
ODRE Workshop:
Using SIL Arithmetic to Design Safe and Secure Systems

Catherine Menon
Department of Computer Science

University of Hertfordshire
Hatfield, United Kingdom

c.menon@herts.ac.uk

Saverio Iacovelli
Department of Computer Science

University of Hertfordshire
Hatfield, United Kingdom

saverio.iacovelli@istruzione.it

Raimund Kirner
Department of Computer Science

University of Hertfordshire
Hatfield, United Kingdom

r.kirner@herts.ac.uk

Abstract—In a safety-critical system each service has a
specific level of safety criticality. Safety standards use classifi-
cations like Safety Integrity Levels (SIL), to describe the design
requirements for the individual services of a system. Techniques
like redundancy can be used to achieve a higher overall
dependability than the used individual components provide.
Using the notion of SIL, this can be called SIL arithmetic.

In this paper we describe the concept of SIL arithmetic and
point out how different safety standards provide hints for their
support of using SIL arithmetic. We highlight the principal
benefits of SIL arithmetic and provide simple examples. But the
use of SIL arithmetic in a concrete system design can also have
its pitfalls, which we also discuss in this paper. We specifically
discuss these issues in the context of scheduling techniques for
mixed-criticality systems, where resource shortages are to be
handled by the scheduler.

Keywords: Mixed-criticality scheduling, Cybersecurity,
Safety Integrity Levels (SIL), Industrial Control Systems
(ICS), Cyber-physical systems

I. INTRODUCTION

Real-time computer systems are systems in which the
correctness of the system behaviour depends not only on
the logical results of computations but also on the phys-
ical time at which such results must be provided [16].
Historically, hard real-time computing has been primarily
developed to support safety-critical systems or industrial
systems that have to guarantee certain performance require-
ments with a limited degree of tolerance. In such systems,
most computational activities are characterised by critical
timing requirements that have to be met in all operating
conditions in order to guarantee the correct system behaviour
and a deadline missed can have catastrophic effects on the
controlled environment.

A hard real-time system must execute a set of recurrent
tasks such that all time-critical tasks meet their specified
deadlines and a task instance finishing after its deadline
can jeopardise the whole system behaviour. In order to
guarantee a predefined performance, hard real-time systems
are designed under worst-case scenarios where all resources
are statically allocated to tasks based on their maximum
requirements. Such systems are often modelled as a set of

recurrent tasks, each characterised by a worst-case execution
time (WCET), to be executed on the selected hardware
platform by a real-time scheduler. As all other computing
systems, real-time systems typically provide different ser-
vices according to their specifications and each service can
have a different criticality.

A mixed-criticality system is a system in which multiple
functionalities of different criticalities are implemented and
integrated on the same platform. In most cases, criticality
levels are assigned according to the importance to safety of
this functionality, as is the case for most industrial standards.
In such cases, mixed-criticality systems can be viewed as
mixed safety-criticality systems. Depending on the domain,
safety criticality and integrity in these systems may be
implemented via Automotive Safety Integrity Levels (ASIL)
in ISO 26262 [14], Item Development Assurance Levels
(IDAL), Design Assurance Levels (DAL) in DO-178C [21],
and Safety Integrity Levels (SIL) in IEC 61508 [13].

Mixed-criticality systems pose new challenges with regard
to scheduling. This occurs because resource shortages can
cause the higher criticality tasks’ instances to miss their
deadlines due to interference with the lower criticality ones.
Most research on mixed-criticality scheduling focuses on
a very specific pattern of resource shortage, namely the
underestimation of the worst-case execution time (WCET)
of tasks of lower criticality, while at the same time guar-
anteeing that all tasks of higher criticality are proven to be
schedulable [6], [9], [2]. With this particular fault model
in mind, it is guaranteed that all high criticality tasks are
schedulable.

Within this paper we look at more general fault models,
including cases where schedulability of all high-criticality
tasks cannot be guaranteed anymore. The motivation for our
view is that in order to build a robust system, tolerance of
other faults, like of hardware faults, has to be taken into
account.

