, R3 
(348) 

2.00 – 10.32 R4 (108) 3.08 – 9.80 

 
 
 
 
 
 
 

Table II. Train and test data sets used for model development, 
collected during MAP storage. R stands for replicate and TVC 
for total viable count (i.e. microbial population). 

Train Set 
(number of 
samples) 

Train TVC Range 
log CFU/g 

Test Set 
(number of 
samples) 

Test TVC Range 
log CFU/g 

R2, R3, R4 
(326) 

3.76 – 9.45 R1 (103) 3.81 – 9.37 

R1, R3, R4 
(325) 

2.30 – 9.37 R2 (119) 3.76 – 9.22 

R1, R2, R4 
(341) 

2.30 – 9.45 R3 (106) 4.60– 8.90 

R1, R2, R3 
(349) 

2.30 – 9.45 R4 (98) 4.70 – 8.70 

A. DIMENSIONALITY REDUCTION OF FTIR DATA 
Several methods were used for the reduction of dimensions of 
the FTIR data. These methods are: (a) Principal Component 
Analysis (PCA), which is a method for reducing the 
dimensionality, but at the same time minimizing the 
information loss. A large number of potentially correlated 
factors are projected into a number of orthogonal 
(uncorrelated) factors (i.e. principal components) reducing 
thus the size of the initial dataset taking into account only X-
variables [28]; (b) Partial Least Squares (PLS), an approach 
which, unlike PCA, constructs new factors (i.e. latent 
variables) that combine information about the variances of 
both the X-variables and Y-variables (find combinations of the 
predictors (X-variables) that have a large covariance with the 
response (target) values (Y-variables)) and is used for data 
with many, noisy and collinear variables [29], [30]; (c) ReliefF 
is a feature ranking method, which evaluates the worth of an 
attribute by repeatedly sampling an instance and considering 
the value of the given attribute for the nearest instance of the 
same and different class and is able to detect conditional 
dependencies between attributes and to provide a unified view 
on the attribute estimation in regression [31]; (d) 22 
descriptive statistics (Minimum, Maximum, Mean, Standard 
Deviation, Variance, Median, 10th Percentile, 25th Percentile, 
75th Percentile, 90th Percentile, Kurtosis, Skewness, Mode, 
Sum, Range, Geometric Mean (geomean), Harmonic Mean 
(harmmean), Trimmean (10%), Trimmean (33%), 
Interquartile Range, Mean Absolute Deviation, Standard 
Error) were calculated for each sample’s spectrum thus 
projecting the 934-dimensions of FTIR data to 22; (e) 
Autoencoder, which is a neural network trained to replicate its 
input at its output. When nonlinear activation functions are 
used, autoencoders provide nonlinear generalizations of PCA. 
Training an autoencoder is unsupervised in the sense that no 
labeled data are needed [32] - [33] [34] [35]. 

Spectral data were processed by each of the above described 
methods, (a)-(e), to reduce dimensionality either by projecting 
them to a new lower dimensional feature space (i.e. descriptive 
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The relation between the measured (via microbiological 
analysis) and estimated microbial population by the SVM 
models using MSI and MSI+FTIR features is visualized in 
Fig. 5 and 6, respectively. As can be seen in both scatterplots, 
the two variables (measured and estimated population) have 
positive association and stronger linear relationship compared 
to Fig. 4, which is in agreement with the results shown in Table 
IV. The performance metrics of r, RMSE, MAE and RPD 
(Table IV) for models developed using MSI data were 
estimated to be 0.859, 1.144, 0.921 and 1.949, respectively. 
The performance of the SVM regression models using MSI 

data was better compared to FTIR. Models derived from early 
fusion had comparable performance with models derived from 
MSI (r=0.863, RMSE=1.146, MAE=0.937 and RPD=1.946). 
 
 
 
 
 
 
 

 

 

 

 

  

 

FIGURE 4.  Scatterplots of the measured (via microbiological analysis) and estimated by the SVM regression model microbial populations 
based on FTIR features for different dimensionality reduction methods, namely (a) PCA, (b) PLS, (c) ReliefF, (d) Descriptive statistics and (e) 
Autoencoder for data acquired under AIR storage conditions. Red line corresponds to linear fit of the data. 
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Table IV. Performance of microbial population estimation 
under AIR storage conditions using MSI and MSI+FTIR, for 
the best performing FTIR setup, as features. 

Features r RMSE MAE RPD 
MSI 0.859 1.144 0.921 1.949 
MSI+FTIR 0.863 1.146 0.937 1.946 

r:  correlation coefficient; RMSE: root mean square error; 
MAE: mean absolute error; RPD: residual prediction 
deviation. 
 
