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Abstract

We review current understanding of the population of radio galaxies and radio-loud quasars from an observational per-
spective, focusing on their large-scale structures and dynamics. We discuss the physical conditions in radio galaxies,
their fuelling and accretion modes, host galaxies and large-scale environments, and the role(s) they play as engines
of feedback in the process of galaxy evolution. Finally we briefly summarise other astrophysical uses of radio galaxy
populations, including the study of cosmic magnetism and cosmological applications, and discuss future prospects for
advancing our understanding of the physics and feedback behaviour of radio galaxies.
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1. Introduction

Radio galaxies and radio-loud quasars (collectively
radio-loud AGN, or RLAGN in this article) are active
galaxies characterized by radio emission driven by jets
on scales from pc to Mpc. The characteristic radio emis-
sion is synchrotron emission: that is, it indicates the
presence of magnetic fields and highly relativistic elec-
trons and/or positrons. Synchrotron emission may be
seen in other wavebands, and this enabled the detection
of the first radio galaxy jet before the advent of radio as-
tronomy (Curtis, 1918) but it was only with the capabil-
ities of radio interferometry (Ryle, 1952) that it became
possible to detect and image these objects in detail and
in large numbers. As we will discuss in more detail be-
low, radio observations remain key to an understanding
of their origin, dynamics and energetics.

Radio images of some characteristic large-angular-
scale nearby RLAGN are shown in Fig. 1. These show
the large-scale jets and lobes that are the defining feature
of this type of object. The first observations capable of
showing the radio jets (e.g., Northover, 1973) motivated
the development of the now standard ‘beam model’, in
which collimated outflows from the active nucleus drive
the extended structures (Longair et al., 1973; Scheuer,
1974; Blandford and Rees, 1974). Some authors have
used ‘beam’ to refer to the outflows themselves and ‘jet’
to refer to their observational manifestations, but in this
review we use ‘jet’ interchangeably for both, relying on
context to make the distinction clear where it is needed.

Key historical developments in observational
RLAGN studies after the first surveys and optical
identifications included the development in the 1970s
of high-resolution interferometers such as the 5-km
telescope and the NRAO Very Large Array (VLA),
which allowed detailed study of radio structures as well
as optical identifications for the first time; progress in
very long baseline interferometry (VLBI), which has
given increasingly detailed views of the inner parts
of the jets; the advent of sensitive optical telescopes,
including the Hubble Space Telescope, which allowed
detailed studies of RLAGN host galaxies and environ-
ments in the optical, as well as the study of optical
synchrotron radiation; a greatly improved understand-
ing of the nature of the active nuclei themselves,
driven by a combination of broad-band photometry and
spectroscopy; and the development of X-ray telescopes
with the sensitivity needed to image both the hot gas
environments of RLAGN and the X-ray synchrotron
and inverse-Compton emission from the large-scale
radio structures. Some of the understanding derived
from those observational advances is discussed in later
sections of this review. However, perhaps the most
important development has been the realization that
the energetic input of RLAGN can have a profound
effect on both the galaxies that they inhabit and their
large-scale environment, heating the hot gas that
surrounds them and preventing it from cooling and
forming stars; this process is an important member of a
family of processes that have come to be called ‘AGN
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Figure 1: Radio images of nearby radio galaxies showing a range of morphologies: top row are the Fanaroff-Riley class I source 3C 31 (left) and
the Fanaroff-Riley class II source 3C 98; middle row are the wide-angle tail source 3C 465 (left) and narrow-angle tail / head-tail source NGC 6109
(right); and bottom row are double-double radio galaxy 3C 219 (left), and core-restarting radio galaxy 3C 315 (right). Compact ‘cores’ may be
seen in all images, well-collimated jets are visible in 3C 31, 3C 98 and 3C 465, and hotspots in 3C 98, 3C 465 and 3C 219. 3C 31 image kindly
provided by Robert Laing; 3C 98 image from the online ‘Atlas of DRAGNS’ at http://www.jb.man.ac.uk/atlas/; 3C 465 image courtesy of
Emmanuel Bempong-Manful; 3C 219 image from Clarke et al. (1992); NGC 6109 and 3C 315 from unpublished LOFAR data.
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feedback’. This understanding of the importance of
RLAGN in galaxy formation and evolution, derived
both from X-ray observations and from numerical
modelling of the formation and evolution of galaxies,
has moved RLAGN studies into the mainstream of
extragalactic astrophysics. In this chapter we will
therefore also discuss how observations and models of
RLAGN constrain the ‘feedback’ processes that may be
operating.

Throughout the review we adopt the convention that
γ represents the (random) Lorentz factor of an individ-
ual electron and Γ represents the bulk Lorentz factor
due to directed motion. Luminosities and physical sizes
quoted are based on a standard concordance cosmology
with H0 = 70 km s−1 Mpc−1.

2. Observational approaches

In this section we provide an overview of the observa-
tional methods that provide us with constraints on radio
galaxy physics.

2.1. Radio

The fact that the radio emission is synchrotron emis-
sion was realised early on from its polarization and
spectrum (Baade, 1956; Burbidge, 1956) and, together
with the optical identification of these objects with rel-
atively distant galaxies (see Section 2.2), turned out to
imply very large energies stored in the extended struc-
tures. The details of the radiation mechanisms can be
found in e.g., Longair (2010) or Rybicki and Lightman
(1979). The point that we wish to emphasise here is that
the energy density in the radiating electrons and field,
U, can be written in terms of the volume emissivity J(ν)
and the magnetic field strength B: for a power-law dis-
tribution of electron energies with energy index p, we
find

U = kJ(ν)B−
p+1

2 +
B2

2µ0
(1)

where k is a constant incorporating physical constants,
the observing frequency, and the integral over electron
energies. Clearly eq. 1 has a minimum at some value
of B, and by solving for the minimum and computing
the minimum energy density, we can get both an esti-
mate of a characteristic field strength and a lower limit
on the energy responsible for a given region of a ra-
dio source. The minimum-energy condition turns out
to be close to the equipartition energy, Ue = UB, but the
important conclusion is that the minimum-energy field
strengths for 100-kpc-scale lobes such as those shown

in Fig. 1 are of order 1 nT for a powerful source, lead-
ing to energy densities of order a few ×10−13 J m−1 and
total energies of order 1054 J or more — which would
require the direct conversion to energy of millions of
solar masses of matter. If there is any departure from
the minimum-energy assumptions, these numbers will
be larger — and possibly very much larger if, e.g., there
are large departures from equipartition or if the energy
density in the lobes is dominated by non-radiating par-
ticles.

It can be seen that estimates of the energetics of the
radio-emitting structures depend strongly on the char-
acteristic magnetic field strength. This cannot be es-
timated directly from observations of synchrotron in-
tensity. Synchrotron emission is strongly polarized —
the fractional polarization can be ∼ 70% for a uniform-
field region with a power-law spectrum, and even higher
where the spectrum is exponentially cutting off — but
the polarization does not tell us about the field strength
either, although it does give an emission-weighted es-
timate of the magnetic field direction along a particu-
lar line of sight, if Faraday rotation effects may be ne-
glected (see below). For optically thin radio emission,
the only way of directly estimating the magnetic field
strength is to use additional observations, for example
observations of inverse-Compton emission, discussed
below (Section 2.4).

Faraday rotation is an effect caused by the propaga-
tion of electromagnetic radiation through a magnetised,
ionized medium. The polarization angle rotates due to
a difference in propagation speed for the two circularly
polarized components of the electromagnetic wave. The
change in angle is dependent on frequency, and the ro-
tation measure — the strength of the rotation effect —
depends on the magnetic field strength and electron den-
sity of the intervening material (e.g. Cioffi and Jones,
1980). For a single line of sight through a Faraday-
active medium towards a background polarized source
the measured polarization angle χ is given by (Burn,
1966):

χ = χ0 + φλ2 (2)

where χ0 is the intrinsic polarization angle and φ is
given by

φ = K
∫ d

0
neB · dS (3)

in which K is a constant with value (in SI units) 2.63 ×
10−13 T−1. Clearly in general different lines of sight,
even within a given telescope beam, will have differ-
ent values of φ. However, observationally, it is of-
ten the case that the rotation measure RM = dχ/dλ2

shows smooth behaviour across a source, and in this
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case rotation measure observations can be used to es-
timate magnetic field strength external to the source
along the line of sight in situations where the density
of intervening plasma is known or can be estimated.
Frequency-dependent depolarization also provides in-
formation about the magnetic field strength and/or the
density of thermal plasma internal and external to the
radio lobes (e.g. Burn, 1966; Laing, 1988), although
disentengling the contributions of different components
can be challenging.

Although RLAGN are now detected at many other
wavebands, radio observations continue to provide the
most efficient method of selecting them. Early sur-
veys such as the 3C or Parkes surveys (Bennett, 1962;
Bolton et al., 1964), and the optically identified cat-
alogues derived from them (e.g., 3CRR, Laing et al.,
1983), have been the background for many of the de-
tailed studies of the physics of individual AGN or small
samples. Because RLAGN are a comparatively rare
population, wide sky areas are necessary to get a rep-
resentative view of the local population, and so histor-
ically low-frequency radio telescopes, with their large
fields of view but comparatively low sensitivity, were
the survey instruments of choice. Low-frequency se-
lection has the advantage that the low-frequency emis-
sion of RLAGN is dominated by the steep-spectrum
emission from the lobes, presumed to be more or less
isotropic. More recently surveys at GHz frequencies,
especially with the Very Large Array (VLA), have been
used to generate large samples. Wide-area surveys can
be used to find many objects in the local universe (Best
and Heckman, 2012) while deep surveys with a narrow
field of view probe the RLAGN population at high red-
shift (e.g., Smolčić et al., 2017). In these sensitive sur-
veys, separating the radio emission from RLAGN from
that due to star formation in the host galaxy becomes a
major concern. Forthcoming wide and/or deep surveys
with LOFAR (Shimwell et al., 2017), ASKAP (Norris
et al., 2011), and MeerKAT (Jarvis et al., 2016) will pro-
vide still larger samples of the AGN population without
the limitations in uv plane coverage imposed by the de-
sign of the VLA.

Historically, RLAGN would be selected from a sur-
vey and then followed up with pointed radio obser-
vations for detailed study. Here, as with study at
other wavebands, the very large range of angular scales
spanned by RLAGN can be problematic. The closest ra-
dio galaxy, Centaurus A, has scales of interest ranging
from tens of degrees to microarcseconds, and to study
even a fraction of that range requires the combination
of data from multiple telescopes (Feain et al., 2011).
For objects at more typical distances the largest angular

scales might be arcminutes, corresponding to hundreds
of kpc to Mpc. A correspondingly large range of inter-
ferometer baselines is needed to study the whole radio
structure.

Radio observations at GHz frequencies with sub-
arcsecond to arcminute resolution, as provided by in-
struments such as the (Jansky) VLA, ATCA and e-
MERLIN, typically correspond to scales of kpc to hun-
dreds of kpc and are used to study the large-scale struc-
tures such as kpc-scale jets, lobes and hotspots, either
in individual objects (e.g., Carilli et al., 1991; Laing and
Bridle, 2002) or large samples (e.g., Black et al., 1992;
Fernini et al., 1993; Bridle et al., 1994; Fernini et al.,
1997; Leahy et al., 1997; Hardcastle et al., 1997; Gilbert
et al., 2004; Mullin et al., 2006). The review of Bri-
dle and Perley (1984) still provides a good summary of
many of the early observational discoveries. Resolved
broad-band spectral mapping gives (model-dependent)
information about the age of the radio-emitting plasma,
so-called ‘spectral ageing’ (Burch, 1977; Myers and
Spangler, 1985; Alexander and Leahy, 1987; Harwood
et al., 2013) based on the different radiation timescales
for electrons of different energies (see Section 4.4, be-
low). Polarization imaging at GHz frequencies tell us
about the configuration of the magnetic fields in the
large-scale lobes, jets and hotspots (Laing, 1980; Bridle
and Perley, 1984; Laing, 1989; Hardcastle et al., 1998)
but, because Faraday rotation effects become domi-
nant at low frequencies, broad-band polarization stud-
ies can also tell us about the thermal material immedi-
ately around or even inside the lobes, both for individ-
ual sources or on a statistical basis (Dreher et al., 1987;
Laing, 1988; Garrington et al., 1988; Taylor and Perley,
1993; Laing et al., 2008; Hardcastle et al., 2012; Ander-
son et al., 2018).

VLBI observations with milliarcsec resolution, cor-
responding to physical scales of pc, allow the study
of the regions where the jets are formed and acceler-
ated. Time-resolved studies of jet dynamics are gen-
erally only possible on these scales, and both stud-
ies of individual objects and systematic total inten-
sity studies of large samples (Lister et al., 2016) pro-
vide our best constraints on bulk speeds of jets on
these scales. Multi-frequency studies exploiting self-
absorption at lower frequencies can probe magnetic
field strengths (O’Sullivan and Gabuzda, 2009) while
polarization studies constrain the magnetic field config-
uration in the jets (Gabuzda et al., 2004).

A good deal of work has been done on the 21-cm line
of neutral hydrogen, either in emission or in absorption
against the synchrotron continuum, in the host galaxies
of RLAGN. A key result is that a number of RLAGN
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show outflowing neutral hydrogen, presumably associ-
ated with the interaction between the jets/lobes and their
environment, as well as having small-scale nuclear HI
components plausibly associated with the fuel supply.
See Morganti and Oosterloo (2018) for a recent review.

2.2. Optical/IR
Matching a radio source with an optical counterpart,

known as optical identification, is crucial to any kind
of physical interpretation. The identification of power-
ful radio sources such as Cygnus A, M87 and Centau-
rus A with peculiar galaxies by Baade and Minkowski
(1954a,b) marked the beginning of the study of the
physics of these objects, leading, as already noted, di-
rectly to an understanding of the large energies in-
volved, and thence, through the discovery of quasars
(Schmidt, 1963) to the idea that RLAGN must be
powered by accretion onto supermassive galactic-centre
black holes (Lynden-Bell, 1969).

Optical identification requires the combination of a
good radio image (with resolution sufficient to distin-
guish between different possible optical counterparts)
and a good optical image, and so it has always been
a significant limitation on the exploitation of radio sur-
veys — the final optical identification of the 3CRR sam-
ple, for example, came in 1996 (Rawlings et al., 1996),
decades after the initial radio observations. Deep opti-
cal images are required to find the counterparts of high-
redshift radio sources, and these are not easily available
over wide sky areas. This continues to be an issue for
current and next-generation sky surveys, mitigated to
some extent by the fact that the more recent surveys are
carried out at an angular resolution that allows optical
identification without requiring followup radio observa-
tions.

Optical counterparts (‘host galaxies’) of RLAGN
have a number of interesting properties. An important
minority are quasars: in other words, we have a direct
view of radiatively efficient nuclear accretion. Almost
all the rest are early-type galaxies, implying a relation-
ship between RLAGN activity and the most massive
systems; but of those galaxies some, particularly those
associated with the most powerful radio galaxies, are
peculiar, showing strong narrow emission lines similar
to those of Seyfert 2 galaxies in optical spectra. The
interpretation of these peculiarities as due to galaxy col-
lision dates back to the earliest optical identifications
(Baade and Minkowski, 1954a), and indeed for these
powerful objects there is a higher than average frac-
tion of disturbed or merger-like hosts (Heckman et al.,
1986; Ramos Almeida et al., 2012). However, other ra-
dio galaxy hosts show no evidence of peculiarities that

cannot be attributed to the jet. We will return to the
implications of these observations for accretion in Sec-
tion 6.3, while the relationship between radio proper-
ties, stellar mass and star formation will be discussed in
more detail in Section 7.

Optical observations are important in a number of
other areas. Optical synchrotron emission can be identi-
fied readily by its polarization, and it was in fact op-
tical polarimetry that provided early confirmation of
the synchrotron nature of the continuum radiation from
RLAGN (Baade, 1956), though radio polarimetry soon
followed. The realization that optically-emitting elec-
trons had short lifetimes, necessitating continuous en-
ergy supply, was influential in the development of jet
models for RLAGN. Optical observations of extended
emission-line nebulae around the radio lobes provided
early evidence for the impact of the RLAGN on their
environments, e.g., McCarthy et al. (1987); O’Dea et al.
(2002). Optical studies also provide constraints on the
environments of RLAGN — see Section 7.

