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ABSTRACT. We describe a reproduction procedure which, given a solution of the gl v Gaudin
Bethe ansatz equation associated to a tensor product of polynomial modules, produces a family P
of other solutions called the population. To a population we associate a rational pseudodifferential
operator R and a superspace W of rational functions.

We show that if at least one module is typical then the population P is canonically identified
with the set of minimal factorizations of R and with the space of full superflags in W.

We conjecture that the singular eigenvectors (up to rescaling) of all ol Gaudin Hamiltonians

are in a bijective correspondence with certain superspaces of rational functions.

1. INTRODUCTION

We study the Gaudin model associated to tensor products of polynomial modules over the Lie
superalgebra gl y. The main method is the Bethe ansatz; see [MVY14]. Tt is well-known that
the Bethe ansatz method in its straightforward formulation is incomplete — it does not provide the
full set of eigenvectors of the Hamiltonians; see [MV07]. In this paper we propose a regularization
of the Bethe ansatz method, drawing our inspiration from [MV04].

In the case of Lie algebras, the regularization of the Bethe ansatz is obtained by the identification
of the spectrum of the model with opers — linear differential operators with appropriate properties
[Ryb, FFR94]. In the case of gl,,, the opers are reduced to scalar linear differential operators of
order M with polynomial kernels. The spaces of polynomials of dimension M obtained this way are
intersection points of Schubert varieties whose data is described by the parameters of the Gaudin
model. Moreover, the action of the algebra of Gaudin Hamiltonians can be identified with the

regular representation of the scheme-theoretic intersection algebra, [MTV09].

We argue that in the case of the Lie superalgebra gl y one should study rational pseudodiffer-
ential operators and appropriate spaces of rational functions which we call gly;x spaces.

Let us describe our findings in more detail. The gl);; Gaudin model depends on the choice of a
sequence of polynomial representations, each equipped with distinct complex evaluation parameters.
The Bethe ansatz depends on a choice of Borel subalgebra. Such a choice is equivalent to the choice
of a parity sequence s = (s1,...,Sm+n), i € {£1}. The highest weights of representations and
the evaluation parameters are encoded into polynomials 7? (see (4.4)). A solution of the Bethe
ansatz equation is represented by a sequence of monic polynomials (yi,...,ynm4+n-1), so that the
roots of y; are Bethe variables corresponding to the ith simple root (see (4.5)).

The key ingredient is the reproduction procedure (see Theorem 6.2), which given a solution of

the Bethe ansatz equation (BAE) produces a family of new solutions along a simple root. If the
1
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simple root is even, then the BAE means that the kernel of the operator

TS - .
(3 Y zyzsly“rl> <a Y y7;>
T3y

consists of polynomials. Then one shows that all tuples of the form (y1,...,i,...,ym+N-1), where
¥; is any (generic) polynomial in the kernel of the differential operator, represent solutions of the
BAE. This gives the bosonic reproduction procedure, which was described in [MV04].

If the simple root is odd then the BAE means that y; divides a certain explicit polynomial N
and it turns out that the tuple (y1,...,¥i,...,ym+n-1), Ui = N/y;, again satisfies the BAE (if
generic). This gives the fermionic reproduction procedure. Moreover, the fermionic reproduction
can be rewritten as an equality of rational pseudodiffential operators (assuming s; = 1):

-1 ~ -1 3 ~
(8—ln’ Ty‘1> (a—ln’yj“) _ (a—ln/fﬁ> (8—ln’ T“y)
Yi T3y Tyia1 Yit1

where 8 = (S1,...,8i41,8i,-- -, SM+N)-

The bosonic and fermionic procedures are very different in nature. The bosonic procedure de-
scribes a one-parameter family of solutions of the BAE. However, these solutions are not physical:
degy; is large and the corresponding Bethe vector is zero on weight grounds. The fermionic pro-
cedure produces only one new solution. Moreover, in contrast to the bosonic case, the new BAE
corresponds to a new choice of the Borel subalgebra. If the original solution produced an eigenvec-
tor which was singular with respect to the original Borel subalgebra, the new solution produces the
eigenvector in the same isotypical component but singular with respect to a new Borel subalgebra.
The two eigenvectors are related by the diagonal action of gly, e

The most important feature of the bosonic and fermionic procedures is the conservation of the
eigenvalues of the Gaudin Hamiltonians written in terms of the Bethe roots (see Lemma 5.5). We
call the set of all solutions obtained by repeated applications of the reproduction procedures a

population.

We define a rational pseudodifferential operator R (see (6.5)). In the standard parity sg =
(1,...,1,—1,...,—1), it has the form: R = Dg(D7)~!, where Dy, Ds are scalar differential operators
of orders M and N with rational coefficients, given by:

Dy = (8 —In’ Tfoy()) (8 —1In’ T;Oyl) . (3 —1In’ TﬁyMl)
hn Y2 YMm ’

YM+N / Ym+2 r YM+1
D= (60— )...(a_ln>(a_m>.
' ( TV} 4 N—1YM+N-1 Ty oyn+1 Trp M

(Here we set yo = yapr+n = 1.) We show that R does not change under reproduction procedures

(see Theorem 6.3) and, moreover, if at least one weight is typical, then the population is identified

with the set of all minimal factorizations of R into linear factors (see Theorem 7.9).

Then we study the space W =V @ U, where V = ker Dj, U = ker D;. We show that if at least
one weight is typical, then U NV = 0. We think of W as a superspace of dimension M + N, with
IThese features are reminiscent of trigonometric Gaudin models and Gaudin with quasi-periodic boundary conditions

[MVO08], in which the diagonal symmetry is broken. In those cases reproduction produces one new solution, which
describes the same eigenvector (up to proportionality) but with respect to a different Borel subalgebra.
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even part V and odd part U. We identify the population with the space of all full superflags in W
(see Theorem 7.9).

The operators Dy and Di up to a conjugation coincide with gl;, and gl operators. It follows
that W consists of rational functions. In other words, W is given by a pair of spaces of polynomials
with prescribed ramification conditions linked via polynomials yas, Thr, Tar+1- This leads us to a
definition of a gl space (see Section 7.3). The Gaudin Hamiltonians acting in tensor products of
polynomial modules belong to a natural commutative algebra B(A) of higher Gaudin Hamiltonians.
We conjecture that the joint eigenvectors of this algebra B(A) are parametrized by oly v spaces

(see Conjecture 8.1).

The paper is constructed as follows. In Sections 2-4 we recall various facts and set up our
notation: Section 2 is devoted to the Lie superalgebra gl -, Section 3 to rational pseudodifferential
operators, and Section 4 to the Gaudin model and the Bethe ansatz. In Section 5 we recall the
gly (bosonic) reproduction procedure and define the gl (fermionic) reproduction procedure. In
Section 6 we define the gly;y reproduction procedure and the rational pseudodifferential operator
of a population. In Section 7 we define gl spaces of rational functions, and give the identification
of superflags, minimal factorizations and points of a population (see Theorem 7.9). In Section 8 we

give various conjectures and examples.

Acknowledgments. The research of EM is partially supported by a grant from the Simons
Foundation #353831. CY is grateful to the Department of Mathematical Sciences, ITUPUI, for
hospitality during his visit in September 2017 when part of this work was completed.

2. PRELIMINARIES ON gl y

Fix M,N € Z>¢. In this section, we will recall some facts about gly;y. For details see, for
example, [CW12].

2.1. Lie superalgebra gl y. A wector superspace V. = V5 @ Vi is a Zg-graded vector space.
The parity of a homogeneous vector v is denoted by |v| € Z/2Z = {0,1}. We set (—1)® = 1 and
(=1 = —1. An element v in Vj (respectively V) is called even (respectively odd), and we write
|v| = 0 (respectively |v| = 1). Let CMIN be a complex vector superspace, with dim(CMIN)5 = M
and dim((CM“V)i — N. Choose a homogeneous basis €;, i = 1,...,M + N, of CMIN guch that
lei] =0,i=1,...,M,and |e;] =1,i =M +1,...,M + N. Set [i| = |e;|.

Let s = (s1,...,Sm+N), Si € {£1}, be a sequence such that 1 occurs exactly M times. We call
such a sequence a parity sequence. We call the parity sequence so = (1,...,1,—1,...,—1) standard.
Denote the set of all parity sequences by Sy . The order of Sy y is (M]\ZN). The set Sy n is
identified with Sy n /(S X S ), where &) denotes the permutation group of k letters. We fix

a lifting Sy iy = Gpyn/(Gn X Gn) — Gy n: for each s € Sy, we define o5 € Sy n by

#1J<i, s;=1} if 5 =1,
M+#{jlj<i, sj;=—-1} ifs=—1

Note that og, = id and (—1)I7s® = 5;. (The element o is sometimes called an unshuffle.)
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For a parity sequence s € Sy y and i =1,..., M + N, define numbers
S:r:#{J|j>Z’S]:1}’ S;:#{]|]<Z78]:_1}

We have

M —os(i) if s; =1, B i—os() if s, =1,

os(i) —i if s, =—1, os(i) =M —1 ifs=—1.

The Lie superalgebra gy is spanned by e, 4,5 = 1,..., M + N, with |e;;| = |i| +[j], and the
superbracket is given by

leij ext] = St — (—1)EHDIRHD ¢

The universal enveloping algebra of gl is denoted by Uglyn-

There is a non-degenerate invariant bilinear form ( , ) on glysy, such that

(eaba ecd) = (_1)|a‘5ad5bc-

The Cartan subalgebra b of gl is spanned by e, ¢ = 1,..., M + N. The weight space h* is the
dual space of ). Let ¢, i = 1,...,M + N, be a basis of h*, such that €;(ej;) = 0;;. The bilinear
form (, ) is extended to h* such that (e;,¢;) = (—1)I°l8;;. The root system ® is a subset of h* given
by

<I>:{ei—6j\i,jzl,...,M—FNandi;éj}.