In this paper we discuss issues of SIL arithmetic in light
of such a more general fault model. With SIL arithmetic,
a service A might be implemented by two or more (even
redundant) tasks Di(A), with each task itself Di(A) assured



to a lower SIL than the SIL of the service A which they
jointly implement. This paper discusses the behaviour a
robust mixed-criticality scheduler should have in order to
deal with sudden or unexpected resource shortages that will
not even allow the execution of all high-criticality tasks. The
discussion focuses on what schedulers in general should be
aware of. We do not focus on a specific scheduler and its
evaluation.

In Section II we briefly describe safety integrity levels
(SIL). Section III describes scheduling of systems with
tasks of mixed criticality. SIL arithmetic is described in
Section IV. Scheduling aspects considering systems with
SIL arithmetic are discussed in Section V. Section VI
discusses how security issues influence also the safety issues
of systems with SIL arithmetic. Section VII concludes the
article.

II. SAFETY INTEGRITY LEVELS

As defined in IEC 61508 [13], the safety integrity of a
component is the probability of that component satisfactorily
performing its specified safety function. There are four
Safety Integrity Levels (SIL) defined in [13], and components
which are more important to safety are ascribed a higher
safety integrity level than those of lesser importance. This
reflects the contribution of these components to the overall
system safety, i.e., components of greater importance to
safety must have lower probability of failure. This can be
seen where the component is providing a safety function
to some Equipment Under Control (EUC), whereby the
component’s safety integrity level corresponds to the relative
level of risk reduction provided by that component to the
EUC.

Developing a higher SIL component requires more re-
sources than developing a lower SIL component. The rigour
around development and validation at higher SILs guarantees
that a component will also satisfy higher safety require-
ments. As defined in [13], SIL of a component is linked to
a certain failure rate of it. More specifically, safety integrity
requirements are based on a probabilistic analysis of failure
of a specific function. The higher is the SIL, the lower is the
probability of failure on demand (PFD) or, for continuous
operations, the probability of failure per hour (PFH). This
is reproduced in Table I.

PFD PFH SIL
10−4 to 10−5 10−8 to 10−9 4
10−3 to 10−4 10−7 to 10−8 3
10−2 to 10−3 10−6 to 10−7 2
10−1 to 10−2 10−5 to 10−6 1

Table I
RESULTING SAFETY INTEGRITY LEVEL (SIL) FROM DIFFERENT

FAILURE PROBABILITIES PFD AND PFH

However, we note that using the development techniques
recommended for a particular SIL does not guarantee the
achievement of a given failure rate. As an example, Table I
should be used only for determining the SIL based on the
required failure rate and not in claiming satisfaction of some
maximum level of failures per hour.

III. MIXED-CRITICALITY SCHEDULING OF REAL-TIME
SYSTEMS

Real-time scheduling is a well established research field.
For example, rate-monotonic scheduling (RMS) and earliest
deadline first (EDF) are well-known optimal scheduling
algorithms, the former for static priorities and the latter
for dynamic priorities on a single-processor system [17].
However, the classic real-time scheduling algorithms are not
specifically targeted towards systems with resource shortage.
For example, having a system with multiple tasks of different
criticality, it would make sense to prioritise tasks of higher
criticality in case of resource shortage. Real-time algorithms
are agnostic to task criticality, and by themselves are of
limited use for mixed-criticality systems. Mixed-criticality
scheduling is about scheduling methods based on a fault
model.

Vestal et al. proposed mixed-criticality scheduling with
a concrete fault model [22]. In his task model, only an
optimistic scheduling of WCET is known for tasks with
lower criticality. By contrast, for tasks of higher criticality
a safe upper bound of the WCET is assumed also to be
available. Vestal’s fault model is that lower-criticality tasks
may overrun their optimistic WCET estimate at runtime. A
significant body of research has been established [1], [8], [2]
based on Vestal’s original basic fault model. The key point
with Vestal’s fault model is that it is possible to establish a
guarantee that the higher-criticality tasks are still schedulable
based on their safe upper WCET bound.

