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Abstract

The fitness landscape of the timetabling problems is analyzed in this paper to provide some insight
into the properties of the problem. The analyses suggest that the good solutions are clustered in the
search space and there is a correlation between the fitness of a local optimum and its distance to the
best solution. Inspired by these findings, a new operator for Quantum Evolutionary Algorithms is
proposed which, during the search process, collects information about the fitness landscape and tried
to capture the backbone structure of the landscape. The knowledge it has collected is used to guide
the search process towards a better region in the search space. The proposed algorithm consists of
two phases. The first phase uses a tabu mechanism to collect information about the fitness landscape.
In the second phase, the collected data are processed to guide the algorithm towards better regions
in the search space. The algorithm clusters the good solutions it has found in its previous search
process. Then when the population is converged and trapped in a local optimum, it is divided into
sub-populations and each sub-population is designated to a cluster. The information in the database
is then used to reinitialize the q-individuals, so they represent better regions in the search space. This
way the population maintains diversity and by capturing the fitness landscape structure, the algorithm
is guided towards better regions in the search space. The algorithm is compared with some state-of-
the-art algorithms from PATAT competition conferences and experimental results are presented.

1. Introduction
To design successful optimization algorithms requires

an understanding of the structure of the problems. Thus,
there has been a great interest in the analysis of the fitness
landscape of many optimization problems. The concept of
the fitness landscape, introduced by Sewell Wright Wright
(1932) to demonstrate the dynamics of biological evolutionary
optimization, has been useful for the analysis and understanding
of the evolutionary algorithm’s behavior. The concept has
been studied in a variety of fields including in physicsMézard
et al. (1987); Hartmann andWeight (2005) and in the optimization
communityHuberman and T (1987); Cheeseman et al. (1991);
Grover (1992); Hertz et al. (1994b). Research on landscape
analysis in evolutionary algorithms started with the works
presented in the early 1990sManderick et al. (1991);Mathias
and Whitley (1992); Forrest and Mitchell (1993); Jones and
Forrest (1995). The first measure proposed for the roughness
of the fitness landscape was the auto-correlationWeinberger
(1990); Angel and Zissimopoulos (1998); Czogalla (2008).
Then the fitness-distance correlationwas proposed tomeasure
problem difficulty Jones and Forrest (1995);Merz andB.Freisleben
(2000); Lefticaru and Ipate (2008); Manderick et al. (1991).

The attempts continuedwith studying algebraic properties
of the solutions in the landscapeGrover (1992); Stadler (1995);
Whitley et al. (2008); Chicano et al. (2010), modality (number
of local optima) Horn and Goldberg (1995) and the fractal
dimension of the fitness landscape Hoshino et al. (1998).
Another way of analyzing the problem hardness is by studying
the area in the landscape called “Olympus”, in which the
better local optima are located Verel et al. (2007); Vérel et al.
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(2008). Visualizing the fitness landscape, which is called
fitness clouds is another method proposed to represent some
properties of the fitness landscape Collard et al. (2007); Lu
et al. (2011); Vanneschi et al. (2007), reflecting the problem
hardness. The use of complex network analysis techniques
has been proposed for studying fitness landscapes and problem
difficulty in combinatorial optimization Daolio et al. (2012)
and has recently been used to study the landscape ofQuadratic
Assignment Problem Daolio et al. (2010).

Fitness landscape analysis techniques are used to better
understand the influence of genetic representations and associated
variation operators in solving combinatorial optimization problems
McCarthy (2008); Tavares et al. (2006, 2008); Riley andCiesielski
(2010). This understanding can provide useful information
about the structure of the problem and the type of operators
that are better for particular problemsNewth andBrede (2006);
Slany and Sekanina (2007); Merz and Freisleben (1998);
Czogalla and Fink (2009). Furthermore, the study of fitness
landscape can be useful in designing evolutionary algorithms
or hybrid algorithms Moscato (1989); Moscato and Norman
(1992); Qasem and Prügel-Bennett, since the landscape analysis
can help us predict the performance of the proposed algorithms
Shaowei and Qiuping (2007); Huanga et al. (2009). Some
researchers use the landscape analysis to study some parameters
of the evolutionary algorithms, like the population sizeAlander
(1999), or some operators likemutation and crossoverMathias
andWhitley (1992); Suzuki and Iwasa (1997), the recombination
operators Hornby (1996), or the perturbation operatorMartin
et al. (1999). Some researchers have used the landscape
analysis to explain why some algorithms, like local search
algorithms Fonlupt et al. (1997), Memetic Algorithms Merz
(2004) ormetaheuristic algorithms based on local searchWatson
(2010), work better on particular landscapes.
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Several works attempt to exploit the concept of the landscape
and landscape analysis in developing new sets of algorithms
for different problems. Fitness landscape analysis is used
to propose Memetic Algorithms for Graph Bi-Partitioning
problem Merz and Freisleben (1998), Resource Allocation
problem Huang et al. (2009) and Maximum Satisfiability
problem Zhang et al. (2003); Zhang (2004), or improving
the performance of evolutionary algorithms by a landscape
approximation Ratle (1998); Pošík and Franc (2007); Shen
andHe (2010). In amore recent work, the landscape analysis
is used to propose a new population-based algorithm Qasem
and Prügel-Bennett (2010).

During the last two decadesmany researchers have studied
the landscape of optimisation problems including Travelling
Salesman Mathias and Whitley (1992); Stadler and Schnabl
(1992); Boese (1995); Whitley and Ochoa (2011); Whitley
andChicano (2012); Tayarani-N. and Prugel-Bennett (2016),
Quadratic AssignmentMerz and B.Freisleben (2000); Angel
and Zissimopoulos (2001); Chicano et al. (2010); Tayarani-
N. and Prügel-Bennett (2015), KnapsackYoshizawa andHashimoto
(2000); Tavares et al. (2008), Max-Sat Weixiong and Zhang
(2004); Sutton et al. (2009, 2010); Qasem and Prügel-Bennett
(2010); Prugel-Bennett and Tayarani-Najaran (2011), graph
drawing Lehn andKuntz (2001), Graph-ColouringHertz et al.
(1994a); Hamiez andHao (2001); Culberson andGent (2001);
Bouziri et al. (2009); Hertz et al. (1994b); Bouziri et al. (2011);
Tayarani-N and Prügel-Bennett (2015); Tayarani-N. and Prugel-
Bennett (2014), evolutionary antenna design Alander et al.
(2002), flow-shop schedulingCzogalla and Fink (2011); Zhao
et al. (2019) and Bayesian network structureWu et al. (2011)
problems.

There are many works that have attempted to solve the
timetabling problems. This section provides an overview of
recent works on timetabling problems. For earlier research
in this field, the readers are referred to the survey on the
approaches for university timetabling problem presented in
Babaei et al. (2015).

In Lewis and Thompson (2015) a two-stagemetaheuristic-
based algorithm is proposed for the course timetabling problems.
The research analyses the effects of solution space connectivity
to propose new neighborhood operators. When the size of
the scheduling problem is large, usually the problem becomes
intractable. To manage this, two decomposition algorithms
are proposed inAl-Yakoob and Sherali (2015). The algorithm
comprises a two-stagemodeling approach and amixed-integer
programming formulation that attempts to select valid combinations
of scheduled from the set of all feasible solutions. A hyper-
heuristic is presented in Pillay and Özcan (2019), in which
the arithmetic and hierarchical heuristics are combined. The
authors use genetic programming, genetic algorithms, and
the generation of random heuristic combinations. Genetic
programming is used to evolve arithmetic heuristics. The
generation of random heuristic combinations is examined for
the generation of hierarchical heuristics.

In some research, population-based algorithms are combined
with local search algorithms. A hybrid cat swarm optimization
algorithm is used in Skoullis et al. (2017) to solve the school

timetabling problem. The hybrid algorithm employs the population-
based algorithm in conjunctionwith a local search algorithm.
One important criterion in optimization is to find solutions
that are robust to input changes. It is specifically true for
timetabling problems practically, as there may be some last-
minute changes to the availability of teachers, changes in
courses, etc. To manage this, a new robustness measure is
defined in Akkan and Gulcu (2018), and the optimization
process is considered as amulti-objective problem. The authors
hybridize GA with SA and the hill-climbing algorithm to
solve the problem.

Some research use local search algorithms to solve the
problem. In Goh et al. (2017) a tabu search and simulated
annealing algorithms are combined into an iterative two-stage
procedure. The authors also propose a new neighborhood
scheme, which is a new way of estimating local optima and
a reheating method. An iterated local search algorithm is
proposed in Song et al. (2018), which consists of a simulated
annealing and a moderate perturbation procedure. A set of
parallel local search algorithms is proposed in Saviniec et al.
(2018), which consists of sub-populations. Each sub-population
uses a different local search algorithm and some solutions
can migrate from one sub-population to another. In Leite
et al. (2019), a fast simulated annealing algorithm is proposed
for exam timetabling problems, in which ten temperature
bins are formed, and each selected is only moved if the exam
has acceptedmoves in the immediately preceding temperature
bin. In this method, if an exam has zero acceptedmovements
in the preceding temperature bin, it becomes crystallized and
so the number of evaluations is reduced.

The Quantum evolutionary algorithm was designed for
the class of combinatorial optimization problems and thus
we believe the algorithm is highly suitable for this problem.
However, not many works have considered QEA to solve
timetabling problems. Among the first attempts in this field
are the works presented in Zheng et al. (2009). In YuZheng
and Jingfa Liu (2011), a novel quantum evolutionary algorithm
is used to solve the heavily constrained university scheduling
problem. Quantum evolutionary algorithms are used in Tang
and Yang (2013) to solve a bus timetabling problem.

In a set of papers, in Prugel-Bennett and Tayarani-Najaran
(2011); Tayarani-N and Prügel-Bennett (2015); Tayarani-N.
and Prügel-Bennett (2015); Tayarani-N. and Prugel-Bennett
(2014), we studied the fitness landscape of a number of optimization
problems. In these papers, we tried to promote the idea that
studying the fitness landscape of problems provides useful
insights in designing algorithms. In this paper, we decided
to take one step further and use the insight that the fitness
landscape analysis provides to develop new problem solvers.

Despite the importance of the timetabling problem and
understanding its fitness landscape properties, the fitness landscape
of this problem has not been widely studied in the literature.
Therefore, this paper performs an analysis of the fitness landscape
of the problem and study some properties that have not been
studied in the literature. Different properties of the fitness
landscape are studied in this paper, including the density of
states, auto-correlation, correlation length, time to satisfy
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the constraints, size of the feasible regions, probability of
finding feasible regions, and the distance between the feasible
regions.

This paper proposes a novel operator for the quantum
evolutionary algorithm in solving the timetabling problem.
The analysis performed in the fitness landscape of the problem
suggests that there is a correlation between the fitness of
local optima and their distance to the best solutions. This
suggests that good solutions are clustered in the landscape.
Then an algorithm is proposed that explores the search space
and collects information about the structure of the landscape.
This information is then used to cluster the population and
guide the search algorithm towards better regions in the search
space.

The rest of this paper is organized as follows. Section 2
describes the timetabling problem. Section 3 performs a
fitness landscape analysis on the problem. Quantum evolutionary
algorithms and their formulation for solving the timetabling
problems are explained in section 4. The proposed algorithm
is described in section 5. Section 6 presents the experimental
studies and finally section 7 concludes the paper.