A root €; — ¢ is called even (respectively odd), if |i| = |j| (respectively |i| # |j]).

2.2. Root systems. For each parity sequence s € Syy, define the set of s-positive roots o =
€x. (i) — €o(i) | 1,5 =1,...,M + N and i < j}. Define the s-positive simple roots a = €,_¢;y —
o) ~ €ou() [ H7 =1, M+ Nand i < jj. Define th tive simple roots f = €5,(;)

€oy(i+1)s © =1,..., M + N — 1. Define

el =¢e i,j=1,...,M + N.

ij 0s(i),05(5)

The nilpotent subalgebra n} of gly v (respectively ny) associated to s, is generated by {efﬂ-+1 |i=
L,...,M + N — 1} (respectively {ef,,; | i = 1,...,M + N — 1}). The algebra ny (respectively
ng) has a basis {ef; | i < j} (vespectively {ej; | i > j}). The Borel subalgebra associated to s, is
bs = h @ nf. We call the Borel subalgebra by, standard.

In what follows, many objects depend on a parity sequence s. If s is omitted from the notation,

then it means the standard parity sequence. For example, we abbreviate n7 , ng , and bg, to n',

So? S0

n—, and b, respectively.

Example 2.1. Consider the case of gl 3. Two possible parity sequences from 533 are:
sy =(1,1,—-1,-1,—-1,1) and s9 = (1,—-1,1,—1,1, —1). We have

1 2 3 4 5 6 1 2 3 4 5 6
O0g, = y Osy = .
1 2 4 5 6 3 1 4 2 5 3 6
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The s;-positive simple roots and sa-positive simple roots are given respectively by
S S S S S
(a115a217a315a417a51) = (61 — €2,€2 — €4,€4 — €5,€5 — €6, €6 — 63)5

So S92 82 S2 82 i
(07?057, 057, 0%, a2%) = (€1 — €4,€4 — €2, € — €5, €5 — €3, €3 — €6).

We have
(af, af) = (si + sit1)0ij — 8i0ij1 — Siv10it1;.
M+N-1
)

The symmetrized Cartan matriz associated to s, ((af,oﬁ

; , is described by the blocks

4,j=1

(@f,a0f)  (of,afyy) } _ [sitsin —sin
(i1, 07) (afiq i) —Si+1  Si+1 T Si+2

Explicitly, this block is one of the following cases depending on (s;, Si+1, Sit+2):

(1,1,1) (1,1,-1) (1,—1,1) (-1,1,1)
2 -1 2 -1 0 1 0 -1
-1 2/ \=1 o)’ 1 0/’ -1 2/
(-1,-1,-1) (-1,-1,1) (=1,1,-1) (1,-1,-1)

() () (00) ()

2.3. Representations of gl . Let V be a glj;y module. Given a parity sequence s € Syn
and a weight A € h*, a non-zero vector v§ € V is called an s-singular vector of weight A if nfv§ =0
and hvy = A(h)vy, for all h € h. Denote the subspace of s-singular vectors by Vsing . Denote by
V), the subspace of vectors of weight A, Vi = {v € V | hv = A(h)u, for all h € h}. Denote by V™
the subspace of s-singular vectors of weight \. Denote the subspaces of sgp-singular vectors and of
so-singular vectors of weight A by V*"" and V’ "9 respectively. Let L¥(\) be the s-highest weight
irreducible module of highest weight ), generated by the s-singular vector v5. The s-singular vector
v§ € L*()) is called the s-highest weight vector. Denote by

)‘[s} = ()‘[S],la R A[s],M—l—N) = ()‘(6';1)7 SR )‘(e?\/l-l-N,M—&—N))

the coordinate sequence of A associated to s. We also use the notation L*(Ajq)) for L()).

Example 2.2. The superspace CMIN ig a g[M‘N module with the action given by e;jer = d; re;.
We have CMIV =~ [5(1,0,...,0) = L?(ey,(1)) for any s € Sy y. The s-highest weight vector is

S

Ve, ) = Cas(1): We call CMIN the vector representation.

A module V is called a polynomial module if it is an irreducible submodule of (CMIN)@" for
some n € Zxp. A highest weight module L(\) with respect to the standard Borel subalgebra b,
is a polynomial module if and only if the weight A satisfies \; € Z>o for all 7, A\ > --- > Aypy,
A1 = > Aan, and Ay > #{i | Ay A0 i =1,...,N}. A weight A is called a polynomial
weight if L(\) is a polynomial module. It is known that the category of polynomial modules is a

semisimple tensor category.
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Let ot = (u1 > p2 > ... ) be a partition: p; € Z>o and p; = 0 if ¢ > 0. The partition p is called
an (M|N)-hook partition if pupr11 < N. Polynomial modules are parametrized by (M|N)-hook
partitions.

Let L(\) be a polynomial module with highest weight vector vy. Let s be a parity sequence. Then
L(\) is isomorphic to an irreducible s-highest weight module L#(A®). The coordinate sequence Al
and the s-highest weight vector v§ can be found recursively as follows.

Let sl = (S1y.-+ySit1,Sis---,SM+N) be the parity sequence obtained from s by switching the
i-th and (7 + 1)-st coordinates. If s; # s;41, then we have

3] [4] K}
st = Ml Al Al + 0 M = 6 AT - Alaran)s Vg = (€541,0) 0%,

(2.1)

where § = 1 if )\[SSM + )‘[Ss],i+1 # 0 and § = 0 otherwise.

The following example illustrates how the coordinate sequence Afy can be found from an (M|N)-
hook partition, and how the s-highest weight vector vf is related to the highest weight vector vj.

Example 2.3. Let = (7,6,4,3,3) be a (3|3)-hook partition. Choose some parity sequences:
so=(1,1,1,-1,-1,-1), s =(1,1,-1,-1,-1,1), s =(1,-1,1,—-1,1,-1).

The highest weights and the highest weight vectors for those choices can be read as:

(NN |
LT l

Af;o} =(7,6,4,2,2,2) )\[8311] =(7,6,3,3,3,1) )\[3322] =(7,4,5,3,2,2)
’Uf{go = Ux, Uf{él = €63€53€43V), ’Uiiz = €53€42€43V).

Another way to find )\[SS} from A is given below in Theorem 7.2.

Define the s-Weyl weight
1 1
=g 2L ey 2 B

qeéi Bedd
a IS even B is odd

A weight A is called typical if (A4 p®°, ) # 0, for any odd root a. Otherwise A is called atypical.
The module L(\) is typical if X is typical and atypical otherwise. If X is a polynomial weight, then
A is typical if and only if A(epspr) > N. Let p = (p1, pa2,...) be the (M|N)-hook partition that
parametrizes L(\). Then L(\) is typical if and only if pps > N. In Example 2.3, all weights are
typical.

3. RATIONAL PSEUDODIFFERENTIAL OPERATORS AND FLAG VARIETIES
We establish some generalities about ratios of differential operators.
3.1. Rational pseudodifferential operators. We recall some results from [CDSK12] and [CDSK12b].

Let I be a differential field of characteristic zero, with the derivation 9. The main example for

this paper is the field of complex-valued rational functions I = C(x).
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Consider the division ring of pseudodifferential operators K ((07')). An element A € K ((071))

has the form
M

A= Z ajé?j, aj € K, M € Z.
j=—00
One says that A has order M, ord A = M, if ap;s # 0. One says that A is monic if apy = 1.
We have the following relations in K ((071)):

20t =0"to=1,
0"a = g <7T>a(j)5r_j, acek, rel,
: J
Jj=0

where a9 is the j-th derivative of a and a(®) = a. Here for j € Z>o and r € Z we set
r\ _rir—=1)...(r—j+1)
()=
All nonzero elements in K ((7!)) are invertible. The inverse of A is given by

e -1
Al = 8*MZ ( — Z a;jajJrM@j)TaX/}.
r=0 j

j=—o0

The algebra of differential operators K[0)] is a subring of K ((971)).

Let D € K[0] be a monic differential operator. The differential operator D is called completely
factorable over K if D =dy...dy, where d; =0 —a;, a, €K, i=1,..., M.

Denote {u € K | Du = 0} by ker D. Clearly, if dim (ker D) = ord D, then D is completely
factorable over IC; see also Section 3.2.

The division subring K(8) of K ((07')), generated by K [0, is called the division ring of rational
pseudodifferential operators and elements in K(0) are called rational pseudodifferential operators.

Let R be a rational pseudodifferential operator. If we can write R = Dg Dy ! for some Dg, D1 €
KC[0], then this is called a fractional factorization of R. A fractional factorization R = Dy Dy Lis
called minimal if D is monic and has the minimal possible order.

Proposition 3.1. [CDSK12b] Let R € K(0) be a rational pseudodifferential operator. Then the
following is true.

(1) There ezists a unique minimal fractional factorization of R.

(2) Let R = D@Df1 be the minimal fractional factorization. If R = 15651_1 is a fractional
factorization, then there exists D € K[0] such that Dy = DgD and Dy = DiD.

(3) Let R = D()D{l be a fractional factorization such that dim (ker Dg) = ord Dy and dim (ker D7) =
ord Di. Then R = D@Dfl is the minimal fractional factorization of R if and only if
ker Dy Nker D7 = 0.

