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ABSTRACT 

This paper presents an approach to obtaining higher order approximations to limit cycles of an 

autonomous multi-degree-of-freedom system with a single cubic nonlinearity based on a first 

approximation involving first and third harmonics obtained with the harmonic balance method. This 

first approximation, which is similar to one which has previously been reported in the literature, is an 

analytical solution, except that the frequency has to be obtained numerically from a polynomial equation 

of degree 16. An improved solution is then obtained in a perturbation procedure based on the refinement 

of the harmonic balance solution. The stability of the limit cycles obtained is then investigated using 

Floquet analysis.  

The capability of this approach to refine the results obtained by the harmonic balance first 

approximation is demonstrated, by direct comparison with time domain simulation and frequency 

components obtained using the Discrete Fourier Transform. The particular case considered was based 

on an aeroelastic analysis of an all-moving control surface with a nonlinearity in the torsional degree-

of-freedom of the root support, and parameters corresponding to air speed, together with linear stiffness 

and viscous damping of the root support were varied. It is also shown, for the cases considered, how 

the method can reveal further bifurcational behaviour of the system beyond the initial Hopf bifurcations 

which first lead to the onset of limit cycle oscillations.  
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1. Introduction 

Methods for the analysis of nonlinear autonomous systems of ordinary differential equations have been 

the subject of considerable investigation over many years, from both a purely theoretical viewpoint and 

also in the context of practical applications. Nonlinear ordinary differential equations may, of course, 

be solved numerically in the time domain. However, a drawback with this is that though it can yield a 

complete picture of system behaviour for a given set of initial conditions, it can be inefficient in 

providing an overall picture of system characteristics. Besides this, for nonlinear autonomous systems 

that arise in practical applications, it is often necessary to solve them for a wide range of system 

parameters. Analysis based on averaging or other methods of asymptotic analysis has the advantage of 

being able to yield both qualitative, and in many cases the most important quantitative, information 

about the system response relatively rapidly, thus enabling an understanding of the system's behaviour 

to be obtained more quickly. Of particular interest is the determination of limit cycles and their stability 

for autonomous systems. The literature on analytical methods for solving nonlinear systems is extensive 

and includes classical perturbation methods such as the Krylov-Bogoliubov, Krylov-Bogoliubov-

Mitropolsky methods and generalised averaging [1, 2]. Equally, considerable research into analytical 

methods applicable in the case of strong nonlinearities, where perturbation methods may cease to be 

applicable, has been carried out and a broad coverage of such approaches are presented in [3], for 
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example. A wide range of second order, single-degree-of-freedom systems in particular have been 

tackled, both conservative and dissipative. For multi-degree-of-freedom systems possessing strong 

nonlinearities, there is a very large body of literature on wholly numerically-based approaches based on 

the harmonic balance method, many concerned with development of algorithms, for example [4 – 9] 

while many are also concerned with applications, in particular in the field of nonlinear aeroelasticity 

[10 – 16]. Methodologies which combine analytical and numerical techniques have also been developed 

and include perturbation-incremental and perturbation-iterative methods [17 - 20]. Other methods that 

have been developed are the differential transform method [21], He’s homotopy method [22] and an 

integro-differential equation approach [23]. A further approach, applicable to systems with a cubic 

nonlinearity, makes use of Jacobi elliptic functions. A review of this method, with applications to single 

degree-of-freedom second order systems, has been carried out by Kovacic et al. [24]. The method, in 

the form of elliptic harmonic balance, has been applied to aeroelastic systems possessing cubic 

nonlinearities [25, 26]. There has also been interest in the application of the Groebner basis method to 

solving the coupled polynomial equations which may arise from the harmonic balance method [27, 28]. 

As the Groebner basis approach leads ultimately to the solution of polynomial equations, the potential 

advantage of this approach is in being better able to capture possible periodic solutions. Peddieson et 

Liu [27], for example, analyse a second order single degree-of-freedom system with sinusoidal forcing, 

and free undamped vibration of a second order single degree-of-system system [28]. A potential 

drawback, however, is in the practicalities of how many harmonics can be included. Grolet et al [29] 

combine use of the Groebner basis method initially for an undamped system with continuation on a 

damping parameter to obtain periodic solutions for a damped system. Lee et al [30] obtain a harmonic 

balance solution, using first and third harmonics, to a nonlinear aeroelastic problem involving a pitching 

and plunging aerofoil in incompressible flow. They derive a polynomial equation for frequency of 

oscillation without the use of Groebner bases after which the coefficients in the harmonic balance 

formulation are readily obtained. 

 

In this paper, limit cycle oscillations for a coupled second order system with a single cubic nonlinearity 

are investigated. The starting point of the approach taken is the analysis of Lee et al. [30] who, as already 

mentioned, obtained a harmonic balance solution, using first and third harmonics, to a second order 

multi-degree-of-freedom system. The solution can be thought of as almost analytical in the sense that a 

polynomial equation for frequency of oscillation is obtained, but this equation is of high degree and 

does need to be solved numerically. Other than this, the solution would be wholly analytical. In this 

way, a first approximation is thus obtained. To incorporate the effect of higher harmonics an approach 

similar to that adopted by Qui and Filanovsky [31] is taken, who obtained approximations to limit cycle 

oscillations of the Van der Pol equation for moderate values of damping coefficient. The basis of their 

method was to start with an approximate solution obtained by harmonic balance which they then 

refined. A further application of this approach is presented in [32]. It might be noted at this point that 

in [30], refinements to harmonic balance solutions based on the first harmonic alone were also obtained 

using Popov’s method [33]. Having obtained approximations to the limit cycles of the nonlinear system, 

Floquet analysis is applied to investigate their stability. The approach taken is that of [23] and involved 

extending to a two degree-of-freedom second order, or equivalently, a four degree-of-freedom first 

order system, a method applied by Bonani [34] to Chua’s circuit, which is a three degree-of-freedom 

system. The contribution made by this paper is therefore through extending the method of [31] to a 

multi-degree-of-freedom system and basing it on an available harmonic balance solution containing not 

only first, but also third harmonics. 

 

The particular case studied in this paper is a two degree-of-freedom second order system with a cubic 

nonlinearity motivated by, and based on, an aeroelastic analysis of an all-moving control surface in 

supersonic flow where piston theory aerodynamics [35] may be applied. The layout of the paper is as 

follows: Section 2 presents the first approximation obtained from the harmonic balance solution 

involving first and third harmonics in a manner similar to that of [30]. Section 3 presents the refined 

solution obtained with a perturbation solution based on the approach of [31]. Section 4 outlines the 

general approach adopted for analysing the stability of any limit cycle solutions obtained. Sections 5 

presents results and Section 6 Concluding Remarks.  
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2. Initial Harmonic Balance Solution 

In this study, the following autonomous nonlinear system is considered: 

𝑋1̈ + 𝐺11𝑋1̇ + 𝐺12�̇�2 + 𝐻11𝑋1 + 𝐻12𝑋2 + 𝜇𝑋1
3 = 0 

 

𝑋2̈ + 𝐺21𝑋1̇ + 𝐺22�̇�2 + 𝐻21𝑋1 + 𝐻22𝑋2 = 0 
 

 

(1) 

where X1, X2 are the dependent variables. Gij and Hij (where i, j = 1, 2) are damping and stiffness 

coefficients resulting in damping and stiffness matrices which are not necessarily symmetric, as might 

be the case in aeroelastic applications, for example. μ governs the strength of the nonlinearity. 

Derivatives are with respect to time t. In this section, a harmonic balance approach to obtain limit cycle 

solutions, incorporating first and third harmonics, is first presented, via an approach based on that of 

Lee et al. [30], and which will result in a polynomial equation for the fundamental frequencies of 

oscillation of any limit cycles. Given these frequencies, the limit cycles are then determined analytically. 

Hence, the only numerical part of this approach is in solving a polynomial equation for frequency. It 

should be noted that in [30], an aeroelastic problem involving incompressible flow is tackled in which 

the aerodynamics are characterised via a state-space approach, resulting in a more complex situation 

than that considered here.  

The first step in the analysis is to introduce a non-dimensional time τ where τ = ωt, ω being the 

fundamental frequency of the periodic solution of (1) being sought. Equation (1) is now rewritten: 

𝜔2𝑋1
ʹʹ + 𝜔𝐺11𝑋1

ʹ + 𝜔𝐺12𝑋2
ʹ + 𝐻11𝑋1 + 𝐻12𝑋2 + 𝜇𝑋1

3 = 0 
 

𝜔2𝑋2
ʹʹ + 𝜔𝐺21𝑋1

ʹ + 𝜔𝐺22𝑋2
ʹ + 𝐻21𝑋1 + 𝐻22𝑋2 = 0 

 

 

(2) 

where ′ denotes differentiation with respect to τ.  