In this paper we look at fault tolerance for mixed-
criticality scheduling in a broader way than Vestal’s fault
model. We motivate this by noting that it is possible that
due to faults it may not even be possible to guarantee the
schedulability of the higher-criticality tasks. To cope with
such cases one might work with redundancies, possibly in
combination with diverse programming, and make schedul-
ing decisions that ensure the overall system utility is as high
as possible.

To clarify the discussion of mixed-criticality scheduling
throughout this paper, we introduce and describe some
basic concepts. Figure 1 shows some relations between
concepts of the control system and the environment. First,
we distinguish between services Si and tasks tj . A service
is a functional behaviour that a system has to provide. The
services are virtual concepts as they might not be directly
reflected in the components’ implementation inside the sys-
tem. On the implementation side, we have multiple tasks
with their run-time instantiation called jobs. The services

2



!"

!# En
vi

ro
nm

en
t

mode A

mode B

IO

IO

Tasks Services

Ʈ%

Ʈ&

Ʈ&'

Ʈ(

CriticalityCriticality

Figure 1. The Concept of Tasks and Services

describe the functional relationship of the system with its
environment, i.e., the system reading input from sensors
and setting values via actuators. When designing system
services, it is important to consider the potential negative
impact in case the failure of an individual service has.

This measure of the negative impact of failure is called
criticality. A higher criticality means a higher negative
impact in case of failure. To determine the criticality of a
service it is important to consider the application context
of the system. For example, a simple service to control the
position of a valve would have a quite different criticality
if it is used in an aeroplane to control the cabin pressure
(which is a safety-critical function) or to control the water
level in a water tank for a toilet flush (which would be
of relative low criticality). The criticality of a service is
then used to determine the SIL that is needed for this
particular service by following safety standards relevant to
this application area. While we recognise that it may be
useful to differentiate between multiple levels of criticality,
for simplicity in this paper we will use high and low
criticality to explain concepts.

What is important here is that there is no 1:1 relationship
between services and tasks. For example, in Figure 1 we
have service Sm implemented by tasks τ1 and τ3, and service
Sn be implemented by tasks τ2 and τ ′2. Furthermore, the
system might have different modes, where each mode can
have its own set of tasks to be executed. Depending on
the stage of a mission or external events, the system might
switch between different modes. For example, in previous
work on mixed-criticality scheduling, fault events like the
overrun of the optimistic WCET estimate have been used to
switch from a normal operation mode into emergency modes
where tasks of higher criticality are given preference [3], [4],
[5], [12].

In our example in Figure 1 we have service Sm being
implemented by different tasks depending on the concrete
mode, i.e., task τ1 in mode A and task τ3 in mode B.

Authors have called the inclusion of a task to a specific
mode the task’s importance for that mode in order to make
clear that criticality is not the sole criterion to determine
scheduling decisions [7]. While the importance of a service
depends from outside on the concrete control application,
the importance of a task depends on internally which mode
is currently active.

Tasks τ1 and τ2 might require a different amount of
resources, and consequently provide a different quality of
service. Service Sn is implemented by the same two tasks
τ2 and τ ′2 in both modes. That service Sn is implemented by
two tasks could have different reasons, e.g., τ2 and τ ′2 both
implement just parts of the function of Sn, or maybe τ2 and
τ ′2 are just redundant tasks both implementing Sn on their
own. A task’s criticality is inherited from its service. If a task
implements more than one service, then the task’s criticality
is the maximum of the criticalities of all the services it
implements.

IV. SIL ARITHMETIC

SIL arithmetic, or SIL synthesis [13], is the practice of
combining together multiple components at a relatively low
integrity level to realise a function at a higher integrity
level [24]. SIL arithmetic is dependent on the concept of
functional redundancy, which involves the duplication of cer-
tain critical system components which all provide a defined
function. If any one of these components fails, the remaining
components will still be able to provide that functions. The
practice of SIL arithmetic leverages redundancy to permit
claiming a higher achieved SIL for the function than the
achieved SIL of any of the individual redundant components.