The performance (in terms of RMSE scores) of the four test 
sets using different dimensionality reduction methods under 
AIR storage is shown in Fig. 7. The highest performance, as 
indicated by the lowest RMSE value, was observed when 100 
principal components from PCA method were used. In 
contrast to PCA, the best performance when using the PLS 

method was observed with fewer components (10 to 30 latent 
variables), which is in agreement with the scientific literature 
[30], where it has been reported that when using PLS fewer 
components are needed to achieve similar prediction 
accuracies compared to PCA. On the other hand, PCA 
achieved slightly better performance in terms of RMSE due to 
the good generalization ability of SVM which do not suffer 
from the curse of dimensionality [26], [27], thus making the 
SVM regression model not quite sensitive to dimensionality 
variations. In the case of ReliefF method, the RMSE was 
reduced and minimized when over 300 variables were used. 
On the other hand, RMSE values of SVM models applied to 
Autoencoders were stable at about 2.150 to 2.549 (Fig. 7). 

Spectroscopic methods, and particularly FTIR data, have 
also been used in other studies for the estimation of microbial 
quality of meat stored under aerobic conditions. For example, 
in [45] minced pork was stored at different isothermal 
conditions, where a total of 134 samples (67 samples for 
training and 67 for testing) were used. In the case of this latter 
study, r (correlation coefficient) for train and test set was 0.895 
and 0.880, respectively. In [46] beef fillets stored at different 
temperatures (0, 5, 10, 15 and 20°C), models were developed 
using ANN, and the RMSE value for train and test set was 
1.821 and 1.978, respectively, and the corresponding RMSE 
values for PLS modeling were 1.073 and 1.993. In the study 
[47], microbiological quality of goat and fallow meat was 
studied using PLSR, with samples being stored at 3°C in the 
context of four experimental replicates (60 samples per meat 
type); the RMSE values estimated for external validation of 
models developed for fallow and goat were 0.75 and 0.74, 
respectively. Promising results regarding the estimation of 
microbiological spoilage based on FTIR data has been also 
reported for chicken breast [48]. Moreover, MSI data have 
been successfully used for the quantitative assessment of meat 
spoilage [49], [50], [24]. Actually, in the latter study and 
regarding the correlation of MSI and microbiological data, r 
values as high as 0.928, 0.918 and 0.783 were reported for 
model calibration, cross-validation and prediction, 
respectively. Going beyond the parameters studied in the 
abovementioned studies, different experimental replicates and 
temperature conditions were taken into account in the present 
study. The developed models were full-cross validated using 
independent experiments (corresponding to distinct meat 
batches) as test sets for the purpose of model optimization and 
method evaluation. 

 

FIGURE 5.  Scatterplot of the measured (via microbiological analysis) 
and estimated by the SVM regression model microbial populations 
based on MSI features for data acquired under AIR storage 
conditions. Red line corresponds to linear fit of the data. 
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FIGURE 6.  Scatterplot of the measured (via microbiological analysis) 
and estimated by the SVM regression model microbial populations 
based on MSI+FTIR features for data acquired under AIR storage 
conditions. Red line corresponds to linear fit of the data. 
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B. MAP STORAGE 

The SVM regression models developed from data acquired 
during storage under MAP conditions, had comparable 
performance with those obtained from samples stored under 
AIR conditions. In Fig 8., the relation between the measured 
(via microbiological analysis) and estimated (by the model) 
microbial population is illustrated in the form of scatterplots. 
A moderate linear relationship can be seen in all methods with 
PCA, PLS and ReliefF methods presenting stronger 
relationship than descriptive statistics and Autoencoders, 
which is in agreement with the results shown in Table V. In 
Table V, r, RMSE, MAE and RPD scores when using FTIR 
data are shown; the best performance of the MAP models was 
obtained using the PLS feature selection method with r, 
RMSE, MAE and RPD being equal to 0.765, 1.024, 0.809 and 
1.538, respectively. Models developed using the PCA and 
ReliefF methods were slightly worse compared to the PLS 
method. PCA-based models had better performance (r=0.759, 
RMSE=1.047, MAE=0.787 and RPD=1.504) compared to 
ReliefF-based models (r=0.706, RMSE=1.141, MAE=0.951 
and RPD=1.381). The methods of Descriptive Statistics and 
Autoencoders resulted in poor model performance, similarly 
to the AIR storage case. RMSE scores of the SVM regression 

models developed using FTIR data with Descriptive Statistics 
and Autoencoders were equal to 1.429 and 1.563, respectively. 

 
Table V. Performance of microbial population estimation 
under MAP storage conditions using SVM regression 
modelling and different dimensionality reduction methods 
applied on the FTIR data.  