2.3. mm/sub-mm/FIR

RLAGN synchrotron emission persists through to
frequencies of 100 GHz and above and shows little dif-
ference from what is seen at lower radio frequencies
(e.g., Hardcastle and Looney, 2008). The sub-mm re-
gion is important for studies of molecular gas in radio-
galaxy environments, fuelling and the interaction of jets
with this material. Sub-mm observations demonstrate
the presence of molecular gas in the hosts of many
nearby radio galaxies (e.g. Prandoni et al., 2010; Hamer
et al., 2014; Rose et al., 2019; North et al., 2019; Ruffa
et al., 2019). In some cases the molecular gas appears
mainly located in a rotating disk, while in other cases
it may be infalling. As with the neutral hydrogen dis-
cussed above, there is also strong evidence in some
cases that the molecular material is influenced by the
radio lobes (e.g., Russell et al., 2017; Tremblay et al.,
2018). These observations are discussed further in Sec-
tion 8. Far-IR observations, probing the component of
dust heated by star formation rather than the AGN, have
shown that nearby normal AGN tend to have low star
formation rates, but the details depend on the type of
galaxy (e.g., Hardcastle et al., 2013) while individual
RLAGN associated with very high dust luminosities and
hence, presumably, star-formation rates have been dis-
covered (e.g., Barthel et al., 2012; Seymour et al., 2012).

2.4. X-ray

X-ray observations provide information on the ac-
cretion state and obscuration of the active nucleus, the
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large-scale components of the radio source (jets, lobes
and hotspots) and the galaxy-to-cluster-scale hot-gas
environment.

Radiatively efficient AGN are strong X-ray sources,
and so in many quasars the X-ray emission is domi-
nated by the active nucleus; however, at soft X-ray ener-
gies this emission is strongly suppressed by even mod-
erate levels of obscuration, which has the useful effect
that other components of RLAGN can be studied well
at these energies. (We discuss nuclear X-ray emission
further in Section 6.1.)

X-ray radiation from the jets, hotspots and lobes is
non-thermal and gives us information about the particle
populations responsible for the emission. A key emis-
sion mechanism in this band is inverse-Compton scat-
tering, where the relativistic electrons responsible for
the synchrotron emission also scatter a photon field to
high energies. Possible photon fields include the CMB,
which is always present, but also synchrotron photons
(‘synchrotron self-Compton’), starlight from the host
galaxy, radiation from the central AGN itself, or the
extragalactic background light. Where the X-ray emis-
sion mechanism is inverse-Compton scattering, as in the
case of lobes (Croston et al., 2005) and some hotspots
(Hardcastle et al., 2004), its luminosity depends on the
photon field and on the number of relatively low-energy
relativistic electrons (γ ∼ 1000 for scattering of z = 0
CMB photons into the soft X-ray) and so it gives a good
constraint on the electron energetics and therefore, in-
directly, on magnetic field strengths and source dynam-
ics (see Section 4). Where instead the non-thermal X-
ray emission mechanism is synchrotron emission, as in
other hotspots and the jets of low-luminosity sources
(Hardcastle et al., 2001), it points to a very energetic
population of electrons (dependent on assumed mag-
netic field strength, γ ∼ 108 or more) which generally
implies local (in situ) particle acceleration. The promi-
nent jets seen in some high-luminosity objects, such
as 3C 273 (Harris and Stern, 1987), PKS 0637−752
(Schwartz et al., 2000) or Pictor A (Wilson et al., 2001)
are still the subject of debate; the original proposal
that they represent inverse-Compton emission from the
highly boosted CMB from jets with Γ ∼ 10 (Tavecchio
et al., 2000; Celotti et al., 2001), while attractive, has
a number of problems (Stawarz et al., 2004; Hardcas-
tle, 2006; Cara et al., 2013; Meyer et al., 2015) and it
seems likely that at least some of these powerful jets
have a synchrotron origin, with electron spectra extend-
ing through the optical emission region to the X-ray
(Hardcastle et al., 2016). Jet X-ray properties are re-
viewed in much more detail by Worrall (2009).

The thermal X-ray radiation from the hot phase of

the ambient medium of the RLAGN has been of huge
importance to constraining dynamical models of these
sources since its first discovery (Longair and Will-
more, 1974; Hardcastle and Worrall, 2000b). More
recently, sensitive X-ray imaging has revealed deficits
of X-ray emission (‘cavities’) associated with the kpc-
scale lobes of many RLAGN (e.g., Bı̂rzan et al., 2004),
and also found a small number of unambiguous shock
features, demonstrating supersonic bulk motion of the
lobes through the medium (e.g., Kraft et al., 2003; Cros-
ton et al., 2009, 2011). The implications of these obser-
vations are discussed in Sections 4 and 5.

2.5. γ-ray

Most γ-ray-emitting RLAGN are blazars, discussed
elsewhere in this volume; in these systems the nu-
clear γ rays are thought to be Doppler-boosted inverse-
Compton scattering of either the synchrotron continuum
itself or of other photon fields (radiation from the AGN
or torus where present — see Section 6.1). The numbers
of non-blazar or so-called misaligned RLAGN that are
known GeV γ-ray emitters has greatly increased due to
the sky survey of the Fermi satellite, and now stands at
some tens of objects (Ackermann et al., 2015) includ-
ing well-known nearby radio galaxies such as Cen A,
M87, NGC 1275 and NGC 6251. Of particular inter-
est are the detections of extended lobes in Cen A and
Fornax A (Abdo et al., 2010; Ackermann et al., 2016).
In a leptonic model for the γ-ray emission, this can
constrain magnetic field strengths just as X-ray inverse-
Compton emission can, but also demonstrates the pres-
ence of high-energy electrons in the lobes. Only a small
number of non-blazar RLAGN (6 at the time of writing:
Rieger and Levinson 2018) are detected at TeV energies.
These again include the nearest powerful radio galaxies,
Cen A and M87. M87’s TeV emission is highly variable
at high energies on timescales of days, and appears to be
associated with the sub-pc scale jet (Hada et al., 2015).
By contrast, Cen A’s emission seems steady over long
time periods (H. E. S. S. Collaboration et al., 2018) and
so an origin of part or all of it in the large-scale compo-
nents of the source remain possible. Inverse-Compton
scattering of starlight by the known population of TeV
electrons that produce the X-ray jet is a required pro-
cess; if this dominates at high energies then the forth-
coming Cerenkov Telescope Array should able to re-
solve the jet in Cen A at TeV energies and permit the
first direct magnetic field measurement in a low-power
jet (Hardcastle and Croston, 2011).
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3. Radio-galaxy populations

From the first double radio sources in the 3C cata-
logue to current low-frequency radio-galaxy samples,
our understanding of the diversity of radio-galaxy pop-
ulations has evolved dramatically over the last seventy
years. In Fig. 2 we summarize the radio luminosity
and size ranges spanned by particular sub-populations
of RLAGN, as discussed in this Section. We note that
the samples plotted in this ‘P-D’ diagram are all subject
to a range of selection effects, so that gaps between sub-
categories do not indicate sharp delineations between
separate populations. The main conclusion to be drawn
from Fig. 2 is that AGN-driven jet structures occur over
a very wide span in radio luminosity (nearly ten orders
of magnitude) and source size (six orders of magnitude).

In this section we discuss the main classes of radio
galaxy that can be categorised primarily from radio ob-
servations. We make some reference to host-galaxy and
multi-wavelength properties in this section, but we de-
fer full discussion of these topics, and of classification
based on nuclear properties, to later sections. We also
defer discussion of the cosmic evolution of RLAGN
populations to Section 7.

3.1. The Fanaroff-Riley dichotomy

The Fanaroff-Riley (Fanaroff and Riley, 1974) mor-
phological distinction between centre-brightened and
edge-brightened radio galaxies (e.g. Fig. 1), found to
be linked to radio luminosity, has since been widely
adopted and applied to many radio catalogues in the past
four decades. While there remains debate about the link
between accretion mode and jet morphology (e.g., Best
and Heckman, 2012; Gendre et al., 2013; Mingo et al.,
2014; Ineson et al., 2015; Tadhunter, 2016; Hardcastle
et al., 2007a, 2009; Hardcastle, 2018a, and see Section
6.1), the FR morphological divide is thought to be fun-
damentally linked to jet dynamics: the edge-brightened
FRII radio galaxies are thought to have jets that remain
relativistic throughout, terminating in a hotspot (inter-
nal shock), while the centre-brightened FRIs are known
to have initially relativistic jets that decelerate on kpc
scales (e.g., Bicknell, 1995; Laing and Bridle, 2002;
Tchekhovskoy and Bromberg, 2016). This structural
difference must necessarily result not purely from prop-
erties of the central engine, but rather from the inter-
play of jet power and environmental density, so that jets
of the same power might in a poor (host-scale) envi-
ronment remain relativistic and well-collimated, but in
a richer environment decelerate, entrain ISM gas, and
expand to form turbulent FRI plumes. Such an expla-
nation seemed to find support in the discovery by Led-

low and Owen (1996) that the FRI/II luminosity break
is dependent on host-galaxy magnitude, so that FRIs are
found to have higher radio luminosities in brighter host
galaxies (where the density of the interstellar medium is
assumed to be higher). However, this result was based
on strongly flux-limited samples, with different redshift
distributions and environments for the FRIs and FRIIs,
and so serious selection effects mean that there is now
some uncertainty as to whether this relation in fact holds
across the full population of radio galaxies (Best, 2009;
Lin et al., 2010; Wing and Blanton, 2011; Singal and
Rajpurohit, 2014; Capetti et al., 2017; Shabala, 2018).

As radio surveys have reached lower flux limits, ev-
idence has also emerged that the FR morphological di-
vision is less closely tied to radio luminosity than was
previously thought, with the emergence of an unex-
pected population of low-luminosity sources with edge-
brightened FRII morphology (Best, 2009; Miraghaei
and Best, 2017; Capetti et al., 2017; Mingo et al., 2019).
Using a large sample from the LOFAR Two-Metre Sky
Survey (LoTSS), Mingo et al. (2019) have shown that
these ‘FRII-low’ radio galaxies form a substantial frac-
tion of the FRIIs at z < 0.8 (see also Fig. 2). This pop-
ulation was absent from early studies as they are rare
in the very local Universe, and hence have fluxes below
the limits of early surveys such as 3CRR (Mingo et al.,
2019). The substantial overlap in luminosity range for
FRIs and FRIIs found in modern samples does not nec-
essarily break the jet disruption paradigm for the mor-
phological distinction. Firstly, the conversion from jet
power to radio luminosity has very large scatter and sys-
tematic biases, as discussed in Section 4.5 (Hardcastle,
2018b; Croston et al., 2018). Secondly, there does ap-
pear to be a link between morphology and host bright-
ness (Mingo et al., 2019) so that the low-luminosity
FRIIs may occupy particularly poor local environments,
consistent with their remaining undisrupted despite their
(presumably) comparatively low jet power.

3.2. Blazars
Blazars are a sub-category of radio-loud AGN with

distinct properties, including bright variable emission at
a range of wavelengths, thought to reflect relativistic ef-
fects in a jet oriented at a small angle to the line of sight.
Blazars show a diverse range of radio structures (e.g.,
Rector and Stocke, 2001; Giroletti et al., 2004). It is
thought that sub-classes of blazars can be unified with
radio galaxies and quasars, with apparent difference in
properties explained by orientation effects (Section 6.1).
We do not discuss blazars or the consequences of their
properties for source models in detail in this work, de-
ferring to the dedicated Chapter in this volume.

7



0 1 2 3 4 5 6
log10(D/pc)

20

22

24

26

28

30

lo
g 1

0(
L 1
.4
/

W
H

z−
1 )

CSO
GPS

CSS

FRII

FRI

RQQ

LINERs & Seyferts

Not detectable
by existing
surveys

Figure 2: Power/linear-size plot (Baldwin, 1982) for different types of radio-loud and radio-quiet AGN, adapted from plots presented by An and
Baan (2012) and Jarvis et al. (2019). Points show individual objects and coloured contours represent a smoothed estimator of source density. The
different categories of source shown are: CSO, GPS, CSS, all objects so classed by An and Baan; FRI, FRII, all objects so classed by either An
and Baan or Mingo et al. (2019) (points are representative); RQQ, objects from Jarvis et al. (2019) and Kukula et al. (1998); Seyferts and LINERS,
objects from Gallimore et al. (2006); and Baldi et al. (2018a). The shaded bottom-right corner shows the effect of surface-brightness limitations.
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3.3. Cluster radio-galaxy populations

The large-scale environments of radio galaxies are
discussed in Section 7. The majority of radio galaxies
do not live in rich cluster environments; however, those
radio galaxies that do inhabit the richest environments
show a range of characteristic morphological features,
likely to be caused by their dense surrounding medium
(e.g., Owen and Ledlow, 1997).

While there are examples of cluster-centre radio
galaxies with morphologies typical of the FRI or FRII
class (e.g., Cygnus A), many cluster-centre radio galax-
ies, including the most famous cluster-centre radio
galaxy Perseus A (3C 84), show amorphous radio struc-
ture with no evidence for collimated jets on scales of
tens of kpc (e.g., Miley and Perola, 1975; Burns, 1990;
Owen and Ledlow, 1997). Another radio-galaxy sub-
population that is strongly associated with galaxy clus-
ters are the bent-tail sources, which can be further sepa-
rated into the head-tail / narrow-angle (NAT) and wide-
angle tail (WAT) sources (Owen and Rudnick, 1976;
O’Dea and Owen, 1985). The bent jets and plumes/tails
of these sources are thought to be left behind as the host
galaxy moves with respect to the intracluster medium,
and have been the subject of extensive dynamical stud-
ies. In Section 7 we comment on their relation with their
— typically cluster — environments, and in Section 9
discuss their use as probes of dense environments in the
more distant Universe.

As lower-frequency radio observations have become
increasingly sensitive, it has become clear that an-
other common feature of cluster centre radio sources is
the presence of low surface brightness extended lobes
permeating a larger volume than the currently active
source, and likely to indicate previous episodes of ac-
tivity — in some cases linked to the presence of outer
‘cavities’ (surface brightness depressions) in the X-ray
emission from the intracluster medium. The nearby ra-
dio galaxy M87 is an example of a cluster source with
a very extended low-surface brightness halo pervading
the intracluster medium (Owen et al., 2000; de Gasperin
et al., 2012). Galaxy clusters also frequently possess
diffuse radio emission that is not directly associated
with current radio jet activity (haloes and relics) (Feretti
and Giovannini, 1996). The links between past and cur-
rent radio galaxy activity and cluster diffuse radio emis-
sion are an interesting topic of current research, which
is discussed further in Section 9.

3.4. Restarting and remnant radio galaxies

Double-double radio galaxies (Schoenmakers et al.,
2000) and other restarting radio galaxies (e.g., Clarke

and Burns, 1991; Bridle et al., 1989; Jamrozy et al.,
2007) are further populations that provide important
insights into radio-galaxy life cycles and triggering.
Spectral and morphological studies have also been used
to identify ‘dying’ radio galaxies (e.g., Murgia et al.,
1999), now commonly known as remnant radio galaxies
(we avoid the term ‘relic’ radio galaxy in this context,
to avoid confusion with cluster radio relics). Double-
double radio galaxies (DDRGs) are systems in which
an inner pair of radio lobes propagate along the same
axis as outer lobes. Typically, both sets of structure
have edge-brightened, FRII-like morphology. Samples
of tens of DDRGs now exist, from investigations with
the FIRST, NVSS, and most recently LoTSS surveys
(Nandi and Saikia, 2012; Kuźmicz et al., 2017; Ma-
hatma et al., 2019). Mahatma et al. (2019) investigated
the host galaxies of a sample of DDRGs, finding no sig-
nificant differences to a control sample of similar lumi-
nosity ordinary radio galaxies. It appears that DDRG
structure is not caused by specific host galaxy condi-
tions, but is likely to relate to accretion conditions being
interrupted and restarting. There have also been detailed
studies of other types of candidate restarting objects, in
which small-scale sources are surrounded by extended
halos and/or misaligned outer lobes (e.g., Jamrozy et al.,
2007; Jetha et al., 2008; Brienza et al., 2018). The recent
LoTSS study of Mingo et al. (2019) suggests that there
may be a moderate sized population of newly restarted
jets embedded in extended radio emission, but follow-
up work is needed to investigate this population fur-
ther. Larger statistical samples and spectral modelling
are needed to draw firm conclusions about the preva-
lence and duty cycle of recurrent activity, but it is clear
that objects with visible signatures of recurrent activity
are rare in the radio-loud AGN population.