Following [30], a periodic solution is now obtained of the form: 

𝑋1 = 𝑎1𝑠𝑖𝑛𝜏 + 𝑎3𝑠𝑖𝑛3𝜏 + 𝑏3𝑐𝑜𝑠3𝜏 
 

𝑋2 = 𝑐1𝑠𝑖𝑛𝜏 + 𝑑1𝑐𝑜𝑠𝜏 + 𝑐3𝑠𝑖𝑛3𝜏 + 𝑑3𝑐𝑜𝑠3𝜏 
 

 

(3) 

where one is free not to have a cosτ term in the first of Equations (3) as an autonomous system is being 

considered. The choice of harmonics in Equation (3) will enable significant nonlinear effects to be 

investigated. The possible extension to solving analytically the equations which would arise if even, 

together with higher odd harmonics, were included would involve significant extra complexity but is a 

good area for further investigation. Substituting Equations (3) into (2) and equating coefficients of cosτ, 

sinτ, cos3τ, sin3τ leads to the following: 

 

𝑚1𝑎1 + 𝑝1𝑐1 + 𝑞1𝑑1 = 0 
 

𝑚2𝑎1 + 𝑝2𝑐1 + 𝑞2𝑑1 = 0 
 

 

(4) 

𝑚13𝑎3 + 𝑛13𝑏3 + 𝑝13𝑐3 + 𝑞13𝑑3 = 0 
 

𝑚23𝑎3 + 𝑛23𝑏3 + 𝑝23𝑐3 + 𝑞23𝑑3 = 0 
 
 
 

 

(5) 
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𝑚3𝑎1 + 𝑝3𝑐1 + 𝑞3𝑑1 −
3

4
𝜇𝑎1

2𝑏3 = 0 

 

𝑚4𝑎1 + 𝑝4𝑐1 + 𝑞4𝑑1 + 𝜇 {
3

4
𝑎1

3 −
3

4
𝑎1

2𝑎3 +
3

2
𝑎1(𝑎3

2 + 𝑏3
2)} = 0 

 

 

(6) 

 

𝑚33𝑎3 + 𝑛33𝑏3 + 𝑝33𝑐3 + 𝑞33𝑑3 + 𝜇 {
3

2
𝑎1

2𝑏3 +
3

4
𝑏3(𝑎3

2 + 𝑏3
2)} = 0 

 

𝑚43𝑎3 + 𝑛43𝑏3 + 𝑝43𝑐3 + 𝑞43𝑑3 + 𝜇 {−
1

4
𝑎1

3+
3

2
𝑎1

2𝑎3 +
3

2
𝑎3(𝑎3

2 + 𝑏3
2)} = 0 

 

 

(7) 

The coefficients of a1, a3, b3, c1, d1, c3, d3 in Equations (4) to (7) are functions of the coefficients of Gij 

and Hij together with ω, and expressions for them are given in Appendix A.  

Using Equations (4) and (5), c1, d1, c3, d3 may be expressed in terms a1, a3, b3 and eliminated from 

Equations (6) and (7) leading to the following: 

𝑀3𝑎1 −
3

4
𝜇𝑅1

2𝑏3 = 0 

 

𝑀4𝑎1 + 𝜇 {
3

4
𝑅1

2𝑎1 −
3

4
𝑅1

2𝑎3 +
3

2
𝑎1𝑅3

2} = 0 

 

 

(8) 

 

(9) 

 

𝑀33𝑎3 + 𝑁33𝑏3 + 𝜇 {
3

2
𝑅1

2𝑏3 +
3

4
𝑏3𝑅3

2} = 0 

 

𝑀43𝑎3 + 𝑁43𝑏3 + 𝜇 {−
1

4
𝑅1

2𝑎1+
3

2
𝑅1

2𝑎3 +
3

4
𝑎3𝑅3

2} = 0 

 

 

(10) 

 

(11) 

where 𝑅1
2 = 𝑎1

2, 𝑅3
2 = 𝑎3

2 + 𝑏3
2 and the coefficients of a1, a3, b3 are given in Appendix A.  

As indicated in Appendix A, M33 = -N43 and M43 = N33. Hence, from Equations (8), (10) and (11), it is 

possible to obtain the relationship: 

3𝑁43𝑅3
2 = 𝑀3𝑅1

2 
 

(12) 

while from Equations (9), (10) and (11), the following equation may be obtained for 𝑅1
2: 

𝑅1
2 =

4𝑀33(𝑀3𝑀43 + 𝑀4𝑀33)

𝜇(𝑀3
2 − 4𝑀3𝑀33 − 3𝑀33

2 )
 

 

(13) 

and hence using (12): 

𝑅3
2 = −

4𝑀3(𝑀3𝑀43 + 𝑀4𝑀33)

3𝜇(𝑀3
2 − 4𝑀3𝑀33 − 3𝑀33

2 )
 

 

(14) 
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Equations (13) and (14) are actually the same as Equations (28) and (29) in [30] where M3 and M33 

correspond to M4 and M43 in this paper and vice-versa. From Equations (13) and (14), 𝑅1
2 and 𝑅3

2 are 

now functions of ω only. Equations (8) to (11) may now be solved for a1, a3, b3 and ω. From (9), it is 

possible to obtain the following expression for a3: 

 

𝑎3 =
4

3𝜇𝑅1
{𝑀4 +

3

4
𝜇𝑅1

2 +
3

2
𝜇𝑅3

2} 

 

 

(15) 

 

 

while from (8) it is possible to obtain the following expression for b3: 

 

𝑏3 =
4𝑀3

3𝜇𝑅1
 

 

 

(16) 

 

Using the definition 𝑅3
2 = 𝑎3

2 + 𝑏3
2 together with Equations (13) to (16) then leads to the following 

Equation for the frequency ω: 

𝑀3
5 − 8𝑀33𝑀3

4 + (𝑀4
2 − 4𝑀4𝑀43 + 10𝑀33

2 + 4𝑀43
2 )𝑀3

3 + 

(−12𝑀4
2𝑀33 + 30𝑀4𝑀33𝑀43 + 24𝑀33

3 − 9𝑀33𝑀43
2 )𝑀3

2 + 

(36𝑀4
2𝑀33

2 − 30𝑀4𝑀33
2 𝑀43 + 9𝑀33

4 + 9𝑀33
2 𝑀43

2 )𝑀3 + 3𝑀4
2𝑀33

3 = 0 

 

 

(17) 

Making use of the expressions in Appendix A for M3, M4, M33, M43 then results in a polynomial equation 

for ω. Both equation (17) and the explicit form of the polynomial equation are most readily obtained 

using a symbolic mathematics package. The resulting polynomial equation is of degree 35 in ω. 

However the polynomial includes a factor ω3 so that removing this and setting x = ω2 leaves a 

polynomial of degree 16 in ω2, in contrast to the polynomial obtained in [30], which was of degree 37 

in ω2 including zero roots (as a result of the state space representation of the incompressible unsteady 

aerodynamics). Once the polynomial equation in x = ω2 has been solved, 𝑅1
2 and 𝑅3

2 may be evaluated 

from (14) and (15) and the amplitudes a1, a3, b3, c1, d1, c3, d3 obtained. For admissible solutions, it is 

required that x = ω2, 𝑅1
2 and 𝑅3

2 are all positive. As coefficients in Equations (2) are varied, none, one, 

two or possibly more periodic solutions may be obtained.  