2. Timetabling Problem
It has beenmore than 40 years since the timetabling problem

has attracted the attention of computer science researchers.
The timetabling problem is a problemwhich every department
of every university, every school, and every sports league or
job scheduler faces. Although such widespread, there is no
universal form of the problem and the problem is context-
dependent which changes even from one semester to another.
There is a group of problems that are considered as timetabling
problem, including nurse rosteringCheang et al. (2003); Burke
et al. (2004), sports timetabling Easton et al. (2004), transportation
timetablingKwan (2004), university course timetabling Schaerf
(1999); Burke and Petrovic (2002); Petrovic andBurke (2004),
university exam timetabling Eley (2006), employee timetabling
Detienne et al. (2009) and train timetabling Caprara et al.
(2006). This paper studies the landscape of the high school
timetabling problem. The high school timetabling problem
is defined as assigning t number of teachers to k number of
classes, where each class is assigned to a fixed classroom.
There are s different subjects, d number of working days in
each week, p number of periods in each day, and the total
number of hours that should be taught in each week is n
(referred to as the number of time-slots). The assignment
of teachers to classes must satisfy a set of hard constraints.
There are also some soft constraints that should be taken
into account. The set of hard constraints can be described
as follows Tayarani-N (2020),

1. H1: A teacher cannot be assigned to more than one
class at each time-slot.

2. H2: A class cannot be assigned tomore than one teacher
at each time-slot.

3. H3: Each teacher has to be assigned to a particular
number of time-slots per week.

4. H3’: A teacher who teaches subject s, and is assigned
to class c has to hold at least ℎcs of his/her lectures in
class c in each weak.

5. H4: Each classmust hold a particular number of lectures
per week.

6. H5: A teacher can be assigned to a time-slot if he/she
is available for that time.

7. H6: A class cannot be free at any of the time-slots,
except the last time-slots each day.

8. H7: Not more than one teacher can be assigned to a
subject in a given class.

Along with the hard constraints which must be applied
to the final solutions, there are some soft constraints that
do not necessarily need to be applied, but if applied, fitter
solutions are achieved. In solving the problem with QEA,
soft constraints can be considered as the cost function f ,
which distinguishes the solutions. Such constraints are the
problem and even teacher dependent. For example, a teacher
may prefer to have all of his classes on two consecutive days,
or another may want to balance his/her classes throughout
the week. For the case of hdtt problem ("hdtt" stands for
"hard timetabling") , f is theweighted sumof the total penalties
incurred by the teachers,

f =
∑

s∈S

∑

t∈Ts


tszts, (1)

where 
ts is a coefficient representing the importance of the
timetable for teacher t, teaching subject s. Hereafter we use
ts to refer to the teacher who teaches the subject s. The total
penalty incurred by teacher t teaching subject s represented
by zts is calculated as the weighted sum of six penalties:

zts =
6
∑

i=1
�iz

i
ts, (2)

where zits is the penalty for the i-th criterion and �i is the
coefficient showing the importance of the corresponding penalty.
Here we define each of the six penalties.

1. The first penalty indicates the number of times teacher
ts is assigned to teach at a time-slot, that is not his/her
desirable time-slot and is found through the following
equation,

z1ts =
∑

apd=1

∑

c∈C
xctspd . (3)

2. The second penalty counts the number of hours the
teachers are idle. This penalty is calculated as follows:

z2ts =
∑

d∈D

[

p′′d − p
′
d −

∑

p∈P

∑

c∈C
xctspd

]

, (4)

where p′d and p
′′
d are the first and the last teaching time-

slots a teacher teaches on day d respectively.
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3. The third penalty counts the number of times teacher
ts holds his/her course in class c more than once in a
day but in two non-consecutive time-slots. The penalty
is found as follows:

z3ts =
∑

d∈D

∑

c∈C
[[

(

∑

p∈P
xctspd > ycts

)

∧

(

xctspd ≠ xcts(p+1)d
)

]], (5)

where the operator [[predicate]] returns ‘0’, if ‘predicate =
F ’ and ‘1’ if ‘predicate = T ’.

4. The fourth penalty calculates the number of days that
the number of contact hours of teacher st with class c
differs from the average daily contact hours for subject
s and is found through the following function:

z4ts =
∑

c∈C

∑

d∈D
[[|

∑

p∈P
xctspd −

1
nd
ℎcsycts| > 1]]

(6)

5. The fifth penalty shows the number of days that the
teaching hours of teacher st differs from his/her average
number of teaching hours per day. This penalty function
is defined as:

z5ts =
∑

d∈D
[[|

∑

c∈X

∑

p∈P
xctspd −

1
nd
ℎts| > 1]] (7)

6. The sixth penalty shows the number of times teachers
are assigned to teach at the last time-slots of the days
and is found as follows:

z6ts =
∑

d∈D

∑

c∈C
xctsnpd . (8)

3. Landscape Analysis
In this section, some properties of the fitness landscape

of the Timetabling problem for the randomly drawn problem
instances are studied. We try to show the effect of the size of
the problem on different properties of the fitness landscape.
The results show how and why the problem becomes harder
as the system size grows, and show which parameters have
a higher effect on the problem difficulty.

3.1. Phase-Transition
It is shown that as the number of constraints increases,

many constraint satisfaction problems exhibit a transition in
their difficulty. This is called the phase transition, at which
the behavior of the problems changes dramatically, from almost
all random instances being satisfiable, to almost all instances
being unsatisfiable. Many problems show this behavior, like
MaximumSatisfiability problemMonasson et al. (1999); Coppersmith
et al. (2004), Graph-Colouring problemMizuno et al. (2000);
Barbosa and Ferreira (2004); Tayarani-N and Prügel-Bennett
(2015), Planning problem Rintanen and ludwigs-universitat
Freiburg (2004); Zhou andYin (2010) and Scheduling problems

Herroelen and De Reyck (1998); Donati et al. (2008). This
section studies this property in the Timetabling problem. To
show how the ratio of the solvable problems changeswith the
number of classes, Figure 1 shows the proportion of solvable
problems as a function of the number of classes nc and the
total number of time-slots n. The number of days is nd = 5
and the number of periods in each day is np = 7. To make
this graph, 1000 problem instances are randomly constructed,
and using a search algorithm, the constraints are satisfied.
Then count the number of problems for which a solution
with no unsatisfied hard constraint is found, the proportion of
the solvable solutions is calculated. The graph clearly shows
that there is a phase transition, with the total number of time-
slots. Note that the total number of time-slots, n, here is the
total number of hours that should be taught in the school.
On the other hand, the maximum number of hours a school
can hold is nc × nd × np, where nc is the number of classes,
nd is the number of days, and np is the number of periods in
each day. Obviously, the total number of time-slots, n, must
always be less than the maximum capacity of the school. As
the number of time-slots gets closer to the maximum number
of hours the school can hold, the proportion of the solvable
instances decreases until it becomes zero at the maximum
number of hours.

For example, for the case of nc = 6, the number of hours
the school can hold is 6 × 5 × 7 = 210. Therefore, the
maximum number of time-slots can be 210. It is clear that
for the case of nc = 6, any value of time-slots, n, above 210
results in problems being unsolvable. For n = 210, only a
fraction of problems is solvable. This is because although
the number of time-slots equals the number of hours the
school can hold, because of the constraints like teachers’
availability, some problems can be unsolvable.

Regarding the comment made about the number of time-
slots 350, the referee should look at the problem from the
opposite. Note that the number of time-slots is the number of
slots that we need to teach at the school. But the total number
of slots that the school can hold (the school capacity) is 300.
Obviously, it is not possible to fit 350 slots in a school with
a capacity of 300. Here the question is why when the school
has the capacity of 350 slots per week, we can only insert
300 hours of teaching? The answer is that although there
are still 50 slots empty at the school, the conflict between
teacher’s availability and other constraints make the problem
unsolvable. Therefore 50 hours/class of the school go to
waste.

The same experiment is performed for a different numbers
of teachers. The number of teachers does not change the
location of the phase of the transition, but it changes the
sharpness. It is shown in Figure 2, where the proportion
of solvable problems is presented for a different numbers of
teachers. Note that all the curves drop to zero at number of
time-slots equal to nc × nd × np = 210. It is clear that the
smaller the number of teachers, the faster the proportion of
the solvable problems drops. It is obvious why this happens,
themore teachers available, themore robust the problemwill
be, so getting closer to the maximum number of possible

Mohammad Hassan Tayarani Najaran et al.: Preprint submitted to Elsevier Page 4 of 25



How to Exploit Fitness Landscape Properties

Number of Classes Number of tim
e-slotsP

ro
po

rt
io

n
of

S
ol

va
bl

e
P

ro
bl

em
s

Figure 1: The proportion of solvable problems as a function
of number of classes nc , and number of time-slots n, for
number of teachers nt = 16. The data are averaged over
1000 random problem instances.
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Figure 2: The proportion of solvable problems as a function
of number of time-slots n for number of teachers nt = 6, 9 and
12 for number of classes nc = 6. The data are averaged over
1000 random problem instances.

time-slots (nc×nd×np), there still could beways of satisfying
the hard constraints.

3.2. Density of States
Our study begins by studying the statistical properties of

the randomly drawn configurations in the landscape. These
properties show the general behavior of random solutions
in the landscape. The density of states shows the number
of configurations at each cost level. By random sampling of
solutions and finding the histogram of the cost of the random
solutions, the spread of costs around themean can be computed.
The fitness landscape of the timetabling problem consists of
two main regions, the region in which the hard constraints
are not satisfied, and the cost of the solutions is the number
of unsatisfied hard constraints. The other region is the region
in which the hard constraints are satisfied, so the cost of the
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Figure 3: Histogram of hard-costs on a logarithmic scale for
random solutions in particular instances for different number
of time-slots. The number of classes nc = 6 and number of
teachers is nt = 16. The horizontal axis is scaled by n0.35.
The results are for randomly constructed problem instances
for 107 sampling.
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Figure 4: Histogram of hard-costs on a logarithmic scale for
random solutions in particular instances for different number
of classes and teachers. The number of time-slots is n = 200.
The results are for randomly constructed problem instances
for 107 sampling.

solutions is found based on the soft constraints.
First, the density of states for the hard cost of the solutions

is studied. The distribution of the costs around the mean for
different number of time-slots n, for number of classes nc =
6 and number of teachers nt = 16 is shown in Figure 3. The
data are rescaled by n0.35, so the best match for a different
number of time-slots is found. It seems that the standard
deviation of the distribution grows approximately n0.35.

Figure 4 shows the histogram for different number of
classes and teachers. It seems that the variance does not
change with the number of classes or the number of teachers.

Figure 5 shows the logarithm of the histogram of the
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Figure 5: Histogram of soft-costs on a logarithmic scale for
random solutions in particular instances for different number
of classes. The number of teachers is nt = 16 and the
number of time-slots is n = 100. The results are for randomly
constructed problem instances for 107 sampling.

soft-costs around the average cost for different number of
classes for number of teachers nt = 16, and number of time-
slots n = 100. Regardless of the number of classes, the shape
of the distribution is quite similar for each randomly drawn
problem instance and the costs of the random configurations
are approximately normally distributed around the average.

The same experiment is performed for a different numbers
of teachers, and the logarithm of the histogram scaled by
n1.5t is represented in Figure 6, where the number of classes
is nc = 6, the number of time-slots is n = 100 and the
number of sampling is 107. Although the curves do not
clearly lay on top of each other, all of them show a normal
shape distribution around the mean.