Remnant radio galaxies can be difficult to identify
due to their low surface brightness, and until recently
relatively few were known (e.g., Parma et al., 2007;
Murgia et al., 2011; Saripalli et al., 2012). Sensitive
low-frequency surveys were expected to turn up larger
numbers of these sources, expected to be dominated
by steep-spectrum aged plasma. Brienza et al. (2017)
identified 23 candidate remnant sources in the Lockman
Hole survey area, while Mahatma et al. (2018) searched
for radio cores in a low-frequency selected sample, find-
ing that only 11/33 candidate remnant sources showed
no radio core, indicating a true remnant (note that some
sources with a radio core may be restarting radio galax-
ies). Population modelling and theoretical work indi-
cate that the observed remnant fraction should be low,
as lobes will fade through radiative losses on a short
timescale after the jet turns off (Godfrey et al., 2017;
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Hardcastle, 2018a).

3.5. Compact and unresolved radio-loud AGN

In addition to the extended radio galaxy popula-
tions, populations of compact radio galaxies, includ-
ing luminous populations of compact symmetric objects
(CSOs), gigahertz-peaked spectrum (GPS) sources, and
compact steep spectrum (CSS) sources have been stud-
ied for many decades (e.g., O’Dea and Baum, 1997;
O’Dea, 1998). More recently fainter populations of
compact sources have been shown to constitute a very
large AGN population (e.g., Sadler et al., 2014; Baldi
et al., 2015; Gürkan et al., 2018; Hardcastle et al.,
2019b), thought to possess low-power small-scale jet
activity. These compact radio-loud AGN are of impor-
tance for understanding radio-galaxy triggering and life
cycles. We briefly discuss the main subclasses before
commenting on current understanding of their relation-
ship(s) to the large-scale radio galaxy population.

Compact steep-spectrum and gigahertz peaked spec-
trum sources are powerful radio-loud AGN (L1.4GHz >
1025 W Hz−1) smaller than 1 – 2 arcsec (e.g., O’Dea,
1998; Orienti, 2016). The CSS sources have typical
physical sizes extending to ∼ 20 kpc, while the GPS
sources are smaller, typically < 1 kpc. Compact sym-
metric objects (CSOs) are the smallest sources, with
sizes of less than a few hundred pc. The radio spectra of
CSS sources peak at MHz frequencies, while the higher-
frequency GHz turnover in GPS sources is traditionally
thought to indicate self-absorption due to high densities
in very compact synchrotron-emitting regions, although
free-free emission is another possible mechanism to ex-
plain the observations. CSS sources possess interesting
features in optical emission line and molecular gas, in-
dicative of jet/environment interaction on small scales.
Recently, Callingham et al. (2017) have presented the
largest sample to data of such systems, obtained with
the MWA GLEAM survey. There have been two com-
peting hypotheses for these populations: that they are
‘young’ sources that will evolve to become traditional
FRI or FRII radio galaxies (O’Dea, 1998), or that they
are ‘frustrated’ jets occurring in dense environments and
unable to grow to a large size (e.g., van Breugel et al.,
1984). It is likely that both scenarios are relevant for a
subset of objects, since small, young objects will nec-
essarily probe the densest possible parts of a particu-
lar environment. In principle, low-frequency spectral
information may be able to distinguish the influence
of synchrotron self-absorption and free-free absorption,
expected in a dense environment — Callingham et al.
(2017) found a small sample of potential candidates in

which free-free absorption may be important. Observa-
tions of X-ray absorption can also be used to search for
a dense medium around compact sources (Sobolewska
et al., 2019).

As shown in Fig. 2, the CSO, GPS and CSS cate-
gories have historically applied to objects of high lumi-
nosity, due to the high flux limits of early radio surveys.
However, in addition to the peaked spectrum and lumi-
nous compact AGN populations, there is a large pop-
ulation of low-luminosity radio sources with evidence
for small-scale jets. Radio nuclei in ordinary ellipti-
cal galaxies have been known for many years (e.g., Ho,
1999), and have recently been investigated systemat-
ically at high resolution (Baldi et al., 2018b). Low-
luminosity kpc-scale jet structures have been studied
extensively in Seyfert galaxies (e.g., Gallimore et al.,
2006; Hota and Saikia, 2006; Croston et al., 2008b;
Mingo et al., 2011; Jones et al., 2011; Mingo et al.,
2012; Williams et al., 2017), and examples of small-
scale jets are emerging in radio-quiet quasars (e.g.,
Jarvis et al., 2019).

Recently the ‘FR0’ nomenclature has been intro-
duced to describe the population of unresolved low-
luminosity radio-loud AGN (e.g., Sadler et al., 2014;
Baldi et al., 2015; Hardcastle et al., 2019b). We do not
favour this terminology: as stated by Fanaroff and Ri-
ley (1974), the FRI/FRII classification is a morpholog-
ical one, and as such it relies on observations capable
of resolving the source (i.e. the source must be at least
a factor of a few larger than the beam size of the ra-
dio observations before a classification can be made).
If these observations do not exist, the FR class of the
source is unknown — this gives rise to the large frac-
tion of sources classed as ‘C’ (‘compact’) in early cat-
alogues such as the 3CRR catalogue of Laing et al.
(1983). When higher-resolution observations become
available, as is now the case for the 3CRR objects, the
sources can be classified. A classification based on a
source’s unresolved nature in a particular survey (with
a particular resolution and surface brightness limit) can
never be physical, and indeed some evidence exists that
objects selected this way are a heterogeneous popula-
tion (Baldi et al., 2019). Nevertheless, it is certain that
this dominant population of compact radio-loud AGN in
the nearby Universe — however they are designated —
are of great importance for our understanding of radio-
galaxy life cycles and AGN feedback, and are in need
of further study.
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4. Physical conditions

A great deal of observational work has gone into mea-
surement of the physical conditions in various compo-
nents of the radio sources and in the external medium.
Below we summarize some of the current understanding
on this topic.

4.1. Jet speeds

VLBI observations of pc-scale jets measure apparent
superluminal motions, vapp > c. These imply highly rel-
ativistic jet bulk motions on pc scales: superluminal ap-
parent speeds as high as 50c have been observed (Lister
et al., 2016), which on standard assumptions (in partic-
ular equating the pattern speed, or the speed of motion
of structures in the jet, with the bulk flow speed) would
imply bulk Lorentz factors Γ > 50. These very high val-
ues may represent the extremes of a dispersion of bulk
speeds within a given source, in which case we would
expect internal dissipation to reduce the effective bulk
speed on scales of hundreds of pc. However, it seems
clear that the jet may leave the inner parts of the radio
source with highly relativistic bulk speeds.

These speeds are in contrast to those estimated us-
ing Doppler boosting arguments from unified models of
RLAGN (see Section 6.1). Constraints derived from lu-
minosity functions of blazars and their presumed parent
population of radio galaxies (Urry et al., 1991; Hardcas-
tle et al., 2002) imply bulk beaming speeds of Γ ∼ 3–5.
More problematically, all estimates of the kpc-scale jet
speeds in powerful FRII RLAGN tend to give β ≈ 0.5
– 0.7 (Wardle and Aaron, 1997; Hardcastle et al., 1999;
Arshakian and Longair, 2004; Mullin and Hardcastle,
2009); these estimates rely on the demonstration using
polarization statistics in quasars (Laing, 1988; Garring-
ton et al., 1988) that the one-sidedness of kpc-scale jets
is indeed due to beaming. With the debatable excep-
tion of the beamed inverse-Compton model for power-
ful jets (Section 2.4) there is no direct evidence for high
bulk speeds on hundred-kpc scales in powerful objects,
but there is also no evidence for the strong deceleration
that would be required to account for the differences be-
tween pc and kpc scales. A plausible explanation is
that the jet is structured and that most of the emission
seen on kpc scales comes from a slow-moving compo-
nent while most of the energy is carried by a relativis-
tic outflow. There is some direct evidence for this pic-
ture in the shape of edge-brightened structures of a few
resolved powerful jets (Swain et al., 1998; Hardcastle
et al., 2016) but more observational work is needed.

In FRI radio galaxies the situation is clearer. These
objects often show jets that are one-sided on small

scales but two-sided on large scales, implying bulk de-
celeration if the sidedness is attributed to Doppler boost-
ing. Because the jets are resolved both transversely and
longitudinally, detailed models of the jet velocity field
of individual objects can be constructed, using the po-
larization of the jets to break degeneracies involving the
unknown angle of the jet axis to the line of sight. The
results (e.g., Laing and Bridle, 2002, 2014) show that
jets initially have β ∼ 0.8 on the kpc scale and decel-
erate smoothly (but often more rapidly at the edges) to
a constant, sub-relativistic speed. The bulk decelera-
tion must involve entrainment of material initially at rest
with respect to the jet (Bicknell, 1994), but it is not clear
what this material is: stellar winds may provide some of
the required mass (Bowman et al., 1996; Wykes et al.,
2015) but if this is insufficient, as it probably is in the
most powerful sources, then entrainment of the exter-
nal medium in some form may be required. It is im-
portant to note that the lobe dynamics of FRIs should
not in themselves be affected by this entrainment — the
momentum and energy flux of the jet are essentially un-
changed by it.

4.2. Environments

For the purposes of dynamical modelling, profiles of
the pressure and density in the external medium are re-
quired. These can be derived from deprojection (nor-
mally spherical deprojection) of the observed X-ray sur-
face brightness profile if we assume that the X-ray-
emitting gas dominates density and pressure — an as-
sumption that is more valid on larger scales than smaller
ones — and from X-ray spectroscopy to estimate the
temperature (profile) of the hot gas. Bulk inference of
radio galaxy environments from X-ray data is now rela-
tively routine (see e.g., Worrall and Birkinshaw (2000);
Hardcastle and Worrall (2000b); Croston et al. (2008c);
Ineson et al. (2015)) though systematic uncertainties
may arise through the assumption of spherical symme-
try. It is far more difficult to estimate the environmental
density and pressure profiles based on optical informa-
tion alone.

4.3. Lobe energy density and particle content

Traditionally estimates of the lobe energy density
have involved the minimum-energy condition (Bur-
bidge, 1956) (or, equivalently, equipartition of energy
between electrons and magnetic field). Interpreted as
lower limits, these are valid, but they do not give many
constraints on source dynamics. In minimum-energy
calculations in the literature widely differing assump-
tions are often made about the energetic contribution of
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non-radiating protons, and care is also needed to distin-
guish between calculations made using a minimum and
maximum frequency for the radiating particles (which
implies field-dependent energy integration limits) and
one using a minimum and maximum energy or Lorentz
factor. Beck and Krause (2005) discuss some of these
issues in detail.

A better approach, where possible, is to infer mag-
netic field strength and so energetics from observa-
tion. Observations of inverse-Compton emission from
the lobes and hotspots of FRII RLAGN (Hardcastle
et al., 2002, 2004; Kataoka and Stawarz, 2005; Cros-
ton et al., 2005; Ineson et al., 2017) measure the num-
ber of inverse-Compton-scattering electrons and so al-
low the characteristic magnetic field strength to be es-
timated based on the observed synchrotron emission.
This gives typical field strengths of a factor ∼ 2–3 below
the equipartition values and so energy densities in field
and electrons a factor 2.5–5 higher than the equiparti-
tion value. On these assumptions radio lobes tend to
be strongly overpressured at the radio lobe tip (with re-
spect to the environment at that location) and moder-
ately overpressured at the mid-point of the lobe. It is
then possible to argue (Hardcastle et al., 2002; Croston
et al., 2018) that protons cannot be strongly energeti-
cally dominant over electrons in these lobes, as, if they
were, this good agreement over a number of objects be-
tween the inferred internal pressures and observed ex-
ternal pressures would be a coincidence. This argument
does not rule out a contribution to the energy density
from protons that is comparable to that of the electrons
or the magnetic field; there is some evidence that FRIIs
in rich environments may have a higher non-radiating
particle content (e.g., Hardcastle and Croston, 2010). It
has long been known from low-frequency polarization
observations that the number density of internal thermal
electrons in FRII lobes must be relatively low (Scheuer,
1974), consistent with the idea that their internal pres-
sure is dominated by the radiating particle population.

The situation is more complicated for the FRI ra-
dio galaxies for two reasons. Firstly, there are few di-
rect measurements of X-ray inverse-Compton from the
lobes that would allow a magnetic field measurement,
as the thermal emission tends to dominate over inverse-
Compton (Hardcastle and Croston, 2010); secondly, a
comparison between radio emission and external pres-
sure often requires departures from equipartition much
more substantial than those measured in the FRII pop-
ulation (Morganti et al., 1988; Killeen et al., 1988; Fer-
etti et al., 1990; Taylor et al., 1990; Feretti et al., 1992;
Böhringer et al., 1993; Worrall et al., 1995; Hardcas-
tle et al., 1998; Worrall and Birkinshaw, 2000; Hard-

castle et al., 2005; Croston et al., 2003; Dunn et al.,
2005; Croston et al., 2018). In some cases these highly
sub-equipartition fields are ruled out by the lack of ob-
served inverse-Compton emission in the X-ray. Obser-
vations of cavities (Section 3.3) and of low-frequency
polarization from the lobes rule out a model in which
the lobe is filled with thermal particles similar to those
in the external medium. The most plausible hypothesis
is that an additional population of high-energy particles
dominates the lobe energetics in the FRIs, but not the
FRIIs. Relating this to the other known difference be-
tween the two populations, we can hypothesise that the
material that is entrained as the FRI jets decelerate is
then heated to provide the missing pressure (e.g., Cros-
ton and Hardcastle, 2014; Croston et al., 2018). This
has the effect that FRI radio galaxies, where the lobe dy-
namics are dominated by an invisible, non-radiating par-
ticle population, are much more difficult to model than
the higher-power but less numerous FRIIs. A predic-
tion of this model is that internal depolarization, due to
entrained thermal electrons, might be visible in lobes of
low-power sources, and broad-band polarimetry is start-
ing to probe this regime (e.g. Anderson et al., 2018)

Finally, it is worth noting that there are as yet few di-
rect measurements of lobe kinematics. For the smallest
class of double radio sources known, the CSOs, the lobe
expansion speeds in the plane of the sky can be mea-
sured directly using VLBI (e.g., Owsianik and Conway,
1998; Polatidis and Conway, 2003; Gugliucci et al.,
2005), giving sub-relativistic expansion speeds of order
a few tenths of c. A few objects drive observable shocks
into the external medium which can give an instanta-
neous estimate of the lobe advance speed if the proper-
ties of the unshocked medium are known (Croston et al.,
2007, 2009, 2011; Snios et al., 2018); however, numeri-
cal modelling of the shocked shells suggests that it is not
trivial to interpret these measurements. Next-generation
X-ray satellites such as Athena (Nandra et al., 2013)
will provide measurements of shock properties for large
samples of radio galaxies. For larger sources, a tradi-
tional method to estimate lobe advance speeds statisti-
cally is to consider lobe length asymmetries in complete
(low-frequency selected) samples (e.g., Longair and Ri-
ley, 1979; Scheuer, 1995) since light travel time effects
from the nearer to the further lobe will give an appar-
ent difference in lobe length between the two which de-
pends on the lobe advance speed. However, this method
is biased if it is assumed that the lobe length difference
arises purely from light travel time effects, since envi-
ronmental effects may also play a role in lobe asymme-
try (i.e. the longer lobe may not always be the nearer).
If the lobe containing the (brighter) jet, rather than the
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longer lobe, is taken to be the nearer lobe in order to
reduce this bias, as was done by Scheuer (1995) (re-
lying on the assumption that kpc-scale jets are beamed
as discussed in Section 4.1), the method gives lobe ad-
vance speeds of order a few per cent of the speed of
light. These would still be highly supersonic,M = 10,
with respect to the sound speeds even in a rich cluster
medium. By contrast, the pressure ratio estimates of In-
eson et al. (2017) (which however exclude the ram pres-
sure of the jet) suggest a medianM ∼ 2. It is not as yet
clear what causes the discrepancy.

4.4. Lobe ages
Estimating the ages of RLAGN is difficult. The

one exception is where a direct estimate of the current
source expansion speed exists; then a simple ‘kinematic
age’ can be calculated on the (clearly incorrect but not
badly wrong) assumption of constant expansion speed.
This has been done using observed proper motions in
CSOs, as described in the previous Section, yielding
ages of the order of 103 years for these smallest of
double-lobed objects. For larger objects a ‘dynamical
age’ can be estimated based on the projected source size
and estimated expansion speeds as described above —
this would lead to estimates of dynamical age of be-
tween 10 and 100 Myr for a source with a lobe 100
kpc in length. However, as noted above, these speed
estimates are very uncertain. A better approach to dy-
namical age estimation, where possible, is to fit some
source model (see the next Section) to the observed ra-
dio properties of the source and optimize for dynamical
age.