O

We call R an (M|N)-rational pseudodifferential operator if for the minimal fractional factoriza-
tion R = DgD7"' we have ord(Dg) = M and ord(D;) = N.
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Let R be a monic (M|N)-rational pseudodifferential operator. Let s € S MmN be a parity sequence.
The form R = dj'. ..dSMM_;erV, where d; =0 —a;, a; € K, i =1,...,M + N, is called the complete
factorization with the parity sequence s. We denote the set of all complete factorizations of R by
F(R) and the set of all complete factorizations of R with parity sequence s by F*(R).

Let Ry = (0 —a)(0—b)"! and Ry = (0 — ¢)~1(d — d) be two (1|1)-rational pseudodifferential
operators. Here a,b,c,d € K, a # b, and ¢ # d. Then R; = Ry if and only if

c=b+1n'(a—0b), a=d—1n'(c—d),
( ) or equivalently ( ) (3.1)
d=a+In'(a —b), b=c—1In'(c—d),
where In’(f) = f'/f stands for the logarithmic derivative.

Let R be an (M|N)-rational pseudodifferential operator. Let R = dj' .. .d?\%:j\,v, di = 0 — a;,

be a complete factorization. Suppose s; # s;+1. Then d; # d;11. We use equation (3.1) to

di = c@si+ldlﬁ1. That gives a complete factorization of

s 78i4+1 78; SM+N __: . ~ i
R=di"...d;"""d, ... dy N with the new parity sequence 5 = S = (51,. .., Sit1, Sise oy SMAN)-

construct JZ and Jiﬂ such that dfi

Repeating this procedure, we obtain a canonical identification of the set F*(R) of complete
factorizations of R with parity sequence s with the set F%0(R) of complete factorizations of R with

parity sequence sg.

3.2. Complete factorizations of rational pseudodifferential operators and flag varieties.
Let W = W5 Wy be a vector superspace such that dim(Wg) = M and dim(W7) = N. A full flag
in W is a chain of subspaces F = {F| C Fy C --- C Fpyn = W} such that dim F; = i. Any basis
{wy,...,wpr+n} of W generates a full flag by the rule F; = span(wy,...,w;). (By basis, we mean
always ordered basis.) A full flag is called a full superflag if it is generated by a homogeneous basis.
We denote by F(W) the set of all full superflags.

If M =0or N =0, then every full flag is a full superflag. Thus, in this case F (W) is the usual
flag variety.

To a given homogeneous basis {w1, ..., wyr+n} of W, we associate a parity sequence s € S M|N
by the rule s; = (—=1)/il i =1,..., M + N. We say a full superflag F has parity sequence s if it is
generated by a homogenous basis associated to s. We denote by F*(WW) the set of all full superflags
of parity s.

The following lemma is obvious.

Lemma 3.2. We have

FW)= || FW),  FW)=FW) x F(Wi).

SGS}\MN

0

Let R be a monic (M|N)-rational pseudodifferential operator over K. Let R = DDy ! be the
minimal fractional factorization of R. Assume that dim (ker Dg) = M, and dim (ker D7) = N.

Let V.=Wg=ker Dy, U =Wy =ker Dy, W = W5 & Wi.

Given a basis {v1,...,vp} of V, a basis {u1,...,un} of U, and a parity sequence s € Sy,

define a homogeneous basis {w1, ..., wyn} of W by the rule w; = vy if s; =1 and w; = u -
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if s; = —1. Conversely, any homogeneous basis of W gives a basis of V', a basis of U, and a parity

sequence s.

Example 3.3. If s =(1,—1,-1,1,1,—1,1,—1), then {wy,...,ws} = {v4, u1, uz,v3, v, us, v, ug}.

Given a basis {v1,...,vp} of V, a basis {u1,...,un} of U, and a parity sequence s € Sy,
define d; = d;(s, {vi,...,op}, {u1,...,un}) = 0 — a; where
,WI‘(’Ul,’UQ,...,U8++1,U17’U,2,...,U,s_—) '
a; = In : : if s; =1, (3.2)
Wr(vl,vg,...,vsj,ul,uQ,...,us;)
,Wr(vl,vg,...,vsj,ul,ug,...,us;H) '
a; = In if s; = —1, (3.3)
Wr(vl,vg,...,vsj,ul,uQ,...,us;)

where the Wronskian is given by the standard formula

Wi, fr) = det (£07)

T

ij=1
If two bases {v1,...,va}, {01,...,0a} generate the same full flag of V' and two bases {us,...,un},
{t1,...,un} generate the same full flag of U, then the coefficients a; computed from v;,u; and
from v;, u; coincide.
Proposition 3.4. We have a complete decomposition of R with parity s: R = dj* ... df\]f_:ﬁ

Proof. If s = s is standard, then the statement of the proposition is well known: see for example
the Appendix in [MV04].

Let s and s differ only in positions i,i 4 1: s; =5 for j # 4,9+ 1 and s; = —sj41 = —5; = Siy1.
3 . .. " Si 3Si+1 ~§~~g'+1 .
Then we have d; = d; for j # 4,1+ 1. In addition d;'d;\| = d;”'d;\"{" follows from the Wronski
identity
Wr (Wr(vl,vg, Coey Ugh g, UL, U, ,us;),Wr(vl,vg, Cey Ugh, UL, U, ,uS;H))
= Wr(vy, v, . .. P Ugh g, UL, U, - ,usi—H)Wr(vl,vg, s Uy UL, U, - 7”3;)'
[l

We identify full superflags in W with complete factorizations of R. Namely, by Proposition 3.4
we have a map: p: F(W) — F(R) and p® : F*(W) — F*(R).

Proposition 3.5. The maps p, p® are bijections.

Proof. Clearly, p*° is a bijiection. We have a canonical bijection between F*(W') and F*° (). We
have a canonical bijection between F*(R) and F*°(R). These two bijections are compatible with
p% and p®°. The proposition follows. O

4. BETHE ANSATZ

We recall some facts about the Gaudin model associated to gl y; see, for example, MVY14].
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4.1. Gaudin Hamiltonians. Let (V,...,V},) be a sequence ofg[M|N modules. Let z = (21,...,2,)
be a sequence of pairwise distinct complex numbers. Consider the tensor product V = @ _; Vi.
The Gaudin Hamiltonians H, € End(V), r =1,...,n, are given by
M+N
" i e eéﬁeé)( D

k;ér

Wheree,(jz)=1®--~®1®eab®1®---®1,kzl,...,n
~——— ~—_——

k—1 n—k
The proof of the following properties (which are well-known in the case of gl;;) can be found in

[MVY14].

Lemma 4.1. We have:

(1) the Gaudin Hamiltonians mutually commute, [H,, Hx] = 0, for all v, k;

(2) the Gaudin Hamiltonians commute with the diagonal glyyy action, [Hy, X] = 0, for all k
and all X € glyn;

(3) the sum of the Gaudin Hamiltonians is zero, Y ,_; Hi = 0;

(4) if Vi, k = 1,...,n, are polynomial modules, then for generic zi,k = 1,...,n, the Gaudin
Hamiltonians are diagonalizable;

(5) if Vi, k = 1,...,n, are vector representations, then the joint spectrum of the Gaudin Hamil-

tonians is simple for generic z.

O
4.2. Bethe ansatz equation. We fix a parity sequence s € Sy, a sequence A = ()\(1), e ,)\(”))
of gly v weights, and a sequence z = (21,...,2pn) of pairwise distinct complex numbers. We call

(AK))3 the weight at the point zj, with respect to s.
Let 1 = (Iy,...,lp+Nn—1) be a sequence of non-negative integers. Define [ = E]\{TN L. Let

c:{1,...,1} = {1,...,.M + N — 1} be the colour function,

r—1 r
c()y=rif Y L<j<> L
=1 =1

Let t = (t1,...,%) be a collection of variables. We say that ¢; has colour c(j). Define the weight at
oo with respect to s, A, and l by
n M+N-1
Z (Ak))s Z agl;.
k=1 i=1

The Bethe ansatz equation (BAE) associated to s, z, A, and [, is a system of algebraic equations

on variables t l
- ()% ae) (g 22)) .
_ =0,j=1,...,L 4.1
E t_Zk +) — ci=1 (4.1)

The BAE is a system of equations for ¢ and we call the single equation (4.1) the Bethe ansatz

equation for t related to t;.
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Note that if £ is a solution of the BAE and (aim, ai(j)) # 0 for some j # r, then t; # t,.. Also
if (A(#))s, aﬁ(j)) # 0 for some k and j, then t; # 2.

In addition, we impose the following condition. Suppose (of,af) = 0. Choose j such that
c(j) = i and consider the equation related to ¢; as an equation for one variable when all variables
t, with ¢(r) # i are fixed. This equation does not depend on the choice of j. Suppose t is a solution
of this equation of multiplicity a. Then we require that the number of ¢; such that c¢(j) = i and
t; =t is at most a. This condition will be important in what follows; cf. especially Lemma 5.3,
Theorem 6.2, and Conjecture 8.3.

The group &; = &, x -+ X &y, v, acts on t by permuting the variables of the same colour.

We do not distinguish between solutions of the BAE in the same &;-orbit.

