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Abstract 

 

Introduction. Critical speed (CS) represents the highest intensity at which a physiological 

steady state may be reached. The aim of this study was to evaluate whether estimations of CS 

obtained from raw training data can predict performance and pacing in marathons. Methods. We 

investigated running activities logged into an online fitness platform by >25,000 runners prior to 

big-city marathons. Each activity contained time, distance, and elevation every 100 m. We 

computed grade-adjusted pacing and the fastest pace recorded for a set of target distances (400, 

800, 1000, 1500, 3000, 5000 m). CS was determined as the slope of the distance-time 

relationship using all combinations of, at least, three target distances. Results. The relationship 

between distance and time was linear, irrespective of the target distances used (pooled mean ± 

standard deviation: R2 = 0.9999±0.0001). The estimated values of CS from all models were not 

different (3.74±0.08 m∙s-1), and all models correlated with marathon performance (R2 = 

0.672±0.036, error = 8.01±0.51%).  CS from the model including 400, 800 and 5000 m best 

predicted performance (R2 = 0.695, error = 7.67%), and was used in further analysis. Runners 

completed the marathon at 84.8±13.6% CS, with faster runners competing at speeds closer to CS 

(93.0% CS for 150 min marathon times vs. 78.9% CS for 360 min marathon times). Runners 

who completed the first half of the marathon at >94% of their CS, and particularly faster than 

CS, were more likely slowdown by more than 25% in the second half of race. Conclusion. This 

study suggests that estimations of CS from raw training data can successfully predict marathon 

performance and provide useful pacing information.  

 

Keywords: exercise, performance, prediction, running  

 



1. Introduction  

Marathon performance is determined by several factors, including the physiological 

characteristics of the runner, race course, weather and ambient conditions, and pacing strategies 

(1–3). The physiological factors associated with endurance performance typically include the 

maximum oxygen consumption ( ̇O2max), lactate threshold, and running economy (1, 3). 

Alternatively, predictions of endurance performance can be derived from the relationship 

between intensity of exercise (e.g. running speed) and the time such intensity can be sustained 

until task-failure (Tlim) (4). Specifically, as running speed (S) increases, the duration of exercise 

until Tlim decreases, which forms a hyperbolic function (Equation 1):  

 

                  
  

      
        [1] 

 

The asymptote of the hyperbola is known as critical speed (CS) and the curvature constant is 

termed as D′. Equation 1 can be rearranged to produce a linear function between distance (D) 

and Tlim (Equation 2): 

 

                             [2] 

 

Physiologically, CS represents the highest intensity at which oxidative phosphorylation is 

sufficient to satisfy the energy demand (5, 6), whilst D′ represents a finite work capacity above 

CS (7). A metabolic steady state, therefore, can be achieved during exercise below CS, but not 

above CS. For example, pulmonary oxygen uptake ( ̇O2), the concentration of intramuscular 

metabolites such as inorganic phosphate, hydrogen ions, and phosphocreatine, and the 

 



concentration of lactate in blood reach a steady state below, but not above, CS (5, 8–10). 

Exercise above CS is characterised by the progressive depletion of D′, which has been linked to 

substrate phosphorylation (11–13). Furthermore, exercise above CS also results in the inexorable 

increase in the concentration of intramuscular metabolites and continued increase of  ̇O2 until a 

‗critical‘ threshold of muscle substrate and metabolite concentrations is reached,  ̇O2max is 

attained and, ultimately, exercise is terminated (7–9, 14).  

 

Given the profound differences observed during exercise below vs. above CS, there is a growing 

body of evidence suggesting that CS and D′ are strong predictors of endurance performance (e.g. 

(15–20)). Jones and Vanhatalo (19) conducted a recent analysis of elite marathon runners and 

observed that their best marathon performance has been achieved at speeds corresponding to 

~96% of their CS. However, it remains unknown whether recreational runners also complete 

their marathon at speeds close to, but below, their CS. Furthermore, since an even pace seems to 

be the best strategy in a marathon (21), it can be hypothesised that runners who complete the first 

half of the marathon closer to, and particularly faster than their CS, would experience a 

significant slowdown in the final phase of the marathon.   

 

The determination of CS is a relatively simple process, but can be time consuming as it requires 

undertaking a series maximal efforts (22). Furthermore, it has been suggested that the attainment 

of  ̇O2max should be verified in trials intended to be used to calculate CS (22). Some authors have 

used personal best performance to determine CS in elite athletes (19), or to examine the 

evolution of human performance (through CS and D′) over the history of Olympic Games (23). 

Furthermore, critical power and W′, the cycling analogous of CS and D′, respectively, have been 

 



determined from ‗intentional‘ and ‗nonintentional‘ efforts recorded over four weeks of training 

data (24). There has been an increase in online platforms where runners log their activities using 

devices such as smartphones or smartwatches. Such activities are likely to include both training 

sessions and races, and may be used to estimate CS and D′.  

 

The aims of the current study, therefore, were to: i) use a large set of raw training data logged 

into an online fitness platform to calculate CS and D′ and compare such estimates to marathon 

performance, and ii) investigate whether the calculated CS and D′ can offer any insight into 

pacing during marathon performance. We hypothesised that: i) training data logged into an 

online fitness platform will allow determination of CS, as demonstrated by strong linearity of the 

distance-Tlim relationship and low standard error of estimate (SEE) in CS and D′; ii) the 

calculated CS and D′ obtained from training data will be strongly associated with marathon time 

(MT) and, specifically, CS will be close to, but lower than, marathon speed (MS); and iii) CS 

will offer valuable information regarding pacing, so that athletes who complete the first half of 

the marathon faster than their CS, were at a greater risk of experiencing a positive split.  