A very popular alternative approach is to estimate
ages by ‘spectral ageing’ (e.g., Myers and Spangler,
1985), in which the energy-dependent loss rate of
synchrotron-emitting electrons is used to estimate the
age of the source (and/or, since it gives ages for all po-
sitions inside the lobe, the speed of the internal trans-
port of the radiating plasma). This method tends to give
ages of the order of 107 years for 100-kpc-scale lobes
(Alexander and Leahy, 1987; Harwood et al., 2013) and
there is therefore a discrepancy of up to an order of
magnitude (in the sense that the spectral age is lower)
between estimates of the spectral and dynamical ages.
Although the spectral age is model-dependent, with the
greatest difference being between models that assume
effective pitch angle scattering of the radiating electrons
(Jaffe and Perola, 1973) and those that do not (Kar-
dashev, 1962; Pacholczyk, 1970), the derived ages are
generally similar whichever model is used. This prob-
lem has been apparent for many years (Eilek, 1996)
and at the time of writing the solution seems likely to

be a combination of several factors. Firstly, we now
know (see above, Section 4.3) that the equipartition field
strengths used in most spectral ageing studies overesti-
mate the field strength by a factor of a few, and conse-
quently these studies underestimate the spectral age, ex-
cept in situations where inverse-Compton losses to the
CMB dominate over synchrotron losses. Spectral age-
ing studies actually measure the break frequency ν, and
this is related to the age t by

t =

 CB
(B2 + B2

p)2ν

 1
2

(4)

where B is the magnetic field strength, Bp is the equiv-
alent magnetic field to the energy density in photons up

(in SI units, Bp =
√

2µ0up; this term describes losses
due to inverse-Compton scattering of background pho-
tons) and C is a constant. For B � Bp, t ∝ B−3/2 and
so decreasing B can increase the estimate of t. Sec-
ondly, it remains possible that there is some in situ par-
ticle acceleration in the lobes, which would tend to re-
duce the observed spectral ages: indeed such distributed
(leptonic) particle acceleration must take place at some
level in models in which RLAGN are responsible for the
ultra-high-energy cosmic ray population (Section 9.4).
Thirdly, the mixing of old and young electron popula-
tions within the lobes can in principle allow a source to
continue to show an apparent age gradient while reduc-
ing the apparent maximum age, as shown recently by
Turner et al. (2018). It seems plausible that a combina-
tion of these, particularly the first and third, can bring
spectral and dynamical ages into agreement (Mahatma
et al., 2020).

It is finally worth noting that in the cavity power
method of estimating jet powers, which we discuss fur-
ther in the subsequent section, lobe ages are estimated
from either the sound crossing time, the buoyant rise
time, or the ‘refilling timescale’ of the cavity (Bı̂rzan
et al., 2004): of these the sound crossing time of the
source is generally the shortest. But for a typical pow-
erful source, we expect the lobe expansion to have been
supersonic for a significant fraction of the source’s life-
time, and thus these age estimates are likely to be sig-
nificant overestimates with respect to a true dynamical
age.

4.5. Jet power
Given the uncertainties on both lobe energetic con-

tent (Section 4.3) and age (Section 4.4) it will come as
no surprise that estimates of the lifetime-averaged jet
kinetic power, which we denote Q, are also highly un-
certain. Basic calculations from the lobe energetics and
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lifetimes given above for large sources suggest that jet
powers should lie in the range 1036 – 1040 W, but these
do not take into account the work done on the exter-
nal medium. Other than the case of a small number
of FRIs with well-modelled jet dynamics (e.g., Laing
and Bridle, 2002) the situation is best for the power-
ful FRII-type sources where the lobe energetics are well
constrained and dynamical models are well understood.
It is then possible to try to relate observable quanti-
ties like radio luminosity to the jet power by way of a
model (Willott et al., 1999), making some assumptions
about the energy transfer to the source environment. In
practice, this is simplistic, since we know that the ra-
dio luminosity for a source of constant jet power must
vary not just with time but also with the environment
of the radio source (Hardcastle and Krause, 2013) and
with redshift, since inverse-Compton losses are redshift-
dependent. More sophisticated approaches to jet power
inference try to take these effects into account (Hardcas-
tle et al., 2019b).

An alternative approach is to construct jet power esti-
mates from X-ray observations of cavities excavated by
the lobes in the external medium, estimating the p∆V
work done to inflate the cavity using estimates of pres-
sure derived from fitting to the X-ray spectrum. This
has the advantage that a quantity directly related to the
work done on the external medium can be calculated.
However, it only works when cavities are observed,
which rules its use out in the case of the most power-
ful ‘classical double’ AGN, where typically the lobes
are brighter in inverse-Compton than their surroundings
(Hardcastle and Croston, 2010); these sources also gen-
erally drive shocks into the external medium which are
not accounted for in the p∆V calculation. The method
is biased towards small sources in rich cluster environ-
ments (Bı̂rzan et al., 2012) and relies on expensive X-
ray observations that are not available for large samples
of sources. As a method for calculating jet power, it
also relies on poorly known source ages, as discussed
above. For all of these reasons, though the jet power
estimates from this methods do seem to show some cor-
relation with radio luminosity (Cavagnolo et al., 2010),
the scatter and biases mean that any inference of a jet
power from the calibration of such a relation must be
done with extreme caution. Indeed, Godfrey and Sha-
bala (2016) suggest that there is no physically meaning-
ful correlation between radio luminosity and calculated
jet power for these objects at all. Whether this is the
case or not, more sophisticated power inference meth-
ods are likely to be needed in future.

Observations of restarting radio galaxies (Section
3.4) imply that it is possible for the jet power to drop

to very low levels (perhaps, but not necessarily, to zero)
and then to recover on a timescale shorter than the over-
all source lifetime. We have very little information
on the power spectrum of such variations in a typical
source, and estimates based on the large-scale structure
or the impact on the large-scale environment can only
really provide a lifetime-averaged rather than an instan-
taneous value.

5. Dynamics: modelling and simulation

The basic dynamical picture of RLAGN has remained
unchanged since the work of Scheuer, Blandford and
Rees in the 1970s (Scheuer, 1974; Blandford and Rees,
1974). Oppositely directed light jets, sometimes called
beams, are emitted from the central engine and impact
on the external medium. Because the jets are light com-
pared to the external medium, conservation of momen-
tum dictates that the flow speed up the jet must be much
higher than the advance speed of the contact surface,
so the conditions are right (assuming that cooling is
slow) for material to be redirected away from the head
of the source and flow sideways and backwards to form
lobes. Once lobes are present, their expansion is gov-
erned by their internal pressure as well as by the ram
pressure of the jet material. If/when the expansion of
the lobes is supersonic, they will drive a shock into the
ambient medium, so we can then consider three zones
of interest; the lobes themselves, the shell of swept-up,
shocked gas around them, and the undisturbed external
medium which has not so far been affected by the radio
source. Scheuer (1974) introduced an important varia-
tion on this model: once the lobes are no longer strongly
overpressured with respect to the external environment,
they will cease to drive shocks in the transverse direc-
tion, and may eventually be squeezed outwards away
from the central engine by the pressure of the external
medium.

Modelling of radio galaxy lobes is simple in principle
but complex in detail, particularly if we wish to use even
modestly realistic environments. Early modelling, such
as that of Scheuer (1974), laid out the basic principles
of lobe dynamics in a uniform atmosphere. The impor-
tant work of Kaiser and Alexander (1997) used a power-
law atmosphere and, considering the collimation of the
jet, derived equations for self-similar growth of radio
sources that have been widely used (they were followed
in some of these assumptions by, e.g., Kaiser et al.
1997, Blundell et al. 1999, Nath 2010, Mocz et al. 2011
and Godfrey et al. 2017) and allowed the prediction of
source evolutionary tracks in a power/linear-size dia-
gram like that of Fig. 2. But in fact radio galaxy atmo-
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spheres are not scale-free power laws, but have a scale
that relates to the mass of the halo (Arnaud et al., 2010;
Sun et al., 2011), which invalidates the assumptions of
self-similar lobe evolution. Moreover, the assumptions
of the model of Kaiser and Alexander (1997) also re-
strict it to the case where the source remains strongly
overpressured at all times, which is a self-consistent re-
quirement (Begelman and Cioffi, 1989) but not obvi-
ously observationally the case. Hardcastle and Krause
(2013) investigated a self-collimating jet model com-
parable to that of Kaiser and Alexander (1997) in nu-
merical simulations and showed that in reasonably real-
istic β-model environments the self-similarity assump-
tions do not hold; sources show time-variable axial ra-
tios in the sense that the ratio of lobe width over lobe
length gets lower with time, and at late times the lobes
come into transverse pressure balance with the exter-
nal medium are pushed away from the central part of
the host environment by buoyancy forces, as originally
proposed by Scheuer (1974). On the other hand, ana-
lytical models such as those of Luo and Sadler (2010)
which assume expansion in pressure balance do not
seem likely to be realistic for young sources which must
start out (and observationally are) overpressured on any
assumption. For these reasons more recent analytical
modelling tries to capture the insights from numerical
models and deal with the evolution of the sources from
the overpressured to the pressure-balanced phases. Ex-
amples of this more recent approach are Turner and
Shabala (2015) and Hardcastle (2018b); these models
predict, for example, evolution of the radio luminosity
with time (or, equivalently, source size) that is quali-
tatively consistent with the results of numerical mod-
elling. None of these models currently deals well with
the possibility of strongly time-varying Q (Section 4.5)
or of changes in the jet direction over time, e.g. due
to precession induced by a close binary black hole pair
(Krause et al., 2019).

A vast body of work exists on numerical modelling
of the large-scale structure of radio sources and on their
impact on the external medium; some of this will be dis-
cussed elsewhere in this volume. The value of numeri-
cal modelling has been recognised since the very earli-
est simulations (Norman et al., 1982; Williams and Gull,
1985) but there are many difficulties in carrying out de-
tailed simulations of RLAGN, including the very large
spatial dynamic range (in principle from the jet genera-
tion scale to the Mpc scales of the largest lobes), the fact
that relativistic bulk motions and non-negligible mag-
netic fields are both expected to be present, the fact that
radio sources are clearly not axisymmetric so that three-
dimensional modelling is needed, the difficulty of ac-

curately modelling particle acceleration, transport and
radiative losses and, at least in the early days of mod-
elling, the very poorly known physical conditions in the
lobes and environment (see previous Section).

Some approaches to simulations, which emphasise
different parts of this parameter space, include:

1. Trying to reproduce large-scale lobe dynamics, of-
ten in the context of parameter studies varying jet
and environmental properties (e.g., Norman et al.,
1982; Cioffi and Blondin, 1992; Massaglia et al.,
1996; Carvalho and O’Dea, 2002; Krause, 2003;
O’Neill et al., 2005; Hardcastle and Krause, 2013).
These models often omit relativistic effects and
magnetic fields and neglect particle acceleration or
transport, and may be simplified by the assumption
of axisymmetry. They reproduce the inflation of
lobes by light (but not heavy) jets and can generate
internal jet termination shocks which are assumed
to be related to the hotspots observed in FRIIs.
As noted above, departures from self-similarity are
observed in realistic environments.

2. Trying to reproduce detailed features of jets or
lobes in total intensity or polarization (e.g., Bodo
et al., 1998; Rossi et al., 2008; Perucho et al., 2010;
Mignone et al., 2010; Gaibler et al., 2009; Huarte-
Espinosa et al., 2011; Hardcastle and Krause,
2014). In this case relativistic effects are often im-
portant and magnetic fields may well be modelled,
but large volumes and realistic environments are
less important.

3. Modelling of particle acceleration, transport and
loss (e.g., Jones et al., 1999; Tregillis et al., 2001,
2004; Mendygral et al., 2012; Vaidya et al., 2018).
These models can qualitatively reproduce many of
the complex features seen in the synchrotron emis-
sion of real sources, and also the effects of radiative
losses on radio spectra.

4. Modelling of the impact of RLAGN on their en-
vironments. The impact of powerful sources on
the hot gas has been particularly well studied (e.g.,
Basson and Alexander, 2003; Zanni et al., 2003;
Omma and Binney, 2004; O’Neill et al., 2005;
Gaibler et al., 2009; Hardcastle and Krause, 2013;
Bourne and Sijacki, 2017) but more recently in-
teraction with cold gas, which may be important
in small-scale sources or at high redshift, has also
been modelled (Sutherland and Bicknell, 2007;
Gaibler et al., 2011, 2012; Mukherjee et al., 2018).
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6. Central engines

6.1. Unified models and accretion modes
Observations of the optical spectra of radio galaxy

hosts (Hine and Longair, 1979; Laing et al., 1994) show
a wide range of possible optical behaviour. While some
objects show strong high-excitation broad and narrow
lines similar to those in Seyfert galaxies, others ex-
hibit weak or no line emission. This observational di-
chotomy has been given a number of names but here
we begin by following Laing et al. (1994) in separat-
ing RLAGN observationally into ‘low-excitation radio
galaxies’ (LERGs) and ‘high-excitation radio galaxies’
(HERGs). The latter class includes both ‘narrow-line
radio galaxies’ (NLRGs) and ‘broad-line radio galaxies’
(BLRGs) which have optical spectra resembling those
of classical Seyfert 2 and Seyfert 1 galaxies respectively,
as well as optically selected quasars, which have spec-
tra similar to those of the BLRGs but by definition show
dominant optical continuum emission as well.

Orientation-based unification models for radio-quiet
AGN1 (Antonucci, 1993) very successfully explain the
difference between e.g., type 1 and type 2 Seyfert galax-
ies in terms of an anisotropic obscuring structure (the
‘torus’: Krolik and Begelman 1986). This structure,
plausibly associated with the cold outer parts of the ac-
cretion flow itself, obscures the nuclear continuum and
broad emission lines in objects where the line of sight
passes through it (type 2), but allows them to be seen di-
rectly from other lines of sight (type 1). The most direct
evidence for this picture comes from spectropolarime-
try, which reveals the broad emission lines in scattered
light in type 2 objects, showing them to be present but
not directly visible to us (Antonucci and Miller, 1985).
The simplest view of the torus as a smooth structure
is known to be incorrect, e.g., from observations of
sources where the obscuring column changes on short
timescales (Risaliti et al., 2002), which leads to the idea
that different types of AGN are selected from a dis-
tribution of both orientation and torus covering factor
(Elitzur, 2012). However, orientation clearly has an im-
portant remaining role to play in our view of these ob-
jects.

In the case of radio-loud objects there are two addi-
tional complications. The first is the presence of the jet,
which provides a source of broad-band anisotropic radi-
ation on all spatial scales. The second is the existence

1Here we use the term ‘radio-quiet AGN’ purely in contrast to
‘RLAGN’ to indicate sources without strong radio emission or ex-
tended radio lobes. Few if any AGN are entirely radio-silent, and our
use of this term does not imply a belief in a true physical dichotomy
between the two classes; see later discussion.

of LERGs, which have no counterpart in the Seyfert 1/2
orientation-based scheme, though they show some sim-
ilarity to the radio-quiet LINER class.

RLAGN do have one advantage, which is that they
can be selected on the basis of a roughly orientation-
independent quantity, the low-frequency luminosity
(expected to be dominated by the lobes and hence un-
beamed). This means that a low-frequency flux-limited
sample such as 3CRR, is (theoretically) unbiased with
respect to orientation if redshifts can be found for all
members. Barthel (1989) developed the first successful
orientation-based unified model for RLAGN by noting
that quasars in the 3CRR sample in the redshift range
0.5 < z < 1.0 had systematically smaller projected
linear sizes and brighter kpc-scale jets and cores. He
showed that an orientation of quasars within 45◦ of our
line of sight was sufficient to explain the fraction of ob-
served quasars in the parent sample and their physical
sizes. Hardcastle et al. (1998) showed that this model
could be extended to the lower-redshift NLRGs and
BLRGs in the 3CRR sample, so long as LERGs were
excluded.

At this point, the role of LERGs in unified mod-
els was unclear: for example, it was possible that the
missing narrow emission lines were simply obscured
or that the emitting material was absent, while other
features of standard AGN were still present. Work on
the mid-IR and X-ray properties of the LERGs, how-
ever, ruled this possibility out (Chiaberge et al., 2002;
Whysong and Antonucci, 2004; Hardcastle et al., 2006,
2009) by showing that there was no evidence for either
heavily obscured X-ray emission or re-radiation of ob-
scured emission in the mid-IR, both of which are seen
in NLRG. Thus it appears that LERGs, while still pos-
sessing active jets, have no sign of a radiatively efficient
accretion disk, torus, corona, or accretion-driven emis-
sion lines, while HERG behave like radio-quiet AGN
with the addition of a jet. The nuclear optical and X-
ray emission seen from some LERGs (Hardcastle and
Worrall, 2000b) is consistent with coming from the jet
only. The situation is confused by the existence of rem-
nant sources (Section 3.4), where the jet has recently
switched off — distinguishable from active LERGs by
the absence of any nuclear emission associated with
the jet — and by a very few peculiar objects that lack
one or more of the standard AGN radiative components
(Ramos Almeida et al., 2011), but these do not change
the basic picture.