3.3. Auto-Correlation
Auto-correlation measures the local ruggedness of the

fitness landscape by measuring the expected correlation of
a random configuration and that of a configuration where
� randomly chosen steps Weinberger (1990) are taken. The
auto-correlation of the landscape is given byWeinberger (1990),

R(�) = 1
�2
E
((

f (t + �) − f̄
) (

f (t) − f̄
))

, (9)

where f (t) is cost at step t and �2 is the variance in the
cost for random configurations of the problem instance. This
measures the expected changes in the fitness of the function
as � moves have taken. We have computed the auto-correlation
for different number of classes, teachers and time-slots. The
auto-correlation function appears to fall off approximately
exponentially as

R(�) ≈ e−�∕l, (10)

where l is known as the correlation length Stadler (1996).
Figure 7 shows the correlation length of the landscape of
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Figure 6: Histogram of soft-costs on a logarithmic scale for
random solutions in particular instances for different number
of teachers scaled by n1.5t . The number of classes is nc = 6
and the number of time-slots is n = 100. The results are for
randomly constructed problem instances for 107 sampling.

hard constraints versus the number of classes on a log-log
scale. The data show that as the number of classes grows,
the correlation length grows as l ≈ n0.16c , which means that
as the number of classes grows, the neighbor solutions in the
landscape become more correlated. The higher correlation
length is usually interpreted as an indicator for a less rugged
landscape, and therefore an easier problem. This is obviously
not the case for the Timetabling problem, as more number of
classes mean a much harder problem. The same experiment
is performed for a different number of teachers, and the data
show similar behavior, the correlation length grows as l ≈
e0.24nt . There is also a relationship between the correlation
length and the number of time-slots. The data suggest that
the correlation length grows linearlywith the number of time-
slots, for nc = 6, and nt = 16 it grows as l ≈ 0.33np.

3.4. Landscape of Hard Constraints
The landscape of the timetabling problem consists of two

fitness space, the hard constraints, and the soft constraints. A
search algorithm has to search in the hard constraint landscape
to find the region inwhich all the hard constraints are satisfied,
where we call the feasible region. After reaching the feasible
region, the algorithm starts the second phase of its search
process, at which it tries to minimize the soft constraint cost.
In this section, we investigate the properties of the feasible
regions.

3.4.1. Time to feasible regions
We start our analysis by studying the time it takes for

a local-search algorithm to reach a feasible region, starting
from a random configuration. The local search algorithm
checks all the neighbors of the configuration and moves to
the neighbor with the best fitness. The process is performed
until a feasible region is found. Figure 8 shows the relationship
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Figure 7: Correlation length of the landscape versus the
number of classes on a log-log scale. This is for number
of teachers nt = 16, number of time-slots n = 200. The data
are averaged over 100 problems, 106 walks on each.

between the number of time-slots, n, and the time it takes
for the local search algorithm to satisfy the hard constraints.
Under the scaling used in this figure, the data fit a straight
line. Although the complex scaling of the figure is unlikely
to model the true behavior of the timetabling problem, it is
indicative of the complexity of the landscape of the problem.
The fitting line in Figure 8 suggests that the time it takes to
reach a feasible region increases as t ≈ e0.05ean

2.34
, where

a = e−10.64. This means that as the number of time-slots
gets closer to the phase transition, the time to feasible regions
grows much faster than exponentially. This is an interesting
finding as the analysis suggests that the correlation length
grows linearly with the number of time-slots. This suggests
that although the fitness landscape becomes less rugged as
the number of timeslots grows, it takes a longer time to solve
the problem. This seems counter-intuitive as the fitness ruggedness
is interpreted as problem hardness. This can be explained
by the fact that it is not only the landscape ruggedness that
determines the problem hardness. In some problems, it is
the existence of large plateau regions that make the problem
hard for finding better solutions. A large plateau can make
the fitness landscape less rugged. Note that the increase in
time to satisfy the hard constraints only occurs close to the
phase transition, and below the phase transition this rapid
growth rate is not observed.

The data presented in Figure 8 show that by increasing
the number of constraints (time-slots) the time it takes to
satisfy the hard constraints grows rapidly. The time also
depends on the number of classes, as this number is another
constraint on the problem. Figure 9 shows the relationship
between the time to satisfy the hard constraints and the number
of classes. This constraint also has a significant effect on the
time to feasible regions, where the time grows much faster
than exponentially as the number of classes decreases (the
number of constraints increases).
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Figure 8: Time to satisfy the hard constraints versus the
number of time-slots. This is for number of classes nc = 12
and number of teachers nt = 16. The data are averaged over
1000 problem instances and 105 descents on each.
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Figure 9: Time to satisfy the hard constraints versus the
number of classes. This is for number of time-slots n = 120
and number of teachers nt = 16. The data are averaged over
1000 problem instances and 105 descents on each.

3.4.2. Size of the feasible regions
The other important property of the feasible regions is

their size, as increasing the number of constraints leads to
a decrease in the size of the feasible regions. This section
studies the effect of the number of time-slots on the size of
the feasible regions.

We saw in Figure 1 that as the number of time-slots increases,
we approach a phase transition, at which problems become
unsolvable. This means that increasing the number of time-
slots decreases the size of the feasible regions until the feasible
regions disappear. In order to show this relationship, Figure 10
shows the natural logarithm of the natural logarithm of the
size of the feasible regions, versus the natural logarithm of
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Figure 10: Natural logarithm of the natural logarithm of
the number of configurations on the feasible regions, nc ,
versus the natural logarithm of the number of time-slots at
the phase-transition, minus the number of time-slots plus
one. Where nr is the number of time-slots at the phase-
transition and n is the total number of time-slots. This is
for number of classes nc = 4, number of teachers nt = 4,
number of days nd = 3 and number of periods is each day is
np = 3. This is averaged over 1000 problem instances for 105
descends on each.

the number of time-slots at the phase-transition minus the
number of time-slots plus one. The data suggest that the
size of the feasible regions decays as nc ≈ e(nr−n+1)2.57 with
the number of time-slots. This means that increasing the
number of time-slots decreases the size of feasible regions
faster than exponentially, and thus, the number of possible
solutions decays very fast as the number of time-slots grows.

Figure 11 shows the relationship between the number of
classes and the size of the feasible regions. On the scaling
used in this figure, the data almost fit a straight line, which
suggests that the size of the feasible regions grows as N ≈
ln(nc)8.45.

3.5. Finding the feasible regions
One important property of the feasible regions is the probability

of the local search algorithms finding them. Figure 12 shows
the probability of finding the feasible regions versus the size
of the feasible regions for a particular problem instance with
number of classes, nc = 5, number of time-slots, n = 24
and number of teachers, nt = 5. The data show that there
is no particular relationship between the size of the feasible
regions and the probability of finding them. This means
that there is no correlation between the size of the feasible
regions and the size of the basin of attraction of them.

In the timetabling problem, at the first phase a local search
algorithm finds a feasible region, then considering the soft
constraints as the objective, another local search algorithm
explores the feasible region in search of a good solution.
This propertymakes the probability of finding solutions depend
on the probability of finding the feasible region in which
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Figure 11: Natural logarithm of the number of configurations
on the feasible regions, N , versus the natural logarithm of
the natural logarithm of the number of classes. This is for
number of time-slots n = 23, number of days nd = 3 and
number of periods in each day np = 3. This is averaged over
1000 problem instances for 105 descends on each.
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Figure 12: Probability of finding the feasible regions versus
the size of the feasible regions. This is for a particular
instance for number of classes, nc = 5, number of time-slots,
n = 24 and number of teachers, nt = 5. The number of
descents is 106.

the solution lies. The reason for such behavior is that there
is no correlation between the hard landscape and the soft
landscape. Figure 13 shows the probability of finding feasible
regions against the soft cost of the best local optimum in
the feasible region. The data show no correlation between
the probability of finding a feasible region and the cost of
the best solution in the region. This property is clearly an
undesirable one becausewhen searching for a feasible region,
the local search algorithms do not (cannot) consider the soft
cost, so with a higher probability, they end up in a feasible
regionwith a bigger basin of attraction, which is not necessarily
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Figure 13: Probability of finding the feasible regions versus
the soft cost of the best solution on the feasible region. This
is for a particular instance for number of classes, nc = 5,
number of time-slots, n = 24 and number of teachers, nt = 5.
The number of descents is 106.
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Figure 14: The distance between the best solutions in each
feasible region to the best observed solution. This is for a
particular instance for number of classes, nc = 5, number
of time-slots, n = 24 and number of teachers, nt = 5. The
number of descents is 106.

the region containing a solution with a desirable soft cost.
In order to find the distribution of good solutions in the

landscape, we analyze the distance between the good solutions.
The distance between the two solutions is simply calculated
as the Hamming distance between two solutions. Figure 14
shows the distance between the best solutions in each feasible
region to the best-observed solution versus the soft cost of
the solutions. The data suggest that good solutions tend to
be closer to the best solution, even though they are located in
different feasible regions. This is an important property of
the fitness landscape that can be exploited when developing
optimization algorithms.

4. Quantum Evolutionary Algorithms
QEAuses a novel representation based on the aforementioned

concept of q-bits Tayarani-N andAkbarzadeh-T (2014). Consider
i-th individual in �-th generation defined as an n-qubit as
Han and Kim (2002)

[

��i1 ��i2 … ��ij … ��in
��i1 ��i2 … ��ij … ��in

]

, (11)

where |

|

|

��ij
|

|

|

2
+ |

|

|

��ij
|

|

|

2
= 1 , j = 1, 2, ..., n, where n is the

number of q-bits, i.e., the string length of the q-bit individual,
i = 1, 2, ..., m, wherem is the number of possible solutions in
the population and � is generation number of the evolution.
Since a q-bit is a probabilistic representation, any superposition
of states is simultaneously represented. If there is, for instance,
a three-q-bits (n = 3) individual such as

⎡

⎢

⎢

⎣

1
√

2
1
√

3
1
2

1
√

2

√

2
√

3

√

3
2

⎤

⎥

⎥

⎦

, (12)

alternatively, the possible states of the individual can be represented
as

q�i =
1

2
√

6
|000⟩ + 1

2
√

2
|001⟩ + 1

2
√

3
|010⟩ + 1

2
|011⟩+

1

2
√

6
|100⟩ + 1

2
√

2
|101⟩ + 1

2
√

3
|110⟩ + 1

2
|111⟩ .

(13)

Note that the square of above numbers are true probabilities,
i. e., the above result means that the probabilities to represent
the states |000⟩, |001⟩, |100⟩ and |010⟩ are 1∕24, 1∕8, 1∕24
and 1∕12 respectively. Consequently, the three-q-bits system
of (equation 12) could carry all eight states information at the
same time.

Evolutionary computingwith the q-bit representation has
a better characteristic of diversity than classical approaches
since it can represent a superposition of states. Only one
q-bit individual such as equation 13 is enough to represent
eight states, whereas, in classical representation, eight individuals
are needed. Additionally, along with the convergence of the
quantum individuals, the diversity gradually fades away and
the algorithm converges.

4.1. Quantum Gates Assignment
The common mutation is a random disturbance of each

individual, promoting explorationwhile also slowing convergence.
Here, the quantum bit representation can be simply interpreted
as a biased mutation operator. Therefore, the current best
individual can be used to steer the direction of this mutation
operator, whichwill speed up the convergence. The evolutionary
process of a quantum individual is completed through the
step of “updateQ(�)”. A quantum rotation gate is described
below. Specifically, a q-bit individual q�i is updated using the
rotation gate U (�) in this algorithm. The k-th q-bit of the i-
th quantum individual generation �, [��ik ��ik]

T is updated
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Table 1
Lookup Table of Δ�, the rotation gate. xi is the i-th bit of
the observed binary solution and bi is the i-th bit of the best
found binary solution.

xi bi f (x) ≥ f (b) Δ�
0 0 false 0
0 0 true 0
0 1 false 0.01�
0 1 true 0
1 0 false −0.01�
1 0 true 0
1 1 false 0
1 1 true 0

as Han and Kim (2002),
[

��+1ik
��+1ik

]

=
[

cos(Δ�) − sin(Δ�)
sin(Δ�) cos(Δ�)

] [

��ik
��ik

]

, (14)

where Δ� is the rotation angle and controls the speed of
convergence and is determined fromTable 4.1. Han andKim
(2002) show that these values forΔ� have better performance.