3. Refined Solution 

The solution presented in Section 2 incorporates the effect of first and third harmonics. More accurate 

solutions will need to incorporate the effect of higher harmonics, and in this section, this is achieved by 

using perturbation techniques to build on the solution of Section 2 in an approach similar to that adopted 

in [31] for obtaining periodic solutions to the Van der Pol Equation for moderate values of damping 

coefficients. In this approach, the solution to (2) is written as follows: 

𝑋1 = 𝑋10 + 𝜀𝑋11 + 𝜀2𝑋12 + ⋯ 
 

𝑋2 = 𝑋20 + 𝜀𝑋21 + 𝜀2𝑋22 + ⋯ 
 

 

(18) 

 

with the frequency of oscillation, ω, written as: 

ω = 𝜔0 + 𝜀𝜔1 + 𝜀2𝜔2 + ⋯ 
 

(19) 

 

The terms X10, X20, ω0 in fact represent the solution already obtained in Section 2. The terms X11, X12, 

X21, X22, ……, ω1, ω2, …. represent small correction terms. ε is a term used here to indicate the smallness 

of the correction terms and will be used in what follows in a process of equating terms having the same 
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order of magnitude. ε will then take the value 1 in the final results. It is now possible to write the 

nonlinear term 𝑋1
3 in the form: 

𝑓(𝑋1) = 𝑋1
3 = 𝐹1 + (𝑓0 − 𝐹1) + (𝑓 − 𝑓0)  

 
(20) 

where the term f0 = f0(X10) is a function of X10 only and so can be expanded as a Fourier series whose 

coefficients are known and will comprise a part made up of first and third harmonics, which will be 

denoted by F1 together with a remainder (f0 – F1) made up of fifth, seventh and ninth harmonics, which 

can be taken as small, and hence can be treated as O(ε). Similarly, f - f0 may be treated as small and 

thus, following [31], Equation (20) may be rewritten: 

𝑓 = 𝐹1 + 𝜀(𝑓0 − 𝐹1) + 𝜀(𝑓 − 𝑓0)  
 

(21) 

to highlight these small terms. In other words, ε is introduced as a means of flagging small terms. When 

ε is set to 1, Equation (20) is recovered. Equations (2) may now be re-written: 

𝜔2𝑋1
ʹʹ + 𝜔𝐺11𝑋1

ʹ + 𝜔𝐺12𝑋2
ʹ + 𝐻11𝑋1 + 𝐻12𝑋2 + 𝜇𝐹1 + 𝜇𝜀(𝑓0 − 𝐹1) + 𝜇𝜀(𝑓 − 𝑓0) = 0 

 

𝜔2𝑋2
ʹʹ + 𝜔𝐺21𝑋1

ʹ + 𝜔𝐺22𝑋2
ʹ + 𝐻21𝑋1 + 𝐻22𝑋2 = 0 

 

 

(22) 

so that a perturbation analysis may now be carried out based on powers of ε. However, the function f 

defined in Equation (12) is now distinct from the original cubic nonlinearity and hence, at this stage, a 

different problem from (1) is now being tackled. Once ε is set to 1, it is anticipated that the result 

obtained approximates the solution of (1). This general approach is referred to as Parameter Expansion 

in [3]. A number of examples are presented therein showing the effectiveness of the approach. Its 

Advantages are discussed, in particular the applicability of the method to Truly Nonlinear Systems, but 

also the issues in justifying the process a priori. Substituting (18) and (19) into f(X1) then leads to the 

following expression: 

𝑓(𝑋1) = 𝑋1
3 = 𝑓0(𝑋10) + 𝜀𝑓1(𝑋10, 𝑋11 ) + 𝜀2𝑓2(𝑋10, 𝑋11, 𝑋12 ) + ⋯ 

 
= 𝑋10

3 + 𝜀(3𝑋10
2 𝑋11) + 𝜀2(3𝑋10

2 𝑋12 + 3𝑋10𝑋11
2 ) + ⋯ 

 

 

(23) 

 

Equations (18), (19) and (23) may then be substituted in (22) and equating powers of ε will give the 

following:  

For O(1) terms: 

𝜔0
2𝑋10

ʹʹ + 𝜔0𝐺11𝑋10
ʹ + 𝜔0𝐺12𝑋20

ʹ + 𝐻11𝑋10 + 𝐻12𝑋20 + 𝜇𝐹1 = 0 
 

𝜔0
2𝑋20

ʹʹ + 𝜔0𝐺21𝑋10
ʹ + 𝜔0𝐺22𝑋20

ʹ + 𝐻21𝑋10 + 𝐻22𝑋20 = 0 
 

 

(24) 

For O(ε) terms: 

𝜔0
2𝑋11

ʹʹ + 2𝜔0𝜔1𝑋10
ʹʹ + 𝜔1𝐺11𝑋10

ʹ + 𝜔1𝐺12𝑋20
ʹ + 𝜔0𝐺11𝑋11

ʹ + 𝜔0𝐺12𝑋21
ʹ + 𝐻11𝑋11

+ 𝐻12𝑋21 + 𝜇(𝑓0 − 𝐹1) = 0 
 

𝜔0
2𝑋21

ʹʹ + 2𝜔0𝜔1𝑋20
ʹʹ + 𝜔1𝐺21𝑋10

ʹ + 𝜔1𝐺22𝑋20
ʹ + 𝜔0𝐺21𝑋11

ʹ + 𝜔0𝐺22𝑋21
ʹ + 𝐻21𝑋11

+ 𝐻22𝑋21 = 0 
 

 

(25) 
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For O(𝜀2) terms: 

𝜔0
2𝑋12

ʹʹ + 2𝜔0𝜔1𝑋11
ʹʹ + (𝜔1

2 + 2𝜔0𝜔2)𝑋10
ʹʹ + 𝐺11(𝜔0𝑋12

ʹ + 𝜔1𝑋11
ʹ +𝜔2𝑋10

ʹ )

+ 𝐺12(𝜔0𝑋22
ʹ + 𝜔1𝑋21

ʹ +𝜔2𝑋20
ʹ )+𝐻11𝑋12 + 𝐻12𝑋22 + 3𝜇𝑋10

2 𝑋11 = 0 

 

𝜔0
2𝑋22

ʹʹ + 2𝜔0𝜔1𝑋21
ʹʹ + (𝜔1

2 + 2𝜔0𝜔2)𝑋20
ʹʹ + 𝐺21(𝜔0𝑋12

ʹ + 𝜔1𝑋11
ʹ +𝜔2𝑋10

ʹ )

+ 𝐺22(𝜔0𝑋22
ʹ + 𝜔1𝑋21

ʹ +𝜔2𝑋20
ʹ )+𝐻21𝑋12 + 𝐻22𝑋22 = 0 

 

 

(26) 

Noting that in Equations (24), F1 consists only of first and third harmonic terms, X10, X20 will be 

taken as: 

𝑋10 = 𝑎10𝑠𝑖𝑛𝜏 + 𝑎30𝑠𝑖𝑛3𝜏 + 𝑏30𝑐𝑜𝑠3𝜏 
 

𝑋20 = 𝑐10𝑠𝑖𝑛𝜏 + 𝑑10𝑐𝑜𝑠𝜏 + 𝑐30𝑠𝑖𝑛3𝜏 + 𝑑30𝑐𝑜𝑠3𝜏 
 

 

(27) 

Substituting into Equations (24) and using harmonic balance to determine a10, a30, b30, c10, d10, c30, d30, 

together with ω0 leads to the solution already obtained in Section 2.  

f0(X10) and F1 may now be written respectively as:  

𝑓0(𝑋10) = 𝐶10𝑐𝑜𝑠𝜏 + 𝑆10𝑠𝑖𝑛𝜏 + 𝐶30𝑐𝑜𝑠3𝜏 + 𝑆30𝑠𝑖𝑛3𝜏 + 𝐶50𝑐𝑜𝑠5𝜏 + 𝑆50𝑠𝑖𝑛5𝜏 + 

                              𝐶70𝑐𝑜𝑠7𝜏 + 𝑆70𝑠𝑖𝑛7𝜏 + 𝐶90𝑐𝑜𝑠9𝜏 + 𝑆90𝑠𝑖𝑛9𝜏 

 

𝐹1 = 𝐶10𝑐𝑜𝑠𝜏 + 𝑆10𝑠𝑖𝑛𝜏 + 𝐶30𝑐𝑜𝑠3𝜏 + 𝑆30𝑠𝑖𝑛3𝜏 

 

 

(28) 

 

where C10, S10, C30, S30, C50, S50, C70, S70, C90, S90 are given in Appendix B and will be known in terms 

of a10, a30, b30, c10, d10, c30, d30. 