 

2. Methods 

2.1 Dataset  

The dataset for this study consisted of the activity logged to an online platform (Strava®) by 

31,190 runners of the Dublin, London, and New York marathons from mid-2014 to late 2017 

(Table 1). These data were, in part, provided by Strava® under limited research license. Each 

runner included in the dataset registered a race time for one of these marathons, and the dataset 

included all of their logged training activities for the 16 weeks before that race. Each runner was 

 



characterised with gender and age information, and each activity included time, distance, and 

elevation data sampled every 100 m. Taking into consideration the different energy costs of 

uphill and downhill running  (25), we computed pacing and grade-adjusted pacing at 100 m 

intervals. A detailed explanation of how grade adjusted pacing was calculated is provided in the 

supplementary material (see Appendix 1, Supplemental Digital Content 1, Grade adjusted pace 

calculations, http://links.lww.com/MSS/C10).  

 

The study was reviewed by the ethics committees at University College Dublin and University of 

Hertfordshire, and deemed to be exempt from ethical approval by both institutions since no data 

were collected. It is worth noting that, first, the dataset was anonymised by assigning a unique 

code for each runner in each marathon. Therefore, it is not possible to identify whether a given 

runner has competed in multiple races. Second, the logged activities may not provide a complete 

record of all training activities, since only logged running activities were included in our 

analysis.  

 

2.2. Calculation of critical speed from raw training data  

For each runner, the fastest time recorded at any time within the 16-week period before the 

marathon was calculated for a range of target distances: 400 m, 800 m, 1,000 m, 1,500 m, 3,000 

m, and 5,000 m. This range of target distances was selected because training programmes may 

push runners to achieve fast times for these specific distances. Furthermore, athletes training for 

a marathon are likely to also participate in other races, such as 5,000-m races, during their 

training, while the shorter distances are common in training programmes with prescribed interval 

 



sessions or time-trials. This range of distances is also similar to those used previously to 

determine CS in elite runners from performance data and from field studies (19, 23, 26).  

 

Since the data was samples at 100-m intervals, a rolling average of the grade-adjusted pacing 

was used to determine the fastest time recorded for each target distances, and assumed to be Tlim. 

For example, the fastest 1,000-m performance was calculated as the rolling average of 10 

consecutive values of the grade-adjusted pace that resulted in the shortest time. CS and D′ were 

then calculated for each athlete using the relationship between distance and Tlim, where the slope 

of the line represents CS, and the y-intercept represents D′ (Equation 2, (27)). For each athlete, 

42 values of CS and D′ were calculated using all possible combinations that included, at least, 

three of the target distances: 400 m, 800 m, 1,000 m, 1,500 m, 3,000 m, and 5,000 m.  

 

2.3. Statistical analysis 

The ability of CS and D′ to predict marathon performance, defined as marathon time (MT), was 

calculated using a linear regression. Specifically, we conducted 42 linear regressions, using all 

available values of CS and D′. However, for clarity, subsequent analyses were conducted only on 

the model using 400, 800, and 5,000 m distances, which was selected as the best performing 

model (i.e. the model with the lowest standard error predicting MT). Briefly, to do this, we used 

each runner as the test runner, and fit a linear regression model using the CS and D′ values of the 

remaining runners and their MT. Then, with the CS and D′ values of the test runner, we used the 

resulting linear regression model to predict the test runner‘s marathon time. This was repeated 

for all runners and the percentage error between the actual and predicted marathon time was used 

to compare the accuracy of predictions.  

 



 

A linear regression between relative marathon speed (relative MS) and MT was conducted to 

investigate how runners paced their marathon relative to their CS. Relative MS was determined 

as average speed during the marathon (i.e. MS) relative to CS (Equation 3):   

 

              
  

  
      [3] 

 

In addition, base-speed (BS) was calculated as the average speed from the 2 km to 16 km during 

the marathon, as we observed that during this early portion of the race most runners were able to 

sustain a relative stable pace. Relative BS was subsequently calculated as BS relative to CS 

(Equation 4): 

 

              
  

  
      [4] 

 

A linear regression was conducted to investigate the relationship between relative BS and 

relative MS. In addition, a linear regression was conducted between relative BS and frequency of 

runners that experienced a significant reduction in speed in the last section of the race, defined as 

a slowing down during the last 12.2 km of the marathon by more than 25% relative to their BS 

(i.e. slowdown >1.25). 

 

The athletes were categorised based on the gender (male and female) and age, and all analysis 

were conducted for male and female runners, and younger and older runners. For age, we 

selected an arbitrary threshold of 40 years to distinguish between younger (<40 years-old) and 

 



older (40+ years-old) runners, as this age resulted in approximately the same number of younger 

and older runners. The significance of the linear regressions was tested using F-tests, and we 

used one-tailed Welch‘s t-tests to assess the difference between groups (male vs. female runners, 

younger vs. older runners) for the variables above. We performed this analysis based on absolute 

MT, grouped in 10 min bins, and relative marathon performance (i.e. relative MS and relative 

BS), grouped in 2% bins. The standard error associated with CS and D′ was calculated, and 

reported as coefficient of variation (CV%). All analyses were performed using Python. Results 

are presented as mean ± standard deviation, unless otherwise stated. In all cases, a 99% 

confidence level (p < 0.01) was used as the threshold for significance.  