This section describes thewayQEA is adopted for timetabling
problems. In order to be able to solve the problem with
evolutionary algorithms, at the first step, a representation of
the possible solutions has to be proposed. In this paper, we
use binary representation. Each binary solution is represented
with a five-dimensional binary array xctspd , where,

c ∈ C = {1, 2, ..., nc} represents the c-th class and nc is
the total number of classes.

s ∈ S = {1, 2, ..., ns} represents the s-th subject and ns
is the total number of subjects.

t ∈ Ts = {1, 2, ..., nt,s} represents the t-th teacher teaching
subject s and nt,s is the total number of teachers who teach
the s-th subject.

p ∈ P = {1, 2, ..., np} represents the p-th period(time-
slot) and np is the total number of time-slots in each day.

d ∈ D = {1, 2, ..., nd} represents the d-th day in the
week, and nd is the total number of working days in each
week.

If xctspd=1, it means that in c-th class, t-th teacher will
teach s-th subject in p-th time-slot of d-th day of the week.
But according to the constraints, not every x can represent a
feasible solution. The constraints have to also be considered.
In order to check the constraints, two other variables are
introduced. A three dimensional array y, where ycts=1 if the
t-th teacher is scheduled to teach s-th subject in c-th class.
And a four-dimensional array a where atspd=1 if the t-th
teacher, teaching s-th subject is available at p-th time-slot of
d-th day. Using such variables and notations the constraints
can be formulated as follows,

H1:
∑

c∈C
xctspd ≤ 1,

H2:
∑

s∈S

∑

t∈Ts

xctspd ≤ 1,

H3:
∑

c∈C

∑

d∈D

∑

p∈P
xctspd = ℎts,

H3’:
∑

d∈D

∑

p∈P
xctspd ≥ ℎcs,

H4:
∑

s∈S

∑

t∈Ts

∑

d∈D

∑

p∈P
xctspd = ℎc ,

H5:
∑

c∈C
xctspd ≤ 0, if ats = 0,

H6:
∑

s∈S

∑

t∈Ts

xcst(p+1)d−
∑

s∈S

∑

t∈Ts

xctspd ≥ 0, p = 1, ..., np−2,

H7:
∑

t∈Ts

ycts = 1,

H8: ycts ≥ xctspd , (15)

where t ∈ Ts, s ∈ S, p ∈ P , d ∈ D, c ∈ C . H7 means that
no more than one teacher is assigned to a subject in a given
class and, H8 means that only the specific teacher in H7 is
assigned to the ℎcs lectures of class c for subject s.

The proposed representation method has the flexibility
to be applied to every scheduling problem, the only change
needed is to define the constraints in a proper way.

4.2. Using QEA to Solve Timetabling Problem
In this section QEA is modified to adapt it to timetabling

problem. The QEA is modified as follows.

Algorithm 1 QEA for timetabling problem
Proposed Algorithm
begin
� = 0

1. Initialize Q0
2. Make X0 by observing the states of Q0.
3. Perform local search on X0 to satisfy hard constraints.
4. Evaluate X0

5. Store X0 into B0. Store the best solutions among X0 into b.
6. while not termination condition do
begin
� = � + 1

7. Make X� by observing the states of Q�−1
8. Perform local search on X� to satisfy hard constraints.
9. Evaluate X�

10. Update Q� using Q-gate
11. if migration-condition then perform migration.
end

end
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QEAhas a population of quantum individualsQt = {q�1 , q
�
2 , ..., q

�
m, }

where � is the generation step andm is the size of the population.
The QEA procedure in algorithm 1 is described as follows.

1- In our representation, each possible solution is a 5-
dimensional solution xctspd , so each q-individual is a five
dimensional array of q-bits. In the initialization step all qubits
�0i,ctspd and �

0
i,ctspd are initialized with 1∕

√

2, where m is the
size of the population, i = 1, 2, ..., n, c ∈ C , t ∈ T , s ∈ S,
p ∈ P , d ∈ D. It means that the probability of observing 0
and 1 for all qubits is equal.

2- In this step, the binary solutionsX0 = {x01, x
0
2, ..., x

0
m}

at generation � = 0 are created by observingQ0. In original
version of QEA, observing the binary solution x�i,ctspd from

qubit
[

��i,ctspd ��i,ctspd
]

is performed as below:

x�i,ctspd =

{

0 if U (0, 1) < |��i,ctspd|
2

1 otℎerwise
, (16)

where U (., .), is a uniform random number generator.
3- In some problems likeMax-Sat and numerical optimization

problems, every binary string is a possible solution to the
problem. In the constraint satisfaction problems likeKnapsack
and timetabling problems, there are some hard constraints
that must be satisfied. In such problems, not every binary
configuration represents a feasible solution. Since evolutionary
algorithms are random algorithms and may generate every
possible solution in the search space, there should be amethod
of preventing the algorithm frommaking infeasible solutions.
Oneway of doing this is by designing a repair functionwhich
makes an infeasible solution a feasible one. The problem
with the repair function is that there may bemany constraints
being violated and after repairing a solution, although the
solutions become feasible, due to the numerous changes to
the solutions, the cost of the solutions is not usually good.
In order to solve this problem, a new observation operator
is proposed in this paper. In our proposed method, a local
search algorithm is performed on the solution to change the
solution until it reaches a state, at which all constraints are
satisfied. Each step of the proposed local search algorithm
is as follows. First, one of the subjects is chosen randomly:

s′ = ⌈U (0, ns)⌉ . (17)

Then one of the teachers who teaches the subject s is chosen
randomly and is put in one of the randomly chosen slots,

t′ = ⌈U (0, nt)⌉ , p′ =
⌈

U (0, np)
⌉

, d′ = ⌈U (0, nd)⌉ .
(18)

At the next step, using the availability array, at′p′d′ , it is
determined if the teacher is available in that time-slot. If the
chosen teacher is available (i.e. at′p′d′=1) at the time-slot
one of the classes is chosen randomly,

c′ = ⌈U (0, nc)⌉ . (19)

Finally, the availability of the randomly chosen class is checked.
A class is available if

∑

s∈S

∑

t∈Ts

xct′sp′d′ ≤ 1, (20)

where t′ is the randomly chosen teacher, p′ and d′ show
the randomly chosen time-slot. If the class were available,
the observation operator is performed to make xi,ctspd from
�i,ctspd . This process is performed until a binary solution
that satisfies all the constraints is achieved.

4- All solutions in X� are evaluated using the soft cost
function.

5- Store X0 into B0. Select the best solution among X0

and store it to b.
6- The while loop runs until the termination condition

is satisfied. The termination condition can be considered
as maximum generation condition, convergence condition or
the desired fitness is achieved.

7- Observe X� from Q�−1.
8- Perform the local search as described in step 3 to satisfy

the hard constraints.
9- Evaluate X� using soft cost function.
10- Update Q� .
11- A migration is performed in this step.
This is the original version ofQEA, that has beenmodified

to adapt to the timetabling problem. To further improve the
performance, a new operator is proposed in the next sections.

5. Exploiting Fitness Landscape Properties
To design successful optimization algorithms requires an

understanding of the underlying properties of the optimization
problems. One way of understanding the properties of the
problems is fitness landscape analysis Prugel-Bennett and
Tayarani-Najaran (2011); Tayarani-N and Prügel-Bennett (2015);
Tayarani-N. and Prügel-Bennett (2015); Tayarani-N. and Prugel-
Bennett (2014); Tayarani-N. and Prugel-Bennett (2016). By
studying the fitness landscape properties of the timetabling
problem, we try to develop new operators for QEA to improve
its performance in solving the problem.

It is argued that discovering the properties of the fitness
landscape and its structure can help evolutionary algorithms
to perform amore informed search in the landscape Tayarani-
N. and Prugel-Bennett (2014). However, it is crucial to ask
how the information about the fitness landscape can be collected
and how the information should be processed to build constructive
knowledge and guide the search process. During the search
process, evolutionary algorithms search through the search
space and visit many solutions and local optima. The visited
solutions and their fitness carry information about the backbone
structure of the fitness landscape. If exploited properly, the
information can be used to inform evolutionary algorithms to
search for better parts of the search space for better solutions.

In this paper, a new version of the quantum evolutionary
algorithm is proposed for the timetabling problem. In the
proposedmethod, an operator is developed that collects information
about the fitness landscape and tries to capture the large scale
structure of the fitness landscape. Our proposed algorithm
has two parts. One is the quantum evolutionary algorithm
that works as a global search and one is a local search.

As shown in Figure 14, good solutions tend to be closer
to the global optimum. This suggests that good solutions are
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clustered in the landscape and the location of good solutions
provides information about where it is more likely to find
the global optimum. In order to exploit the information,
an operator is proposed that collects information about the
best solutions and uses the information to guide the search
process towards better regions in the search space. The pseudo-
code of the proposed QEA for the timetabling problem is
introduced in algorithm 2.

In QEA by converging the algorithm, the quantum bits
converge to the true values of [� �]T = [0 1]T or [� �]T =
[1 0]T . In this condition, the algorithm is trapped in a
local optimum of which it has little chance of escaping. This
weakness is targeted in this paper to improve the performance
of the algorithm by detecting the converged q-individuals
and guiding them towards better regions in the search space.
In the proposed algorithm in each generation, the convergence
of the population is calculated andwhen the population converges,
it is reinitialized based on the information it has gathered
about the fitness landscape during its previous search steps.
The convergence of the population is calculated as Tayarani,
N and Akbarzadeh. T (2008),


 = 1
ncntnsnpnd

∑

c∈C

∑

t∈Ts

∑

s∈S

∑

p∈P

∑

d∈D

|

|

|

|

1 − 2 ||
|

�i,ctspd
|

|

|

2|
|

|

|

,

(21)

where 
 is the convergence of the population and m is the
size of the population (the number of q-individuals in the
population). The convergence here is the distance of the q-
individual to the converged state. One way of helping the
algorithm escape from the optima is to initialize the population,
where it gives the q-individuals a new chance to search and
find new solutions. In our proposed algorithm, a database of
best-observed solutions is generated and the history of the
search process during the past generations is used to make
better q-individuals that represent the better parts of the search
space with higher probability. Once the q-individuals are
trapped in a local optimum, using the collected information,
the proposedmethod reinitializes the q-individuals. The pseudo-
code of the proposed algorithm is presented in Algorithm 2.

The proposed method which is described in algorithm 2
and in Figure 15 and 16 has two phases, one is the exploration
step, where the algorithm performs a search to discover the
landscape and one is the search process, inwhich the algorithm
searches through space. In step 4 of the algorithm, the best
solutions found in the local search process are stored in .
Here the set contains information about the fitness landscape.
In step 9 of the algorithm 2, the proposed landscape estimating
local search is performed (algorithm 3).