SIL arithmetic in the automotive domain is known as
ASIL decomposition, and is commonly used where system-
level requirement have been decomposed into redundant sub-
requirements allocated to different components [10]. If one
of the components fails to satisfy its sub-requirement then
the other component may still do so, meaning the overall
system-level requirement remains satisfied. From this, we
see that a system implementing redundancy correctly has
a higher likelihood of satisfying its requirements than an
otherwise-identical system without redundancy.

We note that an effective system of redundancy manage-
ment [11] is required in order to detect primary component
failure and to reconfigure the system to use the redundant
component in place of the primary. Effective redundancy
also requires independence of the redundant components
such that multiple components will not be affected, for ex-
ample, by a common mode failure. Systems with redundancy
built in can continue to operate - in some cases up to several
days [15] - in the event of partial failure.

3



Tasks Services

!"
Ʈ$

Ʈ$%

En
vi

ro
nm

en
t

SIL 
arithmetic

CriticalityCriticality

SIL
SIL

SIL

Figure 2. The Principle of SIL Arithmetic

Figure 2 visualises the idea of SIL arithmetic. The ex-
ample shows a service Sm, being implemented by two
independent but redundant tasks τ2 and τ ′2. As already
described in Section III, the criticality of the service is
derived from the criticality of the environment of the control
system, i.e., the application. The criticality of the tasks is
inherited as the maximum from the services they implement.
As both τ2 and τ ′2 only implement one service Sm, their
criticality is the same as that of service Sm. On the other
hand, the SIL of the service Sm is then derived from the SIL
of τ2 and τ ′2 via SIL arithmetic. The resulting SIL of service
Sm has to be appropriate for its criticality determined by the
application of the control system.

A. Benefits of SIL Arithmetic

SIL arithmetic can be beneficial in terms of reducing
development time and costs since it is generally regarded
as less resource-intensive to develop components at lower
SILs, although demonstrating sufficient independence be-
tween these components to permit SIL arithmetic may still
be a non-trivial task [20]. SIL arithmetic also allows for the
commercial pressures of developing and procuring systems.
In some cases these pressures mean that components have
to be procured before their SIL can be assured, or that use
of legacy components at a lower SIL is required [23].

Another benefit of developing components to a lower
SIL is the consequent reduction in complexity of these
components. Components of lower complexity are easier
to develop, and the risk of an undetected failure mode is
lessened. Furthermore, these components may also be easier
and cheaper to maintain.

B. SIL Arithmetic and Standards

In IEC 61508 [13], SIL arithmetic in hardware systems
is endorsed as part of a discussion of the ways in which
systems of different SILs can be combined, and the effect
on the SIL of the resultant combined system. Where a safety
function is implemented via multiple channels with a given
hardware fault tolerance, the overall SIL is calculated by
identifying the channel with the highest SIL, and adding a

number of integrity levels dependent on the hardware fault
tolerance of the combined channels. There is a limit on the
SIL increment which can be claimed using this method.

ISO 26262 [18] also discusses SIL arithmetic, terming
it ASIL decomposition. Here, a safety function assigned
a nominated ASIL (Automotive Safety Integrity Level) can
be decomposed into redundant safety requirements, satisfied
by independent architectural elements. A commonly-used
implementation of this is to decompose a safety requirement
into a functional requirement and a safety mechanism,
which acts against failure of that functionality. As with the
SIL arithmetic discussed in [13], the combinations which
represent an acceptable ASIL decomposition are limited.

This is described in Table II, where ASIL D is the most
rigorous level and ASIL QM equivalent to SIL 0. Where an
ASIL is decomposed into less rigorous ASILs, the original
ASIL is shown in brackets following the decomposition.