4.3. Weight function. Let A¥), k = 1,..., n, be polynomial gly v weights. Let vp = U(s/\(k>)s be

an s-highest weight vector in the irreducible gl,; 5y module L(A®)). Consider the tensor product
L) = ®}_; LOAW). The weight function is a vector w®(z,t) in L(X) depending on parameters

z = (z1,...,2n) and variables t = ({1, ...,t;). The weight function w®(z,t) is constructed as follows
(see [MVY14]).
Let an ordered partition of {1,...,1} into n parts be a sequence I = (i1,... ’i11)1; A AN ,z'gn),

where p; 4+ -+ +p, =l and I is a permutation of (1,...,1). Let P(l,n) be the set of all such ordered
partitions.
Denote ch(r) = ei(T)H o(r)” To each ordered partition I € P(l,n), associate a vector Ffv € L(A)

and a rational function wy(z,t),

C('L%) ... e no

ZUI(Z, t) = w{i},...,iél}(zh t) s w{i?,...,ign}(zn7 t)a

Fyv="Fy - Fa yot © @ Fopy - F yon

where for {iy,...,i,} C {1,...,1},

() = 1
B e O (R N
Define l
=T II ol
r=1 j>r
I(j)<I(r)
Then the weight function w®(z,t) is
w(z,t)= Y (—D)Twy(z,t)Ffv. (4.2)
IeP(l,;n)

We have the following theorem.

Theorem 4.2. [MVY14] If A is a sequence of polynomial weights and t is a solution of the BAE

associated to s, z, A, and l, then the vector w®(z,t) € L(A) is a joint eigenvector of the Gaudin
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Hamiltonians, Hrw®(z,t) = Exw®(z,t), k =1,...,n, where the eigenvalues E}, are given by

- L (09, ag)
By=>Y" P ; - (4.3)

Moreover, the vector w*(z,t) belongs to (L(A))ji(ﬁ,gm). O

If t is a solution of the BAE associated to s, z, A, and I, then the value of the weight function

w?®(z,t) is called a Bethe vector.

4.4. Polynomials representing solutions of the BAE. Fix a parity sequence s € Sy y. Let

A= (D, ... AM) be a sequence of polynomial glyn weights. Let 2 = (z1,...,2,) be a sequence
of pairwise distinct complex numbers.

Define a sequence of polynomials T® = (T, ..., T}, " ) associated to s, A and z,

n
T (x) = [[ (@ — 2) X" €W) i =1, M+ N. (4.4)
k=1
Note that T(T} ;)" **+! is a polynomial for all i = 1,..., M + N.

Let I = (I1,...,lp+n—1) be a sequence of non-negative integers. Let t = (¢1,...,t;) be a solution
of the BAE associated to s, z, A, and . Define a sequence of polynomials y = (y1,...,ym+N-1)
by

yilr)= [] @-t),i=1,....M+N-1L (4.5)
Jy e(§)=i

We say the sequence of polynomials y represents t.

We consider each polynomial y;(z) up to a multiplication by a non-zero number. We also do
not consider zero polynomials y;(z). Thus, the sequence y defines a point in the direct product
P(Clz])M+N=1 of M + N — 1 copies of the projective space associated to the vector space of
polynomials in z. We also have degy; = [;.

A sequence of polynomials y is generic with respect to s, A, and z, if it satisfies the following
conditions:

(1) if s;8i+1 = 1, then y;(z) has only simple roots;
(2) if (af,af) # 0 and i # j, then y;(x) and y;(z) have no common roots;
(3) all roots of y;(x) are different from the roots of T (x)(T7 , (x)) %%+

If y represents a solution of the BAE associated to s, z, A, and I, then vy is generic with respect to
s, A, and z.

5. REPRODUCTION PROCEDURE FOR gl, AND gly);
We recall the reproduction procedure for gly, see [MVO04], and define its analogue for gly;.

5.1. Reproduction procedure for gl,. Consider the case of M = 2 and N = 0. We write
glyp = glop = gly. Let A = MDA = ((p1,q1), - - -, (Pns @n)) be a sequence of polynomial
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gly, weights: pr,qx € Z, pr > q > 0, k =1,...,n. Let z = (21,...,2,) be a sequence of pairwise
distinct complex numbers. We have

n n

T = [J (e = z)P, T = [[ (& —2)%
k=1 k=1
Let p =degT] and ¢ = degT5.
Let [ be a non-negative integer. Let t = (¢1,...,t;) be a collection of variables. The Bethe ansatz

equation associated to A, z and [, is given by
Pk —q L2
k= Gk .
—§ +> =0,j=1,...,L 5.1
-z At -t J (5.1)
T#j

One can reformulate the BAE (5.1) and construct a family of new solutions of the BAE as follows.

Lemma 5.1. [MVO04] Let y be a degree | polynomial generic with respect to X and z.

(1) The polynomial y € C[z] represents a solution of the BAE (5.1) associated to A, z and l, if
and only if there exists a polynomial y € C[x], such that

Wr(y, ) =TT, . (5.2)
(2) If y is generic, then y represents a solution of the BAE associated to A, z and l~, where
[ =degy.
O
Explicitly, the polynomial y in Lemma 5.1 is given by
y(x) = cly(x)/Tl(x)TQ_I(x)y_Q(x)dx + c2y(z), (5.3)

where ¢; is some non-zero complex number and ¢ € C is arbitrary. The BAE (5.1) guarantees that
the integrand has no residues and therefore 7 is a polynomial. All but finitely many ¥ are generic
with respect to A and z, and therefore represent solutions of the BAE (5.1).

Thus, from the polynomial y, we construct a family of polynomials y. Following [MV04], we call
this construction the gl, reproduction procedure.

Let P, be the closure of the set containing y and all y in P(C[z]). We call P, the gl, population
originated at y. The set P, is identified with the projective line CP! with projective coordinates
(c1:¢2).

The weight at infinity associated to A,l, is o) — (p—1,q+1). Assume the weight () ig
dominant, meaning 2/ < p — ¢q. Then the weight at infinity associated to )\,Z is

A = (p—lg+1)=(q+1-Lp—1+1) =52\,
where s € G is the non-trivial gl, Weyl group element, and the dot denotes the shifted action.
Let y = Hizl(m —t,) and t = (f1,... ,t}) If y is generic, then by Lemma 5.1, £ is a solution
of the BAE (5.1). By Theorem 4.2, the value of the weight function w(z,iv) is a singular vector.

However, () is not dominant and therefore w(z, t~) = 0in L(X). So, in a gl, population only the

unique smallest degree polynomial corresponds to an actual eigenvector in L(\).
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Consider formula (4.3) for the eigenvalues Ej of the Gaudin Hamiltonians. Clearly,
In'y(zx) = In'g(z1), k=1,...,n,

which implies that the eigenvalues Fj for the solution t of the BAE are equal to those for the
solution ¢. That fact can be reformulated in the following form.
Define a differential operator
T
D(y) = (a —In/ 1) (0 —1n' Ty y).
Yy
The operator D(y) does not depend on a choice of polynomial y in a population, D(y) = D(3).

5.2. Reproduction procedure for gl;;. Consider the case of M = N = 1. We have Sy; =
{(1,-1),(~=1,1)}. Let s and 5 = sl!) be two different parity sequences. Let A = (A ... A()
be a sequence of polynomial gly); weights. For each k = 1,...,n, let us write ()\(k))‘fs] = (P, qk),
where py, qr € Z>o and if pp = 0 then ¢ = 0. Note that M) is atypical if and only if it is zero,
pr = q& = 0, which happens if and only if py + g = 0. Let z = (z1,...,2,) be a sequence of
pairwise distinct complex numbers.
Let
_ g +1 if prta#0, - pe—1 if pr+aq #0,

Pk = ) dk .
0 if pr+qr=0, 0 if pr+qr=0.

Equation (4.4) becomes

n n

T8 =@ -z, 75 = [[(@—20)%,
k=1 k=1
_ n n _ ~ n n _
= I G-2*"=][@-2™ 7= [ @-z"'=]]@-2)%
k=1 k=1 k=1 k=1
Pr+qr#0 Prt+a7#0

Let p = deg T}, ¢ = degT5. Similarly, let p = dengg, q= deng.
Let m = #{k | px + qx # 0} be the number of typical modules. Then p = ¢+ m and ¢ =p —m.
Let [ be a non-negative integer. Let t = (¢1,...,t;) be a collection of variables. The Bethe ansatz
equation associated to s, A, z, and [, takes the form:

n
PRtk g 5y . (5.4)
— tj — zg

The Bethe ansatz equation (5.4) can be written in the form
In' (TTT5) (¢;) = 0. (5.5)
Note that TfTy = T{Ts. Thus, in the case of gly, the BAEs (5.4) associated to s and s

coincide.

Define a map 7 : C(z) — C[z] which sends a rational function f(z) = p(z)/q(x), where
p(x),q(z) € Clx] are relatively prime, to the monic polynomial r(x) which has only simple roots
and such that r(x) = 0 if and only if p(z) =0 or ¢(z) = 0.
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Example 5.2. We have 7 (2°(z — 1)*(z — 3) "1 (z 4+ 6)7?) = z(z — 1)(z — 3)(z + 6).

The polynomial 7(f) is the minimal monic denominator of the rational function In’(f) of smallest

possible degree.

We call the sequence of polynomial gl;; weights A typical if at least one of the weights ) g
typical. Then A is typical if and only if p 4+ ¢ # 0. Also A is not typical if and only if 7775 = 1.
We reformulate the BAE (5.4) and construct a new solution as follows, see (5.5) and the definition

of .

Lemma 5.3. Let y be a polynomial of degree l. Let A be typical.