 

3. Results 

3.1 Determination of critical speed and D′ from raw training data 

The relationship between distance and duration was highly linear for all 42 combinations of 

target distances and Tlim used (pooled average from all models and all participants: R2 = 

0.9999 ± 0.0001). The CS obtained from the 42 models was 3.74 ± 0.08 m∙s-1, and the SEE 

associated with these estimates was 0.049 ± 0.018 m∙s-1 (CV% = 0.01%). The corresponding 

value for D′ from the 42 models was 149 ± 24 m, and the SEE of these estimates was and 28 ± 

11 m (CV% = 0.19%).  

 

The model using 400 m, 800 m, and 5,000 m produced the lowest error to predict marathon 

performance, and therefore was deemed as the best performing model. It resulted in a strong 

linear relationship between distance and Tlim for all participants (R2 = 0.999 ± 0.001) and the 

estimated mean values of CS and D′ for this model were 3.69 ± 0.57 m∙s-1 and 136 ± 39 m, 

 



respectively. The corresponding CV% associated with these estimations were 0.73% and 

14.56%, respectively. For simplicity, all subsequent results refer to estimates of CS and D′ 

derived only from this best performing model.  

 

The estimates of CS were ~16.4% greater for male runners compared to females (3.83± 0.54 m∙s-

1 vs. 3.29 ± 0.47 m∙s-1; t = 75.92, p < 0.01), whilst D′ estimates were ~7.8% lower for male 

runners compared to females (133 ± 37 m vs. 144 ± 41 m, respectively; t = -18.24, p < 0.01). 

With regards to age, estimates of CS for younger athletes were 8.8% higher than for older 

athletes (3.76 ± 0.59 m∙s-1 vs. 3.62 ± 0.54 m∙s-1; t = 20.04, p < 0.01), whilst D′ was 1.6% greater 

in the younger compared to older age category (137 ± 38 m vs. 135 ± 39 m; t = 4.57, p < 0.01). 

 

3.2 Critical speed and prediction of marathon performance 

The best performing model was correlated with MT (R2 = 0.695, f = 2.88 ∙ e04, p < 0.01), and was 

able to predict MT with a 7.67% error. In fact, all of 42 models of CS and D′ generated were 

successful at predicting MT (R2 = 0.67 ± 0.03; p < 0.01). The error associated with these 

predictions was 8.01 ± 0.51%. The single worst performing model used 400 m, 800 m, and 1,000 

m, and produced an R2 of 0.54 and a 9.72% prediction error.  

 

The mean percentage prediction error in marathon performance for the model used in this study, 

as a function of MT, is presented in Figure 1 for male and female athletes and for both age 

categories. The overall percentage error was not significantly different between male and female 

runners, 7.67 ± 6.63% and 7.67 ± 6.20% respectively (t = 0.02 p = 0.98). However, for MT from 

170 to 240 minutes, inclusive, the percentage error was significantly greater in female runners 

 



(p < 0.01). For slower runners with MT from 250 to 360 minutes, the percentage error was 

significantly greater among males compared with females (p < 0.01). There was a small, but 

significant, difference in the percentage error of the model between younger and older runners 

(7.56 ± 6.42% and 7.79 ± 6.63% respectively; t = -2.84 and p = 0.004).  

 

3.3 Marathon pacing relative to critical speed  

Runners completed their marathon at an average speed that corresponded to 84.8 ± 13.6% of 

their CS (Figure 2). Relative to CS, females completed the marathon slightly (~1%), but 

significantly, faster than males (85.5 ± 23.2% CS vs. 84.6 ± 7.8%; t = -2.94, p = 0.003). 

Specifically, females run relatively faster (i.e. closer to CS) than males for MTs from 170 min to 

360 min, inclusive (Figure 3; p < 0.01). There were not differences in relative MS in both age 

categories (Figure 2), with younger runners competing at 84.8 ± 17.4% of their CS, and older 

runners at 84.9 ± 7.7% of their CS (t =- 0.79, p = 0.42). 

 

Faster runners completed the marathon at speeds closer to CS compared with slower runners, as 

denoted by the negative relationship between marathon speed relative to CS (relative MS), and 

overall marathon performance (Figure 3, all p < 0.01). This held true irrespective of gender (R2 

of 0.99 and 0.98 for males and females, respectively) and age (R2 = 0.98 for both age groups). 

Irrespective of gender or age, runners with finishing times of ~150 min completed the marathon 

at 93.0% of their CS, whilst runners with finishing times >300 min completed the marathon at 

78.9% of their CS (Figure 3).  

 

 



The speed of runners from 2 to 16 km into the marathon (base speed, BS) was 3.24 ± 0.55 m∙s-1, 

which corresponds to 87.6 ± 6.9% of CS. There was a small, but significant difference, in 

relative BS (BS relative to CS) between male and female runners (87.5 ± 7.0% vs. 88.0 ± 6.5% 

of CS, respectively; t = -4.7 and p < 0.01). There was a similar small but significant difference in 

relative BS between younger and older runners (87.4 ± 6.8% vs. 87.9 ± 6.9%, respectively; t = -

5.3, p < 0.01). 