In the O(ε) Equation (25), in view of Equation (27), X11, and X21 are taken in the form: 

𝑋11 = 𝑎11𝑠𝑖𝑛𝜏 + 𝑎31𝑠𝑖𝑛3𝜏 + 𝑏31𝑐𝑜𝑠3𝜏 + 𝑎51𝑠𝑖𝑛5𝜏 + 𝑏51𝑐𝑜𝑠5𝜏 + 

                                    𝑎71𝑠𝑖𝑛7𝜏 + 𝑏71𝑐𝑜𝑠7𝜏 + 𝑎91𝑠𝑖𝑛9𝜏 + 𝑏91𝑐𝑜𝑠9𝜏 

𝑋21 = 𝑐11𝑠𝑖𝑛𝜏 + 𝑑11𝑐𝑜𝑠𝜏 + 𝑐31𝑠𝑖𝑛3𝜏 + 𝑑31𝑐𝑜𝑠3𝜏 + 𝑐51𝑠𝑖𝑛5𝜏 +     
                                    𝑑51𝑐𝑜𝑠5𝜏 + 𝑐71𝑠𝑖𝑛7𝜏 + 𝑑71𝑐𝑜𝑠7𝜏 + 𝑐91𝑠𝑖𝑛9𝜏 + 𝑑91𝑐𝑜𝑠9𝜏 

 

 

(29) 

 

Note that in the expression for X11, there is no cosτ term to maintain consistency with the first 

approximation. Equations (27) – (29) are then substituted into (25) and harmonic balance is then carried 

out, leading to a set of linear equations for a11, a31, b31, a51, b51, a71, b71, a91, b91, c11, d11, c31, d31, c51, d51, 

c71, d71, c91, d91, and ω1. In doing so, it emerges that since 𝑓0 − 𝐹1  only includes 5th harmonics and 

higher, it follows that a11, a31, b31, c11, d11, c31, d31, and ω1 will all be zero. Hence the O(ε) corrections 

do not modify the frequency of oscillation or the first and third harmonics. The following equations are 

then obtained for the remaining coefficients: 

(𝐻11 − 25𝜔0
2)𝑎51 − 5𝜔0𝐺11𝑏51 + 𝐻12𝑐51 − 5𝜔0𝐺12𝑑51 + 𝜇𝑆50 = 0 

5𝜔0𝐺11𝑎51 + (𝐻11 − 25𝜔0
2)𝑏51 + 5𝜔0𝐺12𝑐51+𝐻12𝑑51 + 𝜇𝐶50 = 0 

𝐻21𝑎51 − 5𝜔0𝐺21𝑏51 + (𝐻22 − 25𝜔0
2)𝑐51 − 5𝜔0𝐺22𝑑51 = 0 

5𝜔0𝐺21𝑎51 + 𝐻21𝑏51 + 5𝜔0𝐺22𝑐51 + (𝐻22 − 25𝜔0
2)𝑑51 = 0 

 

 

(30) 
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(𝐻11 − 49𝜔0
2)𝑎71 − 7𝐺11𝜔0𝑏71 + 𝐻12𝑐71 − 7𝜔0𝐺12𝑑71 + 𝜇𝑆70 = 0 

7𝜔0𝐺11𝑎71 + (𝐻11 − 49𝜔0
2)𝑏71 + 7𝜔0𝐺12𝑐71+𝐻12𝑑71 + 𝜇𝐶70 = 0 

𝐻21𝑎71 − 7𝜔0𝐺21𝑏71 + (𝐻22 − 49𝜔0
2)𝑐71 − 7𝜔0𝐺22𝑑71 = 0 

7𝜔0𝐺21𝑎71 + 𝐻21𝑏71 + 7𝜔0𝐺22𝑐71 + (𝐻22 − 49𝜔0
2)𝑑71 = 0 

 

 

(31) 

 

(𝐻11 − 81𝜔0
2)𝑎91 − 9𝜔0𝐺11𝑏91 + 𝐻12𝑐91 − 9𝜔0𝐺12𝑑91 + 𝜇𝑆90 = 0 

9𝜔0𝐺11𝑎91 + (𝐻11 − 81𝜔0
2)𝑏91 + 9𝜔0𝐺12𝑐91+𝐻12𝑑91 + 𝜇𝐶90 = 0 

𝐻21𝑎91 − 9𝜔0𝐺21𝑏91 + (𝐻22 − 81𝜔0
2)𝑐91 − 9𝜔0𝐺22𝑑91 = 0 

9𝜔0𝐺21𝑎91 + 𝐻21𝑏91 + 9𝜔0𝐺22𝑐91 + (𝐻22 − 81𝜔0
2)𝑑91 = 0 

 

 

(32) 

Equations (30) to (32) are three separate sets of linear simultaneous equations which may be solved to 

give a51, b51, a71, b71, a91, b91, c51, d51, c71, d71, c91, d91.  

In the O(𝜀2) Equations (26) X12, and X22 are taken in the form: 

𝑋12 = 𝑎12𝑠𝑖𝑛𝜏 + 𝑎32𝑠𝑖𝑛3𝜏 + 𝑏32𝑐𝑜𝑠3𝜏 + 𝑎52𝑠𝑖𝑛5𝜏 + 𝑏52𝑐𝑜𝑠5𝜏 + 

                                    𝑎72𝑠𝑖𝑛7𝜏 + 𝑏72𝑐𝑜𝑠7𝜏 + 𝑎92𝑠𝑖𝑛9𝜏 + 𝑏92𝑐𝑜𝑠9𝜏 

𝑋22 = 𝑐12𝑠𝑖𝑛𝜏 + 𝑑12𝑐𝑜𝑠𝜏 + 𝑐32𝑠𝑖𝑛3𝜏 + 𝑑32𝑐𝑜𝑠3𝜏 + 𝑐52𝑠𝑖𝑛5𝜏 +     
                                    𝑑52𝑐𝑜𝑠5𝜏 + 𝑐72𝑠𝑖𝑛7𝜏 + 𝑑72𝑐𝑜𝑠7𝜏 + 𝑐92𝑠𝑖𝑛9𝜏 + 𝑑92𝑐𝑜𝑠9𝜏 

 

 

(33) 

Note that in the expression for X12, there is no cosτ term to maintain consistency with the first 

approximation and its O(ε) refinement. Equations (27), (29) and (33) are then substituted into (26) and 

harmonic balance is then carried out, leading to a set of linear equations for a12, a32, b32, a52, b52, a72, 

b72, a92, b92, c12, d12, c32, d32, c52, d52, c72, d72, c92, d92, and ω2. In doing so, it will be seen that a12, a32, b32, 

c12, d12, c32, d32, and ω2 will all be non-zero, so that there will now be corrections to the frequency 

together with first and third harmonics. The following equations are then obtained for the coefficients: 

(𝐻11 − 𝜔0
2)𝑎12 + 𝐻12𝑐12 − 𝜔0𝐺12𝑑12 − (𝐺12𝑑10 + 2𝜔0𝑎10)𝜔2 + 3𝜇𝑆11 = 0 

𝜔0𝐺11𝑎12 + 𝜔0𝐺12𝑐12+𝐻12𝑑12 + (𝐺12𝑐10 + 𝐺11𝑎10)𝜔2 + 3𝜇𝐶11 = 0 

𝐻21𝑎12 + (𝐻22 − 𝜔0
2)𝑐12 − 𝜔0𝐺22𝑑12 − (2𝜔0𝑐10 + 𝐺22𝑑10)𝜔2 = 0 

𝜔0𝐺21𝑎12 + 𝜔0𝐺22𝑐12 + (𝐻22 − 𝜔0
2)𝑑12 − (2𝜔0𝑑10 − 𝐺22𝑐10 − 𝐺21𝑎10)𝜔2 = 0 

 

 

(34) 

 

(𝐻11 − 9𝜔0
2)𝑎32 − 3𝜔0𝐺11𝑏32 + 𝐻12𝑐32 − 3𝜔0𝐺12𝑑32

= −3μS31 + 18𝜔2𝜔0𝑎30 + 3𝑏30𝐺11𝜔2 + 3𝑑30𝐺12𝜔2 

3𝜔0𝐺11𝑎32 + (𝐻11 − 9𝜔0
2)𝑏32 + 3𝜔0𝐺12𝑐32+𝐻12𝑑32

= −3μ𝐶31 + 18𝜔2𝜔0𝑏30 − 3𝐺11𝜔2𝑎30 − 3𝐺12𝜔2𝑐30 

𝐻21𝑎32 − 3𝜔0𝐺21𝑏32 + (𝐻22 − 9𝜔0
2)𝑐32 − 3𝜔0𝐺22𝑑32

= 18𝜔2𝜔0𝑐30 + 3𝑏30𝐺21𝜔2 + 3𝐺22𝜔2𝑑30 

3𝜔0𝐺21𝑎32 + 𝐻21𝑏32 + 3𝜔0𝐺22𝑐32 + (𝐻22 − 9𝜔0
2)𝑑32

= 18𝜔2𝜔0𝑑30 − 3𝑎30𝐺21𝜔2 − 3𝐺22𝜔2𝑐30 

 