ASIL Acceptable Decomposition
ASIL D ASIL C(D) + ASIL A(D)

ASIL B(D) + ASIL B(D)
ASIL D(D) + ASIL QM(D)

ASIL C ASIL B(C) + ASIL A(C)
ASIL C(C) + ASIL QM(C)

ASIL B ASIL A(B) + ASIL A(B)
ASIL B(B) + ASIL QM(B)

ASIL A ASIL A(A) + ASIL QM(A)

Table II
ASIL DECOMPOSITION

A third standard which endorses SIL arithmetic is ARP
4754 which contains the recommended practices for de-
velopment cycle of civil aircraft and systems [19]. This
guideline, maintained from the SAE International, addresses
both functional safety and design assurance process and it
is suppoted by the aviation standards like DO-178C and
DO-254. The safety level, named Design Assurance Level
(DAL), is determined from the safety assessment process
and hazard analysis by examining the effects of a failure
condition in the system. There are five safety levels with A
being the most critical and E the less critical one. As with
both ISO 26262 and IEC 61508, there are further constraints
on the extent of SIL arithmetic that can be performed in
accordance with this.

C. Pitfalls of SIL Arithmetic

Although SIL arithmetic confers benefits as described in
Section IV-A, it can lead to some potentially ambiguous
situations related to safety assurance. Mixed-criticality tasks
are scheduled according to the criticality of the service they
implement and in case of services composed by individual
tasks the SIL level exactly reflects the task criticality.

4



However, within systems where two or more redundant
components are linked via SIL arithmetic to realise a service
at a higher SIL, if one component fails then the “protective”
element of redundancy is removed. A consequence of this is
that the entire service can no longer be adequately assured
at the higher SIL as it is now provided only by a single
component that itself is at a lower SIL.

The second issue that is necessary to consider is related
to component failure. If multiple dependent not redundant
components are linked to implement a service, a failure of
one of these components could result in a failure of the
overall service since an important part of the sub-goal would
be no longer achievable. In this case, the scheduler may
choose to abandon all the related tasks implementing the
entire service.

Therefore component or, more generally, sub-system fail-
ure is a significant concern for safety-critical systems since
this can jeopardise the correct functioning also of the related
system components.

V. SIL-ARITHMETIC-AWARE SCHEDULING

Safety-critical systems are hard real-time systems provid-
ing different services Si implemented by one or more tasks
τj . Table III and Table IV contain respectively a description
of tasks within an Unmanned Aerial Vehicle (UAV) used for
monitoring purposes, and the SIL that each task and function
can be adequately assured to. Apart from service S3, each
service is implemented by one task.

Service (Task) Description SIL
S1 (τ1) trajectory 3
S2 (τ2) earth monitoring 2
S3 (τ3 and τ ′3) communication with station 2
S4 (τ4) logging of tasks’ events 1

Table III
UAV EXAMPLE: TASKS PRIOR TO FAILURE

The service most important to safety is S1, which is
responsible for keeping the drone trajectory steady, and
consequently is designed to SIL 3.

Service S2 and S3 are responsible respectively for moni-
toring the soil via camera and for communication with base
station. Lastly, service S4 records every metadata and event
related to the above tasks. In this table service S3 represents
a function realised at SIL 2 by incorporating two redundant
and independent SIL 1 tasks τ3 and τ ′3.

Table III provides an example of the first problem iden-
tified in Section IV-C. If the scheduler suddenly drops τ3
when resources are scarce, then service S3 can no longer be
assured to the same SIL, owing to the loss of redundancy.

Table IV shows the situation after a failure of one of the
redundant tasks implementing the service S3. Here, a failure
of τ3 has resulted that service S3 is now solely provided via

Service (Task) Description SIL
S1 (τ1) trajectory 3
S2 (τ2) earth monitoring 2
S3 (τ ′3 only) communication with station 1
S4 (τ4) logging of tasks’ events 1

Table IV
UAV EXAMPLE: TASKS AFTER FAILURE

task τ ′3, which is still scheduled at the same criticality level
assigned after the design phase.