(1) The polynomial y represents a solution of the BAE (5.4) associated to s, z, X, and l, if and
only if there exists a polynomial y, such that

y-§ = ' (T7T3) w(I7T3). (5.6)

(2) The polynomial y represents a solution of the BAE (5.4) associated to s, z, A, anle, where
l=degy=m—1-1. 0

From the polynomial y, we construct a unique polynomial y. We call this construction the gl
reproduction procedure.
Let P, be the set containing y and y. The set P, is called the gly|; population originated at y.

(8,00)

The weight at infinity associated to s, X, and [ is )\[s] = (p—1,qg+1). The weight at infinity

associated to 3, A and [ is Xg’oo) = (Iov—flv7 fﬂ-i) = (q+141,p—1—1). Thus we have \(5°) = AE0) 4

o, In particular, both y and 3 correspond to actual eigenvectors of the Gaudin Hamiltonians.

Remark 5.4. If X is not typical, then all participating representations are one-dimensional and the
situation is trivial. In particular, we have y(z) = 1. In this case we can define y = 1. We do not

discuss this case any further.

5.3. Motivation for glyj;-reproduction procedure. We show that in parallel to the gl, repro-
duction procedure, the eigenvalues of the Gaudin Hamiltonians corresponding to polynomials in

the same gl;|; population are the same.

Let Yy = Hi:l(w - tr)a g: H'lrzl(:n _,t\;“) Let t = (tla s 7tl)7 :E: (%Vl? s ﬂft})
Let hy = pp+qr, k = 1,...,n. Let N'(T) be the monic polynomial proportional to In' (T$7T5) m(TET3).
From Theorem 4.2, we have Hpw®(z,t) = Epw®(z,t) and Hpw®(z,t) = Epw®(z,t), where

n l n o~ ~ ~ ~ l
PkPr — Qklr hy =~ N PePr — QkGr |~ hy
EL =351 — + 51 s EL =35 — + 51 = . 5.7
221 2k — Zr Z_:tj—zk Z 2k — Zr Zt‘_zk >0
r= 7j=1 r=1 j=1 J
r#k r#k
Lemma 5.5. The eigenvalues Ej, and Ek, k=1,...,n, of the Gaudin Hamiltonians are the same.

Proof. Set tiy, =t,, r=1,...,1
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If pp. + g, =0, then E}, = Ek = 0. Without loss of generality, assume pp +qr #0, k=1,...,m,
m>0,and pp +q. =0, k=m+1,...,n, and consider F; — El. We have

m m—1
=~ h1 + hi hi
s1(By —E1) =) S— + Y g (5.8)
k=2 r=1
The polynomial N (T')(x) is
-1 m
H (x — tg) h1+~~—i—hm)flzhk(az—zl)...(a:—zk)...(:z:—zm).
k=1 k=1

Evaluate the function In'(N(T')) at 27 and we have
1 i hy + hy,
128 2 hy (zl - Zk)

Thus, the right-hand side of (5.8) is zero. O

m—1

In(N(T)) (1) =

.3
Il
—
N
=

Corollary 5.6. We have e5,w®(z,t) = cw®(2,t), for some non-zero constant c.

Proof. 1t follows from the results of [MVY14] that for generic z, the Gaudin Hamiltonians #j, acting
in (L(X))*"8 = (®4L(\F))*™8 have joint simple spectrum. Moreover, for generic z, w®(z,t) # 0
and w®(z,t) # 0.

Therefore, w®(z,t) and wg(z,tN) belong to the same irreducible two-dimensional submodule of
L(X). Moreover, their weights are related by A(8:00) = X(:) 4 5. The corollary follows. (|

Define a rational pseudodifferential operator:
s Tls . ! S 52
R%(y) = <8 — s 1n’ y) (0 — s2In'(T5y))
Lemma 5.7. If A is typical, then R*(y) is a (1|1)-rational pseudodifferential operator. If X is not
typical, then R®(y) = 1.
Let X be typical. The rational pseudodifferential operator does mot depend on a choice of a

polynomial in a population: R*(y) = R3(7).
Proof. The lemma is proved by a direct computation. ([l

6. REPRODUCTION PROCEDURE FOR glyy
We define the reproduction procedure and populations in the general case.

6.1. Reproduction procedure. Let s € Sy v be a parity sequence. Let A = ()\(1), ey )\(”)) be
a sequence of polynomial gl y weights. Let z = (21,...,2n) be a sequence of pairwise distinct
complex numbers. Let T be the sequence of polynomials associated to s, A, and z, see (4.4).
Denote 7 (T2(T}f,) %*i+1) by wf.

Forie{l,...,M+ N —1}, set sl!! = (s1,...,8i11,5i,-- -, Sp4n)-

Lemma 6.1. If s; = s;41, then 7" — T and if 8; # siy1, then

(i] _
T = (TfF,..., T8 ns, TE(nf) T

7



BETHE ANSATZ EQUATION AND RATIONAL PSEUDODIFFERENTIAL OPERATORS 17

Proof. This follows from (2.1). O

Let L = (Iy,...,lp+N—1) be a sequence of nonnegative integers.
We reformulate the BAE (4.1) and construct a family of new solutions as follows. By convention,

we set Yo = yp+n = 1.
Theorem 6.2. Let y = (y1,...,ym+N-1) be a sequence of polynomials generic with respect to s,
A, and z, such that degyy =lx, k=1,.... M + N — 1.

(1) The sequence y represents a solution of the BAE (4.1) associated to s, z, A, and 1, if and
only if for each i =1,...,M + N — 1, there exists a polynomial y;, such that

~ —1 .
Wr (yi, 5i) = T2 (TF1)  yie1yirr  if si = Sig1, (6.1)
_ TSTE 1y .
yiyi =o' <Z?j+111> TP Yic1Yit1  4f 8i 7 Siy1. (6.2)
it

(2) Leti € {1,...,M + N — 1} be such that 5; # 0. Then if y! = (y1,....%,...,ypren—1) is
generic with respect to s, X, and z, then yl! represents a solution of the BAE associated
to sl X, z, and 111, where 111 = (ly ooy liy ooy lpreN—1), l deg ¥;.

Proof. Part (1) follows from Lemma 5.1 and Lemma 5.3. B
We prove Part (2). Let y, = H (z t( )) r=1,....,M+N—1,and y; = Héﬁizl(a: —fj(z)). Let

t = (tg-r))f,:i ...l](/IJrN—l and t = ( j(r))i:?...J]\r/[JrN—l? where we set [, = fl;,tg” = t;m if r # 4. The

tuple t satisfies the BAE associated to s, A, z, and I. We prove the Bethe ansatz equation for t
associated to sl X, z, and Il]. The BAE for ¢ related to %Vj(z) holds by Lemma 5.1 and Lemma 5.3.

The BAEs for t and t related to t( ), |r —i| > 1, are the same. We treat the non-trivial cases.
(i£1)

Consider the case of s; = s;41. Dividing (6.1) by y;7; and evaluating at © = t; 7, we obtain
l; 1 B L 1
i+l i i+l T (e
p t§ ) 2) p t§ ) (@)
Thus, the BAE for ¢ related to tg-iﬂ) follows from the BAE for ¢ related to t(lﬂ)
Consider the case of s; = —s;11 = 1. The argument depends on s;_1, S;t2. Conmder for example
the case of s;_1 = —s;40 = 1.
We prove the BAE for ¢ related to ty—l):
+ (W) g+ L
s] i— 1 ],i+1
_Z -1 _ +Zt(zl 2)+Zt’1 =0, (6.3)
J k r=1
where § = 1 if (A ))[S} + (A )S] i1 7 0 and 0 = 0 otherwise.
The BAE for t related to t(.Z D s
AEDe = (B2, l -1 < 2
—~ + + 4 =0. (6.4)
; éz 1) — Tzl t(z 1) t’r —2) rzl t(z 1) ts‘z) rzl t(z 1 tgz 1)

r#j
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Take the logarithmic derivative of equation (6.2) for y; and evaluate it at tg»ifl). The left-hand

side is

and the right-hand side is

In’ (ln/ (7}87}11%713;;:1) nyiqyiﬂ) ‘z—t“*”
=t

= (W (TP TR )™ Yiayien + (i) = mi0iwi) /(WPyiayin)|

J

N Rl P R
p tgz—l) 2z ot t;z—l) . tgz—l)

T#]

(Note here that the tg-i_l) are all distinct, by the assumption that yli is generic.) The difference of
the right-hand side and the left-hand side is exactly the difference between (6.3) and (6.4).
The BAE for ¢ related to t§2+1) is proved by a similar computation.

All other cases are similar, we omit further details. ]

If s; = si11, then starting from y we construct a family of new sequences yl!, isomorphic to
C, by using (6.1). We call this construction the bosonic reproduction procedure in i-th direction.
If s; # sit1, and T7T7 i1 # cyir1, ¢ € C*, then starting from y we construct a single new
sequence yl! by using (6.2). We call this construction the fermionic reproduction procedure in i-th
direction. From the definition of fermionic reproduction procedure, (y)# = y.

If yll is generic with respect to sll, All, and z, then by Theorem 6.2, we can apply the repro-
duction procedure again.