 

(35) 

 

(𝐻11 − 25𝜔0
2)𝑎52 − 5𝜔0𝐺11𝑏52 + 𝐻12𝑐52 − 5𝜔0𝐺12𝑑52 = −3μS51 

5𝜔0𝐺11𝑎52 + (𝐻11 − 25𝜔0
2)𝑏52 + 5𝜔0𝐺12𝑐52+𝐻12𝑑52 = −3μ𝐶51 

𝐻21𝑎52 − 5𝜔0𝐺21𝑏52 + (𝐻22 − 25𝜔0
2)𝑐52 − 5𝜔0𝐺22𝑑52 = 0 

5𝜔0𝐺21𝑎52 + 𝐻21𝑏52 + 5𝜔0𝐺22𝑐52 + (𝐻22 − 25𝜔0
2)𝑑52 = 0 

 

 

(36) 
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(𝐻11 − 49𝜔0
2)𝑎72 − 7𝜔0𝐺11𝑏72 + 𝐻12𝑐72 − 7𝜔0𝐺12𝑑72 = −3μS71 

7𝜔0𝐺11𝑎72 + (𝐻11 − 49𝜔0
2)𝑏72 + 7𝜔0𝐺12𝑐72+𝐻12𝑑72 = −3μ𝐶71 

𝐻21𝑎72 − 7𝜔0𝐺21𝑏72 + (𝐻22 − 49𝜔0
2)𝑐72 − 7𝜔0𝐺22𝑑72 = 0 

7𝜔0𝐺21𝑎72 + 𝐻21𝑏72 + 7𝜔0𝐺22𝑐72 + (𝐻22 − 49𝜔0
2)𝑑72 = 0 

 

 

(37) 

 

(𝐻11 − 81𝜔0
2)𝑎92 − 9𝜔0𝐺11𝑏92 + 𝐻12𝑐92 − 9𝜔0𝐺12𝑑92 = −3μS91 

9𝜔0𝐺11𝑎92 + (𝐻11 − 81𝜔0
2)𝑏92 + 9𝜔0𝐺12𝑐92+𝐻12𝑑92 = −3μ𝐶91 

𝐻21𝑎92 − 9𝜔0𝐺21𝑏92 + (𝐻22 − 81𝜔0
2)𝑐92 − 9𝜔0𝐺22𝑑92 = 0 

9𝜔0𝐺21𝑎92 + 𝐻21𝑏92 + 9𝜔0𝐺22𝑐92 + (𝐻22 − 81𝜔0
2)𝑑92 = 0 

 

 

(38) 

 

where C11, S11, C31, S31, C51, S51, C71, S71, C91, S91 are given in Appendix C and will be known in terms 

of a10, a30, b30, c10, d10, c30, d30, a11, a31, b31, a51, b51, a71, b71, a91, b91, c11, d11, c31, d31, c51, d51, c71, d71, 

c91, d91. 

The refined approximation is then obtained from X1 = X10 + X11 + X12, X2 = X20 + X21 + X22 (noting that 

ε is now set to 1 as discussed previously). 

4. Stability Analysis 

The stability of the limit cycles obtained by the method in Section 3 are now determined by Floquet 

analysis. The implementation adopted is that used in [23], which in turn was an extension of an approach 

developed in [34] for the analysis of Chua’s circuit, a first order three degree-of-freedom system. It is 

now assumed that X represents a limit cycle oscillation of (2) and ΔX a small perturbation of the limit 

cycle. Then to first order, ΔX, satisfies the equation: 

𝛥�̈� + 𝐆𝛥�̇� + 𝐇∆𝐗 + 3𝜇 (
1
0

) 𝑋1
2∆𝐗 = 𝟎 

 

(39) 

where G and H are the 2 × 2 damping and stiffness matrices whose elements are Gij and Hij (where i, j 

= 1, 2) respectively. 

A solution for ΔX is now sought by writing: 

𝛥𝐗 = ∑ 𝐻𝑙𝐯𝑙(𝑡)

4

𝑙=1

𝑒𝜆𝑙𝑡 

 

 

(40) 

 

where Hl are scalar constants whose values would be dependent on initial conditions, vl are two-

dimensional vector functions of period 2π/ω and the λl are complex numbers which will determine the 

stability of the limit cycle. The λl’s may then be related to the Floquet multipliers μl by the Equation: 

𝜇𝑙 = exp (
2𝜋𝜆𝑙

𝜔
) 

 

 

(41) 

 

For a periodic solution one value of μl will always be unity, and therefore the nature of the remaining 

three μl values will determine the stability of the limit cycle and will also give an indication of the type 

of bifurcation occurring if the magnitude of one of the three μl’s exceeds unity. Full details of the 

stability analysis process may be found in [23]. 
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5. Limit Cycle Analysis 

In this section, examples of limit cycle predictions are given and comparisons with time domain results 

are made. In the time domain approach, Equations (2) are solved numerically using a variable step 

Runge-Kutta method. All the examples are based on an aeroelastic analysis of an all-moving control 

surface with a nonlinearity in the torsional degree-of-freedom of the root support. Supersonic airflow 

was considered, and the aerodynamic loadings were modelled using third order piston theory 

aerodynamics [35]. Because of the simple form of the aerodynamics arising from the use of piston 

theory, the resulting aeroelastic equations take the form of Equations (2) with the matrices G and H 

being asymmetric and combining aerodynamic and linear structural damping and stiffness terms. 

Displacements of the control surface are expressed in terms of its modes of vibration in the absence of 

the nonlinearity so that X is a vector of generalised displacements.  

 

In this example, G and H are given by: 

 

𝐆 = [
0.01915544 + 2.320517C 0.001287775

0.0001988401 0.01741002
] 

 

(42) 

 

𝐇 = [
0.258710 + 0.128916𝐾 1.389352

0.214524 1.152059 + 0.0236412𝐾
] + 𝑉 [

−0.01634809 0.0007149875
−0.03607494 0.004045464

] 

 

(43) 

The nonlinearity parameter μ will be re-written as: 

 

𝜇 = 0.1289176δK 

 
(44) 

where C and K correspond to linear damping and stiffness terms and V is a speed parameter. The 

numerical values were obtained for a control surface of cropped delta planform, with the natural modes, 

frequencies and corresponding generalised masses and stiffnesses being obtained from a finite element 

model composed of shell elements with a scalar spring element providing bending stiffness in the root 

support. For the piston theory aerodynamics, sea level international standard atmosphere conditions 

were assumed. 

 

μ will be taken as positive throughout (signifying a hardening nonlinearity) and characterises a deviation 

from the linear torsional stiffness K. 

 

An indication of some of the bifurcational behaviour of the system that may typically be expected is 

shown in Fig. 1 where amplitudes X1max of limit cycle response in terms of the variable X1 as V is 

increased from 0 to 9.0 are presented for K = 1.0 and δ = 2.5 for values of C of 0.05, 0.35 and 0.5. 

Results have been obtained by both the second refined approximation and time domain analysis 

supported by a linear stability analysis for the equilibrium point X1 = X2 = 0. In each case, the pattern 

of behaviour is similar. For low values of V, the only attractor is the stable equilibrium at X1 = X2 = 0, 

and at a certain value of V, dependent on C, a limit cycle pair appear. In each case, the upper branch 

shown in Fig. 1 corresponds to a stable limit cycle and the lower branch to an unstable limit cycle. The 

stability is shown by the Floquet multipliers obtained, and examples of these are shown in Table 1. As 

V increases further, the unstable limit cycle disappears in a subcritical Hopf bifurcation, and so the 

equilibrium point X1 = X2 = 0 becomes unstable while the amplitude of the stable limit cycle continues 

to grow. It may also be seen that increasing C delays appearance of the limit cycles and that the 

amplitude of the stable limit cycle increases with C. The subcritical Hopf bifurcation occurs earlier as 

C is initially increased from 0.05, but beyond a certain value of C, the V for which this occurs begins to 

increase. Fig. 1 gives an indication that good agreement can be obtained between time domain 

predictions and the method presented in this paper. Apart from presenting Floquet multipliers, Table 1 
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also shows predictions of the limit cycle fundamental frequency obtained from both the second refined 

approximation and the time domain analysis, which show very good agreement. 