Dimensionality 
reduction methods r RMSE MAE RPD 

PCA 0.759 1.047 0.787 1.504 
PLS 0.765 1.024 0.809 1.538 
ReliefF 0.706 1.141 0.951 1.381 
Descriptive statistics 0.457 1.429 1.188 1.102 
Autoencoder 0.245 1.563 1.309 1.007 

r:  correlation coefficient; RMSE: root mean square error; 
MAE: mean absolute error; RPD: residual prediction 
deviation. 

 

  

  
FIGURE 7.  Microbial estimation performance (in terms of RMSE) for the four replicates, 1 (a), 2 (b), 3 (c) and 4 (d), under AIR storage conditions, 
for different dimensionality reduction methods with respect to the number of components (dimensions) used. 
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The performance of the SVM regression models was better 
when MSI data concatenated with FTIR data were used as 
shown in Table VI. A visualization of the relation between the 
measured (via microbiological analysis) and estimated 
microbial population by the SVM models using MSI and 
MSI+FTIR features is provided in Fig. 9 and 10, respectively. 
As can be seen in both scatterplots, the two variables 
(measured and estimated population) have positive association 
and stronger linear relationship compared to Fig. 8 which is in 
agreement with the results shown in Table VI. In Table VI, the 
r, RMSE, MAE and RPD values of the microbial population 

estimation models developed using MSI data were 0.810, 
0.923, 0.727 and 1.705, respectively. With reference to models 
derived from early fusion of MSI and FTIR data, slightly 
better performance was achieved (r=0.834, RMSE=0.886, 
MAE=0.697 and RPD=1.778). 

Data fusion of spectroscopic data in tandem with data 
analysis has been studied for several applications related to 
food quality assessment and food fraud [51], [52], but only 
few of the conducted research studies are related to the 
evaluation of meat quality [53], [54]. 

 

 

 

 

 

  

 
 

FIGURE 8.  Scatterplot of the measured (via microbiological analysis) and estimated by the SVM regression model microbial populations based 
on FTIR features for different dimensionality reduction methods, namely (a) PCA, (b) PLS, (c) ReliefF, (d) Descriptive statistics and (e) 
Autoencoder for data acquired under MAP storage conditions. Red line corresponds to linear fit of the data. 
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Table VI. Performance of microbial population estimation 
under MAP storage conditions using MSI and MSI+FTIR, for 
the best performing FTIR setup, as features.  

Features r RMSE MAE RPD 
MSI 0.810 0.923 0.727 1.705 
MSI+FTIR 0.834 0.886 0.697 1.778 

r:  correlation coefficient; RMSE: root mean square error; 
MAE: mean absolute error; RPD: residual prediction 
deviation. 

The performance (in terms of RMSE scores) of the four test 
data sets using different dimensionality reduction methods 
under MAP storage conditions is shown in Fig. 11. Similarly, 
to the results observed under AIR conditions, the PCA and 

PLS methods outperformed all other evaluated dimensionality 
reduction methods. It can be seen that PCA and PLS 
dimensionality reduction methods exhibited a similar trend 
regarding the RMSE scores varying across different 
components (dimensions) used. It is interesting that ReliefF 
and Autoencoders presented similar RMSE score curves as 
well, however both performing significantly worse than PLS 
and PCA. The highest performance (i.e. the lowest RMSE 
score value) was observed when 10 latent variables from the 
PLS dimensionality reduction method were used (see Fig. 11 
(c)). RMSE scores obtained using Autoencoders were almost 
stable, independently of the number of components used. 

Although MAP is a common packaging technology for 
extending the shelf life of meat, the utilization of spectroscopic 
data for the evaluation of microbiological quality of meat 
under such storage conditions has not been extensively 
studied. Argyri et al. [22] reported findings pertinent to the 
development and evaluation of regression models based on 
FTIR spectral data and corresponding to beef samples (n=98) 
stored at 5°C and under different packaging conditions 
(aerobic and MAP). Different methods (i.e. PLS regression, 
genetic programming, genetic algorithm, ANN and SVM 
regression including different kernel functions) were applied, 
and the minimum RMSE score reported was 0.504 [22]. In 
another study [55], beef samples (n=186) were stored under 
aerobic, MAP and active packaging conditions at temperatures 
from 0 to 15 °C, and an RMSE value of 0.71 was reported for 
cross-validation of a model correlating microbiological and 
FTIR spectral data. Similarly promising were the results of a 
more recent study [56], in which meat samples (n=105) were 
stored under different packaging conditions (aerobic, MAP), 
and different instruments (electronic nose, HPLC, GC-MS, 
FTIR and MSI) and algorithms were evaluated for the 
prediction of meat spoilage, as this is manifested via the 
growth of distinct microbial groups.  