What drives the difference between LERGs and
HERGs? Many authors have proposed (e.g., Ghisellini
and Celotti, 2001; Merloni and Heinz, 2008) that the ra-
diative efficiency of the accretion flow is governed by
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the Eddington-scaled accretion rate: only discs capable
of generating more than a few per cent of the Eddington
luminosity,

LEdd =
4πGMBHcmp

σT
(5)

can produce the optical luminosity which is directly ob-
served in quasars and BLRG and which drives the broad
and narrow emission lines, the X-ray corona and the
mid-IR radiation from the torus. This model is sup-
ported by observations in which the HERG/LERG clas-
sification, black hole mass and bolometric radiative lu-
minosity of large samples of sources have been mea-
sured (Best and Heckman, 2012; Mingo et al., 2014)
and is consistent with expectations from theoretical disk
models (Rees et al., 1982; Narayan and Yi, 1995). In
this picture, the two classes are best referred to as radia-
tively inefficient (RI: the bona fide unobscured LERGs)
and radiatively efficient (RE: HERGs, including NLRG,
BLRG and radio-loud quasars). In RI objects, the esti-
mated jet power may greatly exceed upper limits on the
nuclear radiative luminosity.

Claims that the RI/RE dichotomy has a one-to-one
mapping to the FRI/FRII dichotomy (that is, all RI
objects are intrinsically FRIs and vice versa, and all
RE objects are intrinsically FRIIs and vice versa) are
widespread in the literature but, in their simplest form,
have been falsified by observation since 1979 (Hine
and Longair, 1979). It is certainly the case that in the
3CRR sample almost all FRIs are RI (with debatable
exceptions such as 3C 84), and the majority of FRIIs
are RE, but there are sufficient LERG/RI FRIIs even in
that sample to make the situation more complex. The
suggestion that all of these objects (which have nuclear
X-ray radiation and VLBI-detected jets in most cases)
are simply taking a short break from being radiatively
efficient (Tadhunter, 2016) is inconsistent with obser-
vations that show other physical differences between
LERG and HERG FRIIs at constant radio power (Ineson
et al., 2015). It is also inconsistent with our best current
explanation of the FRI/FRII difference. As discussed in
Section 3.1, this difference is thought to come from the
interplay between the power (momentum flux) of the
jet and the extent to which it is forced to decelerate by
entrainment on kpc scales (Bicknell, 1994). Though it
is clear that the most powerful jets will be FRII-like and
the most powerful accretion flows will be RE, there is no
reason why a source which produces a jet with kinetic
power Q marginally sufficient to generate an FRII-type
source with terminal hotspots in a particular environ-
ment should necessarily also have an Eddington-scaled
accretion rate high enough to make a RE accretion flow,

or vice versa. (We return to the question of the rela-
tionship between jet power and accretion power in the
subsequent Section.)

Where does this leave unified models for RLAGN?
The basic picture remains similar to that of e.g., Urry
and Padovani (1995) but with some important differ-
ences in detail; in principle accretion rate, black hole
mass, jet power, obscuration covering fraction as in
Elitzur (2012) and angle to the line of sight are all in-
dependent parameters of a system. The only thing that
is certain is that an object selected as ‘radio-loud’ pre-
sumably has some non-negligible jet kinetic power Q.
For such a source, the accretion rate and black hole
mass determine whether the source is RI or RE, and
these can vary widely for a given Q as we discuss in
the next Section. The nuclear emission from RI sources
is jet-dominated at all angles to the line of sight. For
both RI and RE sources, there will be some angle to
the line of sight where the beamed small-scale jet dom-
inates over the optical continuum from starlight, giving
a blazar-type optical classification, but this will depend
on jet power Q and host galaxy properties as well as ori-
entation angle. Crucially, RI misaligned RLAGN (and
not, as often claimed in the literature, FRI radio galax-
ies) should be the parent population of ‘true’ BL Lac
objects with intrinsically weak lines – this is observa-
tionally confirmed by the existence of FRII-type struc-
tures in the extended emission from blazars: e.g., Rec-
tor and Stocke 2001). However, the situation is con-
fused by objects classified as BL Lacs where intrinsi-
cally bright lines are normally hidden by strong opti-
cal continuum (Vermeulen et al., 1995). RE RLAGN
must be the parent population of these objects and also
of flat-spectrum radio quasars. For RE sources, an in-
termediate angle to the line of sight and an appropriate
level of obscuration allows a direct view of the accre-
tion disk/corona/broad-line region and classifies sources
as BLRG or lobe-dominated quasars; these regions do
not exist in RI sources, which are seen as LERG from
all angles where the jet continuum does not dominate.
Jet power, not accretion state, and host environment de-
termine the large-scale radio morphology of a source.
The unified model for RLAGN discussed here is sum-
marized in Table 1.

6.2. Jet power and AGN power

As yet it is poorly understood, observationally, how
jet power and AGN power are related. In RE AGN, we
expect the radiative luminosity to be proportional to the
accretion rate:

L = ηṀc2 (6)
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Table 1: The unified model for radio-loud sources

Jet at large angles to line
of sight

Intermediate angles Jet closely aligned to line
of sight

Radiatively
inefficient (RI)

Low-excitation radio
galaxy, LERG (FRI or
FRII)

Low-excitation radio
galaxy, LERG (FRI or
FRII)

BL Lac object

Radiatively
efficient (RE)

Narrow-line radio galaxy,
NLRG (some FRI, mostly
FRII)

Broad-line radio galaxy,
BLRG, or lobe-dominated
or steep-spectrum quasar
(some FRI, mostly FRII)

Core-dominated, flat-
spectrum or OVV quasar

where η is the traditional efficiency factor. Here there is
no explicit dependence on black hole mass, but since ac-
cretion at super-Eddington rates (i.e. rates that generate
L � LEdd: eq. 5) must be short-lived, while accretion
at rates much less than the Eddington rate will give rise
to a RI system, there should be a quite narrow band of
accretion rates Ṁ and so luminosities L that can be ex-
pected for a given MBH, scaling linearly with MBH, as
observed (e.g., Steinhardt and Elvis, 2010).

On the other hand, jet power must be a result
of a jet-generation process and the dependences on
the parameters of the system are more complex. In
the Penrose/Blandford-Znajek process (Penrose, 1969;
Blandford and Znajek, 1977) accreting material trans-
ports magnetic field down to the event horizon where it
can be twisted by the rotation of space-time close to the
black hole; the work done in generating the jet comes
directly from the rotation of the black hole. The power
that can be extracted by this process is (Tchekhovskoy
et al., 2011)

PBZ ≈
κ

µ0c
Ω2

HΦ2
H (7)

Here κ is a dimensionless constant that depends on the
field geometry, and we drop a correction term that is
important only for very large spins. ΩBH is the angular
frequency of the black hole horizon, given by

ΩH =
ac

2rH
(8)

where in turn

rH =
GM
c2

(
1 +
√

1 − a2
)

(9)

and a is the dimensionless black hole spin parameter

a =
Jc

GM2 (10)

ΦH is the magnetic flux threading one hemisphere of the
black hole, so loosely

ΦH =
1
2

∫
~B.d~S (11)

The key dependences can be summarized as

PBZ ∝ UBa2A (12)

where UB is (in some sense) the ordered magnetic field
energy density at the horizon and A is the horizon area,
A ∝ r2

H. It’s important to note that the field has to be
ordered on large scales to give a non-zero value of ΦH;
simply estimating the plasma β of the accreting material
is not sufficient. A dependence on black hole mass (as
M2

BH) comes from the area or radius term, so we could
even more crudely write

PBZ ∝ (BaMBH)2 (13)

From an observer’s point of view, therefore, there are
three controlling parameters of the jet power, Q ≈ PBZ.
Black hole mass can in principle be estimated from
AGN properties (this is done routinely for quasars), or
estimated from the galaxy mass (or other properties for
nearby objects). Black hole spin is not currently acces-
sible except in the case of rapidly spinning, radiatively
efficient black holes, and is certainly not easy to esti-
mate for any known radio-loud AGN. And the strength
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of the ordered component of field at the event horizon
is completely unknown a priori — indeed, properties of
radio AGN are the best current way we have of estimat-
ing this quantity (Zamaninasab et al., 2014). Notice that
there is no direct dependence in eq. 13 on the accre-
tion rate Ṁ, but of course the transport of magnetic field
down to the event horizon depends on mass accretion.
The key point is that the different dependences on phys-
ical conditions at the horizon of radiative power (eq. 6)
and jet power (eq. 13), notably the effects of spin and the
non-linear dependence on black-hole mass in the latter,
mean that we should expect a very wide scatter in the
relationship between the two quantities both in RI2 and
RE systems.

Rawlings and Saunders (1991) found a relationship
between the jet power Q and the narrow-line luminosity
LNLR, which is a proxy of the radiative AGN power in
radiatively efficient AGN (see above), for a small sam-
ple of powerful (3CRR) radio galaxies. Many authors
follow Rawlings and Saunders in inferring that there is
a one-to-one relationship between accretion power and
jet power. This inference is, however, untenable in the
light of what we now know about RLAGN. Three crit-
icisms of Rawlings and Saunders’s work in the light of
the current picture can be made:

1. Rawlings and Saunders used fairly inaccurate mea-
surements of Q. Calculations of Q from observ-
ables is difficult, because both ages and lobe ener-
getics of radio galaxies are hard to measure (Sec-
tion 4.5). However, the main method they used,
while it makes use of equipartition field strengths
and spectral ages derived from those strengths and
is therefore not correct in detail, should give a
quantity that is proportional to Q. For the sake of
argument, we can accept that this correlation really
exists for the objects that Rawlings and Saunders
studied.

2. Rawlings and Saunders were not aware of the
LERG/HERG dichotomy. In LERGs, since there is
no significant nuclear emission from the accretion
flow, nuclear emission lines must be photoionized

2The widely cited work of Merloni and Heinz (2007) argues for
a correlation between the radiative output and Q in RI systems, but
this is based on the use of the 2–10 keV X-ray nuclear emission as a
proxy for AGN radiative output. In the picture presented here, the 2–
10 keV emission from these systems comes from the jet itself — see
e.g. Hardcastle et al. (2009) and references therein — and so does not
provide any information about the AGN radiative power. The strong
correlation that they observe is essentially showing that a reasonably
constant fraction of the jet power emerges as X-rays in these systems,
which by selection are relatively unaffected by beaming.

either by processes irrelevant to the AGN or by the
ionizing component of the radiation from the jet
itself. Since we know that these objects contain
jet-related optical and X-ray nuclear sources even
when viewed at large angles to the line of sight
(Hardcastle and Worrall, 2000a) they should have
emission-line luminosity proportional to the lumi-
nosity of the nuclear jet, with substantial scatter
imposed by geometrical factors and the availability
of cold material in the vicinity of the nucleus. The
correlation should be quite different from that ex-
hibited by the HERGs, which is driven by radiative
AGN power. Evidence for this can be seen in the
radio-luminosity/emission-line-luminosity plots of
e.g. Zirbel and Baum (1995); Hardcastle et al.
(2009). The LERGs should be excluded from con-
sideration in the work of Rawlings and Saunders.
However, this does not invalidate the correlation
that they observed for high-excitation objects.

3. Crucially, Rawlings and Saunders had a restricted
sample composed of 3CRR objects. When much
larger samples of radiatively efficient RLAGN with
AGN power indicators are considered (e.g., Pun-
sly and Zhang, 2011; Mingo et al., 2014; Gürkan
et al., 2015) we find sources that have much lower
radio luminosities for a given accretion power than
would be expected from the correlations seen in the
3CRR objects. Thus the central result of Rawlings
and Saunders seems to be due to some selection
bias inherent in the selection of the most powerful
radio-loud objects.

The observations instead motivate the following
straw-man model for the relationship between Q and
bolometric AGN radiative power Lrad:

1. Radiatively efficient AGN with a given Lrad can
have jet powers Q that range continuously from
zero up to a maximum Q ≈ Lrad. (Note that in
BZ models the jet power can exceed the accretion
power for very high black hole spin parameters, but
this would presumably not be the normal expecta-
tion.)

2. Selection of the most radio-luminous sources se-
lects for large, mature sources with the highest Q,
for which Q ≈ Lrad: these are also the sources
where a Lradio–Q correlation is expected. There-
fore, for the most radio-luminous objects, we ex-
pect to see a correlation between Q, or radio lu-
minosity, and Lrad, or its proxies, as observed by
Rawlings and Saunders (1991) and many others.

3. However, as we relax the radio selection criteria
we expect to see more sources that have lower jet
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powers (radio luminosities) for a given Lrad, as ob-
served (Gürkan et al., 2015)

4. In this picture, which is consistent with that of e.g.
Kimball et al. (2011), there is no radio-loud/radio-
quiet dichotomy. The so-called radio-quiet quasars
simply have Q � Lrad (though Q = 0 is not ex-
cluded). Below a certain jet power, radio emis-
sion from star formation in the host galaxy, or from
other processes, may dominate the integrated emis-
sion (Gürkan et al., 2019) though high-resolution
radio observations may still detect a radio core.

We conclude that observations of optical AGN prop-
erties, even setting aside the important LERG popula-
tion, are not useful for interpreting the distribution of
jet power.

6.3. Fuelling the black hole

From a galaxy formation perspective we can imagine
two different classes of mass to fuel black hole growth
(setting aside black hole-black hole merger): gas chan-
nelled to the central regions of the galaxy by ‘secular
processes’ within the host galaxy itself, including the
very important channel (in massive galaxies) of cooling
from the hot phase; and gas which is brought in to the
host galaxy by a merger with a gas-rich system. The
fuelling of black hole growth and hence AGN activity
connects the nature of the AGN, as discussed earlier in
this Section, with the ‘feedback’ role of (RL)AGN in
galaxy formation models to be discussed in Section 8.

The present authors proposed some time ago (Hard-
castle et al., 2007b) that there was a one-to-one relation-
ship between the two fuel sources for RLAGN (roughly
speaking ‘hot gas’ from inside the galaxy and ‘cold gas’
from outside) and the accretion mode (RI/RE), build-
ing on work that suggested that the fuelling of the jets
could be accomplished by a simple Bondi flow (Allen
et al., 2006). This model has now been superseded in
its simplest form for two reasons. Firstly, if we can
interpret the RI/RE difference as simply a transition
in Eddington-scaled accretion rate as discussed above,
then there is no reason why hot gas accretion should al-
ways contrive to stay below this boundary in accretion
rate or why cold gas accretion should always be above
it. Secondly, the current best understanding of accretion
from the hot phase is that it is mediated by the cool-
ing instability (e.g., Pizzolato and Soker, 2005; Gaspari
et al., 2012, 2013), which causes clumps of cold mate-
rial to ‘rain’ into the centre of the galaxy; thus the origi-
nal argument that the material in a Bondi flow would be
too hot to form a radiatively efficient accretion disk is no
longer relevant or valid. It remains the case that some

(mostly RE) RLAGN appear to require a mass accretion
rate far in excess of what can be provided by cooling,
and it is plausible to invoke merger-triggered cold gas
infall as a mechanism to fuel these objects. But our cur-
rent view of the relationship between the fuel source and
the accretion mode in RLAGN (set out in more detail
by Hardcastle 2018a) is that there is an association be-
tween the two rather than a one-to-one correlation. Fu-
elling by (cooling-mediated) hot gas accretion will tend
to take place in massive systems with massive central
black holes and to generate rather low accretion rates,
favouring RI accretion. Fuelling through gas-rich merg-
ers will take place in lower-mass environments and will
be capable of giving rise to high accretion rates, favour-
ing RE accretion. However, in this picture, it is not safe
to infer the fuel source of any particular object from its
accretion mode. These connections are of importance
for galaxy feedback, and are discussed further in this
context in Section 8.

We finally note that the availability of fuel in a partic-
ular host galaxy should not be conflated with the actual
accretion of that fuel. It is well known that the cold
gas deposited by mergers may not trigger AGN activity
until long after the merger event has begun. Similarly,
objects that are currently RI appear to be able to accu-
mulate quite large masses of molecular gas in the centre
of the host galaxy but are clearly not accreting it at a
high rate. If this gas represents a fuel reservoir for the
AGN, it is not at all clear how the inflow and outflow
from the reservoir are controlled by cooling. We return
to this point in in Section 8.