One solution can be to appropriately manage the hardware
redundancy. This may be done via hotswapping independent
and redundant components to increase the SIL level provided
by the overall function affected as soon as possible. Together
with this, we propose that systems incorporate a system
monitor that signals to the scheduler when sub-components
fail so as to undertake the appropriate countermeasures.
Whenever any task suddenly fail, the scheduler should make
a new schedulability test to check if the newly available task
set is still schedulable and find a novel suitable schedule.

VI. IMPLICATIONS OF SECURITY ON SYSTEM SAFETY

The implementation of critical services with redudant
independent tasks via SIL arithmetic enhances the overall
robustness in terms of safety in case of malfunctioning due
to a cyberattack. In general, tasks that are vulnerable to
attacks are those that communicate with the outside world
or those that are dependent from tasks communicating with
the external environment. As an example, considering the
use case used for Table III and Table IV, service S3 can be
vulnerable to a malicious attacker. Different types of attacks
are possible:
• Man in The Middle Attack (MTMA): can cause a

malfunction leading task τ3 to be dropped so to increase
its probability of failure of service S3.

• Malicious software (e.g., virus or trojan): can be in-
jected in the system.

• Distributed Denial of Service (DDoS): can lead to drop
task τ3 first and, if countermeasures are not taken, task
τ ′3 afterwards, leading to completely stop service S3

(service disruption).
In all cases, a security breach can automatically have

an impact on the mixed-criticality scheduling process since
some task can unexpectedly become unavailable. If safety-
critical tasks are affected, this can have severe consequences.
As an example, rail critical services accessible via wireless
network can be damaged by an attacker that can send forged
speed and braking profile information to a locomotive using
a train control application and affect the dependent and even
more critical braking task.

Therefore, adding functionalities that allow to communi-
cate with the external world can help to build more useful

5



and flexible systems but, at the same time, can expose
critical services to novel and unexpected threats. The mixed-
criticality scheduling so far protects highly critical tasks by
isolating them from the execution interference of low critical
ones in case of malfunctioning or resource shortages. How-
ever, as modern crafts become more and more connected
to the outside world, there is also the need to protect such
critical tasks from new potential threats. As an example, it
can be possible to alter the task scheduling or the overall
system safety where high critical task is dependent from
data coming from a low critical task communicating with
the external environment or affected by malicious software.
An even more critical situation to manage could be when
a highly critical task is directly exposed to the external
environment.

In this regard, the challenge woud be that to check
consistency and integrity of data managed by safety-critical
instances and, generally, to be sure that bogus data ex-
changed during the scheduling process do not have an impact
on completion of safety-critical instances.

VII. SUMMARY AND CONCLUSION

This paper discusses the development of SIL arithmetic
within safety-critical systems, and the interaction with
scheduling concerns. It identifies how to appropriately
manage the scheduling process within a mixed-criticality
system in order to minimise the impact on safety in the
case of malfunction or cyberattack.

We extended the scope of mixed-criticality scheduling by
replacing Vestal’s fault model focusing on WCET overruns
with a generic fault model. We also described where criti-
cality of a task and service is derived from, and how SIL
arithmetic is used in practice. We have extended this to
identify some potential pitfalls of using SIL arithmetic and
proposed that mixed-criticality schedulers need to be aware
of any implementations of SIL arithmetic within systems
in order to make adequate decisions. We have also consid-
ered how SIL arithmetic may impact security issues. Our
identification of current challenges for SIL arithmetic and
scheduling has highlighted the utility of the SIL arithmetic
technique, but also raised the concerns that this must be
supported adequately by the mixed-criticality scheduler.

Future work will be to propose a concrete mixed-
criticality scheduler for systems which implement SIL
arithmetic, and to demonstrate the effectiveness of this
scheduler.

REFERENCES

[1] S. Baruah. Mixed-criticality scheduling theory: Scope,
promise, and limitations. IEEE Design & Test, 35(2):31–37,
2018.

[2] S. Baruah, A. Burns, and R. Davis. Response-time analysis
for mixed criticality systems. In Proc. 32nd Real-Time
Systems Symposium (RTSS), pages 34–43. IEEE, 2011.