Bosonic reproduction procedures fix parity sequences, while fermionic reproductions procedures

change parity sequences. Denote by
Pry.s) C (P(Cla))M N1 5 Sy

the closure of the set of all pairs (g, §) obtained from the initial pair (y, s) by repeatedly applying
all possible reproductions. We call P, ) the gly,n population of solutions of the BAFE associated
to s, z, A, and l, originated at y. By definition, P, 4 decomposes as a disjoint union over parity

sequences,

Pysy= || Pley P = Plys N ((PCLa])M N1 x {5}).
se€Sum N
6.2. Rational pseudodifferential operator associated to population. We define a rational
pseudodifferential operator which does not change under the reproduction procedure.
Let s € Syn be a parity sequence. Let z = (z1,...,2,) be a sequence of pairwise distinct
complex numbers. Let A = (/\(1),...,)\(")) be a sequence of polynomial gly v weights. The
sequence T = (T, ..., Ty, y) is given by (4.4).
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Let y = (y1,...,ym+N—1) be a sequence of polynomials. Recall our convention that yy =
ym+n = 1. Define a rational pseudodifferential operator R over C(z),

TS s1 Tis s2 T N\ suan
R*(y) = (3—81111/1‘%) (8—821n’2y1> (8—3M+N1n’1\4+1\fyM+Nl) )
u YM+N
(6.5)

The following theorem is the main result of this section.

Theorem 6.3. Let P be a glyn population. Then the rational pseudodifferential operator R*(y)
does not depend on the choice of y in P.

Proof. We want to show that for any y!! = (y1,...,%i,...,ym4n—1) constructed from y by repro-
duction procedure in ¢-th direction, we have

TSy;_ i TS 2\ Sit1 TSM . Sit1 TS[Z] ~\ S;
<8 — s’ 13/11) (8 — i1 10’ Hlyl) = (8 — i1 10’ l~yl1> (3 — s;ln’ Hlyz) :
Yi Yi+1 Yi Yi+1

We have four cases, (s;, $;+1) = (£1,£1). The cases of s; = s; 41 are proved in [MV04].
Consider the case of s; = —s;4+1 = 1. We want to show

TSy, _ ) -1 ~ -1 T8 (75177
(a_ln/z%l><a_mf Vi ) :<a_1nfsyzs) (a_MM),
Yi T8 yi T8 T3y Yit1

This equation is proved by a direct computation using (3.1) and (6.2). We only note that the rational

function ESTiilyi_ly;rll is not constant by the assumption that the reproduction is possible.
The case of s; = —s;41 = —1 is similar. O

We denote the rational pseudodifferential operator corresponding to a population P by Rp.

It is known that the Gaudin Hamiltonians acting in L(A) can be included in a natural commuta-
tive algebra B(A) of higher Gaudin Hamiltonians, see [MR14]. We expect that similar to the even
case, the rational pseudodifferential operator R*(y) encodes the eigenvalues of the algebra B(\)
acting on the Bethe vector corresponding to y. Then, Theorem 6.3 would assert that the formulas
for the eigenvalues of B(A) do not depend on the choice of y in the population.

Here we show that the eigenvalues (4.3) of the (quadratic) Gaudin Hamiltonians do not change
under the gly;y reproduction procedure. Denote the eigenvalues of the Gaudin Hamiltonians
given in (4.3) by Ex(y), k = 1,...,n. Note that E(y) is defined only if y;(zx) # 0 whenever
TF(T7, ) %%+ vanishes at x = 2. We call such sequences y k-admissible.

Lemma 6.4. Let y = (y1,---,Yi,---,Ym+N—1) be a sequence of polynomials such that there exists
a sequence of polynomials Y = (y1, ..., Ty ... ysen—1) satisfying (6.1) if s; = si1q1 or (6.2) if
s; = —siy1. Suppose that y and yl are k-admissible. Then Ey(y) = Ep(y).

Proof. In the case of s; = s;11, the lemma follows from In" y;(2) = In' g;(2x), k= 1,...,n.

In the case of s; # s;11, the lemma follows from taking logarithmic derivative of the equation
(6.2) for y; and evaluating at © = 2z, k = 1,...,n, cf. proof of Lemma 5.5. We only note that by
(6.2) the polynomial y;_1y;+1 does not vanish at zj if T;7;41 does and y;, y; do not. 0
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6.3. Example of a population. In what follows, we study the structure of a population.
Consider gly;. We have three parity sequences, so = (1,1,—1), s1 = (1,-1,1), and sy =
(—=1,1,1).
Let A = AW, X&) AB)), where \®) = (1,1,0), for i = 1,2,3. Let 2 = (1,w,w?), where w is a
primitive cubic root of unity. We have T' = T = (23 — 1,2% — 1,1). Let y = (y1,v2) = (1,1).
(1) First, apply the bosonic reproduction procedure in the first direction to y. We have sg] =
s0, T% =T, and yl!l = (3} 1] ygl]) (z —¢,1), where ¢ € CP!. At ¢ = oo, yl! = (1,1) = y.
(2) Second, apply the fermionic reproduction procedure in the second direction to yll. We
have (s0)? = 51 and T*' = (2% — 1,2° — 1,1). We have (y")[& = (z — ¢, 42% — 3cz® — 1).
(3) Third, apply the fermionic reproduction procedure in the first direction to (y[l})[ﬂ We have
(s1) = 55 and T*> = ((z* —1)%,1,1). We have (MY = (22* + z, 423 — 3ca® — 1),
It is easy to check that all further reproduction procedures cannot create a new sequence. There-
fore the gly;-population Py 1) is the union of three copies of CP!, P80 ={(x—c¢,1) | ce CP},
PS1 = {(x — ¢,423 — 3cz? — 1) | c € CP'}, and PSQI) = {(22* + =, 4w —3cx? —1) | c € CPY.
We have the following representations for the rational pseudodifferential operator of the popula-

tion: Rp = R®® = R®' = R*2:
322 322 _ 322 223 — 3cx? +1 1
o= (0 (0o )= (0 ()
3 2 -1
_ gt =1 / 3cx® — 1 43 a2
—<8 In x_c><8 In (ZE3—1)(IL‘—C)> (8 In'(4z” — 3cz® — 1)

(oo 2N (o w2 N5 e e
—<3 In @@ _1) 0—1In P ———1 0—In'(4x° — 3cx* — 1) ).

7. POPULATIONS AND FLAG VARIETIES

We call a sequence A = ()\(1), ey /\(”)) of polynomial gly y weights typical if at least one of the
AF)k=1,... n,is typical. In this section, we show that gly v populations associated to typical

A are isomorphic to the variety of the full superflags.

7.1. Polynomials 7. Let M = (m3 <mg <---<m,), N =(n; <ny <--- < np), my,n; €7,
be two generalized partitions with r parts. We say N dominates M if n; > m; for i = 1,...,7.
This gives a partial ordering on the set of generalized partitions with r parts.

For a generalized partition with 7 parts M, there exists a unique generalized partition M with

r parts such that:

(1) all parts of M are distinct;
(2) M dominates M; and
(3) if a generalized partition with 7 distinct parts M’ dominates M, then M’ dominates M.
We call M the dominant of M.
We identify multisets of integers with generalized partitions (by putting their elements into

weakly increasing order).

Example 7.1. Let M = {-3,-3,-3,-1,0,5,5,6}. Then M = {-3,-2,-1,0,1,5,6,7}.
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This definition is motivated by the following observation.

Let V be a d-dimensional space of functions of £ meromorphic around = = z for some z € C.
Then m € Z is an exponent of V' at z if there is a function f(z) € V such that the order of the
zero at x = z is m: f(z) = (x — 2)™(c+ o(x — 2)), ¢ € C*. Then V has d distinct exponents. We
denote e(V, z) the set of exponents of V' at z.

Let Vi,..., Vi be spaces of functions of £ meromorphic around z = z, dimV; = d;. Let M =
F e(Vi,2). Let V = ZZ 1 Vi. Assume that dimV = EZ 1di. Then e(V,z) dominates M.
Moreover, generically, e(V,z) = M.

Let T,...,Ty+n € C(z) be rational functions such that T;/T; 11 € C[z] is a polynomial for
i=1,....M—1landi=M+1,...,M + N — 1. Let 7;(2) be the order of the zero of T; at x = z.
Set

mi(z) =Tm—iv1(z)+i—1,i=1,..., M, ni(z) =—ty+i(z)+i—1,i=1,...,N.

We have mj(z) < ma(z) < - <mp(2), n1(2) < na(z) < -+ < nn(2).
Let a € {0,...,M}, b€ {0,...,N}. Let Myp = {c1(2) < -+ < caqs(2)} be the dominant of
{mi1(2),...,ma(2),n1(2),...,np(2)}. Define

a+b a a+b
z):abfZCi(Z)wLZmz +an = <a+b) Z ZTMJrl i ZTM+1
=1 i=1

i=1

Note that d, ;(2) > 0. Moreover, for all but finitely many z we have m; =i—1,n; =i—1, ¢; = i—1,
and dg p(2) = 0.

We set

Tap = H(m — z)das(2), (7.1)
zeC

Note that 7, € C[z] is a polynomial.

Note that for any non-zero rational function f(x), the polynomials 7, computed from 7; and
fT; are the same.

7.2. Properties of m,;. Let A be a sequence of polynomial gl y weights. Let T; = T7° be the
corresponding polynomials, see (4.4). Let 744 be the polynomials given by (7.1).
Let s be a parity sequence. Using 74, the polynomials T}° can be written in terms of the 7;.