 

 

 
Fig. 1 Bifurcational Behaviour of Nonlinear System - K = 1.0 and δ = 2.5 

 

Table 1  Floquet Multipliers and Frequencies for Limit Cycles - K = 1.0 and δ = 2.5 

 

C V Floquet Multipliers Stability Frequency – 2nd 

Refined 

Approximation 

Frequency – 

Time Domain 

 

 

 

 

0.05 

 

6.5 0.9176    -0.4497 ± 0.5074i 

2.5701     0.8357    0.1882 

Stable 

Unstable 

1.1105 

1.0585 

1.1106 

1.0584 

7.0 0.9194    -0.6472 ± 0.2095i 

1.3522     0.4161 ± 0.3510i 

Stable 

Unstable 

1.1218 

1.0483 

1.1218 

1.0483 

7.5 0.9207     -0.7973   -0.5833 

1.0253    -0.2963 ± 0.5480i 

Stable 

Unstable 

1.1304 

1.0407 

1.1304 

1.0407 

8.0 0.9218    -0.6667 ± 0.1502i Stable 1.1378 1.1378 

9.0 0.9240    -0.5375 ± 0.4257i Stable 1.1501 1.1500 

 

 

 

0.35 

6.475 0.9400    -0.0786 ± 0.0430i 

1.0291    -0.0231 ± 0.0800i 

Stable 

Unstable 

1.0915 

1.0788 

1.0915 

1.0788 

6.55 0.9378    -0.0899 ± 0.0033i 

1.0106    -0.0836 ± 0.0064i 

Stable 

Unstable 

1.0928 

1.0778 

1.0928 

1.0778 

7.5 0.9378     0.1656     0.0510 Stable 1.1023 1.1022 

8.25 0.9456     0.5092     0.0168 Stable 1.1069 1.1066 

9.0 0.9620     0.7040     0.0121 Stable 1.1105 1.1097 

 

 

0

1

2

3

4

5

5 6 7 8 9

Time Domain C = 0.05

2nd Refined Approx. C = 0.05

Time Domain C = 0.35

2nd Refined Approx. C = 0.35

Time Domain C = 0.5

2nd Refined Approx. C = 0.5

X1max 

V 
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In the following study, the effectiveness of the approximation method of Sections 2 and 3 will now be 

investigated. Interest will focus on the behaviour of the stable limit cycles indicated in Fig. 1 as C, K 

and V are varied, and as the nonlinear effect becomes more significant. Limit cycle predictions of 

Section 2 based on first and third harmonics will be referred to as ‘first approximation’ and those of 

Section 3, where higher harmonic effects are now included will be referred to as ‘first refined 

approximation’ and ‘second refined approximation’. In the following, results will first be presented in 

terms of 𝑋1 against 𝑋1̇. 

As a first example, limit cycle predictions are shown in Figs. 2 to 5 for the case K = 1.0, V = 9.0, δ = 

2.5 for four values of damping parameter C and compare time domain predictions with the first and 

refined approximations. For C = 0.0, as shown in Fig. 2, the first approximation gives good agreement 

with the time domain result. For C = 0.05, as shown in Fig. 3, agreement between first approximation 

and time domain predictions can be seen to be beginning to deteriorate but the first refined 

approximation gives an improvement on the first approximation. For the higher values of C considered 

in Figs. 4 and 5, it may be seen that the second refined approximation gives improvements on both the 

first approximation and its first refinement. Floquet analysis indicated that the limit cycles are stable 

for the values of C considered and this was confirmed by the time domain analysis. A similar set of 

predictions are shown in Figs. 6 to 9 for the for the case K = 4.0, V = 10.0, δ = 2.5 for four values of 

damping parameter C. For C = 0.0, as shown in Fig. 6, the first approximation gives good agreement 

with time domain results. For C = 0.15, as shown in Fig. 7, agreement between first approximation and 

time domain predictions can be seen to be beginning to deteriorate but the first refined approximation 

gives an improvement on the first approximation. For the higher values of C considered in Figs. 8 and 

9, it may be seen that the second refined approximation gives improvements on both the first 

approximation and its first refinement. 

 
 

Fig. 2 Limit Cycle Predictions. K = 1.0, V = 9.0, C = 0.0, δ = 2.5 
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Fig. 3 Limit Cycle Predictions. K = 1.0, V = 9.0, C = 0.05, δ = 2.5 

 

 

Fig. 4 Limit Cycle Predictions. K = 1.0, V = 9.0, C = 0.35, δ= 2.5 
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Fig. 5 Limit Cycle Predictions. K = 1.0, V = 9.0, C = 0.5, δ = 2.5 

 

 

 

Fig. 6 Limit Cycle Predictions. K = 4.0, V = 10.0, C = 0.0, δ= 2.5 
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Fig. 7 Limit Cycle Predictions. K = 4.0, V = 10.0, C = 0.15, δ = 2.5 

 

Fig. 8 Limit Cycle Predictions. K = 4.0, V = 10.0, C = 0.25, δ = 2.5 
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Fig. 9 Limit Cycle Predictions. K = 4.0, V = 10.0, C = 0.35, δ = 2.5 

 

As another way of comparing the predictions, amplitudes of the harmonic components of the motion 

were obtained in the time domain by using a Discrete Fourier Transform, ensuring that the sample time 

history used is taken over complete cycles. The Discrete Fourier Transform (DFT) and refined 

approximation predictions of the amplitudes of the harmonics are compared in Figs. 10 to 15 for the 

cases K = 1.0, V = 9.0, δ = 2.5 and K = 4.0, V = 10.0, δ = 2.5. The plots compare amplitudes of the first, 

third and fifth harmonics for time domain and the three approximations. It should be noted that for the 

first and third harmonics, the first and first refined approximations are the same, whereas for the fifth 

harmonic predictions, it should be recalled that the first approximation only includes first and third 

harmonics. Figs. 10 and 13 show very good agreement between the DFT and the two approximations 

for the first harmonic, although for the first approximation, agreement is marginally better. Figures 11, 

12, 14 and 15 show how for the third and fifth harmonics, the refined approximations give increasing 

improvements. The effect of these refinements is the overall improvements demonstrated in Figs. 2 to 

9. 
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Fig. 10 Predictions of Amplitude of First Harmonic for X1, K =1.0, V = 9.0, δ = 2.5 

 

 

Fig. 11 Predictions of Amplitude of Third Harmonic for X1, K =1.0, V = 9.0, δ = 2.5 
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Fig. 12 Predictions of Amplitude of Fifth Harmonic for X1, K =1.0, V = 9.0, δ = 2.5 

 

Fig. 13 Predictions of Amplitude of First Harmonic for X1, K =4.0, V = 10.0, δ = 2.5 
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Fig. 14 Predictions of Amplitude of Third Harmonic for X1, K =4.0, V = 10.0, δ = 2.5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 15 Predictions of Amplitude of Fifth Harmonic for X1, K =4.0, V = 10.0, δ = 2.5 
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The results presented hitherto, have been in terms of 𝑋1 against 𝑋1̇. Some results are now presented for 

𝑋2 against 𝑋2̇ in Figs. 16 to 18. It was noted that for the range of parameters considered, the first 

harmonic dominated the motion, even in cases where higher harmonics were contributing significantly 

to 𝑋1 and 𝑋1̇. An example of this is shown Fig. 16 for the case K = 4.0, V = 10.0, C = 0.25, δ = 2.5 

which compares 𝑋2 and 𝑋2̇ as determined by time domain and the approximate method. As the first 

harmonic dominates the variation of X2, further comparisons of predictions were made by comparing 

amplitudes of X2. These are shown in Figs. 17 and 18 for cases K = 1.0, V = 9.0, δ = 2.5 and K = 4.0, V 

= 10.0, δ = 2.5 respectively. Agreement between time domain predictions and the approximate methods 

is good. However, for higher displacements, the second refined approximation only gives slight 

improvement on the first approximation. It was also noted that the amplitudes of X2 grows rapidly in 

comparison with the first harmonic component of X1 as C increases. 