[3] S. K. Baruah, A. Burns, and R. I. Davis. Response-time
analysis for mixed criticality systems. In Proceedings of the
2011 IEEE 32Nd Real-Time Systems Symposium, RTSS ’11,
pages 34–43, Washington, DC, USA, November 2011. IEEE
Computer Society.

[4] I. Bate, A. Burns, and R. I. Davis. A bailout protocol for
mixed criticality systems. In 27th Euromicro Conference on
Real-Time Systems, 2015.

[5] I. Bate, A. Burns, and R. I. Davis. An enhanced bailout
protocol for mixed criticality embedded software. IEEE
Transactions on Software Engineering, 43(4):298–320, Apr.
2017.

[6] K. Bletsas, M. A. Awan, P. F. Souto, B. Akesson, A. Burns,
and E. Tovar. Decoupling criticality and importance in mixed-
criticality scheduling. In Proc. Workshop on Mixed Criticality
(WMC’18), pages 25–32, Dec. 2018.

[7] K. Bletsas, M. A. Awan, P. F. Souto, B. Akesson, A. Burns,
and E. Tovar. Decoupling criticality and importance in mixed-
criticality scheduling. In 6th International Workshop on
Mixed Criticality Systems at the Real Time Systems Sympo-
sium (RTSS 2018) - Nashville, Tennessee, USA, December
2018.

[8] A. Burns and R. I. Davis. Mixed criticality systems - a
review. Research Report V4-31/7/2014, University of York,
Department of Computer Science, York, UK, July 2014.

[9] A. Burns, R. I. Davis, S. Baruah, and I. Bate. Robust
mixed-criticality systems. IEEE Transactions on Computers,
67(10):1478–1491, Oct 2018.

[10] J. D’Ambrosio and R. Debouk. Asil decomposition: The
good, the bad, and the ugly. Proceedings of the Society of
Automotive Engineers World Congress, 2013.

[11] A. Frigerio, B. Vermeulen, and K. Goossens. Component-
level asil decomposition for automotive architectures. Pro-
ceedings of the 2019 International Conference on Dependable
Systems and Networks Workshops, pages 62–69, 2019.

[12] S. Iacovelli and R. Kirner. A lazy bailout approach for dual-
criticality systems on uniprocessor platforms. Designs, 3(1),
2019.

[13] International Electrotechnical Commission. Functional safety
of electrical / electronic / programmable electronic safety-
related systems. IEC standard 61508, 1998.

[14] ISO/DIS. Road vehicles – functional safety. ISO/DIS standard
26262, Nov 2011. International Standard.

[15] John Rushby. A comparison of bus architectures for safety-
critical embedded systems. (NASA/CR-2003-212161), 2003.

[16] H. Kopetz. Real-Time Systems - Design Principles for
Distributed Embedded Systems. Real-Time Systems Series.
Springer, second edition, 2011.

[17] C. L. Liu and J. W. Layland. Scheduling algorithms for
multiprogramming in a hard-real-time environment. Journal
of the ACM, 20(1):46–61, Jan. 1973.

[18] I. S. Organization. www.iso.org/obp/ui/#iso:std:iso:26262:-1:
ed-2:v1:en, 2018.

[19] I. S. Organization. www.sae.org/standards/content/arp4754a/,
2018.

[20] A. Piovesan and J. Favaro. Experience with iso 26262 asil
decomposition. Proceedings of the Automotive SPIN Italia
Workshop, 2011.

[21] R. SC-205. Software considerations in airborne systems and
equipment certification. RTCA/DO-178C, http://www.rtca.
org, Dec. 2011.

[22] S. Vestal. Preemptive scheduling of multi-criticality systems
with varying degrees of execution time assurance. In 28th
IEEE Real-Time System Symposium (RTSS 2007), pages 239–
243, December 2007.

[23] D. Ward and S. Crozier. The uses and abuses of asil
decomposition in iso 26262. Proceedings of the Society of
Automotive Engineers World Congress, 2012.

[24] P. Wu. Preventing interference between subsystem blocks at
design time, 2015. US8938710B2.