Theorem 7.2. We have

Tt o= T+ -

Tis = Tas(i) 1-7731-’ if S = 1 and T‘is = Tas(i) L 5 if S; = -1
7rsj—i—l s, Wsj,s;
Proof. Let s be a parity sequence such that s; # s;41 and § = sl = (14w Sidt1ySiy-vy SMAN)-

Let a = s;r, b=s; +1. By Lemma 6.1 it is sufficient to check

Ta+1,b Ta,b—1 Tab
— = 7T<TM+bTM—a>.
Ta,b Ta+1,b—1 Ta+1,b—1
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Since M%) is a polynomial g[M|N—Weight, the exponent of 7, at zj, dqp(2k), is given by

ab if b < A%,
(a—1)b+ AP if AP << AP

dap(2r) =

AR Al aeal) L <
Thus the exponent of 7,41 p/7ap at 2 is given by

dat1,6(2k) — dap(2) = min{b, Aﬁ\'}),a}-

The exponent of (Tq414 Tap—1)/(Tap Tat1—1) at 2z is 1if b < )\g\lfj)_a and it is 0 otherwise.

To compute the exponent of Ty T —aTap / Tat+1,b—1 at 2, introduce two extra parameters cy, co:
(k) k) () (k)
)‘M—c1+1 <b—1= Ay Q=" = )‘M—cQ+1 <b< /\M_CQ. We have

l+a—b—cy ifa>co
dap — doy1p—1 = ] ’
—AM—a if a < co.

Note that Ag\]}l o < b implies /\g\I})_Fb = 0. A direct computation gives the proof. ]

Let W =V @ U be a graded space of rational functions of dimension M + N, where V = Wj,
U=MW; and dimV = M, dimU = N. For z € C, define m;(z) < ma(z) < --- < mpy(z) and
ni1(z) < na(z) < -+ < ny(z) to be the exponents of V and U at z respectively. Define rational

functions

TV =[[@—z)mnMHi=1,. . M, and Ty, =][[@-2)"""1i=1,..,N.
zeC zeC

Let 7T;/’bU be polynomials as in (7.1) computed from TV, T} +i- The following lemma is clear.

Lemma 7.3. Let vi,...,v, €V, uy,...,up € U. Then

V.U U U U
Wr(vl,...,va,ul,...,ub)ﬂmb Ty Thres - T
Vv 1%
Ty Ty Thp—a
s a polynomaal. O

7.3. The gly; vy spaces. Let W = V @& U be a graded space of rational functions of dimension
M + N, where V. = W5, U = Wy and dimV = M, dimU = N. For z € C, let as before
mi(z) < ma(z) < --- <mp(z) and n1(z) < n2(z) < --- < ny(z) be the exponents of V and U at
z respectively.

We call W a gy space if the following conditions are satisfied for all z € C:

(1) nn(2) <N —1;

(2) if mi(z) <0, then ma(z) > 1, ni(z) = mi(z), and ni(2) =i —1,i=2,...,N;
(3) if v € V, uw € U are not regular at z, then there exists a ¢ € C such that (u + cv)(z) = 0.
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These conditions can be reformulated as follows. Let

S | ORI EE | RCE

z,m1(z)<0 z,m1(z)<0

be the least common denominators. Then V = p"'V and U = pYU are spaces of polynomials.

Lemma 7.4. The conditions in the definition of the glyn space are equivalent to:
(1) pY/pY is a polynomial that is relatively prime with pV ;
(2) T]\‘f[_il/pv and T]\(fHN are polynomials;
(3) if T ;(2) =0 for somei=2,...,N, then (p¥/p¥)(2) = 0;
(4) for any v € V,u € U, p¥"Wr(v,u) is reqular at every zero of p¥.

Proof. Let 77/ (2), 7V (2), TJU(Z), and Tjﬁ(z) be the orders of the zeroes of TV, T , TjU, and TjU at

2. I 7}7(2) <0, then 7 (2) = 7V (2) — 74y (2). I 7§, 1(2) > 0, then 7V (2) = 7V(2) — 7§} 1 (2).
The conditions (1) and (2) in the definition of a gl space are equivalent to Tien(2) = 0 and
if 7¥7(2) <0, then 7y;_,(2) > 0, =7}, (2) = 73;(2), and 7§ 5(2) = --- = 7§, y(2) = 0. This is
equivalent to the first three conditions in the lemma.
The condition (3) in the definition is equivalent to the condition (/) in the lemma in the presence

of the other conditions. O

Let W =V @ U be a gly;y space. Define polynomials

TV ]
EWZEVZPZV,Z':I,...,M—L W — VTV — TV,
U U B
W _ T P TW U _ UpU i N
M+1 = pV _pV’ M+i = IMyi =P L4 V=45 V.

Remark 7.5. Note that while TZ-V, i = 1,...,M, are the standard polynomials describing the
exponents of the space of polynomials p"'V, our definition of Tj\g[ 4; has an extra minus sign.
The exponents of the space of polynomials pYU are described by a sequence of polynomials

(pU/TJ\V}/+N7 o >pU/T1\V/II/+2v 1).

Let WE/I; be as in (7.1) computed from polynomials 7}V
Further, given a € {0,1,...,. M}, b€ {0,1,...,N}, v1,...,v, € V, uy,...,up € U, define

w VW w
Wr(vl,...,va,ul,...,ub)ﬂmbp Trpr-- T
ya,b: TW TW .
M " M—a+1

We have
Lemma 7.6. The function y, s a polynomial.
Proof. The lemma is proved by considering orders of zeroes at each z € C. O

Note that Lemma 7.6 is stronger than Lemma 7.3, since y,; has p” and not (p")? in the
numerator. Lemma 7.6 holds due to the additional assumption that W is a gl space. Here, we
crucially use the condition (3) in the definition of the gl x space.
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Let A = ()\(1), . )\(")) be a sequence of polynomial gl weights, z = (21,...,2n) & sequence
of pairwise distinct complex numbers. Let T' = (71, ...,Ty+n) be the corresponding polynomials
given by (4.4). Let y represent a solution of the BAE associated to A, z, and the standard parity
sequence 8o. We have the rational pseudodifferential operator R(y) = Dg(y) D7 Y(y). Let V(y) =
ker D5 (y), U(y) = ker Di(y).

Proposition 7.7. If X is typical, then W(y) =V (y) ©U(y) is a glyyn space of rational functions
and]}wzﬂ,izl,...,M—l—N.

Proof. Denote W (y), V(y), and U(y) by W, V, and U respectively.

Note that yi, ..., ya—1 represents a solution of the gl; BAE. Therefore, the bosonic reproduction
procedures generate a gl,; population and yys - Dg - (yar) "' is the differential operator associated
to this population. It follows by [MV04] that V = g,V is a space of polynomials. Similarly,
YM41s- - YM4N_1 Tepresents a solution of the gly BAE and U = ypTar41U is also a space of
polynomials.

We have p¥ = yar, pV = Tars1ynr

Since X is typical, there exists k such that A(*) is typical, i.e. )\g\? > N. Then )\Z(»k) + M —i>
)\Ek) > )\5\]}) >N>j—-1> —)\g\lf[)_j+j —1fori=1,...,M, j=1,...,N. Therefore the spaces V'
and U have no exponents in common and hence V NU = 0.

The only non-trivial condition in Lemma 7.4 is (/). The fermionic reproduction procedure in
the M-th direction (6.2) can be written as

ym Gu = Wr(v, W) ysmar a1/ Tor-

Initially, we have v(y) = Thvrynm—1/ynrs w(y) = yarv1/(Tri+1ynr)- Generic u, v can be obtained from
v(y),u(y) by the bosonic reproduction procedures. Therefore, by Theorem 6.2, g/ is a polynomial
for generic v, u. Since yys is relatively prime to mpTar+1/Th, we obtain condition (4) in Lemma
7.4. ]

Remark 7.8. If X is not typical then cancellations may occur in the rational pseudodifferential
operator R(y) = D()(y)Dgl(y) of (6.5) and the spaces V(y) = ker D5(y), U(y) = ker Di(y)
may intersect non-trivially. Compare Lemma 5.7. As an important example, consider the tensor
product of n copies of the defining representation, L(A) = (CMIN)". Then T (z) = [[}_, (z — 2)
and T;(x) = 1for i =2,..., N+ M. Thus for the vacuum solution to the BAE, i.e. y = (1,...,1),

we have

7.4. The generating map. Given a parity sequence s and a full superflag F € F*(W), we define
polynomials y;(F), i =1,...,M 4+ N — 1, by the formula

Yot o= if S; = 1,
yi(F)=q >% .
Ygt g1 i si=—1

[ARA?

That defines the generating map
B FS(W) = (PC)M N F e y(F) = i F),- - ymen—1(F)).
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Let A = (A1,...,An) be a typical sequence of polynomial gly,y weights, z = (21,...,2,) a
sequence of pairwise distinct complex numbers. Let T' = (T4,...,Thy+n) be the corresponding
polynomials given by (4.4). Let y represent a solution of the BAE associated to A,z and the
standard parity sequence sg.

Recall that we have the gly; y population P = Py, see Section 6.1, the rational pseudodifferential
operator of the population Rp = R(y) = Dg(y)(D1(y))~!, see (6.5) and the gly v space Wp =
V(y) ® U(y), see Proposition 7.7.

The following theorem asserts that the population P is canonically identified with full superflags

F(Wp) and the complete factorizations of the pseudodifferential operator F(Rp).

Theorem 7.9. For any flag F € F*(Wp), we have 3°(F) € P*. Moreover, the generating map
B2 F$(Wp) — P% is a bijection. Finally, the complete factorization p(F) of Rp coincides with
RE(B5(F)), see (3.2), (3.3), and (6.5).

Proof. The operator R} coincides with the unique minimal fractional decomposition of Rp. Thus,
for the standard parity, the theorem is proved in [MV04].