The proposed local search algorithm tries to explore the
fitness landscape and collect data about the location of feasible
regions. In order to give the algorithm more exploration
and increase its chance of finding as many feasible regions
as it can, during its search process, the algorithm uses a
tabu mechanism and tries to avoid the feasible regions it
has already discovered. Therefore, instead of a random step,
only the steps get accepted that move away from the already

Algorithm 2 The proposed algorithm
begin

� = 0
1. Initialize Q0
2. Make X0 by observing the states of Q0.
3. Perform local search on X0.
4. Add X0 to the set .
5. Evaluate X0

6. Store X0 into B0. Store the best solutions among X0 into b.
Phase 1: Landscape Estimation
7. while not termination condition do

begin
� = � + 1

8. Make X� by observing the states of Q�−1
9. Perform landscape estimating search (algorithm 3)

on all x ∈ X� .
10. Evaluate X�

11. Update Q� using Q-gate
12. Store the best solutions among B�−1 and X� into B�
13. Update .
14. if migration-condition
15. perform migration.

end
Phase 2: Landscape Exploitation
16. while not termination condition do

begin
� = � + 1

17. Make X� by observing the states of Q�−1
18. Perform local search on all x ∈ X� .
19. Evaluate X�

20. Update Q� using Q-gate
21. Store the best solutions among B�−1 and X� into B�
22. Update .
23. if 
 > � then
24. Cluster the solutions in  and find �i, i = 1...�
25. reinitialize q-individuals based on �i.

end
end

Algorithm 3 Landscape Estimating Search
while x does not satisfy all constraints
begin
1. for all possible improving moves on x find x′ that satisfies

∀y ∈ , Δ(y, x) < Δ(y, x′).
2. if no solution was found in step 1, find one that

satisfies ∀y ∈ , Δ(y, x) <= Δ(y, x′).
3. if no solution was found in steps 1 and 2, chose one

move randomly.
4. x=x’.
end
if x satisfies all constraits
5. perform a local search to optimize soft constraints.
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Figure 15: The flowchart of the phase one of the algorithm.

found feasible regions. To do this, when a move is to be
taken, the Hamming distance between the new solution to
all the solutions in  is found,

Δ(x, y) =
∑

c∈C

∑

t∈Ts

∑

s∈S

∑

p∈P

∑

d∈D
|xctspd − yctspd|, (22)

the move is accepted if the local search moves away from
the already found feasible regions. If there is no move to
satisfy this, a move is taken that does not get closer to the
found feasible regions. And if all the moves get closer to
the feasible regions, one is chosen randomly. This way, by
avoiding the areas in the search space that have already been
explored, the local search algorithm tries to find as many
feasible regions as possible. Note that in our proposed local
search, all themoves decrease the number of hard constraints
that are broken; therefore, there will be no loop in the search
process.

When all the hard constraints are satisfied, the local search
starts optimizing the soft constraints at step 5. Here the

Figure 16: The flowchart of the phase two of the algorithm.

algorithm performs random walks and takes steps when a
better solution is found. The random walk in this paper is
performed by finding all the feasible neighbors to the current
solution and moving to one of them randomly. The local
search is performed until no better solution is found at the
neighborhood.

Steps 13 of the algorithm 2 collects information about
the fitness landscape during the search process and tries to
capture the structure of the fitness landscape. This information
can then be used to guide the search algorithm. To collect
the information, the set, is devised. Here, the best possible
solutions among the binary solutions X� are added to ,
where  is the history of the solutions found in previous
searches until the current iteration, �. The location of these
good solutions and their fitness contains information about
the structure of the fitness landscape that can be exploited by
optimization algorithms.

Phase 1 of the algorithm only explores the search space
and collects information. In phase 2, the collected information
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is exploited to guide the search algorithm. This information
is used to guide both the local search algorithms and the
population of quantum individuals.

In step 23, the convergence status of the population is
checked. If the population has converged, it means that the
algorithm is trapped in local optima and thus the population
is reinitialized based on .

As the data in Figure 14 demonstrate, good solutions
tend to be closer to one another than random solutions. This
suggests that good solutions are clustered in the search space.
This property has also been observed in other problems Prugel-
Bennett and Tayarani-Najaran (2011); Tayarani-N and Prügel-
Bennett (2015); Tayarani-N. and Prügel-Bennett (2015); Tayarani-
N. and Prugel-Bennett (2014); Tayarani-N. and Prugel-Bennett
(2016). Therefore, in step 24 of the algorithm, the best solutions
that have been found in the previous searches are clustered
to exploit the area around each cluster separately. Here 
contains the best solutions throughout the search process.
The k-means clustering algorithm is used in this paper to
cluster the solutions in  to find the center of each cluster,
�i, for i = 1…K where K is the number of clusters.

In step 24, the solutions in are first clustered to generate
the sets k, for � = 1…K , where K is the number of
clusters. Then the algorithm divides the population into K
groups of q-individuals and assigns a group to each cluster.
Each group is then reinitialized around the center of the cluster
it represents to search the area around it. The center of each
cluster is calculated as the weighted average of the solutions
in the cluster. The weight of the solutions is a function of
the iteration in which the solutions have been found. This
weighted averaging system is used so themore recent solutions
have greater weight,

�ctspd =
1

∑

∀x∈� e
− �− (x)

�

∑

∀x∈�
e−

�− (x)
� xctspd , (23)

∀c ∈ C, t ∈ Ts, s ∈ S, p ∈ P , d ∈ D,

where  (x) returns the iteration at which the solution x was
found and � is the current iteration. As per equation 23, the
solutions in more recent iterations have more weight and so
more influence on i. The weight of the solutions decays
exponentially with their age. Ifi is close to 1, it means that
in most of better possible solutions, this bit has the value of
1, and it is better to give a value to this q-bit that represents
1 with higher probability. Accordingly, this paper proposes
the following method for the reinitialization step,

q�i,ctspd =
�
4
+ �
3
× (ctspd −

1
2
)

∀c ∈ C, t ∈ Ts, s ∈ S, p ∈ P , d ∈ D, (24)

where i = 1, 2, ..., m, m is the number of q-individuals in the
population. This formula re-initializes the q-bits between the
values of �∕4 − �∕6 and �∕4 + �∕6 based on the value of
ctspd .

Table 2
The problem instances used in this paper.

nc ns nt np nd n nc ns nt np nd n
I1 4 2 4 3 3 32 I16 4 2 4 3 3 25
I2 4 2 4 3 5 54 I17 4 2 4 3 5 41
I3 4 2 16 3 5 54 I18 4 2 16 3 5 41
I4 4 6 8 3 3 32 I19 4 6 8 3 3 25
I5 4 6 16 5 3 54 I20 4 6 16 5 3 42
I6 4 6 20 5 5 90 I21 4 6 20 5 5 70
I7 8 2 12 3 3 64 I22 8 2 12 3 3 50
I8 8 6 16 3 5 108 I23 8 6 16 3 5 83
I9 12 2 20 5 5 270 I24 12 2 20 5 5 209
I10 12 4 12 3 5 162 I25 12 4 12 3 5 125
I11 12 6 12 3 3 97 I26 12 6 12 3 3 75
I12 12 6 20 3 3 97 I27 12 6 20 3 3 75
I13 16 2 16 3 3 129 I28 16 2 16 3 3 100
I14 16 2 20 3 5 216 I29 16 2 20 3 5 167
I15 20 4 20 3 5 270 I30 20 4 20 3 5 210

The proposed algorithm collects information from previous
searches and builds a database of good solutions. Then uses
this information to reinitialize the q-individuals with the values
that represent better parts of search space.

5.1. Parameter Study
In order to test the algorithm different problem instances

are used. There are two classes of problems used in this
paper, the first class is the random problems with different
problem sizes. The list of randomproblem instances is summarized
in Table 2. These problems are generated using the method
presented in Abramson and Abela (1991). The second class
is the benchmark problems. In this paper hdtt hdt, Valouxis
Valouxis and Housos (2003), High School Post et al. (2014),
South African Primary School Raghavjee and Pillay (2015)
and South African High School Raghavjee and Pillay (2015)
are used as benchmark problems.

The population size is an important parameter that affects
its performance ?. Thus, one main question is what is the
best population size for a certain computational budget? Due
to its probabilistic representation, a q-individual in QEA can
perform a search through the landscapewithout having interaction
with other q-individuals. This makes QEA different from all
the other evolutionary algorithms that use nonprobabilistic
representation for solutions. However, having only one q-
individual is not a good choice as it sacrifices the exploration
ability of the algorithm. To study this we perform an analysis
to find the best population. The results on different problems
of different sizes are shown in Table 3. The results are averaged
over 30 runs. The results are compared for different size
of the population for n = 1, 2, 5, 10, 15, 25, 40, 60, 100, 150
and 200. The number of the function evaluations for all
the population sizes is set to 50000, that is for example for
the population size of n = 25, the number of iterations is
50000∕25 = 2000.

The data suggest that the best performance is achieved
with a population size equal to 25. Here, the population size
n = 1 does not reach the best performance for any of the
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Table 3
Comparison between different size of the population. This is for m = 100 and the data
are averaged over 30 different runs.

Benchmarkn=1 n=2 n=5 n=10 n=15 n=25 n=40 n=60 n=100 n=150 n=200
hdtt4 69.42 65.75 68.23 67.59 66.16 66.45 66.84 67.15 65.68 66.65 68.05
hdtt5 116.72 117.38 116.26 117.21 116.32 115.1 115.39 117.25 114.76 116.52 114.93
hdtt6 189.15 179.82 178.62 182.33 177.72 180.68 183.79 180.23 182.35 187.81 189.06
hdtt7 278.5 274.43 273.05 274.25 275.63 277.07 275.25 277.45 276.36 279.06 278.15
hdtt8 379.05 378.29 377.82 375.8 374.81 374.31 374.41 378.88 377.01 377.28 378.74
Valouxis 34.93 34.2 33.59 30.21 32.47 32.76 33.1 31.95 33.19 33.5 34.46
HS1 63.54 60.05 64.47 60.2 61.76 61.71 60.51 60.2 63.94 62.27 64.76
HS2 64.72 61.27 63.62 63.45 62.24 60.71 61.07 62.78 63.24 63.94 64
HS3 15.84 13.73 13.82 13.09 13.29 12.69 14.09 14.46 14.72 14.66 15.22
HS4 43.68 43.46 42.06 41.22 41.7 42.53 42.05 42.97 44.9 43.49 43.35
HS5 11.4 11.38 11.33 10.63 10.99 10.09 10.56 10.64 10.48 10.81 11.75
HS7 98.63 95.02 97.88 96.57 91.86 92.58 97.1 90.06 92.51 96.84 98.89
SAPS 3.87 2.63 2.78 3.02 2.44 2.25 2.44 2.17 3.14 3.46 4
SAHS 2.57 1.92 1.98 1.33 1.07 1.14 1.39 2.03 1.02 1.54 2.57

problems. One explanation could be a large number of local
optima in combinatorial optimization algorithms, that make
on single q-individual inert (see for example Prugel-Bennett
and Tayarani-Najaran (2011)). If the local optima in the
landscape are close to one another and the global optimum
is nearby, then a single q-individual may have a chance of
finding the global optimumby jumping from a local optimum
to another until it reaches the global optimum. However,
in combinatorial optimization problems in which the local
optima are far apart, a single q-individual is not capable of
performing the search and there is a need for a population of
q-individuals that cooperate and help one another to escape
from local optima and reach the global optimum.

When the population is too large n > 150, the performance
of the algorithm decays. This could be explained by the
fact that a larger number of q-individuals results in each q-
individual receiving a smaller computational budget, so they
have less time to exploit local optima. In other words, the
algorithm has too much leaned towards exploration.

The proposed algorithm has two parameters, � which
controls the memory of the algorithm on the best-observed
solutions in different iterations, and � in step 23 of the algorithm 2
which controls the frequency at which the proposed algorithm
is applied to control the exploitation of the collected information
and the exploration through the search space. This section
analyzes the effect of these two parameters on the performance
of the algorithm. Amethod similar to Tayarani-N. andAkbarzadeh-
T. (2014) is used here. The size of the population for all
the experiments is set to 25 and the parameters are set to
�1… �5 = (0.8, 0.9, 0.95, 0.99, 1), and �1… �5 = (1, 10, 50, 100, 200).
In order to find the best parameters, we found the performance
of the algorithm for all the possible combinations (which
is 5×5=25 possibility) and report the values that offer the
best performance. For these sets of parameters, we tried to
use a domain in which the best value for the parameters lies
within the domain. To do so, we use the two extreme values
at each end. For example for � we use 1 at one side and
200 at the other which are the values at the two extreme

ends. Here �5 = 1 is included which makes the proposed
algorithm the same as the simple QEA. This is because if
� = 1 then the population is reinitialized when all the q-
individuals are at the true states of [� �] = [0 1] or [� �] =
[1 0] which never occurs. We also tried to use the domain
for these parameters in which the graphs representing the
performance of the algorithm are as convex as possible. The
best parameters for the algorithm are summarized in Table 4.
The data in this table show an improvement for the proposed
algorithm over the original version of QEA as � = 1 has
not reached the best performance for any of the problem
instances. The best parameters for different problems are
quite similar, the best value for � is around 0.99 and the best
value for � is 100. From now on, we use � = 0.99 and
� = 100 for the proposed algorithm.