 

Runners with a higher relative BS experienced a greater relative split, as denoted by the positive 

correlations between relative BS and relative split time (Figure 4). This observation held true 

irrespective of gender (R2 = 0.72 and R2 = 0.69 for males and females, respectively) and age 

category (R2 = 0.73 and R2 = 0.77 for younger and older runners, respectively; all p < 0.01 except 

in the case of older runners). In other words, typically the faster an athlete ran the first part of the 

marathon, relative to their CS, the greater the slowdown they experienced in the second half of 

the marathon. Male runners had greater relative splits (slower second-half) than female runners 

for relative BS values from 76% to 94% of CS (p < 0.01). There were no significant differences 

in relative BS and relative split between younger and older runners.  

 

The percentage of runners that exhibited a decrease in speed greater than 25% in the last 12.2 km 

of the marathon, relative to their BS (i.e. a relative split ≥ 1.25), was greater among males 

compared with females (20.5% vs. 10.7%, respectively; t = 17.86, p < 0.01). The percentage of 

athletes with such slowdown was not statistically different with respect the age categories 

(17.9% vs. 18.1% for young and old age category, respectively; t = -0.55, p = 0.57).  

 

 



The relationship between relative BS and the percentage of runners with a slowdown ≥ 1.25 is 

presented in Figure 5. There were positive correlations between relative BS and percentage of 

runners with a slowdown ≥ 1.25 for males and females (R2 = 0.62 with p = 0.005 and R2 = 0.36 

with p=0.13, respectively). Similarly, there was a positive correlation between relative BS and 

percentage younger (R2 = 0.67, p = 0.002), but not older runners (R2 = 0.04, p = 0.7). It is worth 

noting that 23% of runners with relative BS > 1 (that is, running the first part of the race faster 

than their CS) experienced a significant slowdown, compared to 17% of runners who run the first 

half of the marathon at speeds slower than their CS, and suffered a comparable slowdown during 

the second half of the race (p < 0.01). There was evidence to suggests that a relative BS of 0.95 

represents an important threshold for runners, with respect to their ability to avoid a significant 

slowdown (≥ 1.25) later in the race (Figure 5). Specifically, the proportion of male and female 

athletes with a relative BS < 0.94, who go on slow significantly is 20.5% and 9.6%, respectively, 

compared to 26.0% and 15.6% for men and women with a relative BS > 0.94 (both p < 0.05).  

 

4. Discussion 

Critical speed is a physiological threshold with the potential to assess athletic ability. In this 

study, we investigated whether CS determined from raw training data logged into a fitness 

application can be used to predict performance and offer insight into pacing in a marathon race. 

The main findings from this study were as follows: i) it seems feasible to estimate CS from raw 

training data, and the estimates were sufficiently accurate to be useful for predicting athletic 

performance; ii) the average runner completed their marathon at ~85% of their estimated CS, 

with faster runners achieving speeds that were on average closer to, but still below, their 

estimated CS; and iii) CS may be useful to monitor pacing during a marathon, as runners who 

 



perform the early part of the marathon (2-16 km) faster than 94% of their CS were associated 

with a slower second-half time, and a greater likelihood of experiencing a slowdown greater than 

25% in the final stages of the race (>30 km). 

 

4.1 Determination of critical speed from raw training data 

The conventional approach to determine CS and D′ requires a series of maximal efforts, either at 

constant intensity to task failure, or as time-trials (22). In the present study, we used raw training 

data to calculate CS and D′, and therefore did not have access to such information. Furthermore, 

we did not have access to physiological (e.g. heart rate) or psychobiological (e.g. rating of 

perceived exertion) data, which can be used as surrogate measures to evaluate whether a 

maximal effort has been performed. Instead we used the fastest pace recorded for six target 

distances, from 400 m to 5 km, during the weeks leading up to a marathon. This may impose a 

limitation on this study, because using raw training data to calculate CS and D′ does not allow 

verification of maximal effort. We conducted some further analysis to develop an adjusted model 

in an effort to improve estimates of the fastest paces for runner, which form the basis of our 

model and estimates of CS and D′, in an effort to assess whether predictive trials were maximal. 

The adjusted model was developed with the assumption that when the fastest time for a target 

distance was recorded, the remaining of the activity should be considerably slower. The details 

of this adjustment are presented in detail in the supplementary material accompanying this paper 

(Supplemental Digital Content 2, http://links.lww.com/MSS/C11). In brief, as an example, if a 

runner ran their fastest 1 km over a 5 km session, but the remaining 4 km was not much slower, 

then it suggested that the fastest 1 km pace was not a maximal effort pace, and therefore should 

be adjusted (i.e. increase pace). The adjusted model was complex and the key results were 

 



similar to those obtained from the original analysis (see Appendix 2, Supplemental Digital 

Content 2, Adjusted Model, http://links.lww.com/MSS/C11) and, therefore, not included as part 

of the document. Further methodological considerations are discussed below. Nonetheless, the 

results presented herein suggest that raw training data has the potential to permit estimates of CS 

and D′ that are accurate and useful in practice. Further to its potential to assess endurance 

performance and inform pacing (see discussion below), CS may be seen as tool to assess 

cardiorespiratory fitness due to its strong correlations with  ̇O2max (5), the time constant of  ̇O2 

kinetics (28, 29), the percentage of type I muscle fibres (30, 31), and muscle capillarity (31). 

Future studies may investigate whether raw training data can be used to assess improvement in 

fitness, by looking at the changes in CS and D′ with training.  