7. Host galaxies and environments

The properties of the host galaxies in which radio-
loud AGN live provide further information with which
to test our understanding of unified models and the
physical origin of the FR break (Section 3), but, perhaps
more importantly, they allow the investigation of crucial
questions about how AGN jets are triggered, and the en-
ergetic impact and feedback role of jets within the con-
text of galaxy evolution. Efforts to characterise radio-
galaxy hosts date back to the early studies of double
radio sources, and the association of Cygnus A with a
galaxy merger (Section 2.2). Below we discuss current
understanding of the host galaxy properties and wider
environments of radio galaxies.

7.1. Host galaxies

A long-standing question for radio-galaxy physics,
and for galaxy evolution more widely, is why some
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galaxies possess AGN jets and others don’t: what trig-
gers a galaxy to become radio-loud? The earliest clue
to the galaxy conditions needed to trigger strong radio-
loud AGN activity came from its association with mas-
sive elliptical galaxies (e.g., Matthews et al., 1964).
Over the past few decades a detailed understanding of
the host-galaxy properties of AGN in the local Universe
has emerged, with investigations of large galaxy sam-
ples from the SDSS playing a particularly crucial role
(e.g., Heckman and Best, 2014, and references therein).
Below we discuss key relationships between radio AGN
activity and host-galaxy properties: (1) links with host-
galaxy stellar and black hole masses, (2) links with
galaxy morphology and disturbance, and (3) links with
star-formation properties. We also highlight any differ-
ences between observed relationships for FRI and FRII
radio galaxies, and for LERG and HERG RLAGN pop-
ulations. We emphasize that the majority of studies are
based on low-redshift radio galaxy populations, and so
some conclusions may not apply to high-redshift radio
galaxy populations whose host galaxy properties remain
poorly constrained.

7.1.1. Stellar and black-hole masses
A strong relationship between radio-loud AGN frac-

tion and stellar mass was first pointed out by Auriemma
et al. (1977), and was demonstrated for large samples by
Best et al. (2005), who found that more than 30 per cent
of galaxies with stellar mass M∗ > 5 × 1011 M� possess
a radio-loud AGN with L1.4GHz > 1023 W Hz−1. Re-
cently, Sabater et al. (2019) have shown with more sen-
sitive radio data that the most massive galaxies (> 1011

M�) are always ‘switched on’ with radio AGN activ-
ity at a luminosity L150MHz > 1021 W Hz−1 (see also
Brown et al. 2011), and also that radio AGN fraction
has a stronger dependence on stellar mass than on black
hole mass. Best et al. (2005) found no significant differ-
ence in the stellar mass dependence of radio activity for
optically active AGN (i.e. HERGs) and optically inac-
tive AGN (LERGs). However, it is known that as a pop-
ulation, HERGs are hosted by less massive galaxies than
LERGs (e.g., Tasse et al., 2008; Smolčić et al., 2009;
Best and Heckman, 2012). Morphology (FR class) has
also been linked to host galaxy mass (e.g., Lin et al.,
2010); however, Best and Heckman (2012) argue that
these results are likely to be driven by the overlap be-
tween optical excitation and FR class (as discussed in
Section 6.1), with evidence that strong emission-line
FRIIs (i.e. HERGs) are most distinct from FRIs (pre-
dominantly LERGs). It is worth noting, however, that
a link between host-galaxy mass and radio morphology
— independent of accretion mode — would be expected

for samples matched in radio luminosity if the envi-
ronmental jet disruption model for the FR break (Sec-
tion 3.1) is correct (Mingo et al., 2019).

7.1.2. Mergers and interactions
Studies over many decades have looked for signa-

tures of disturbance in radio-galaxy hosts that could
be linked to the triggering of activity (e.g., Heckman
et al., 1986). There is considerable evidence for distur-
bance in the host galaxies of powerful radio galaxies at
high redshifts (e.g., Best et al., 1997). Ramos Almeida
et al. (2012) found that evidence for disturbed host-
galaxy morphologies was almost universal in a sam-
ple of powerful high-excitation radio galaxies, while
present at a lower level in passive galaxies in the same
redshift range. Recently Pierce et al. (2019) demon-
strated that the prevalence of such features in HERGs is
linked to radio luminosity, with a similar but less radio
luminous sample showing a lower prevalence of distur-
bance. Pierce et al. (2019) also note a higher prevalence
of late-type galaxy hosts at lower radio powers, and sug-
gest that secular triggering mechanisms related to disk
instabilities or bars may be relevant for this HERG pop-
ulation. However, there is also some evidence that in-
teraction with neighbouring galaxies is relevant for the
triggering of LERGs: both Sabater et al. (2015) and
Pace and Salim (2014) present evidence that LERG ac-
tivity is influenced by interaction with neighbours, in-
dependently of large-scale environment. A recent large-
sample study by Gordon et al. (2019) found a higher
prevalence of major mergers in LERG hosts compared
to a control population, but the overall prevalence was
only 10 per cent. However, Ellison et al. (2015) found
that an enhanced prevalence of LERG activity in galaxy
pairs was driven by a combination of halo mass and stel-
lar population properties, suggesting that interactions
may not be directly responsible for enhanced probabil-
ity of radio AGN activity in LERGs.

7.1.3. Galaxy morphology
It has been long established that radio-loud AGN

prefer early to late-type galaxy hosts (Matthews et al.,
1964), but this does not mean that spirals are incapable
of hosting radio jets: there are now a number of ex-
amples of spiral-hosted radio AGN with structures on
> kpc scales (e.g., Ledlow et al., 2001; Croston et al.,
2008c; Hota et al., 2011; Mao et al., 2015; Mulcahy
et al., 2016). Additionally, larger samples of spirals pos-
sessing smaller scale AGN-associated radio emission
have been identified by Kaviraj et al. (2015), who also
established that the spiral hosts typically had high stel-
lar masses comparable to elliptical galaxy radio AGN
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hosts. The observed strong relationship between mor-
phology and radio AGN activity may be driven partly
by stellar and black hole mass differences, but is likely
ultimately to be controlled by differences in galaxy evo-
lutionary state, accretion rate and the presence of a hot
gas atmosphere (e.g., Krause et al., 2019).

7.1.4. Colours and stellar populations
Finally, there are firm connections between radio

properties and galaxy colours, stellar populations and
star-formation rates. In the current picture of galaxy
evolution the properties of normal galaxies fall on a
‘main sequence’ of star formation in which the mean
star-formation rate is proportional to the galaxy mass,
with a redshift-dependent normalization (Elbaz et al.,
2011). At some point star formation ceases and galax-
ies become ‘red and dead’, moving to a region below
the main sequence in terms of star-formation rate. In
the context of this picture, the vast majority of RLAGN
in the local Universe are hosted by high-mass galaxies
lying below the main sequence in terms of their star-
formation rates (Gürkan et al., 2018). In general, radio-
loud AGN are found to have lower star-formation rates
than radio-quiet AGN (e.g., Gürkan et al., 2015). There
are, however, differences in the star formation proper-
ties of LERG and HERG RLAGN. In addition to hav-
ing lower stellar mass, HERG hosts are systematically
bluer, and have higher star formation rates than those of
LERGs (e.g., Baldi and Capetti, 2008; Smolčić et al.,
2009; Best and Heckman, 2012; Janssen et al., 2012;
Hardcastle et al., 2013). Evidence has also been found
for enhanced blue light in the central regions of radio-
loud AGN relative to control samples (Mahabal et al.,
1999; Mannering et al., 2011), suggesting enhanced star
formation that could be due to simultaneous triggering
of AGN and star formation activity via an inflow of gas,
or due to jet-induced star formation.

7.1.5. Summary
In summary, it is well established that all galaxies in

the local Universe are not equally capable of hosting a
radio-loud AGN. Radio AGN activity is strongly linked
to stellar mass — this is also thought to be the driver of
observed connections with galaxy colour/morphology,
and black-hole mass. There are (at least) two possi-
ble origins for this connection, both related to the hot,
hydrostatic halo typically associated with more massive
galaxies at low redshifts. Krause et al. (2019) demon-
strate that a substantial change in the halo density occurs
at a stellar mass of ∼ 1011 M�, and argue that jets of any
power could be produced across the stellar mass range,

Figure 3: The relationship between radio morphology and large-scale
environment for the z < 0.4 subset of the Mingo et al. (2019) LOFAR
RLAGN sample: the SDSS (Wen et al., 2012) cluster match frac-
tion and its uncertainty is determined via the method of Croston et al.
(2019) for five morphological classes (Mingo et al., 2019), but with
FRIIs further divided into morphologically regular and irregular sub-
sets following the criteria of Croston et al. (2017).

but are only confined and radio-luminous in the higher-
density haloes present at higher stellar mass. In reality
it is likely that (at low redshifts) accretion rate is also
linked to stellar mass — if the predominantly LERG ra-
dio jets in low-redshift samples are fuelled by material
cooling out of the hot halo, the inferred higher density of
the hot gas halo is required to achieve sufficiently high
accretion rates.

7.2. Large-scale environments

The large-scale (galaxy group or cluster-scale) envi-
ronments of radio galaxies are of interest for a number
of reasons: for jets that grow to scales of tens of kpc
or more they are a driving influence on subsequent jet
evolution and morphology (as discussed in Section 5),
and are the location where most of the jet energy is de-
posited, and for at least some radio-galaxy populations
they are thought to be important for triggering and fu-
elling of the jets via a feedback cycle that has been par-
ticularly well studied in galaxy clusters — we discuss
this feedback cycle in Section 8. Environmental stud-
ies of radio jets date back more than 40 years, with
optical studies indicating links between radio galaxies
and Abell clusters and connections between environ-
ment and radio morphology (e.g., Longair and Seldner,
1979; Prestage and Peacock, 1988).
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7.2.1. Environments and radio properties
The relationship between radio-galaxy properties and

large-scale environment is now well determined in the
local Universe. Recent studies of radio galaxies span-
ning a wide luminosity range in narrow redshift slices
have removed the potentially confounding effect of
strong flux limits in early catalogues, enabling corre-
lations and trends with radio properties to be more care-
fully investigated (e.g., Best, 2004; Ineson et al., 2015).
While there are a number of famous and well-studied
examples of nearby cluster-centre radio galaxies (e.g.,
Perseus A, M87), the bulk of the local radio galaxy pop-
ulation live in galaxy groups (e.g., Best, 2004; Croston
et al., 2008a; Ineson et al., 2015; Ching et al., 2017;
Croston et al., 2019).

Radio morphology is strongly linked to large-scale
environment, as shown in Fig. 3, which shows the frac-
tion of radio galaxies at z < 0.4 associated with SDSS
galaxy clusters (M500 > 1014M�) for different morpho-
logical classes (from the LOFAR sample of Mingo et al.
2019). The average cluster match fractions are signifi-
cantly different for FRI and FRII radio galaxies (e.g.,
Croston et al., 2019), as found in many previous stud-
ies, but it is particularly striking that the morphologi-
cally regular (‘classical double’) FRIIs are almost never
found in rich environments, unlike all other classes.

A well-known relationship exists between bent-tailed
radio galaxies and galaxy clusters: both the wide-angle
tail (WATs) and narrow-angle tail radio galaxies (NATs)
are found preferentially in richer environments than the
general radio galaxy population (e.g., O’Dea and Owen,
1985; Mingo et al., 2019; Garon et al., 2019). The
explanation for this is thought to be the movement of
the host galaxy through the intracluster medium, which
leads to curving and in some case extreme bending of
the jets and tails in the direction opposite to the direc-
tion of travel. It has therefore been suggested that bent
radio galaxies can be used as signposts to rich envi-
ronments at high-redshift (e.g., Johnston-Hollitt et al.,
2015; Paterno-Mahler et al., 2017). The present authors
have suggested (Croston et al., 2017) that the strong
preference of morphologically regular FRIIs for poor
environments could also provide a powerful tool for
finding and characterizing group-scale gas haloes at the
epoch of cluster formation.

7.2.2. Environments and accretion mode
Another important conclusion from recent studies is

that radio-galaxy large-scale environment is linked to
accretion mode (e.g., Tasse et al., 2008; Lin et al., 2010).
X-ray studies, which can provide more stringent con-
straints on cluster richness than galaxy number counts

or two-point correlation functions, have found that low-
excitation radio galaxies span the full range of envi-
ronmental richness from poor groups to rich clusters,
while high-excitation radio galaxies preferentially avoid
rich environments (e.g., Ineson et al., 2013, 2015). It is
not completely trivial to disentangle LERG/HERG envi-
ronmental differences from FRI/II differences, because
of the strong association between FRIs and LERGs in
well-studied samples, but it has been known for some
time that FRII LERGs prefer rich environments more
consistent with the FRI LERG population (Hardcastle,
2004), and several studies find strong indications that
accretion mode is linked to environment separately from
morphology (Gendre et al., 2013; Ineson et al., 2015).
For LERGs, a relationship has also been found, in both
optical and X-ray environmental studies, between radio
luminosity and environmental richness (Ineson et al.,
2015; Ching et al., 2017), which appears not to be driven
by a common link to black hole mass, and so may
indicate a tight link between ICM properties and jet
power. These environment–accretion mode connections
provide support for AGN feedback models (see the fol-
lowing Section) and lend further support to arguments
that accretion mode is linked to the evolutionary state of
the host galaxy (Section 6.1).

7.3. Cosmic evolution of RLAGN, host galaxies and en-
vironments

In the context of a galaxy evolution model where the
relationship between stellar mass, accretion rate, and the
evolution of a hot gas atmosphere change significantly
over cosmic time, we would expect to observe consider-
able evolution of the properties of radio-loud AGN. Evi-
dence for such evolution is extensive. It has been known
for many decades that the space density of RLAGN was
higher at early times than in the local Universe (e.g.,
Schmidt, 1968). It has been shown that at lower ra-
dio luminosities, the space density begins to decline at
redshifts higher than z ∼ 1, but for higher luminosity
RLAGN space density remains high out to z ∼ 3 (Rigby
et al., 2011). These changes are likely to be linked to
strong differences in the evolution of low and high exci-
tation RLAGN populations: the space density of high-
excitation radio galaxies increases between z < 0.5 and
z = 1 − 2, while that of low-excitation radio galaxies
declines (Best et al., 2014; Williams et al., 2018). The
implications for these results in the context of feedback
from RLAGN are discussed in Section 8.

We would also expect to see evolution in the host
galaxy properties for jets of a given power, but even set-
ting aside the challenges of making accurate jet power
inferences across a wide redshift range (see Section 4.5)
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it is not straightforward to test such predictions due to
the challenges of probing comparable ranges of radio
luminosity and rest-frame host galaxy properties at dif-
ferent redshifts. The increase in space density of radio-
loud AGN at z ∼ 2 − 3 suggests that RLAGN activ-
ity must be more prevalent in lower mass host galax-
ies at high redshifts, and evidence indeed supports this
conclusion. Williams and Röttgering (2015) found that
the host galaxies of RLAGN at 1 < z < 2 extend two
orders of magnitude lower in stellar mass than hosts
of local RLAGN (Best and Heckman, 2012) — this
population of radio galaxies in low stellar mass hosts
are predominantly HERGs (Williams and Röttgering,
2015; Williams et al., 2018). Other studies have reached
somewhat different conclusions (e.g., Delvecchio et al.,
2017), and deep radio surveys over wider areas (such as
will shortly become available with LOFAR) should en-
able these questions to be investigated more fully with
samples spanning a wide range in radio luminosity at
high redshifts.

The conclusions relating to large-scale environments
discussed in the previous Section have also been derived
primarily for RLAGN populations in the local Universe
(typically z < 0.5). At z > 1 environmental studies
have only been possible to date for the rare objects at the
high-luminosity tail of the population (e.g., Hardcastle
and Worrall, 2000b; Belsole et al., 2007), leading to dif-
ficulties in making comparisons with local populations
or examining relationships with radio properties. Lumi-
nous, high-redshift radio galaxies appear to be strongly
associated with cluster and (at z > 2) protocluster envi-
ronments, and have proved a useful tracer of the richest
overdensities at z > 2 (e.g., Venemans et al., 2007; Mi-
ley and De Breuck, 2008; Wylezalek et al., 2013; Hatch
et al., 2014). With new and upcoming surveys, it will
be possible to obtain a more complete picture of high-
redshift radio galaxies across the full radio luminosity
range. Simple hydrodynamical considerations suggest
that radio galaxies of similar luminosity and size (and
hence internal pressure) at low and high redshift must
be embedded in gas at similar pressures. For this reason
the morphology and size distributions of high-redshift
radio galaxy populations as a function of luminosity will
also provide insights into how the environments of radio
galaxies evolve with redshift.