Let y = B%(F) = (y1,.-.,ym+N—1).- Lemma 7.6 asserts that y is a sequence of polynomials. By
Theorem 7.2, we have R*(y) = p*(F).

Let s be such that s; # s;41. Let s = sl = (S1y+++ySit1,Sis---ySM+N). Let y = Bg(]-") =
(Y1, -, Ym+nN—1)- A direct computation shows y, =y, r = 1,..., M + N — 1, r # i, and y;, ¥
satisfy equation (6.2). By Theorem 6.3 we have R®(y) = p°(F).

That reduces the case of any s to the case of sg.

O

Remark 7.10. Theorem 7.9 shows in particular that if two populations intersect, then they coincide.

Let W be a gl y space. Let Ay be a sequence of gly;y weights and zy a sequence of distinct
complex numbers such that TZ.W are associated to sg, Ay, ziy.
Let s be a parity sequence. Consider the set of all sequences (yi,...,ym+n-1) € B5(F5(W)).

Fori=1,...,M + N —1, let lgs’w) be the minimal possible degree of the ith polynomial y;(z) in
this set.
Define
n M+N-1
N =SR-S e,
k=1 i=1

8. CONJECTURES AND EXAMPLES

It is well known that the Bethe ansatz in the naive form is not complete in general. We conjecture

how to overcome this problem. We also give a few examples.

8.1. Conjecture on Bethe vectors. Let A = ()\(1), ey /\(”)) be a typical sequence of polynomial
glyn weights, z = (z1,...,2,) a sequence of distinct complex numbers. Let T' = (T1, ..., Thy+n)
be the corresponding polynomials given by (4.4).

Let L(A) = ®@7_,L(A*)) be the corresponding glyr v module. It is known that the Gaudin
Hamiltonians acting in L(A) can be included in a natural commutative algebra B(A) of higher
Gaudin Hamiltonians, see [MR14]. The algebra B(\) commutes with the diagonal action of gl -
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If N =0, it is known that the joint eigenvectors of B(A) in L(X)*™ (up to multiplication by a
non-zero constant) are in bijective correspondence with spaces of polynomials V, such that 7 = T;
see [MTVO09].

Let s be a parity sequence. We have the following conjecture.

Conjecture 8.1. The algebra B(\) has a simple joint spectrum in L(X)$"9. There is a bijiective

sing

correspondence between eigenvectors of B(AX) in L(X) (up to multiplication by a non-zero

A(8:0)
constant) and the gy v spaces of rational functions W such that TZ-W =T; and )\%;’OO) = \(8:00),
Moreover, this bijection is such that, for allk =1,...,n, the eigenvalue of the Gaudin Hamiltonian

Hy is given by (4.3), where t is represented by any k-admissible y in B(F(W)).

By simple joint spectrum we mean that if v1,v9 are eigenvectors of B(A) and v # cvg, ¢ € C*,

then there exists b € B(A) such that the eigenvalues of b on v; and vy are different.

Remark 8.2. If the sequence of polynomial modules A is not typical we expect that the eigenvectors
are also parameterized by pairs of spaces of rational functions V' and U of dimensions M and N with
similar conditions. However, V' and U can have a non-trivial intersection (see Remark 7.8). Then
some fermionic reproduction procedure becomes undefined and the factorization of the rational

pseudodifferential operator (6.5) is not minimal. We do not deal with this case here.

In the case of gly|;, Conjecture 8.1 simplifies as follows. We follow the notation of Section 5.2.
Let N(T) = IH/(TlTQ)ﬂ'(TlTQ).

Conjecture 8.3. The Gaudin Hamiltonians Hy, k = 1,...,n, have a simple joint spectrum in
L(M\)*™9. There exists a one-to-one correspondence between the monic divisors y of the polynomial
N(T) of degree | and the joint eigenvectors v of the Gaudin Hamiltonians of weight (p — 1, q + 1)
(up to multiplication by a non-zero constant). Moreover, this bijection is such that Hrv = Eyv,
k=1,...,n, where Ey are given by (5.7).

Recall our conventions from §4.2 about what constitutes a solution to the Bethe ansatz equation.
With those conventions, a monic divisor of N'(T') is the same thing as a solution to the Bethe ansatz
equation, cf. Lemma 5.3, and in that sense Conjecture 8.3 asserts that the Bethe ansatz is complete

for gly;.

8.2. A gl;; example of double roots. Suppose all the tensor factors L()\(k)), k=1,...,n are
non-trivial. In type gl;|; that suffices to make them all typical, cf. Remark 5.4. Thus we have
deg N'(T') = n — 1. For generic z, all roots of the polynomial N'(T) are distinct, and there are 2"~

different monic divisors of A'(T). In such a case we have a basis of Bethe eigenvectors in L(\)%™9,
in accordance with Conjecture 8.3. But when the polynomial A/(T) has multiple roots the number
of its divisors is smaller. Then, according to Conjecture 8.3, we should expect non-trivial Jordan
blocks in the action of the Gaudin Hamiltonians. We give an example illustrating this point.

We consider the case when n = 3. We work with the standard parity sequence.

The modules L(/\(k)), k =1,2,3 are spanned by vf) and v(k), where vf) is the highest weight

vector with respect to sg, and v(_k) = eglvf). Denote the vector vV ® vj(?) ® v,(f), i,7,k € {£} by

7
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V(ijk)- Let hy = pr +qx, k =1,2,3. We are supposing that hy # 0, k = 1,2,3. We have
N(T) = (hy+ho+h3)z?—(hy (224 23) +ho(21+23) +h3(z1+20) )z + (h1 2023+ hoz1 23+ h3z1 22). (8.1)
The weights \(?) being polynomial means that h; € Li>1.

The subspace L()\)?;n_gl gi1) 18 spanned by wy = —hov_y 4y + hiv ) and wy = —hgv 1) +

hav44_y. The action of the Gaudin Hamiltonians in this subspace is explicitly given by

— — _hthy  __hy
H, = <p1p2 4192 i b1p3 Q1Q3>I+ ( o 21_22) ’

_ _ _ __hiths
Al Z9 Z1 z3 i-73 71— 23
hi+h h
_ (P2p1 — G2q1 | P2P3 — G243 e
Ho = _ + _ I+ hs hao+h3 ’
z9 Z1 Z9 z3 Za—71 — 20— 23

The discriminants of the characteristic polynomials of both of the above 2 x 2 matrices coincide
with the right-hand side of (8.1) up to multiplication by nonzero factors. Therefore the polynomial
N(T) has distinct roots if and only if Hj, Ho have distinct eigenvalues, that is, if and only if the
Gaudin Hamiltonians are diagonalizable.

We note that in the case of double roots of y(z), the corresponding Bethe vector is zero. Therefore
an actual eigenvector should be obtained via an appropriate derivative. It can be done in the case

of gly); without difficulties, but in general the algebraic procedure is not known.

8.3. A gl;; example with non polynomial modules. Conjecture 8.3 may be true for arbitrary
modules, not only polynomial ones if we make the following modification. Let A be a sequence of
arbitrary gly; weights. In general L(\) need not be completely reducible. That is, there may exist
a nonzero singular vector v € L(X)%™ such that v = e3; w for some w € L(A). If v and w are
eigenvectors then the eigenvalues of v and w are the same and we do not expect to obtain a new
divisor of N(T') for v.

Conjecture 8.4. Consider the subspace of L(X)5"9 spanned by the joint eigenvectors of the Gaudin
Hamiltonians Hy, k = 1,...,n. Quotient it by its intersection with the image of e5,. On this
subquotient, the Gaudin Hamiltonians Hy, k = 1,...,n have a simple joint spectrum and their
joint eigenvectors of weight (p—1,q—+1) (up to multiplication by a non-zero constant) are in one-to-
one correspondence with the monic divisors y of the polynomial N(T) of degree l. Moreover, this

bijection is such that Hyv = Exv, k = 1,...,n, where Ey are given by (5.7).

Here we give an example of a such a phenomenon. We consider the case when n = 3. Suppose
hi+ha+hsg = 0, that is p+¢ = 0. Then the polynomial N (T') given by (8.1) is linear. In particular,
we have only two divisors instead of the four which we had in a generic situation. We denote the
only root of N(T') by t¢.

The subspace L(A)(p—1,—p+1) is three dimensional. It has a basis {w, e21v(444), v} where w is any
vector such that ejow = v(4 1), and the two other vectors ea1v( 1) = v 1)+ vy + V14
and v = (t — z1) Mo 44y + (t — 22) Mo _y) + (8 — 23) 1oy are singular.

The subspace L(A)—2,_p12) is also three dimensional. It has a basis {u, ea1w, €210}, where u is
any vector such that esju = (S One can check that esqv is proportional to e12v(~ ), and is

therefore singular since e?, = 0.
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The structure of the module can be pictured as follows:

+++)
€210(+4+)
\ /( €12 612/ ¥21
€1 w €21V

While the singular space L(X)*"® is four dimensional, its quotient by the image of es; is two
dimensional and generated by the images of v, ;) and v, in accordance with the Conjecture 8.4.

Let s;1 = (—1,1) be the only non-standard parity sequence. The subspace of s;-singular vectors
has a basis {v(___), e21v, e21w, 621’0(+++)}. Its quotient by the image of e3] is generated by images
of V() and e w.

The reproduction procedure connects v,y with esyw and v with v___y. In particular, it
connects vectors with the same eigenvalues, see Lemma 5.5; however the weight now changes by

2a. and Corollary 5.6 is not true in this situation.
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