 

The physiological basis of D′ are less well understood, and its precise aetiology is complex and 

multifactorial (5, 22). Nonetheless, there is some evidence suggesting that D′ may be linked to 

substrate phosphorylation and muscle mass and function (32, 33). Therefore, we would expect a 

higher D′ in males compared to females, and in young compared to older runners. However, 

whilst we observed a greater D′ in the younger group compared to older runners, the estimated 

D′ was ~7.8% greater in females compared to males. The reason for this phenomenon is not 

clear, but it may be linked to greater error inherent in the estimation of D′.  

 

4.2 Critical speed and marathon performance 

An important finding from this study was that marathon performance can be predicted using 

estimations of CS and D′ obtained from raw training data. Previous studies have already shown 

that CS determined in laboratory conditions can be a good predictor of endurance performance (r 

 



≥ 0.87;  (15–18, 20)), including evidence that CS may be associated with marathon performance 

(19, 20). The strength of the correlation between CS and marathon performance was remarkably 

similar in the study by Florence and Weir (R2 = 0.76, see ref. (20)), where CS was determined in 

controlled laboratory conditions for 12 participants, and the current study, where CS was 

determined using raw training data for >25,000 runners (R2 = 0.67). The best performing model 

(using 400, 800, and 5000 m distances) was able to predict marathon performance with 7.67% 

error. Indeed, most combinations of target distances (61%) used to calculate CS and D′ resulted 

in errors of <8% and the worst performing model (using the distances 400 m, 800 m, and 1000 

m) was associated with a prediction error of 9.7%. The error associated with these predictions 

was lower in males compared to females for fast runners, but the model was more accurate in 

females for slow marathon runners. It is plausible that predictions of fast marathon (~175 to 225 

min) MT were more accurate in males compared to females because males also had faster MT 

(~215 min) compared to females (~250 min). Therefore, more data were available and the 

models were able to produce more accurate predictions of marathon performance. Nonetheless, 

overall the predictions of MT had ~8% error, which corresponds to ~18 min for the average MT 

of 230 min. This value compares favourably with the error obtained from equations that aim to 

predict MT (34). However, there are multiple equations available to predict MT, which are based 

on several variables, such as anthropometric, physiological, and/or training history and previous 

performance, and it remains unclear which equations provides the best estimation (34). The 

present study demonstrates that CS determined from raw training data can be useful to predict 

MT in a large, heterogeneous sample.   

 

 



The data reported in this study shows that estimates of D′ exhibit a much greater CV% than that 

of CS (~16% vs. ~1%, respectively), which is a common finding within the literature (22). For 

example, Black et al. reported that CV% of 2-3% for critical power, but CV% of ~10% for W′ 

(9, 22). It should be noted that the relative contribution of D′ is small in endurance events such as 

the marathon, but it remains unclear whether CS and D′ determined from raw training data may 

be able to predict performance in events in which the relative contribution of D′ is larger, such as 

a 5 km race.  

 

4.3 Marathon pacing relative to critical speed 

It has long been appreciated that intensities corresponding to CS (or its cycling analogous critical 

power) can only be sustained for up to 1 hour (22). In the present study, therefore, it was 

hypothesised that marathons would be performed at speed close to, but below, CS. The results 

showed that recreational athletes completed the marathon at ~85% CS (Figure 2). Previous data 

on marathon performance relative to CS is limited to a small group of elite athletes (19), who 

were able to run the marathon at ~96% of their CS. It is not clear why elite athletes were able to 

sustain a higher fraction of their CS in the marathon. However, it has been recently shown that 

prolonged, submaximal exercise can affect both critical power and W′ (35–37). Specifically, 

Clark et al. reported a ~10% reduction in critical power after 120 min of exercise below critical 

power (35–37). Assuming a similar decline in CS is also observed during prolonged exercise, CS 

may have been reduced during the marathon preventing participants to complete at a higher 

fraction of their CS. Clark et al. (35) suggested that the decline in critical power may occur as a 

function of time, as it was evident following 120 min of exercise but not following 40 and 80 

min of exercise. In the present study we analysed data from recreational runners with an average 

 



MT of ~230 min, which may result in greater a decline in CS compared to elite athletes who 

completed the marathon in ~125 min (19). In the present study, we observed that more 

competitive athletes were able to maintain speeds of up to 93.0% of their CS, but somewhat 

slower athletes were only able to complete the marathon at speeds corresponding to ~80% CS. 

Indeed, there was a strong negative relationship between MS relative to CS and finish time 

(R2 ≥ 0.98; Figure 3), which may be interpreted as i) CS decreases as a function of time, and 

therefore faster athletes complete the marathon with a lower MT which results in lower decrease 

in CS, or ii) faster athletes are fitter athletes, and fitness itself offers some protection to the 

deterioration of CS during exercise; or a combination of both. This remains speculative, and 

further research may investigate whether CS is also affected by prolonged running, its aetiology 

and possible strategies to minimise such decline, including carbohydrate supplementation (37); 

and its implication for accuracy of MT predictions derived from CS and D′.  