8. The feedback role(s) of RLAGN

Much recent research on radio-galaxy populations
has been motivated — at least in part — by the now
widespread acceptance that RLAGN are an important
galaxy feedback mechanism, playing a key role in the

evolution of galaxies and large-scale structure (e.g., Cat-
taneo et al., 2009). Wider discussions of AGN feed-
back in galaxy formation models can be found in the
recent reviews of Somerville and Davé (2015); Naab
and Ostriker (2017), and of the observational evidence
for AGN feedback in the reviews of Fabian (2012)
and McNamara and Nulsen (2007, 2012). In this sec-
tion we summarize current understanding of the poten-
tial galaxy feedback role(s) of RLAGN as indicated by
cosmological simulations and galaxy evolution models,
before discussing observational evidence of jet impact
and the feedback roles of different radio-galaxy sub-
populations. Fig. 4 draws together the discussions of
RLAGN populations, accretion and jet power earlier in
the Chapter with the authors’ perspective on the poten-
tial feedback roles of AGN jets, which we explain fur-
ther in the sections that follow.

8.1. The need for AGN jet-driven feedback in galaxy
evolution

Galaxy feedback processes that regulate the forma-
tion of stars and growth in stellar mass are a key element
of modern galaxy formation models (e.g., Somerville
and Davé, 2015; Naab and Ostriker, 2017). A wide
range of processes associated with star formation and
black-hole growth affect the thermodynamical, chemi-
cal and star formation histories of galaxies, and much
observational and theoretical/computational effort is
currently being devoted to disentangling and quantify-
ing these processes. The general argument that feed-
back processes are important is not controversial, but
there is considerable debate about the extent to which
some form of AGN feedback is needed to explain par-
ticular mismatches between models and observations,
about the microphysics of feedback mechanisms and
energy transport within the ISM and ICM, and about the
relative importance of different AGN feedback mecha-
nisms (which include the effects of winds, jets, cosmic
rays, and radiation). Feedback from radio-galaxy jets
is in some ways one of the best understood aspects of
this problem, and we focus specifically on the poten-
tial role of mechanical feedback from AGN jets in the
discussion that follows. A wide range of observational
constraints on jet mechanical feedback in the local Uni-
verse have been assembled over the past two decades,
particularly from Chandra and XMM-Newton observa-
tions of galaxy clusters and groups, and more recently
from Hitomi and ALMA — these will be discussed in
the next section. However, many questions still remain,
including the details of how, when and where a feedback
loop operates and the mechanisms by which the jet en-
ergy is coupled to surrounding gas in different contexts,
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Figure 4: A diagrammatic summary of the relationship between fuelling, accretion, jet production and feedback, as described in Sections 6.1 and 8.
In principle systems can follow any of the arrows connecting accretion and jet behaviour, but the choices of pathway are controlled by a series of
environmental parameters (magenta boxes), which are interconnected and closely linked to the galaxy’s evolutionary history.

25



as well as broader questions about the role of jets in dif-
ferent environments and at different epochs.

What problems can jet kinetic feedback solve? AGN
feedback considered more broadly has been invoked in
models of galaxy evolution primarily to address two
major mismatches with observations: (i) the need to
suppress star formation in the most massive galaxies
in order to reproduce the high-mass end of the local
galaxy luminosity function (e.g., Benson et al., 2003)
and prevent cooling flows in galaxy clusters (e.g., Pe-
terson et al., 2003; Sakelliou et al., 2002), and (ii) the
need to explain the origin of the strong colour bimodal-
ity of galaxies (e.g., Strateva et al., 2001; Baldry et al.,
2004), which requires rapid quenching of star forma-
tion, moving star-forming galaxies to the red sequence
of quiescent galaxies. AGN feedback is also implicated
in the origins of the well-known galaxy black-hole –
bulge mass correlation, as suggested by Silk and Rees
(1998), although such a relation can arise through merg-
ers in the absence of feedback self-regulation (Peng,
2007). Finally, the evolution of the gas mass fraction
of dark matter haloes, the properties of the circumgalac-
tic medium, and the thermodynamic properties of gas in
galaxy groups and clusters, are all highly sensitive to the
injection of energy from AGN over a wide range in red-
shift (e.g., McCarthy et al., 2011; Le Brun et al., 2014;
Davies et al., 2019; Voit et al., 2018; Kauffmann et al.,
2019).

Modern hydrodynamical cosmological simulations
take a range of approaches to modelling black hole
growth and consequent AGN feedback, ranging from a
single mode of feedback controlled by the mass accre-
tion rate, coupling to the ISM with fixed efficiency (e.g.,
Schaye et al., 2015; McCarthy et al., 2017), to differ-
ent modes associated with high and low accretion rates
that may or may not explicitly be linked to specific out-
flow types or coupling mechanisms (e.g., Vogelsberger
et al., 2014; Weinberger et al., 2018; Davé et al., 2019).
The majority of implementations are in practice agnos-
tic about the relative contributions of AGN jets, winds
and radiative feedback, but provide insights into the im-
portance of different accretion rate regimes in influenc-
ing particular aspects of galaxy growth (e.g., Rosas-
Guevara et al., 2016). In general it is found that most
black hole growth for moderately massive black holes
must take place when AGN are accreting at a high frac-
tion of the Eddington rate, so that radiatively efficient
AGN activity is associated with the evolution of the
MBH–Mbulge relation. Low Eddington-scaled accretion
rates occur at later times, with the associated radiatively
inefficient AGN activity linked to the suppression of star
formation in massive galaxies. There is less consensus

as to which accretion regime is relevant for the quench-
ing of star formation by AGN (e.g., Bower et al., 2017;
Terrazas et al., 2019).

The association of radiatively inefficient accretion
with jet generation (see also the X-ray binary context
elsewhere in this volume), together with the strong ob-
servational evidence for the impact of jets in massive
galaxies at low redshift, initially led to a widely dis-
cussed paradigm of separate ‘radio’ and ‘quasar’ modes
of AGN feedback, with the former responsible for solv-
ing the mismatch at the massive end of the galaxy lu-
minosity function, and the latter associated with black-
hole growth (e.g., Croton et al., 2006). There remains
a focus in the literature on jet kinetic feedback as a
‘maintenance’ process that regulates star formation at
late stages of evolution (e.g., Fabian, 2012) — we dis-
cuss this scenario further in the next two subsections.
However, as we emphasise in Section 6.1 and in Fig. 4,
powerful AGN jets also occur at high Eddington-scaled
accretion rates, with increasing prevalence towards the
peak of cosmic star formation, and so in Section 8.4 we
also consider the potential relevance of feedback from
RLAGN for other aspects of galaxy formation includ-
ing at earlier stages in galaxy evolution.

8.2. Observational evidence for jet kinetic feedback
The observational evidence for the energetic impact

of RLAGN jets in the local Universe is extensive and
we only summarize it briefly here — see McNamara
and Nulsen (2007, 2012) for more comprehensive dis-
cussion. Direct estimates of jet energy input come from
X-ray surface brightness deficits in galaxy clusters and
groups (‘cavities’), from detections of shock fronts as-
sociated with expanding radio lobes on galaxy scales
and in clusters, and from ripples believed to be trans-
porting and spreading out the injected energy through
the ICM gas in cluster cores. Indirect energy budget
estimates based on improved knowledge of the phys-
ical conditions within radio-galaxy lobes provide cor-
roborating information, as do increasingly sophisticated
hydrodynamical simulations of radio-lobe propagation
that reproduce observations.

Cavities excavated by expanding radio lobes were
first identified in ROSAT images (Böhringer et al., 1993;
Hardcastle et al., 1998) and subsequently found in many
clusters and studied in depth using Chandra (e.g., Dunn
and Fabian, 2004; Dunn et al., 2005; Bı̂rzan et al., 2004;
Bı̂rzan et al., 2008). They provide a direct measure of
the pdV work carried out on the surrounding medium
as radio lobes expand (Section 4.5), and such observa-
tions have demonstrated firmly that sufficient energy is
being transferred from expanding radio galaxy lobes to
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offset the current rate of gas cooling in the centres of
cool core clusters in the nearby Universe. Cluster cavi-
ties have been detected out to z ∼ 1 (Hlavacek-Larrondo
et al., 2015), but there remain observational limitations
and selection effects that affect our ability to draw robust
population-wide conclusions (e.g., Bı̂rzan et al., 2012).
There is also substantial observational evidence for en-
ergy transfer from jets to their environments via shocks,
which have been detected in a range of environments
(e.g., Kraft et al., 2003; Croston et al., 2007; Forman
et al., 2007; Croston et al., 2009; Randall et al., 2015),
on scales ranging from the central ISM to hundreds of
kpc.

While shock heating is likely to be important in some
situations, the identification of ripple features in the in-
tracluster medium of the Perseus cluster (Fabian et al.,
2003, 2006) demonstrated that there is a means of dis-
tributing jet energy injection azimuthally to influence
the entire cluster core region in which heating is needed
to balance cooling. Similar ripples have now been iden-
tified in several other clusters and groups (Forman et al.,
2005; Sanders and Fabian, 2008; Blanton et al., 2011).
Recently the (sadly short-lived) Hitomi mission was
able to make the first precise measurements of gas mo-
tions in the core of the Perseus cluster (Hitomi Collabo-
ration et al., 2016), providing constraints on the energy
stored in turbulent motions and the nature of energy
transport. There has been some debate about the appar-
ent ‘quiescent’ nature of the gas in the cluster core re-
gion revealed by Hitomi, but several studies have shown
that this is not inconsistent with the gentle mode of AGN
feedback heating that appears to be in operation in cool-
core regions (e.g. Lau et al., 2017; Fabian et al., 2017).

Further important observational clues to the nature
of jet feedback come from a wealth of observations of
atomic and molecular filaments and outflows of gas in
the central regions of galaxies hosting RLAGN. Evi-
dence for outflowing atomic gas has been found in both
powerful RLAGN (e.g., Tadhunter, 1991) and ‘radio-
quiet’ systems with small-scale jets (e.g., Morganti
et al., 1998; Rupke and Veilleux, 2011) — see Morganti
and Oosterloo (2018) for a recent overview of outflow
properties inferred from HI absorption studies. There is
growing evidence, particular from recent ALMA stud-
ies, of massive outflows of molecular material entrained
or uplifted by jets or rising radio lobes (e.g., Alatalo
et al., 2011; Dasyra et al., 2015; McNamara et al., 2014;
Russell et al., 2014, 2016, 2017; Tremblay et al., 2018).
A number of these examples are cool-core clusters, the
environments in which AGN feedback is required to act
most strongly to suppress cooling and star formation.
These systems have long been known to contain spec-

tacular filamentary nebulae (e.g., Crawford et al., 1999),
of both atomic and molecular gas (e.g., Edge, 2001;
Hatch et al., 2005; O’Dea et al., 2008). The physics of
these filaments is complex, and their origins are still un-
der debate, but substantial evidence points to cold, low
entropy gas being lifted from the cluster centre to dis-
tances of tens of kpc, most likely in the wake of rising
radio bubbles (e.g., Fabian, 2012). The kinematics and
locations of cold gas in cooling hot gas haloes provide
crucial clues to how jet feedback from AGN can self-
regulate so as to maintain a long-term balance between
heating and cooling as required by observations (e.g.,
McDonald et al., 2018) and by galaxy evolution models
(see previous Section).

8.3. Self-regulation and heating-cooling balance
In parallel with observational advances in studying

heating and cooling in hot hydrostatic haloes, there has
been much research around the mechanisms of achiev-
ing a self-regulating AGN feedback loop. As mentioned
in Section 6.3, it has been proposed that thermally un-
stable gas cooling is triggered under conditions related
to the ratio of cooling to free-fall time (e.g., Sharma
et al., 2012; McCourt et al., 2012; Gaspari et al., 2012;
Voit et al., 2015), leading to the condensation of clumps
of cold material that ‘rain’ onto the central AGN, los-
ing angular momentum via collisions so as to accrete
onto the central black hole (e.g., Pizzolato and Soker,
2005; Gaspari et al., 2012, 2013). This ‘chaotic cold ac-
cretion’ (CCA) powers the RLAGN, leading to outward
flow of energy and consequent heating, and so enabling
self-regulation of the cooling process. Observations of
gas conditions in galaxy, group and cluster halos (e.g.,
McNamara et al., 2016; Hogan et al., 2017; Pulido et al.,
2018) suggest that the uplift and movement of thermally
unstable gas driven by the AGN outflow may play a
crucial role in stimulating the self-regulating feedback
cycle. A more in-depth discussion of current debates
around the physics of heating, cooling and the AGN
feedback loop in hot atmospheres can be found in the
recent review of Werner et al. (2019).

As well as detailed individual and small sample stud-
ies of jet feedback, there have been a number of attempts
to assess the population-wide balance between cool-
ing and heating in hot atmospheres (on galaxy, group
and cluster scales). Such estimates rely on a well-
determined radio luminosity function (and ideally also
well constrained evolution of the luminosity function),
and on robust methods to translate from radio luminos-
ity to jet kinetic power. The radio luminosity function
is now well determined in the local Universe (Mauch
and Sadler, 2007). There remain substantial caveats in
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converting to jet power (see Section 4.5), but it is pos-
sible to draw some reliable general conclusions about
the heating and cooling balance at low redshifts. Best
et al. (2006) compared the rate of heating via mechani-
cal jet energy input, based on an estimate of the local ra-
dio luminosity function obtained from cross-correlation
of SDSS with NVSS and FIRST and conversion to jet
power via X-ray cavity relations, to cooling rates in el-
liptical galaxies determined from the relationship be-
tween X-ray and optical luminosity, finding remarkably
good agreement. Smolčić et al. (2017) recently used the
deep COSMOS field radio data to investigate the cos-
mic evolution of the RLAGN ‘kinetic luminosity func-
tion’ finding good agreement with the results of Best
et al. (2006) at low redshift, with the kinetic luminos-
ity density increasing out to z ∼ 1.5 and then declining
gradually towards z ∼ 5. Observational constraints on
cooling rates do not exist beyond z ∼ 1.5, but they find
reasonable agreement with the cooling rates required in
the semi-analytical model of Croton et al. (2016). The
present authors recently constructed (Hardcastle et al.,
2019b) a sample of ∼ 23, 000 RLAGN from the LoTSS
DR1 catalogue and used a new analytic model for radio-
lobe dynamical evolution, accounting for the effects of
environmental variation, radiative losses and redshift, to
obtain more realistic conversions from radio luminos-
ity to jet power and thus make similar estimates of the
kinetic luminosity function and overall heating rate at
z < 0.7. As with previous work, it is concluded that the
rate of heating from RLAGN jets in the local Universe
is well matched to the cooling luminosities of galaxy
groups and clusters.

At the level of individual objects it remains unclear
how tightly cooling and heating processes are cou-
pled across the full range of RLAGN environments at
low redshift. The observational evidence in support of
the CCA mechanism relates mainly to brightest clus-
ter galaxies, while, as noted in Section 6.1, a number
of nearby radio galaxies possess apparently stable disks
of molecular gas (e.g. Lim et al., 2000; Prandoni et al.,
2010) whose origin and relationship to AGN fuelling
is unclear. Nevertheless, while the observational pic-
ture remains complex and timescales relating to heating
and cooling balance poorly constrained, there is now
substantial evidence for a self-regulated feedback sce-
nario in massive systems at low redshift, linked to the
presence of hot hydrostatic haloes. We suggest that the
pathway indicated by orange arrows in Fig. 4 represents
the most common RLAGN population at low redshifts:
RI accretion ultimately originates from cooling out of
a hot-gas halo, with long-term balance between heat-
ing and cooling mediated by low-power, FRI morphol-

ogy jets. However, as indicated by the grey arrows, the
RLAGN population is complex, and under some condi-
tions RE sources (HERGs) and/or FRIIs will also partic-
ipate in self-regulated feedback. Conversely, not all RI
and/or FRI morphology sources will be in environments
where heating and cooling are in balance.

8.4. Jet kinetic feedback at high redshifts
It is difficult to extrapolate the self-regulated RLAGN

feedback scenario described in the previous Section to
higher redshifts. One reason is our limited knowledge
of the high-redshift radio luminosity function, and an-
other is the increasingly large systematic uncertainty
and potential biases in conversions from radio luminos-
ity to jet power beyond the local Universe, due to the
increasing importance of radiative losses and increased
uncertainty in environmental properties (see Section 4).
A further important factor is redshift evolution in the
distribution of accretion mode for RLAGN. Section 6.1
discussed our current understanding of accretion mode
in RLAGN: the local population is dominated by radia-
tively inefficient (RI) systems, but a substantial popula-
tion of radiatively efficient (RE) RLAGN exist, and are
more prevalent at higher redshifts, as discussed in the
previous Section. This evolution in the RLAGN popu-
lation may have interesting implications for jet feedback
at z > 1.