The rapid assessment of meat quality is of vital importance 
for industries and authorities in order to ensure quality of 
perishable food for consumers. Conventional techniques for 
microbial enumeration are reliable, certified methods and 
commonly acceptable, but are time-consuming and laborious. 
For example, the result of probably the most commonly used 
technique (Standard Plate Count) for the enumeration of 
microbial populations in food are available after 48-72h. In 
this context, results are not directly available in order for 
timely corrective actions to be applied and economic losses 
and consumer complaints to be minimized. Hence, there is an 
increasing research interest in rapid and non-invasive 
spectroscopic techniques. 

In the present study, the RMSE scores (expressing in part 
the performance of the developed models) estimated for FTIR 
were 1.268 and 1.024 for AIR and MAP storage, respectively, 
whereas the corresponding values for MSI were 1.144 and 
0.923, while for FTIR+MSI these values were 1.146 and 
0.886. Since the estimated RMSE values were, in most of the 
cases, within the “acceptable” microbiological variability (i.e. 

 

FIGURE 9.  Scatterplot of the measured (via microbiological analysis) 
and estimated by the SVM regression model microbial populations 
based on MSI features for data acquired under MAP storage 
conditions. Red line corresponds to linear fit of the data. 
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FIGURE 10.  Scatterplot of the measured (via microbiological 
analysis) and estimated by the SVM regression model microbial 
populations based on MSI+FTIR features for data acquired under 
MAP storage conditions. Red line corresponds to linear fit of the 
data. 
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within the 1-log cfu range commonly encountered in 
microbiological studies due to the extensive variability 
characterizing biological systems), the predictive information 
provided by the developed models can be regarded as rather 
promising for future application. Indeed, as also commented 
previously, a sample is considered as “correctly predicted” 
from a microbiological standpoint when the difference 
between predicted and observed values is < 1 log cfu [57]. As 
demonstrated by the data collected in this study, the RMSE 
scores estimated for the models corresponding to MAP storage 
were systematically lower than those referring to AIR storage; 
such difference may be associated with the different 
organisms dominating in these two packaging conditions. It is 
also worth mentioning, that the application of a 4-fold cross 
validation experimental protocol demonstrated the differences 
among experimental replicates, and how extensive may the 
encountered biological variability be; for instance, the RMSE 
values estimated for the models developed in the case of 
FTIR+MSI and for samples stored under MAP ranged from 
0.461 to 1.142 (data not shown). 

Beyond biological variability, the variability related to the 
environmental conditions, and more specifically to storage 
temperature and atmosphere, was also taken into consideration 
in this study. Specifically, different temperature profiles, both 
isothermal and dynamic, were applied during storage of 
minced pork patties in an attempt to account for the variable 
temperature conditions likely to be encountered in the farm-
to-fork continuum. A wide range of temperatures, varying 
from well-controlled refrigeration (4°C in this study) to 
slightly or excessively abusive (8 or 12°C, respectively in this 
study) temperatures may be observed in the food supply chain, 
and there is a high likelihood of food commodities being 
exposed to changing temperature conditions throughout 
distribution. In this sense, the value of the results of this study 
is, among others, delineated by the fact that different sources 
of variability are taken into account in model development, 
with the resulting models expected to allow for robust and 
realistic predictions. 

 
 

  

  

FIGURE 11.  Microbial estimation performance (in terms of RMSE) for the four replicates, 1 (a), 2 (b), 3 (c) and 4 (d), under MAP storage 
conditions, for different dimensionality reduction methods with respect to the number of components (dimensions) used. 
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V. CONCLUSION 
In conclusion, a methodology for microbial population 

estimation in meat portions based on non-invasive 
spectroscopic sensors was presented. The proposed 
methodology is using FTIR and MSI sensors and the extracted 
data are processed by machine learning regression models to 
estimate the microbial population. The methodology can 
perform estimation of microbial populations in less than few 
minutes, in contrast to traditional microbial population 
analysis techniques which require 48-72h as well as food 
technology expert staff, thus allowing real-time food quality 
inspection onsite at food industries and giving the potential of 
inspections even in food retail and service premises (e.g., 
supermarkets and restaurants). 

As demonstrated by the findings of the present study, FTIR 
and MSI data, as well as early fusion of such spectral data, 
appear to hold considerable potential for the estimation of the 
microbiological quality of meat stored under different 
temperature and packaging conditions. Further investigation 
with respect to the (inevitably encountered) biological 
variability and collection of more data to train machine 
learning models for regression can result in the development 
of more precise estimation models thus allowing the onsite and 
real-time assessment of the microbiological quality of meat 
and meat products. 
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