The proposed algorithm is compared with the original
version of QEA, Genetic Algorithm, Differential Evolution,
Fast Evolutionary Strategy, Particle Swarm Optimization,
Simulated Annealing algorithms, the algorithm proposed in
Song et al. (2018), Wang et al. (2007), Dang et al. (2016),
Ceschia and Schaerf (2018) and Legrain et al. (2017). In
order to perform a fair comparison between the algorithms,
for each algorithm, the performance of the algorithms is studied
for a set of parameters, and the best parameters for the algorithms
are found. The best parameters for different algorithms are
summarized in Table 5. These parameters are used in the
experiments.

6. Experimental Results
This section performs an experimental study on different

algorithms. In all experiments themaximumnumber of generations
is set to 2000, the size of the population is 25 (50,000 function
evaluations) and the parameters of the algorithms are set
according to Tables 4 and 5. Themode value of the parameters
in these tables is used in the experiments. In order to perform
a fair comparison, all algorithms have been given an equal
number of function evaluations. In population-based algorithms,
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Table 4
The best parameters for the proposed algorithm for different
problems. The results are averaged over 30 runs.

Random Problems Random Problems
� � � �

I1 0.99 10 I16 0.95 10
I2 0.90 100 I17 0.99 100
I3 0.99 50 I18 0.95 50
I4 0.99 100 I19 0.90 100
I5 0.95 100 I20 0.99 50
I6 0.95 100 I21 0.99 50
I7 0.90 100 I22 0.99 50
I8 0.99 50 I23 0.99 50
I9 0.99 100 I24 0.99 100
I10 0.99 50 I25 0.90 50
I11 0.99 100 I26 0.99 50
I12 0.99 50 I27 0.90 50
I13 0.99 100 I28 0.95 100
I14 0.99 100 I29 0.99 50
I15 0.99 100 I30 0.95 100

Real World Problems Real World Problems
� � � �

hdtt4 0.95 50 HS2 0.90 50
hdtt5 0.90 50 HS3 0.95 50
hdtt6 0.95 100 HS4 0.90 100
hdtt7 0.99 50 HS5 0.90 50
hdtt8 0.99 50 HS7 0.95 50
Valouxis 0.99 50 SAPS 0.99 100
HS1 0.90 100 SAHS 0.95 50

the population size is set to 25 and the number of iterations
to 2000. For non-population algorithms, like SA, 50,000
iterations are used so the algorithm receives the same computational
budget. Also, the number of clusters in the proposed algorithm
is set to K = 3 as a gap analysis on the data suggests this is
the best representation for the data. Also, some experiments
suggest that K = 3 performs better than other values. To
cluster the data the k-means clustering algorithm is used.
Table 6 summarizes the results for different algorithms on
the random problem instances and the benchmark problems.
The parameters for these algorithms are set to � = 0.99 and
� = 100 for the proposed algorithm. The best results in this
table are boldfaced. Among all the problems, the proposed
algorithm has achieved the best results for 21 problem instances.
After the proposed algorithm sits Ceschia and Schaerf (2018)
with achieving the best results for 5 problem instances. The
next algorithm in the ranking is Dang et al. (2016), which
achieves the best performance for 4 problems. Then is GA
which achieves the best results for 3 problems.

In order to find the true ranking of the algorithms, the
Friedman two-way analysis of variance by ranks test is performed.
Table 8 shows the ranking of the algorithms based on the
data presented in Table 6. According to Friedman’s ranking
test, among the algorithms, the proposed algorithm is ranked
the best with 4.86. After that is QEA which is ranked 10.52.

The reasonwhy the proposed algorithm andQEAperform
better is that these algorithms have particularly been developed

for binary-coded combinatorial optimization problems. Therefore,
these algorithms inherently aremore suitable for the timetabling
problems as this problem is, in nature, a combinatorial binary
problem. The proposed algorithm performs better than the
original version ofQEAbecause inQEA there is nomechanism
to help the algorithm explore the search space when the q-
individuals are converged and the algorithm is trapped in
local optima. InQEA, after some iterations, the q-individuals
converge andwhen this happens, it means that they are trapped
in a particular region in the search space and have focused
their attention on the close-by local optima. In this situation,
the algorithm has little chance of escaping from the local
optima and to explore the search space. The proposed algorithm,
however, is equipped with a reinitialization mechanism that
can detect when the algorithm is trapped in local optima
and gives the algorithm another chance to perform a search.
Instead of a random reinitialization, the proposed algorithm
builds a database of the best solutions it has found during
its previous search. This database is analyzed to find the
regions in the search space that are more likely to contain
better solutions. Also, as the landscape analysis showed in
this paper, good solutions are clustered in the landscape.
Inspired by this, the proposed algorithm clusters the solutions
and creates a sub-population of q-individuals, assigning each
sub-population to one cluster. Therefore, the algorithm can
balance its computational budget between different clusters
of good local optima.

After QEA is GA which is ranked 12.09. GA does not
perform aswell as QEA, because it is not particularly designed
for combinatorial binary problems. However, GA still performs
better than other algorithms. This is because this algorithm
is well suited for binary problems, and its operators can be
more inherently applied to strings of binary solutions. Next
among the algorithms are FES, SA, PSO, andDE respectively.
Unlike GA and QEA that can inherently represent binary
solutions, these algorithms are more suitable for continuous
problems and must be tuned for binary solutions. Especially
for the case of PSO and DE, in their nature, these algorithms
are not as suitable for combinatorial optimization problems
and this could explain why they are ranked after QEA and
GA.

Among the algorithms proposed in referenced papers,
the best performance is achieved by Legrain et al. (2017)
which is ranked 11.81. It is interesting that QEA achieves
better performance than this algorithm. This indicates the
potential of QEA in solving timetabling problems. Also,
Song et al. (2018) does not offer good performance compared
to QEA and GA. We believe that it is because Song et al.
(2018) proposes a local search algorithm for the problem.
Local search algorithms are prone to get trapped in local
optima, a drawback that ismanaged in population-based algorithms.
The global search that GA and QEA offer, here helps them
to perform better. The algorithm proposed by Wang et al.
(2007), which is a QEAwith PSO update operator, performs
worse than the original version of QEA. It is interesting as
PSO also does not perform well here. Seems that PSO is not
a suitable mechanism for solving the timetabling problem
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Table 5
The best parameters for each of the benchmark problems. The number of iterations is
2000 and the data are averaged over 100 different runs.

PSO GA DE FES SA Wang et al. (2007)
c1 c2 W M R F O L S � c1 c2

hdtt4 5 0.1 0.1 0.005 1.0 0.1 0.8 1.0 1.1 0.9 1.25 1.75
hdtt5 0.5 0.5 0.1 0.003 1.0 0.1 0.2 1.0 1.1 0.95 1.5 1.25
hdtt6 1.5 1.0 0.7 0.003 1.0 0.5 0.2 1.0 1.1 0.9 1.75 1.25
hdtt7 5 1.0 0.1 0.003 1.0 0.1 0.4 1.0 1.1 0.95 1.5 1.25
hdtt8 5 1.0 0.5 0.003 1.0 0.1 0.4 1.0 1.1 0.9 1.5 1.25
Valouxis 2 0.5 0.7 0.005 1.0 0.5 0.2 1.0 1.1 0.95 1.25 1.25
HS1 2 0.5 0.7 0.003 1.0 0.5 0.2 1.0 1.1 0.95 1.25 1.5
HS2 5 0.5 0.7 0.01 1.0 1.0 0.2 1.0 1.2 0.9 1.25 1.75
HS3 5 1.0 1 0.003 1.0 0.1 0.2 1.0 1.1 0.95 1 1.25
HS4 2 1.5 0.7 0.003 1.0 0.1 0.4 1.0 1.1 0.95 1.25 1.5
HS5 2 0.5 0.7 0.003 1.0 0.5 0.2 1.0 1.1 0.95 1.5 1.75
HS7 2 1.5 0.7 0.005 1.0 0.1 0.2 1.0 1.1 0.95 1.25 1.5
SAPS 5 0.1 0.1 0.003 1.0 0.1 0.2 1.0 1.1 0.9 1.75 1.25
SAHS 5 0.1 0.1 0.003 1.0 0.1 0.4 1.0 1.1 0.95 1.25 1.5

evenwhen it is used in combinationwith an effective algorithm
like QEA.

In order to statistically test the proposed algorithm, Kruskal-
Wallis Sheskin (2003) and two-tailedWilcoxon signed-ranks
Wilcoxon (1945) tests are performed between the algorithms.
Tables 10 and 11 list the results of the Kruskal-Wallis test
between the algorithms where ‘SS’ is the sum of squares of
each source, ‘df’ is the degree of freedom associated with
each source, ‘MS’ is the mean squares (the ratio SS/df) and
‘Chi-square’ is the ratio of mean squares. The p-values in
these tables show the probability that these samples are taken
from populations with the same means. As the data in these
tables suggest, the p-values are very small, indicating that
the null hypothesis that all the samples are taken from the
same mean is rejected significantly.

Figure 17 shows the box plot of the results for different
problems. The central mark indicates the median, the top,
and bottom edges indicate the 75th and 25th percentiles respectively,
the whiskers show themost extreme data, and the outliers are
plotted by the ‘+’ symbol. The experiments are performed
over 30 runs. This is for the same analysis as performed to
collect the data in tables 10 and 11.

Figure 18 shows the cost of the best solution found in
each iteration for different problems and algorithms. Here
we present three problems as a representative of the general
behavior of the algorithms. We observed, to some extent,
similar behavior for other problems as well. As seen in this
graph, the algorithm proposed in Wang et al. (2007) reaches
very quickly a good quality solution but gets trapped in local
optima and does not progress anymore. The algorithm uses
PSO as an update operator for QEA. The genetic Algorithm
on the other hand offers a more steady improvement. It does
not converge very quickly, but at the same time does not
get trapped in local optima at the early stages of the search
process.

In order to statistically contrast the results obtained, the
two-tailedWilcoxon signed-ranks test is used, which is similar

to the paired t-test in nonparametric statistical procedures.
Wilcoxon test is utilized for determining if there is a significant
difference between the two samplemeans. Table 9 represents
the results of the Wilcoxon test for different problems and
different algorithms versus the proposed algorithm. In this
table, R+ is the sum of ranks for all the problems in which
the proposed algorithm outperforms each of the algorithms
andR− is the sum of ranks for the opposite. The data suggest
that the proposed operator can improve the performance of
QEA.

7. Conclusion
To develop successful optimization algorithms requires

an understanding of the problem structure. This paper performed
an analysis of the fitness landscape of the timetabling problem
and studied a number of properties of the landscape of the
problem. We showed that, similar to some other optimization
problems Prugel-Bennett and Tayarani-Najaran (2011); Tayarani-
N and Prügel-Bennett (2015), there is a phase transition in
the proportion of solvable problem instances in this problem.
This phase transition is observed versus the number of classes
and the number of time-slots. This paper also studied the
landscape ruggedness of the problem. This paper showed
that the landscape ruggedness decreases with the number of
time-slots.

By studying the time it takes for a local search algorithm
to solve hard constraints, we showed how different parameters
of the problem can affect the time complexity of the problem.
Our observations suggest that the time it takes for a local
search to solve the problem growsmuch faster than exponentially
with the number of time-slots as the phase transition is approached.