As argued above (Sections 6.1, 6.3), accretion mode
in RLAGN is controlled by the ratio of accretion rate to
black-hole mass, and not by the source of accreting ma-
terial: in principle the chaotic cold accretion mechanism
discussed in the previous section can achieve accretion
rates high enough to power RE RLAGN, particularly in
systems with lower mass black holes. However, power-
ful RE (high-excitation) RLAGN are observed to be lo-
cated systematically in lower mass galaxies and poorer
large-scale environments than RI RLAGN of similar
inferred jet powers (Section 7). From the perspec-
tive of self-regulating feedback, this population appears
anomalous: their accretion rates (in absolute terms)
from CCA, or other processes related to the hot-gas
halo, must be lower than for their RI counterparts in
richer haloes and more massive host galaxies, but their
jets are transporting similar amounts of energy into their
surroundings. The simplest explanation — consistent
with the high prevalence of galaxy merger signatures in
the hosts of the most powerful high-excitation RLAGN
(e.g., Ramos Almeida et al., 2012) — is that powerful
RE systems achieve the high accretion rates necessary
to power their jets via an additional mechanism of cold
gas inflow driven by galaxy mergers and interactions.
The energetic output of powerful RE systems is then
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decoupled from a self-regulating feedback loop, so that
we might expect larger imbalances between heating and
cooling in these systems compared to those (predom-
inantly, but probably not exclusively, RI) systems that
are accreting only from their hot-gas halo. We note that
the conclusion that powerful HERGs inhabit poor envi-
ronments derives from observations at z < 1 (Section 7),
but simple hydrodynamical arguments indicate that ra-
dio galaxies of similar jet power and size will inhabit
similarly rich large-scale gas haloes at any redshift (e.g.,
Croston et al., 2017). We suggest that a substantial pro-
portion of the z > 1 HERG population are likely to be
‘over-heating’ their environments: this population could
be responsible for the known excess entropy present in
hot gas haloes at low mass (e.g., Pratt et al., 2009; Short
et al., 2010; Fabian, 2012). We indicate this feedback
mode as the possible endpoint of the dominant high
redshift pathway, indicated by blue arrows, in Fig. 4,
but again emphasise that under appropriate conditions
sources may instead follow the grey pathways in which
accretion, jet and feedback properties deviate from the
majority behaviour. Such populations could form sig-
nificant sub-populations for particular combinations of
redshift and galaxy/halo mass.

Another high-redshift jet population of particular in-
terest are the galaxy-scale jet structures found in ‘radio-
quiet’ quasars (Jarvis et al., 2019), Seyferts (Gallimore
et al., 2006; Morganti et al., 1999; Mingo et al., 2011),
and in ordinary galaxies at low redshift (e.g., Croston
et al., 2007, 2008c), as discussed in Section 3. The
prevalence of these radio outflows on scales of a few to
several tens of kpc is not yet well determined either in
the local Universe or during the epoch of peak quasar
activity, although high-z examples of jets interacting
with the IGM are known to exist (Nesvadba et al., 2017).
Kinetic feedback from small jets on galaxy scales could
therefore comprise an overlooked feedback mechanism
during the epoch of high accretion rates and black hole
growth, and exciting opportunities to investigate this
question will be provided by upcoming sensitive, high
resolution radio facilities. Better constraints on the en-
ergetic impact of the variety of jet sub-populations ex-
pected to be present at the peak of quasar activity and
black-hole growth will make it possible to quantify the
relative contributions of winds and jets at this epoch,
and will inform substantial improvements to feedback
treatments in cosmological simulations.

More generally, by obtaining well-determined lumi-
nosity functions at z ∼ 2 and beyond, down to luminosi-
ties corresponding to the dominant populations in well-
studied local samples (e.g., Best and Heckman, 2012),
surveys such as those with LOFAR and MeerKAT,

should lead to the first robust estimates of the energy
available from radio jet feedback at the peak of star for-
mation and quasar activity, and enable the host-galaxy
and large-scale environmental properties of these new
populations of lower luminosity high-z RLAGN to be
determined. Complementary constraints on the evolu-
tion of baryons in the presence of jet and wind feedback
from AGN will come from future, more sensitive X-
ray facilities, such as Athena (Nandra et al., 2013), that
will directly measure group-scale hot-gas atmospheres
at z > 2, and trace the evolution of group and clus-
ter gas entropy profiles. We therefore look forward to
an improved understanding of the relevance of jet ki-
netic feedback beyond the local Universe over the next
decade.

9. Astrophysical uses of radio galaxies

In this Section we briefly discuss the relevance and
use of RLAGN for other areas of astrophysics, namely
measurements of cosmic magnetic fields, the non-
thermal content of galaxy clusters, cosmology, and cos-
mic rays.

9.1. Cosmic magnetism

The origins and evolution of magnetic fields in the
Universe are a substantial uncertainty in structure for-
mation models, and an important science driver for the
Square Kilometre Array. Faraday rotation techniques
(see Section 2) have been used to measure magnetic
field strengths and structure in a range of astrophysical
environments.

Magnetic field strengths in groups and clusters of
galaxies can be measured both via embedded ra-
dio galaxies, and radio galaxies located beyond the
group/cluster but along a line of sight that passes
through the group/cluster gas. Faraday rotation studies
of cluster-centre radio galaxies date back to the 1970s,
with radio galaxies at the centre of rich, ‘cooling flow’
clusters found to have high rotation measures (Carilli
and Taylor, 2002). Studies of background radio galaxies
have also been used to measure cluster magnetic field
strengths (e.g., Clarke et al., 1992). More recently this
approach has enabled mapping of cluster magnetic field
distributions (Bonafede et al., 2010) and investigation
of relationships between cluster thermodynamic condi-
tions and magnetic fields (Govoni et al., 2010). Clus-
ter and group magnetic field distributions provide im-
portant constraints on ICM transport processes and on
models for the origin and evolution of their magnetic
fields.
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A related topic of interest is the potential role of AGN
in injecting magnetic fields (e.g. Xu et al., 2011), and/or
altering the magnetic field structures within galaxy
groups and clusters. Recent high-resolution rotation
measure studies of resolved radio galaxies in galaxy
groups with well-measured gas density distributions
have revealed complex magnetic field structure, with
ordered field components associated with compression
of the gas as the radio lobes expand (Guidetti et al.,
2011, 2012). Detailed studies with current and future
radio instruments should enable further advances in un-
derstanding the influence of radio galaxies on magnetic
field properties of groups and clusters.

Radio galaxies also have the potential to be used to
provide ‘rotation measure grids’ — sufficiently many
strongly polarized radio sources across the sky will
enable magnetic fields to be determined on a range
of scales and cosmic environments (e.g., Beck and
Gaensler, 2004; Johnston-Hollitt et al., 2004; Krause
et al., 2009). With SKA pathfinders and eventually the
SKA itself it should be possible to build grids of back-
ground sources that will enable the magnetic field of
the Milky Way to be mapped on arcmin scales, as well
as enabling detailed investigations of magnetic fields in
nearby galaxies via the effect of propagation of emission
from background radio galaxies through their ISMs.
A recent LOFAR study has demonstrated the potential
of this technique for studying filaments of large-scale
structure (O’Sullivan et al., 2019). However, even with
sensitive polarimetry over broad frequency ranges there
remain challenges in disentangling multiple contribu-
tions to the observed rotation measure, including ma-
terial intrinsic to the background sources being used.
Nevertheless, over the next decade, radio galaxies are
likely to be a powerful tool for understanding magnetic
fields in a range of environments.

9.2. Non-thermal particle populations in clusters
Galaxy clusters contain an important non-thermal

particle population, which contributes to pressure sup-
port within the cluster, and results in diffuse extended
radio sources, known as radio haloes and relics. Ha-
los are Mpc-scale structures, thought to be caused by
turbulent reacceleration of particles pervading the ICM.
Relics are narrow features, sometimes found in pairs
(e.g., van Weeren et al., 2011), thought to trace shock
waves in the ICM. For a detailed review of these diffuse
cluster radio sources, see Feretti et al. (2012).

Particle acceleration models for diffuse radio sources
in clusters suggest that a seed population of relativis-
tic particles is required to produce the observed ex-
tended radio structures (e.g., Brunetti and Jones, 2014).

RLAGN are an obvious source for such a particle pop-
ulation, and low-frequency radio observations are be-
ginning to provide more concrete evidence in favour
of this picture. Several examples of radio ‘phoenices’,
relic structures whose morphology and/or spectral struc-
ture indicate a revived/re-accelerated region of plasma
associated with an AGN, have recently emerged (e.g.,
Bonafede et al., 2014; van Weeren et al., 2017, 2019),
as well as examples of very extended and complex
radio-galaxy tail structures in clusters (Hardcastle et al.,
2019a; Clarke et al., 2019).

Hence, it appears that there are strong links between
remnant radio lobes and non-thermal particle popula-
tions in galaxy clusters. Low-frequency studies, and
particularly broad-band spectral investigations, should
enable substantial progress in determining the long-term
effects of RLAGN on the properties of the intracluster
plasma. Additionally, the mixing of radio-lobe plasma
into the ICM is expected to be important for the evolu-
tion of cluster magnetic fields (e.g., Xu et al., 2010).
Better constraints on these processes will enable im-
proved modelling of energy transport processes within
the ICM and feedback effects on the evolution of cluster
baryon content.

9.3. Radio galaxies in cosmology

Historically RLAGN (including quasars) were used
as signposts of high-redshift objects; as discussed
above, early identifications of RLAGN with quasar
hosts opened up the study of the high-redshift universe.
Throughout the 80s and 90s, the practice of select-
ing candidate high-redshift galaxies starting from ra-
dio surveys led to samples of hundreds of objects with
z > 2 being compiled (McCarthy, 1993; Miley and
De Breuck, 2008). More recently, of course, high-z
objects can be more conveniently selected from large-
area, deep optical sky surveys and radio selection is no
longer a primary tool. Nevertheless, interest in finding
high-redshift, powerful objects persists: if even a single
bright source could be found at a redshift z > 6, in the
presumed Epoch of Reionization, then redshifted 21-
cm absorption against its synchrotron continuum, the
so-called 21-cm forest, would provide a unique probe
of the state of matter at that point in the early universe
(Carilli et al., 2002). Currently the redshift record hold-
ers are just below z = 6 (Bañados et al., 2018; Saxena
et al., 2018) and it is not clear whether powerful radio
galaxies can even exist at much higher redshifts, given
the effects of the CMB on inverse-Compton losses in
the lobes. Future radio surveys will enable much deeper
searches for high-z objects.
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RLAGN have various other applications as tracers
of large-scale structure when cross-matched with the
CMB or with optical surveys (see, e.g., Raccanelli et al.
2012), constraining models of dark energy and/or mod-
ified gravity. However, these techniques require large-
area, homogeneous survey data that do not yet exist
for their full effectiveness. One cosmological applica-
tion that has already been explored is the use of radio
galaxies as standardizable rulers (Daly, 1994; Daly and
Guerra, 2002). This approach, which has a long history
(e.g., Hoyle, 1959; Kapahi, 1987) is somewhat similar
to the use of supernovae as standardizable candles, but
has the disadvantage that it relies on a particular model
of radio source evolution when the environments of ra-
dio sources, particularly at high z, are not well under-
stood.

9.4. Radio galaxies and the origin of cosmic rays
It has long been clear (Hillas, 1984) that the large vol-

umes and strong magnetic fields in radio galaxies mean
that their large-scale components (lobes and hotspots)
are possible sites of the acceleration of the highest-
energy cosmic rays, with energies above ∼ 1019 eV
(hereafter ultra-high-energy cosmic rays, UHECR). Ob-
servationally the presence of high-energy leptons (albeit
at much lower energies) implies that efficient hadronic
particle acceleration is possible, and inverse-Compton
measurements allow us to estimate the field strengths in
the acceleration regions. Additional constraints are that
the sources of UHECR must be nearby, since UHECR
suffer from strong attenuation due to photopion pro-
duction on the cosmic microwave background and/or
photodisintegration of nuclei on scales of the Greisen-
Zat’sepin-Kuzmin cutoff (GZK: Greisen 1966) of ∼ 100
Mpc, and that they must be capable of accelerating not
just protons but also heavy nuclei, since a heavy nu-
clear component seems to be necessary to explain the
composition observations (Taylor, 2014). The first con-
straint disfavours FRII hotspots as the dominant sources
of UHECR, since their space density is very low and
there are few within the GZK cutoff; the dominant pop-
ulation is low-power sources and many such systems
with the capability to confine UHECR exist within 100
Mpc (Hardcastle, 2010). The second constraint requires
nuclei to be found inside radio galaxy lobes, but en-
trainment of stellar winds can permit that (Wykes et al.,
2015).

The acceleration mechanisms for UHECR in these
sources are less clear, and we defer detailed discussion
to another review in this collection. Possibilities in-
clude first- or second-order Fermi acceleration in the
lobes (Hardcastle et al., 2009; Matthews et al., 2018),

acceleration in the jets (Honda, 2009; Meli and Bier-
mann, 2013) or some combination of the two. As yet
there is no model that relates the distribution of the
size/luminosity/jet power of RLAGN to the observed
cosmic ray flux, sky distribution, spectrum and energy-
dependent composition measured at Earth, but many of
the ingredients for constructing such a model now exist.
The discovery of a high-energy neutrino plausibly asso-
ciated with a flare in the jet of the blazar TXS 0506+056
(IceCube Collaboration et al., 2018) should give new
impetus to the development of such models.

10. Future prospects

A great deal has been learnt about radio galaxies and
other RLAGN in the hundred years since the first ob-
servation of non-thermal radiation from a jet (Curtis,
1918). We start the next century of RLAGN studies
with the clear idea that these objects, almost invisible
in traditional optical studies, have a profound effect on
their host environments and on the evolution of galaxies
in the Universe. We have also developed a good work-
ing understanding of the basic dynamics of, and physi-
cal conditions in, the large-scale structures that are the
main focus of this review.

Many challenges remain. Observationally, progress
in the radio is expected to be rapid as a result of the
next generation of radio instruments, particularly in the
realm of radio surveys: wide and deep radio surveys
with LOFAR, ASKAP, MeerKAT and the forthcoming
SKA are starting to allow radio astronomers to catch
up with optical astronomy in terms of sheer numbers
of sources. Surveys now being carried out have the
capability to detect all objects where radio AGN ac-
tivity dominates over star formation out to very high
redshifts. High-fidelity, high-resolution imaging is still
a little way behind, but long-baseline LOFAR and the
mid-frequency SKA both have the capability to pro-
vide this. Time-domain radio work and broad-band
polarimetry are likely to be other fruitful areas in the
coming years. In the optical, wide-area radio surveys
rely on the next generation of wide-area optical sur-
veys for optical identification — this includes the ex-
isting PanSTARRS and Legacy surveys in the North-
ern hemisphere and the forthcoming LSST surveys in
the South. Complementary spectroscopic surveys, or
good photometric redshifts, are also needed to make
progress. In the X-ray, the other key area for RLAGN
studies because of its capability to probe environments,
magnetic fields and particle acceleration as well as to
allow the study of (radiatively efficient) AGN activity,
we can expect interesting results on host environments
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in the nearby universe, from the recently launched e-
ROSITA, while in around a decade’s time Athena should
provide the capability to carry out very detailed stud-
ies of the feedback mechanisms and the dynamics of
the hot gas, as well as the evolution of RLAGN en-
vironments. A key complement to Athena would be a
high-resolution, high-sensitivity X-ray telescope — the
US mission concepts Lynx and/or AXIS could provide
this capability. Again, time-domain studies in the X-
ray have great potential for studies of the particle ac-
celeration mechanism in jets and hotspots, and are so
far only possible in a handful of bright nearby objects.
In high-energy gamma rays, the Cerenkov Telescope
Array (CTA) will allow the resolution of a number of
nearby objects, as discussed in Section 2.5, and should
give inverse-Compton constraints on magnetic fields for
a number of FRI sources that are currently inaccessible
to inverse-Compton studies, as well as potentially con-
straining particle content through the detection of accel-
erated high-energy protons.

In terms of modelling, we expect to see the gradual
convergence of cosmological models (where RLAGN
feedback is ‘sub-grid physics’) and detailed modelling
of RLAGN physics. In principle cosmological models
can provide estimates of many of the key quantities (lo-
cal environment, time-dependent mass accretion rates,
black hole mass and (vector) spin...) to allow the self-
consistent simulation of an entire mock RLAGN popu-
lation while also reproducing standard constraints such
as the galaxy luminosity function. This sort of large-
volume modelling work will be key to the interpretation
of the very large datasets to be provided by the next-
generation radio and optical surveys.
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