 

 

 

Fig. 16 Limit Cycle Prediction - 𝑿𝟐. and �̇�𝟐. K = 4.0, V = 10.0, C = 0.25, δ = 2.5 
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Fig. 17 Amplitude of X2
 - K = 1.0, V = 9.0, δ= 2.5 

 

 

 

Fig. 18 Amplitude of X2
 - K = 4.0, V = 10.0, δ = 2.5 
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Investigations at higher values of V were now carried out. One example of the results obtained is for 

the case K = 4, V = 11.0, δ = 2.5. Results for a C value of 0.15 are presented in Fig. 19. As in previous 

examples, the refined approximation clearly leads to improved predictions for X1. However, one of the 

Floquet multipliers for the limit cycle crosses the real axis and becomes greater than 1.0. This indicates 

that a fold (saddle-node), transcritical or pitchfork (symmetry-breaking) bifurcation of the limit cycle 

has occurred [36]. Time domain simulation confirmed that the limit cycle was unstable and further, 

there were now also two stable asymmetric limit cycles (involving even harmonics) showing that a 

symmetry-breaking bifurcation had occurred. These are shown in Fig. 20. The approximate methods 

would not be expected to predict these new limit cycles as they only assume odd harmonics make up 

the motion. 

A study was now carried out to determine for a range of values of C, K and V where symmetry breaking 

occurred, Figs. 21 to 23 show comparisons of conditions for the occurrence of symmetry breaking 

bifurcations by both time domain analysis and the second refined approximation method. Agreement is 

good providing further verification of both the limit cycle prediction and Floquet multiplier calculation 

methods.  

 

 
Fig. 19 Unstable Limit Cycle Prediction. K = 4.0, V = 11.0, C = 0.15, δ = 2.5 
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Fig. 20 Time Domain Predictions of Stable Asymmetric Limit Cycles. K = 4.0, V = 11.0, C = 

 0.15, δ = 2.5 

 

 

Fig. 21 Prediction of Onset of Limit Cycle Instability - K = 1,  δ = 2.5 
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Fig. 22 Prediction of Onset of Limit Cycle Instability - K = 4,  δ = 2.5 

 

 

Fig. 23 Prediction of Onset of Limit Cycle Instability - K = 7,  δ = 2.5 
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A further bifurcation study was carried out for the case K = 4.0, C = 0.1, δ = 2.5 to illustrate more detail 

of the symmetry-breaking bifurcation that occurs, and this is shown in Fig. 24. As was done in Fig. 1, 

amplitudes X1max of limit cycle response in terms of the variable X1 as V is increased, in this case from 

0 to 16.0, are presented. Results have been obtained for symmetric limit cycles by both the second 

refined approximation and time domain analysis supported by a linear stability analysis for the 

equilibrium point X1 = X2 = 0. Limit cycle predictions for asymmetric limit cycles are by time domain 

only. System behaviour as V varies at first follows a similar pattern to that seen in Fig. 1. 

Just before V = 12, the symmetry breaking bifurcation occurs, as indicated in Fig. 24 by Point A. 

Beyond this point, along AB, the symmetric limit cycle is unstable and two stable asymmetric limit 

cycles may be seen, and these are indicated by CD. However, when the bifurcation occurs, two unstable 

asymmetric limit cycles are produced, and these are indicated by AC. An example of two such 

asymmetric unstable limit cycles, determined in the time domain, are shown in Fig. 25. 
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 Fig. 24 Bifurcational Behaviour of Nonlinear System - K = 4.0, C = 0.1 and δ = 2.5  
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Fig. 25 Time Domain Predictions of Unstable Asymmetric Limit Cycles. K = 4.0, V = 10.75, C = 

 0.10, δ = 2.5 

 

Further to Fig. 24, Table 2 presents results of Floquet analysis indicating the stability of the symmetric 

limit cycles obtained. Also, shown are predictions of the limit cycle fundamental frequency obtained 

from both the second refined approximation and the time domain analysis, which show very good 

agreement. 

 

Table 2  Floquet Multipliers and Frequencies for Limit Cycles - K = 4.0, C = 0.1, δ = 2.5 

 

V Floquet Multipliers Stability Frequency – 2nd 

Refined 

Approximation 

Frequency – 

Time Domain 

6.3 0.9258   -0.2197 ± 0.4290i 

1.0251    0.2319 ± 0.3847i 

Stable 

Unstable 

1.0983 

1.0711 

1.0983 

1.0711 

7.0 0.9266    -0.5107  -0.4631 Stable 1.1120 1.1120 

9.0 0.9312    -0.2295 ± 0.4915i Stable 1.1339 1.1338 

11.0 0.9342     0.6469     0.3808 Stable 1.1488 1.1485 

11.8 1.0788     0.9609     0.2234 Unstable 1.1538 1.1533 

14.0 1.5221     0.9626     0.1604 Unstable 1.1656 1.1652 
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6. Concluding Remarks 

Higher order approximations to limit cycles of an autonomous multi-degree-of-freedom system with a 

single cubic nonlinearity have been obtained by first obtaining a harmonic balance solution based on 

first and third harmonics which is then refined to account for the effect of higher harmonics. The method 

is analytical other than that a first estimate of frequency has to be obtained numerically from a 

polynomial equation of degree 16. The novelty of the method lies in extending the method of [31] to a 

multi-degree-of-freedom system and basing it on an available harmonic balance solution containing not 

only first, but also third harmonics. The methodology was applied to a system derived from an 

aeroelastic analysis of an all-moving control surface with a nonlinearity in the torsional degree-of-

freedom of the root support, and parameters corresponding to air speed, together with linear stiffness 

and viscous damping of the root support were varied. By making comparisons with time domain 

simulation, the method has been shown to be successful in limit cycle prediction where higher 

harmonics begin to become significant with the refinement method shown to be effective. It was notable 

that increasing damping parameter C in the system considered led to responses where the higher 

harmonics were significant. 

A method for carrying out Floquet analysis originally developed in [34] for a first order three degree-

of-freedom system and which was extended to a second order two-degree-of-freedom system in [23] 

has been applied to assess limit cycle stability. Given accurate limit cycle predictions, the method was 

shown to correctly identify limit cycle stability and where changes in stability occurred as system 

parameter changes occurred. 

There are a number of possibilities for pursuing the approach presented in this paper further. The method 

for refining limit cycle approximations is based on the approach of [31] where, as noted previously, 

limit cycles of the Van der Pol equation with moderate values of damping coefficient were investigated. 

However, [32] presents a modification to the approach given in [31] which could also be applied to the 

type of system considered in this paper. As already noted, there has been interest in solving the equations 

that arise from the harmonic balance method using Groebner bases [27-29] and a further possibility 

would be to investigate their application, or other methods for solving nonlinear polynomial coupled 

equations, to obtain an ‘almost analytic’ solution including both even and higher harmonics. This would 

further refine the limit cycle predictions already obtained, enable asymmetric limit cycles to be 

determined and potentially reveal additional limit cycles as the picture of bifurcational behaviour of the 

system is extended.  

The method presented in this paper is limited in that it only enables periodic solutions to be determined, 

with information on their stability being provided by Floquet analysis. Examples of methods which 

overcome this limitation and have been applied to yield transient motions leading to limit cycles in three 

and four-dimensional systems include the method of multiple scales [37 - 39] and second order 

averaging [40]. The approaches presented in those papers would be highly relevant to the system 

considered in this paper.  
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APPENDIX A Expressions for Coefficients in the Harmonic Balance Equations of Section 2 

The coefficients of a1, a3, b3, c1, d1, c3, d3 introduced in Equations (4) to (7) are functions of the 

coefficients of Gij and Hij   in Equation (1) and are given by:  

 
𝑚1 = 𝐻21;  𝑝1 = 𝐻22 − 𝜔2;  𝑞1 = −𝜔𝐺22 

 

(A1) 

 

 
𝑚2 = 𝜔𝐺21;  𝑝2 =  −𝑞1 = 𝜔𝐺22; 𝑞2 = 𝑝1 = 𝐻22 − 𝜔2 

 

(A2) 

 

 
𝑚3 = 𝜔𝐺11;   𝑝3 = 𝜔𝐺12; 𝑞3 = 𝐻12 

 

(A3) 

 

 

𝐸1 = −
(𝑚1𝑝1 + 𝑚2𝑝2)

(𝑝1
2 + 𝑝2

2)
;     𝐹1 =

(𝑚1𝑝2 − 𝑚2𝑝1)

(𝑝1
2 + 𝑝2

2)
 

 

 

 

 

(A4) 

 

 
𝑀3 = 𝑚3 + 𝑝3𝐸1 + 𝑞3𝐹1;  𝑀4 = 𝑚4 + 𝑝4𝐸1 + 𝑞4𝐹1 

 

 

 

(A5) 

 

 
𝑚4 = 𝐻11 − 𝜔2;  𝑝4 = 𝐻12 = 𝑞3; 𝑞4 = −𝜔𝐺12 = − 𝑝3 

 