 

It is worth noting that a small number of runners (0.82%) completed the marathon at speeds 

faster than their estimated CS (i.e. MS relative to CS > 1 in Figure 1). This result is difficult to 

reconcile with the current understanding of the CS as the upper limit of sustainable exercise. It is 

possible that available raw training data failed to capture maximal effort in some participants, 

and resulted in underestimation of CS. Then again, it is plausible that some runners benefited 

from a taper pre-marathon, or experienced favourable conditions during the race compared to 

conditions they may have experienced during training. For instance, all marathons investigated 

where completed very close to sea level (Dublin, London, and New York). It is well known that 

altitude has a negative effect on endurance performance, which is evident from altitudes of only 

150-300 m above sea level (38). Therefore, raw training data may underestimate CS in athletes 

 



that live at moderate altitudes, and then compete at sea level. It is also plausible that in big-city 

marathons, with thousands of athletes competing simultaneously, some athletes benefit from 

drafting, which results in decreased oxygen cost of running (39), and therefore an increased 

performance (2). Nonetheless, the results from the current study show that, as hypothesised, 

>99% of 25,000 recreational runners performed the marathon at speeds close to, but below their 

CS.  

 

The results from this study suggest runners who completed the initial part of the marathon closer 

to their CS were more likely to experience difficulties later in the race, quantified as a positive 

relative split (i.e. slowing down in the second half of the race) and also as the percentage of 

athletes who experienced a significant slowdown in the final stages of the race. The results 

reported in the current study showed a positive correlation between BS relative to CS and 

subsequent impairment in performance, irrespective of gender and age category. Adopting an 

even split has been suggested as the best approach for endurance events (21), and large-scale 

studies have already suggested that an even split is optimal for endurance performance (40). The 

data presented in the current study suggests that such even pace should be close to, but below, 

the CS. For example, runners who complete an evenly paced race (defined as a race in which the 

first-half time is within 2%, faster or slower, than the second-half time) do so by running at a 

speed that is ~88% of their CS, while runners whose pacing falls outside of this range completed 

their race at ~84% of their CS. The results of the present study suggest that speed in the first half 

of the marathon should stay within ~94% of CS, or athletes risk having to disproportionately 

slowdown in the second half of the marathon.  

 

 



The results also showed that, whilst no differences were observed between younger and older 

athletes, males experienced a greater slowdown in the second half of the marathon, and severe 

slowdowns >25% occurred more frequently, compared to females. This is consistent with 

research showing that female runners tend to pace their marathons more evenly than male 

runners and that they are less susceptible to severe slowdowns and hitting the wall when 

compared with male marathoners (40, 41).   

 

4.4 Methodological considerations 

The determination of CS and D′ requires participants to perform a series of maximal efforts. 

When testing is conducted in a laboratory it is possible to assess if a participants have performed 

a maximal effort, for instance by checking whether  ̇O2max has been attained during predictive 

tests (22). In the current study, however, CS and D′ have been determined using raw training 

data, and it was not possible to verify whether predictive tests represented a maximal effort. 

Whilst this is a potential limitation for using raw training data to calculate CS and D′, it is worth 

noting that: i) when performing maximal efforts, the relationship between distance and time 

becomes linear. The data reported herein also shows a very strong linear relationship between 

distance and time for all participants. ii) We used data from a 16-week period before the race, 

and only included runners with at least 24 activities logged during this period. It is plausible that 

some of the activities in the dataset correspond to shorter races (e.g. 5-km) and training activities 

performed maximally, e.g. high-intensity interval training. iii) It has been shown that unintended 

efforts over a single training session can be used to estimate critical power and W′, and such 

estimations are similar to those obtained from field data do not have to perform pre-defined 

intentional efforts (24). However, Karsten et al. (24) included race data, whereas it was not 

 



possible to differentiate training or race data in the current study. iv) CS and D′ were determined 

using an adjusted model, with the assumption that if runs included in the analysis of CS and D′ 

would approximate a maximal effort, these would be likely to occur early in a training session. 

The results from the adjusted model (presented in the Supplemental Digital Content) were 

similar to those presented herein. Therefore, although a degree of caution is warranted until a 

direct validation of CS and D′ determined from raw training data is performed against 

laboratory-based estimations of these parameters, the results suggest that it would be possible to 

calculate CS and D′ from raw training data and such estimates can be useful to estimate 

marathon performance and inform pacing.  

 

Conclusions 

In the current study, we aimed to use a large data set of raw training data to determine CS and D′ 

and to evaluate whether such predictions can be used to assess performance and pacing during a 

marathon. The main, original finding in the study is that CS and D′ determined from a large 

dataset of raw training data may be useful to predict marathon performance and pacing. These 

results have the potential to enable fitness apps to provide more targeted advice to their users 

about training options and racing strategies, perhaps enabling more targeted, personalised 

training programmes that are based on physiological thresholds (i.e. CS), and that can adapt to 

individual runners, thereby helping them to optimise their training and performance. 
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Figures and Tables 

Legends:  

 

Tables  

Table 1. Summary of the dataset by city and year. 

 

Figures  

 

Figure 1. Mean percentage prediction error by finish-time and based on gender (a) and age 

category (b) using a leave-one-out test to evaluate the best performing model at predicting MT. 

The shaded region in (a) indicates finish-times associated with error differences between male 

and female runners that were found to be significant (p < 0.01) based on a one-tailed Welch‘s t-

test. 

 

Figure 2. Distributions of relative marathon speed (Rel MS), defined as critical speed relative to 

marathon speed, for (a) male and female; and (b) younger and older runners. 