Quantum Evolutionary Algorithms were first developed
for the class of combinatorial optimization problems, and
since the timetabling problem is a combinatorial optimization
problem, these algorithms should perform well in solving
these problems. Nevertheless, not many researchers have
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Table 6
The experimental results for different algorithms on different benchmarks. The
parameters for each algorithm is set according to Tables 4 and 5 and the results are
averaged over 100 runs. The best results are boldfaced.

QEA HQEA GA PSO SA DE FES Song
et al.
(2018)

Wang
et al.
(2007)

Dang
et al.
(2016)

Ceschia
and
Schaerf
(2018)

Legrain
et al.
(2017)

I1
Mean 48.97 48.88 50.18 53.01 52.99 53.02 52.98 50.67 51.14 51.72 52.26 52.74
STD 0.47 0.6 0.54 0.66 0.43 0.78 0.82 0.82 0.67 0.62 0.74 0.61

I2
Mean 49.6 48.71 49.63 52.1 53.94 53.86 51.12 53.32 51.1 49.01 51.89 49.26
STD 0.11 0.1 0.09 0.07 0.13 0.09 0.13 0.14 0.14 0.13 0.11 0.1

I3
Mean 101.29 98.08 102.88 104.48 107.07 107.78 104.44 98.45 104.55 104.26 100.69 98.31
STD 0.64 1.02 0.84 1.09 0.83 0.77 0.84 1.08 0.71 0.71 0.58 0.96

I4
Mean 58.87 58.19 57.88 60.85 63.59 60.61 59.64 60.21 59.8 59.72 60.47 57.91
STD 0.39 0.45 0.28 0.31 0.43 0.36 0.28 0.42 0.32 0.46 0.28 0.29

I5
Mean 104.78 97.37 107.58 99.35 102.9 99.97 107.56 97.38 104.14 103.37 99.15 97.51
STD 1.65 0.92 0.86 1.5 1.45 1.46 1.07 1.05 1.35 0.98 0.86 1.44

I6
Mean 105.85 97.23 102.79 105.17 104.97 107.62 97.79 100.23 101.33 100.56 97.34 100.81
STD 1.25 1.11 1 0.9 1.01 0.93 0.75 1 1.41 0.88 1.17 1.06

I7
Mean 179.23 170.69 165.2 173.83 172.91 174.64 169.82 179.78 168.71 162.38 170.87 175.21
STD 1.63 1.43 2.46 1.9 1.42 1.49 2.41 2.55 1.34 2.58 2.27 2.46

I8
Mean 166.5 165.07 163.23 173.86 179.16 175.95 179.33 175.72 166.28 162.93 170.06 163.79
STD 1.62 2.64 2.46 2.22 2.53 2.81 2.44 1.5 2.74 2.21 2.07 2.28

I9
Mean 153.75 146.65 151.23 150.31 161.67 150.16 149.7 157.44 151.29 157.47 152.7 160.69
STD 1.85 1.47 1.46 1.77 2.78 2.25 1.88 1.76 2.51 1.63 2.88 1.81

I10
Mean 245.74 243.36 262.52 258.49 260.98 255.24 267.27 264.17 248.14 266.77 266.29 258.4
STD 1.54 1.28 1.29 1.37 1.97 1.64 1.52 1.33 1.17 1.38 1.83 1.08

I11
Mean 89.61 89.56 94.16 89.73 95.21 92.09 93.37 89.11 96.71 87.62 92.08 94.97
STD 1.55 1.37 1.09 1.24 0.91 0.83 1.47 1.43 1.54 1.01 1.08 1.51

I12
Mean 92.94 87.65 91.16 93.81 91.36 92.5 96.66 89.98 88.03 94.95 88.49 92.03
STD 0.87 1.41 1.07 1.23 1.45 1.32 1.11 1 1.14 1.36 0.79 0.84

I13
Mean 153.21 149 148.78 160.81 159.91 160.61 157.47 150.43 148.33 147.11 146.47 151.44
STD 1.86 1.64 1.61 1.36 0.96 1.42 1.28 1.59 1.23 1.48 1.77 1.45

I14
Mean 198.83 205.31 197.13 211.32 201 209.41 212.21 214.35 206.27 207.63 208.91 200.15
STD 1.25 1.54 1.42 1.23 1.05 1.63 1.59 1.5 1.95 1.47 1.66 1.07

I15
Mean 340.91 329.17 342.69 354.42 333.35 358.13 354.33 331.04 334.42 347.24 350.67 351.49
STD 3.98 2.96 4.7 3.41 3.42 4.38 3.49 4.83 4.4 4.41 2.64 3.91

I16
Mean 37.63 37.18 40.7 39.04 39.08 39.16 40.14 39.59 40.78 39.82 40.55 38.55
STD 0.45 0.51 0.64 0.55 0.67 0.76 0.42 0.7 0.63 0.7 0.48 0.65

I17
Mean 38.66 37.35 40 40.92 39.79 40.02 40.67 40.58 40.25 39.25 37.14 39.69
STD 0.69 0.5 0.72 0.47 0.62 0.49 0.64 0.46 0.66 0.65 0.62 0.44

I18
Mean 78.61 76.74 81.99 83.5 83.67 79.85 83.09 80.09 81.97 81.55 81.73 78.09
STD 0.9 0.8 1.12 1.18 1.05 1.07 0.94 1.25 0.95 0.89 0.93 1.02

I19
Mean 47.06 45.07 49.83 49.07 49.53 48.47 45.76 47.99 49.98 49.24 46.11 47.58
STD 0.57 0.71 0.54 0.47 0.63 0.4 0.58 0.66 0.59 0.5 0.55 0.36

I20
Mean 77.64 76.26 80.99 82.6 80.19 75.79 82.17 77.55 80.08 81.94 81.81 79.56
STD 0.35 0.4 0.47 0.36 0.29 0.45 0.36 0.45 0.31 0.34 0.43 0.41

I21
Mean 76.49 76.29 81.54 77.89 82.1 81.82 82.02 79.95 80.08 80.29 81.07 79.23
STD 0.97 1.13 0.89 0.74 0.98 0.7 0.9 1.05 1.06 0.94 1.04 1.04

I22
Mean 134.57 130.74 135.05 135.74 134.6 138.42 137.06 136.99 137.06 129.25 126.45 133.94
STD 0.61 0.36 0.51 0.38 0.38 0.35 0.48 0.49 0.45 0.33 0.62 0.64

I23
Mean 128.35 130.35 133.15 134.86 139.94 132.22 139.3 133.1 130.65 128.11 135.48 136.48
STD 1.28 1.94 1.71 2.14 2.41 2.2 1.74 1.35 2.19 2.19 1.77 1.4

I24
Mean 114.77 114.95 119.79 118.19 124.16 123.92 124.38 119.5 114.45 118.83 113.27 114.88
STD 0.61 0.7 0.72 0.44 0.54 0.6 0.68 0.79 0.57 0.67 0.48 0.45

I25
Mean 192.19 188.94 189.01 206.33 203.62 198.02 196.02 198.18 193.48 190.03 195.42 192.47
STD 0.57 0.37 0.51 0.32 0.31 0.56 0.34 0.59 0.36 0.56 0.33 0.48

I26
Mean 74.52 71.57 74.8 74.87 72.56 70.84 73.53 74.7 69.37 74.24 74.27 73.86
STD 0.77 1 0.97 0.87 0.89 0.63 0.88 0.59 0.79 0.73 0.89 0.57

I27
Mean 72.16 69.25 71.78 74.5 74.02 74.71 69.85 72.22 72.77 70.16 74.65 70.59
STD 0.1 0.09 0.09 0.08 0.08 0.07 0.1 0.07 0.07 0.09 0.08 0.09

I28
Mean 118.37 113.89 115.39 124.26 113.98 123.95 124.7 116.55 116.51 116.99 115.94 119.26
STD 0.97 0.73 0.82 1 1.31 1.33 1.23 1.22 1.03 1.1 1.11 1.09

I29
Mean 155.46 152.24 153.42 162.32 157.77 158.84 152.74 159.29 151.68 158.49 155.95 154.91
STD 2 1.19 1.36 1.73 1.78 1.66 1.37 1.58 1.35 1.76 1.59 1.48

I30
Mean 270.62 254.39 254.43 262.1 271.19 263.03 256.26 260.83 278.34 279.68 265.84 277.2
STD 0.47 0.57 0.44 0.44 0.79 0.76 0.8 0.74 0.65 0.53 0.47 0.65

considered solving the timetabling problem with QEA. This
paper applied QEA to solving the problem, and in order to
improve its performance developed a reinitialization operator.

The advantage of population-based algorithms over local
search algorithms is their ability in performing a global search.
To benefit from the population of solutions, a successful population-
based algorithm should be able tomaintain diversity throughout

the search process. However, as the search progresses, population-
based algorithms lose diversity. One property of the probabilistic
representation in QEA is that when the q-individuals are
converged, they are trapped around a local optimum, and
their chance of escaping from the local optimum decreases.
In order to maintain diversity throughout the search process,
this paper proposed a reinitialization operator for QEA. In
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Table 7
The experimental results for different algorithms on different benchmarks. The
parameters for each algorithm is set according to Tables 4 and 5 and the results are
averaged over 100 runs. The best results are boldfaced.

QEA HQEA GA PSO SA DE FES Song
et al.
(2018)

Wang
et al.
(2007)

Dang
et al.
(2016)

Ceschia
and
Schaerf
(2018)

Legrain
et al.
(2017)

hdtt4 Mean 65.32 66.01 67.88 68.24 66.93 74.67 67.89 72.08 65.66 71.59 71.41 71.32
STD 0.8 0.78 0.79 0.78 0.83 0.75 0.78 0.74 0.84 0.83 0.78 0.8

hdtt5 Mean 126.97 116.35 118.07 123.48 127.87 120.86 119.21 125.7 126.21 125.3 123.19 118.65
STD 1.65 1.66 1.67 1.69 1.68 1.65 1.65 1.7 1.64 1.67 1.66 1.71

hdtt6 Mean 178.9 181.33 186.97 178.03 188.58 197.1 187.91 188.78 179.52 184.39 177.57 185.92
STD 2.31 2.34 2.33 2.29 2.3 2.29 2.3 2.3 2.27 2.35 2.27 2.34

hdtt7 Mean 276.78 281.9 286.48 295.72 290.37 296.69 294.04 282.57 277.5 284.45 288.34 284.79
STD 3.34 3.31 3.26 3.34 3.29 3.27 3.34 3.26 3.28 3.29 3.26 3.26

hdtt8 Mean 375.52 379.54 380.98 398.63 394.19 384.25 381.97 390.21 396.93 390.06 387.3 394.01
STD 2.23 2.22 2.23 2.24 2.21 2.26 2.26 2.3 2.24 2.23 2.27 2.25

ValouxisMean 32.16 31.14 31.91 34.3 30.74 36.31 38.82 39.21 37.63 33.09 34.82 37.17
STD 0.45 0.45 0.45 0.45 0.45 0.48 0.48 0.48 0.47 0.48 0.49 0.48

HS1 Mean 61.24 60.65 63.38 66.21 67.67 64.26 64.39 66.29 60.79 66.08 63.71 63.51
STD 0.66 0.7 0.69 0.66 0.63 0.65 0.68 0.66 0.66 0.66 0.63 0.66

HS2 Mean 61.68 62.33 62.87 64.73 63.54 61.4 61.83 60.85 61.05 62.89 63.47 61.83
STD 0.67 0.79 0.7 0.75 0.76 0.7 0.69 0.69 0.78 0.69 0.72 0.67

HS3 Mean 12.98 13.7 12.62 13.87 14.12 13.91 15.94 13.31 13.31 13 14 14.94
STD 0.27 0.24 0.25 0.25 0.29 0.27 0.26 0.27 0.26 0.25 0.25 0.29

HS4 Mean 41.57 40.83 43.13 41.87 43.76 42.28 43.26 41.79 44.27 41.36 42.42 41.93
STD 0.58 0.57 0.59 0.55 0.55 0.54 0.6 0.59 0.56 0.58 0.6 0.58

HS5 Mean 11.51 10.41 11.39 11.56 11.79 11.65 11.29 11.51 11.78 11 11.44 10.76
STD 0.25 0.26 0.23 0.29 0.22 0.26 0.28 0.28 0.28 0.25 0.24 0.25

HS7 Mean 94.56 90.96 97.43 99.46 92.42 96.18 98.83 92.55 90.27 91.66 92.35 90.13
STD 1.53 1.5 1.51 1.47 1.49 1.5 1.53 1.52 1.53 1.5 1.48 1.48

SAPS Mean 3.47 3.02 3.03 3 3.49 3.41 2.29 3.66 3.39 3.44 3.66 2.44
STD 0.14 0.13 0.15 0.13 0.14 0.13 0.13 0.15 0.13 0.14 0.15 0.14

SAHS Mean 1.26 1.04 1.14 2.86 1.75 1.97 1.31 1.31 1.38 1.75 1.69 1.2
STD 0.12 0.12 0.11 0.12 0.12 0.12 0.11 0.11 0.11 0.11 0.11 0.11

Table 8
The Friedman rank of the algorithms based on the data in Table 6 and 7.