(A6) 

 

 
𝑚13 = 3𝜔𝐺21;  𝑛13 = 𝐻21;  𝑝13 = 3𝜔𝐺22; 𝑞13 = 𝐻22 − 9𝜔2 

 

(A7) 

 

 
𝑚23 = 𝑛13 = 𝐻21; 𝑛23 = −𝑚13 = −3𝜔𝐺21;  𝑛13 = 𝐻21; 𝑝23 = 𝑞13 = 𝐻22 − 9𝜔2 

 
 𝑞23 = − 𝑝13 = −3𝜔𝐺22;  

 

 

(A8) 
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𝑚33 = 3𝜔𝐺11; 𝑛33 = 𝐻11 − 9𝜔2;  𝑝33 = − 𝑞43 = 3𝜔𝐺12;  𝑞33 = 𝐻12 

 

(A9) 

 

 
𝑚43 = 𝑛33 = 𝐻11 − 9𝜔2; 𝑛43 = −𝑚33 = −3𝜔𝐺11; 𝑝43 = 𝑞33 = 𝐻12 

 

 

 

(A10) 

 

 

𝐸3 = −
(𝑚13𝑝13 + 𝑚23𝑝23)

(𝑝13
2 + 𝑝23

2 )
;     𝐹3 =

(𝑚13𝑝23 − 𝑚23𝑝13)

(𝑝13
2 + 𝑝23

2 )
 

 

 

 

 

(A11) 

 

 
𝑀33 = −𝑁43 = 𝑚33 + 𝑝33𝐸3 − 𝑞33𝐹3;  𝑁33 = 𝑛33 + 𝑝33𝐹3 + 𝑞33𝐸3 

 

 

 

(A12) 

 

 
𝑀43 = 𝑁33 = 𝑚43 + 𝑝43𝐸3 − 𝑞43𝐹3; 𝑁43 = 𝑛43 + 𝑝43𝐹3 + 𝑞43𝐸3 

 

 

 

(A13) 

 

APPENDIX B Expressions for C10, C30, C50, C70, C90, S10, S30, S50, S70, S90 in Section3 

 

𝐶10 = −
3

4
𝑎10

2 𝑏30    

 

𝑆10 =
3

4
(𝑎10

3 − 𝑎10
2 𝑎30 + 2𝑎10(𝑎30

2 + 𝑏30
2 ))    

 

 

 

(B1) 

 

𝐶30 =
3

4
(2𝑎10

2 𝑏30 + 𝑏30(𝑎30
2 + 𝑏30

2 ))    

 

𝑆30 =
1

4
(−𝑎10

3 + 6𝑎10
2 𝑎30 + 3𝑎30(𝑎30

2 + 𝑏30
2 ))    

 

 

 

(B2) 

 

𝐶50 = −
1

4
(3𝑏30𝑎10

2 − 6𝑎30𝑏30𝑎10)    

 

𝑆50 = −
1

4
(3𝑎10

2 𝑎30 − 3𝑎10𝑎30
2 + 3𝑎10𝑏30

2 )    

 

 

 

(B3) 
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𝐶70 = −
3

2
𝑎10𝑎30𝑏30    

 

𝑆70 = −
1

4
(3𝑎10𝑎30

2 − 3𝑎10𝑏30
2 )    

 

 

 

(B4) 

 

𝐶90 = −
1

4
(3𝑎30

2 𝑏30 − 𝑏30
3 )    

 

𝑆90 =
1

4
(−𝑎30

3 + 3𝑎30𝑏30
2 )    

 

 

 

(B5) 

 

APPENDIX C Expressions for C11, C31, C51, C71, C91, S11, S31, S51, S71, S91 in Section 3 

 

𝐶11 =
1

4
𝑏30

2 𝑏51 −  
1

4
𝑎30

2 𝑏71 −  
1

4
𝑎30

2 𝑏51 +  
1

4
𝑏30

2 𝑏71 −
1

2 
𝑎10𝑎30𝑏51 +

1

2
𝑎10𝑎51𝑏30

+
1

2
𝑎30𝑎51𝑏30 +

1

2
𝑎30𝑎71𝑏30 

 

𝑆11 =
1

4
𝑎30

2 𝑎51 −  
1

4
𝑎30

2 𝑎71 −  
1

4
𝑏30

2 𝑎51 +  
1

4
𝑏30

2 𝑎71 −
1

2 
𝑎10𝑎30𝑎51 −

1

2
𝑎10𝑏51𝑏30

+
1

2
𝑎30𝑏51𝑏30 −

1

2
𝑎30𝑏71𝑏30 

 

 

 

 

(C1) 

 

 

 

 

𝐶31 =
1

4
𝑏30

2 𝑏91 −  
1

4
𝑎30

2 𝑏91 −  
1

4
𝑎10

2 𝑏51 +
1

2 
𝑎10𝑎30𝑏51 −

1

2
𝑎10𝑎51𝑏30 −

1

2
𝑎10𝑎30𝑏71

+
1

2
𝑎10𝑎71𝑏30 +

1

2
𝑎30𝑎91𝑏30 

 

𝑆31 =
1

4
𝑏30

2 𝑎91 −  
1

4
𝑎30

2 𝑎91 −  
1

4
𝑎10

2 𝑎51 +
1

2
𝑎10𝑎51𝑎30 −

1

2 
𝑎10𝑎30𝑎71 +

1

2
𝑎10𝑏51𝑏30

−
1

2
𝑎10𝑏71𝑏30 −

1

2
𝑎30𝑏91𝑏30 

 

 

 

 

(C2) 

 

 

 

 

𝐶51 =
1

2
𝑎10

2 𝑏51 −  
1

4
𝑎10

2 𝑏71 +  
1

2
𝑎30

2 𝑏51 +  
1

2
𝑏30

2 𝑎51 +
1

2 
𝑎10𝑎30𝑏71 −

1

2
𝑎10𝑎71𝑏30

−
1

2
𝑎10𝑎30𝑏91 +

1

2
𝑎10𝑎91𝑏30 

 

𝑆51 =
1

2
𝑎10

2 𝑎51 −  
1

4
𝑎10

2 𝑎71 +  
1

2
𝑎30

2 𝑎51 +  
1

2
𝑏30

2 𝑎51 +
1

2 
𝑎10𝑎30𝑎71 −

1

2
𝑎10𝑎91𝑎30

+
1

2
𝑎10𝑎30𝑏71 −

1

2
𝑎10𝑎91𝑏30 

 

 

 

 

(C3) 
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𝐶71 =
1

2
𝑎10

2 𝑏71 − 
1

4
𝑎10

2 𝑏51 −  
1

4
𝑎10

2 𝑏91 +  
1

2
𝑎30

2 𝑏71 +
1

2
𝑏30

2 𝑏71 +
1

2 
𝑎10𝑎30𝑏51

+
1

2
𝑎10𝑎51𝑏30 +

1

2
𝑎10𝑎30𝑏91 −

1

2
𝑎10𝑎91𝑏30 

 

𝑆71 =
1

2
𝑎10

2 𝑎71 −  
1

4
𝑎10

2 𝑎51 −  
1

2
𝑎10

2 𝑎91 +  
1

2
𝑎30

2 𝑎71 +  
1

2
𝑏30

2 𝑎71 +
1

2 
𝑎10𝑎30𝑎51

+
1

2
𝑎10𝑎91𝑎30 −

1

2
𝑎10𝑎30𝑏51 +

1

2
𝑎10𝑎91𝑏30 

 

 

 

 

 

(C4) 

 

 

 

 

𝐶91 =
1

2
𝑎10

2 𝑏91 −  
1

4
𝑎10

2 𝑏71 +  
1

2
𝑎30

2 𝑏91 +
1

2
𝑏30

2 𝑏91 −
1

2 
𝑎10𝑎30𝑏51 −

1

2
𝑎10𝑎51𝑏30

+
1

2
𝑎10𝑏71𝑎30 +

1

2
𝑎10𝑎71𝑏30 

 

𝑆91 =
1

2
𝑎10

2 𝑎91 −  
1

4
𝑎10

2 𝑎71 + 
1

2
𝑎30

2 𝑎91 +  
1

2
𝑏30

2 𝑎91 −
1

2 
𝑎10𝑎30𝑎51 +

1

2
𝑎10𝑎71𝑎30

+
1

2
𝑎10𝑏30𝑏51 −

1

2
𝑎10𝑎71𝑏30 

 

 

(C5) 

 

 

 

 

 