 

Figure 3. Relative marathon speed (Rel MS), defined as critical speed relative to marathon 

speed, of runners versus finish-time. Results are presented based on (a) gender and (b) age 

category. The shaded regions in (a) indicates finish-times associated with relative MS differences 

between male and female runners that were found to be significant (p < 0.01) based on a one-

tailed Welch‘s t-test. 

 

 



Figure 4. Relative split of runners (second-half time divided by first-half time) as a function of 

relative base-speed (relative BS, defined as average running speed 2-16 km as a fraction of 

critical speed). Results are presented based on (a) gender and (b) age category. The shaded 

region in (a) indicates the relative BS range that was associated with relative split differences, 

between male and female runners, that were found to be significant (p < 0.01) based on a one-

tailed Welch‘s t-test. 

 

Figure 5. Percentage of runners experiencing a late-race (final 12 km) slowdown in excess of 

25% (relative to base-speed) versus relative base-speed (Rel BS, defined as average running 

speed 2-16 km as a fraction of critical speed). Results are presented based on (a) gender and (b) 

age category. The shaded region in (a) indicates the relative BS range that was associated with 

percentage slowing differences, between male and female runners, that were found to be 

significant (p < 0.01) based on a one-tailed Welch‘s t-test. 
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Table 1 

 

City Year Sex  

(M/F) 

Number of 

Runners 

Age  

(years) 

Finishers 

(%) 

Race Time  

(min) 

Frequency 

(activities per 

week) 

 

Volume 

(km per week) 

                 Dublin 2014 F 59 38 ± 7 90.1 258.4 ± 30.9 3.2 ± 1.1 33.8 ± 9.9 

 

  M 313 38 ± 7 97.0 221.0 ± 35.8 3.8 ± 1.7 42.9 ± 17.0 

 

2015 F 91 39 ± 8 90.9 253.5 ± 33.9 3.5 ± 1.3 36.3 ± 12.3 

 

  M 506 39 ± 8 96.0 217.8 ± 35.8 3.9 ± 1.8 42.5 ± 17.8 

 

2016 F 220 39 ± 8 93.0 257.3 ± 40.9 3.6 ± 1.4 36.8 ± 13.6 

    M 959 40 ± 8 97.2 220.2 ± 35.3 3.8 ± 1.7 42.1 ± 16.8 

                 London 2015 F 641 39 ± 8 96.3 242.2 ± 42.4 3.7 ± 1.7 40.3 ± 14.9 

 

  M 2151 40 ± 8 97.1 202.5 ± 38.0 4.2 ± 2.2 47.1 ± 21.4 

 

2016 F 1053 38 ± 9 96.2 242.3 ± 43.1 3.7 ± 1.5 39.3 ± 15.3 

 

  M 3197 40 ± 8 97.3 203.0 ± 39.3 4.3 ± 2.3 47.3 ± 22.4 

 

2017 F 1824 39 ± 8 96.5 251.4 ± 47.7 3.6 ± 1.7 37.8 ± 14.8 

    M 4278 41 ± 8 97.6 207.1 ± 41.9 4.3 ± 2.3 47.3 ± 22.5 

                 New York 2015 F 412 38 ± 9 87.8 253.2 ± 43.6 3.7 ± 1.4 39.5 ± 14.4 

 

  M 1460 40 ± 8 92.3 223.9 ± 42.8 3.8 ± 1.6 44.0 ± 19.2 

 

2016 F 841 37 ± 9 87.9 250.3 ± 42.7 3.8 ± 1.6 39.6 ± 15.5 

 

  M 2314 40 ± 9 92.7 224.0 ± 41.5 3.8 ± 1.7 43.4 ± 18.0 

 

2017 F 1427 37 ± 9 90.6 250.3 ± 43.0 3.8 ± 1.5 40.0 ± 16.2 

    M 3497 40 ± 9 93.0 223.7 ± 41.1 3.8 ± 1.6 43.5 ± 18.5 

 
 

 



Supplement 1. Grade adjusted pace calculations 

 

 

The current study relied on a dataset consisting of >25,000 recreational, which contains 

information of their time, distance, and elevation data, sampled every 100 m. We implemented a 

grade adjusted pace which takes into account the gradient of terrain during the recorded 

activities, and estimates an equivalent pace relative to an even terrain. For example, the energy 

cost of running uphill is greater than that of running flat (1), so the grade adjusted pacing on 

ascents will be calculated as faster than the actual pace, and vice versa for descents. The 

calculation of grade adjusted pacing used in this work is based on the formulation described by 

Minetti et al. (1),  which describes an adjustment for grade (Adjusted (g)) as follows: 

 

 

Equation 1 

  

 

 

Then, the grade-adjusted pace for a pace p and grade g is given by: 

 

Equation 2 
  

 

 



Thus, for example, a 4 min∙km-1 pace (15.0 km∙h-1) over a 1% downhill gradient is equivalent to 

of 4 min 22 seconds per km (14.2 km∙h-1). 

 

References 

1. Minetti AE, Moia C, Roi GS, Susta D, Ferretti G. Energy cost of walking and running at 

extreme uphill and downhill slopes. J Appl Physiol. 2002;93(3):1039–46. 



Supplement 2. Adjusted model 

 

The calculation of CS and D′ requires a series of maximal efforts (1). However, using raw 

training data, it is not possible to determine whether an effort was maximal. Furthermore, in the 

current dataset it was not possible to access to physiological (e.g. heart rate) or psychobiological 

(e.g. rating of perceived exertion) data, which can be used as surrogate measures to evaluate 

whether a maximal effort has been performed. This is a potential limitation associated with the 

determination of CS and D′ from raw training data.  

 

The conventional protocol to determine CS and D′ requires a series of maximal efforts at a 

constant intensity (1). Predictive trials to calculate CS and D′ should be, by definition, at 

intensities above CS, and continued to task failure or performed at maximal effort. Importantly, 

once task failure has occurred, participants can only sustain intensities below CS (2, 3).  

 

An adjustment was therefore applied to the model used to calculate CS and D′. The adjusted 

model relies on the assumption that the fastest times registered for a given distance during 

training are likely to be part of a longer activity, and therefore may not represent the runner’s 

true maximal effort for that distance. For example, if a runner registers a fastest time for the 1000 

m distance of 180 seconds (a pace of 3 mins∙km-1) during a 39 min and 10 km activity, then this 

1 km fastest time may not represent a maximal effort, since they were able to run 9 km at a still 

fast pace of 4 min∙km-1. If, on the other hand, the remaining 9 km for such 10 km activity were 

run at 6 min∙km-1, then we might reasonably conclude that it is effort is a better approximation of 



a true maximal effort. An adjustment to the model presented in the article was therefore 

conducted based on distance and pacing information from the remainder of the activity.  

 

More generally, the fastest paces recorded in the 16-week period before the marathon and used to 

calculate CS and D′ were adjusted based on the relative difference between the distance (dT) and 

pace (pT) of the observed performance and the remaining distance (dR) and pace (pR) over which 

this performance has been achieved. If the remaining distance is long, and the remaining pace 

fast, then a larger discount is appropriate, compared with when the remaining distance is short or 

its pace is slow. In other words, if there is evidence to suggest that the runner needed to slow 

significantly after running their fastest pace over the target distance, then we can have more 

confidence in the target pace for such distance approximate a maximal effort. On the other hand, 

if, after registering their fastest pace, athletes continued to run far and fast then their fastest pace 

should be discounted. 

  

Equation 1:   

Equation 2: 

 

Equation 3: 

  

Equation 4: 

  

  



We implemented a procedure for adjusting the fastest pace over a target distance based on 

Equations 1 – 4. They comprise an adjustment due to the remaining distance (Equation 5) and an 

adjustment due to the remaining pace (Equation 6). In addition, Equation 4 limits the total 

adjustment that can be applied based on the target distance; using w = 20 the max adjustment for 

a 400m distance (dT = 0.4) is 0.13, or 0.25 for a 10k distance. The target and remaining paces 

(pT and pR) are measured in mins∙km
-1, target and remaining distances (dT and dR) are measured 

in kms, and prest refers to a slow (recovery) pace of 10 mins/km.  

 

Using the example above (a 10km activity with a fastest 1km pace of 3 mins/km and the 

remaining 9km at 6mins/km) leads to an adjustment in this fastest 1km pace from 3 mins/km to 

2.77 mins/km.  

 

The adjusted model increased the average CS values generated by approximately 5%. 

Specifically, CS determined from the best performing model, which used distances of400 m, 800 

m, and 5,000 m), increased from 3.69 ± 0.57 m∙s-1 to 3.84 ± 0.63 m∙s-1. Using the adjusted model 

also generated minor improvements in the prediction of MT using CS and D′ (R2 value increased 

from 0.67 to 0.73).  

 

The figures below (Figure 1.1 to Figure 4.1) correspond to the key results in the main paper,  but 

using the adjusted model for the target distances. Generally, the results were similar to those 

obtained using the original model. The one exception concerns the relationship between the 

fraction of runners slowing significantly during the second half of the race relative to their early 

race pacing (i.e. relative BS). Using the original model there were moderate and weak positive 



correlations between relative BS and percentage of runners with a slowdown ≥ 1.25 for males 

and females (R2 = 0.62 and  p = 0.005, and R2 = 0.36 and p = 0.13, respectively). Similarly, there 

was a moderate correlations between relative BS and percentage young athletes who exhibited 

such slowdowns (R2 = 0.67, p = 0.002) but a weaker correlation for older runners (R2 = 0.04, p = 

0.7). Using the adjusted model these relationships were found to be stronger with R2 values of 

0.71 and 0.64 for male and female runners, respectively (p < 0.01); and for younger and older 

runners (R2 = 0.71 and R2 = 0.74, respectively; both p < 0.01).  
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Figure 1.1 (Supplement). Mean percentage prediction error by finish-time and based on gender 

(a) and age category (b) using a leave-one-out test to evaluate the best performing model at 

predicting MT.  

 

  



 

 

Figure 2.1 (Supplement). Relative marathon speed (Rel MS), defined as critical speed relative 

to marathon speed, of runners versus finish-time. Results are presented based on (a) gender and 

(b) age category.   



 

 

Figure 3.1 (Supplement). Relative split of runners (second-half time divided by first-half time) 

as a function of relative base-speed (relative BS, defined as average running speed 2-16 km as a 

fraction of critical speed). Results are presented based on (a) gender and (b) age category.  

 

  



 

 

Figure 4.1 (Supplement). Percentage of runners experiencing a late-race (final 12 km of the 

marathon) slowdown in excess of 25% (relative to base-speed) versus relative base-speed (Rel 

Base Speed), defined as average running speed 2-16 km as a fraction of critical speed). Results 

are presented based on (a) gender and (b) age category.  