QEA HQEA GA PSO SA DE FES Song
et al.
(2018)

Wang
et al.
(2007)

Dang
et al.
(2016)

Ceschia
and
Schaerf
(2018)

Legrain
et al.
(2017)

Rank 10.52 4.857 12.09 18 18.23 17.33 16.33 14.76 13.14 12.80 13.52 11.81

Table 9
The two-tailed Wilcoxon signed ranks test performed
between the proposed algorithm and the other algorithms.

Algorithm R+ R− p-value
QEA 805 185 2.97e-04
GA 873 117 1.03e-05
PSO 972 17.5 2.51e-08
SA 968 22 3.39e-08
DE 975 15 2.19e-08
FES 972 17.5 2.51e-08
Song et al. (2018) 969 21 3.17e-08
Wang et al. (2007) 843 147 4.88e-05
Dang et al. (2016) 872 118 1.11e-05
Ceschia and Schaerf (2018) 899 91 2.42e-06
Legrain et al. (2017) 911 79 1.21e-06

the proposed algorithm, the diversity of the population is
measured andwhen the population is converged it is reinitialized
so the diversity is preserved. Instead of a random reinitialization,
during the search process, the proposed algorithm collects
information about the fitness landscape and reinitializes the
population with the values to represent better regions in the

search space. This way, the proposed algorithm builds a
database about the fitness landscape structure and exploits
this structure to spend more of its time budget on the area
that is more likely to include better solutions.

The proposed algorithm in this paper has two phases.
The first phase is the exploration step in which the aim of the
algorithm is to collect information about the fitness landscape.
In order to collect information from different regions in the
search space, a landscape estimating local search is proposed.
The proposed algorithm keeps a database of best-observed
solutions, and during the search process, uses a tabumechanism
that avoids the regions that have already been explored. This
way, the proposed algorithm tries to discover asmany feasible
regions as it can.

The second phase of the proposed algorithm is the exploitation
step, in which the proposed algorithm uses the data it has
collected from the fitness landscape to guide the search process.
In the proposed algorithm, the best-observed solutions are
stored in a database. The analysis showed that there is a
correlation between the fitness of a local optimum and its
distance to the global optimum. This is a property that was
observed in a number of combinatorial optimization problems
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Figure 17: The box plot of the results for different problems. The central mark indicates the median, the top and bottom
edges indicate the 75th and 25th percentiles respectively, the whiskers show the most extreme data and the outliers are
plotted by ‘+’ symbol. The experiments are performed over 30 runs. The list of algorithms are as follows: 1-QEA, 2-HQEA,
3-GA, 4-PSO, 5-SA, 6-DE, 7-FES, 8-Song et al. (2018), 9-Wang et al. (2007), 10-Dang et al. (2016), 11-Ceschia and Schaerf
(2018), 12-Legrain et al. (2017).
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Figure 18: The cost of the best solution found in each iteration for different algorithms and problems.

Prugel-Bennett and Tayarani-Najaran (2011); Tayarani-N and
Prügel-Bennett (2015); Tayarani-N. and Prügel-Bennett (2015);
Tayarani-N. and Prugel-Bennett (2014); Tayarani-N. and Prugel-
Bennett (2016). This suggests that good solutions in the
search space are clustered. Therefore, the proposed algorithm
clusters the best solutions that are found in previous steps of
the algorithm. This way, the search space is divided into

sub-regions. Then the population of q-individuals is divided
into subpopulations, and each subpopulation is dedicated to
a sub-region in the search space.

We tested our proposedmethod on a number of benchmark
and randomproblems and showed that it improves the performance
of QEA in solving the timetabling problems.

In this paper, we showed how the advantages of QEA
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can be exploited in solving the timetabling problems. Other
optimization algorithms also have their own strengths. One
line of futurework is to discover the possibility of hybridizing
QEA with other optimization algorithms to benefit from the
advantages of all these algorithms. Hybrid optimization algorithms
are an interesting field of studywhich have not been explored
for solving timetabling using QEA yet. Another future work
is to study cooperative evolution in solving timetabling via
QEA. In cooperative evolution, the problems are decomposed
into smaller pieces and each piece is solved cooperatively
with a number of evolutionary processes. In this paper, we
initialize the population randomly in away that the probability
of zeros and ones in the string of solution is equal. It is clear
that some prior knowledge about the problem can provide
insight on how to initialize populations in a way that the
algorithm has a better chance of finding better solutions. For
example to discover the best probability of setting values to
zeros or ones as the solutions may tend to have more zeros
or ones. As future work, studying the optimized way of
initialization can be considered. In this paper, we showed
how studying the fitness landscape analysis can help in solving
the timetabling problems via QEA. Another line of research
for the future is to explore theways inwhich fitness landscape
analysis can be used in solving other optimization problems
via other optimization algorithms.

8. Appendix
The results for Kruskal-Wallis are summarized in Tables 10

and 11.

References
, . Or-library. http://people.brunel.ac.uk/~mastjjb/jeb/

orlib/tableinfo.html. Accessed: 2010-09-30.
Abramson, D., Abela, J., 1991. A parallel genetic algorithm for solving

the school timetabling problem. Division of Information Technology,
CSIRO.

Akkan, C., Gulcu, A., 2018. A bi-criteria hybrid genetic algorithm with
robustness objective for the course timetabling problem. Computers and
Operations Research 90, 22 – 32.

Al-Yakoob, S.M., Sherali, H.D., 2015. Mathematical models and
algorithms for a high school timetabling problem. Computers and
Operations Research 61, 56 – 68.

Alander, J., Zinchenko, L., Sorokin, S., 2002. Analysis of fitness landscape
properties for evolutionary antenna design, in: Artificial Intelligence
Systems, 2002. (ICAIS 2002). 2002 IEEE International Conference on,
pp. 363 – 368. doi:10.1109/ICAIS.2002.1048128.

Alander, J.T., 1999. Practical Handbook of Genetic Algorithms: Complex
Coding Systems, Chapter 13, Population size, building blocks, fitness
landscape and genetic algorithm search efficiency in combinatorial
optimization: An empirical study. volume 3. CRC press.

Angel, E., Zissimopoulos, V., 1998. Autocorrelation coefficient for the
graph bipartitioning problem. Theoretical Computer Science 191, 229–
243.

Angel, E., Zissimopoulos, V., 2001. On the landscape ruggedness of the
quadratic assignment problem. Theoretical Computer Science 263, 159
– 172. doi:10.1016/S0304-3975(00)00239-5.

Babaei, H., Karimpour, J., Hadidi, A., 2015. A survey of approaches
for university course timetabling problem. Computers and Industrial
Engineering 86, 43 – 59. Applications of Computational Intelligence
and Fuzzy Logic to Manufacturing and Service Systems.

Barbosa, V.C., Ferreira, R.G., 2004. On the phase transitions of graph
coloring and independent sets. Physica A: Statistical Mechanics and its
Applications 343, 401 – 423. doi:10.1016/j.physa.2004.05.
055.

Boese, K.D., 1995. Cost versus distance in the travelling salesman problem.
Technical Report. UCLA computer science department, Los Angeles.

Bouziri, H., Mellouli, K., Talbi, E.G., 2009. Fitness Landscape Analysis
for Optimum Multiuser Detection Problem. Journal of Combinatorial
Optimization 21, 306–329.

Bouziri, H., Mellouli, K., Talbi, E.G., 2011. The k-coloring fitness
landscape. Journal of Combinatorial Optimization 21, 306–329.

Burke, E.K., Causmaecker, P.D., Berghe, G.V., Landeghem, H.V., 2004.
The state of the art of nurse rostering. Journal of Scheduling 7, 441–
499.

Burke, E.K., Petrovic, S., 2002. Recent research directions in automated
timetabling. European Journal of Operational Research 140, 266–280.

Caprara, A., Monaci, M., Toth, P., Guida, P.L., 2006. A lagrangian heuristic
algorithm for a real-world train timetabling problem. Journal of Discrete
Applied Mathematics 154, 738–753.

Ceschia, S., Schaerf, A., 2018. Solving the inrc-ii nurse rostering problem
by simulated annealing based on large neighborhoods, PATAT.

Cheang, B., Li, H., Lim, A., Rodrigues, B., 2003. Nurse rostering problems:
A bibliographic survey. European Journal of Operational Research 151,
447–460.

Cheeseman, P., Kanefsky, R., Taylor, W.M., 1991. Where the really hard
problems are, in: Proceedings of the 12th international joint conference
on Artificial intelligence - Volume 1, Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA. pp. 331–337.

Chicano, F., Luque, G., Alba, E., 2010. Elementary landscape
decomposition of the quadratic assignment problem, in: Proceedings of
the 12th annual conference on Genetic and evolutionary computation,
ACM, New York, NY, USA. pp. 1425–1432.

Collard, P., Vérel, S., Clergue, M., 2007. Local search heuristics: Fitness
cloud versus fitness landscape. CoRR abs/0709.4010.

Coppersmith, D., Gamarnik, D., Hajiaghayi, T., Sorkin, G., 2004. Random
max sat, randommax cut, and their phase transitions. Random structures
and algorithms 24, 502–545.

Culberson, J., Gent, I., 2001. Frozen development in graph coloring. Theor.
Comput. Sci. 265, 227–264.

Czogalla, J., 2008. Fitness landscape analysis for the continuous flow-shop
scheduling problem, in: Proceedings of 3rd European Workshop, Evo,
Naples.

Czogalla, J., Fink, A., 2009. Fitness Landscape Analysis for the Resource
Constrained Project Scheduling Problem. Lecture Notes in Computer
Science 5851, Springer, Berlin.

Czogalla, J., Fink, A., 2011. Fitness landscape analysis for the no-wait
flow-shop scheduling problem. Journal of Heuristics , 1–27.

Dang, N.T.T., Ceschia, S., Schaerf, A., De Causmaecker, P., Haspeslagh, S.,
2016. Solving the multi-stage nurse rostering problem, in: Proceedings
of the 11th international conference of the practice and theory of
automated timetabling, pp. 473–475.

Daolio, F., Tomassini, M., Vérel, S., Ochoa, G., 2012. Communities of
minima in local optima networks of combinatorial spaces. CoRR 4445.

Daolio, F., Verel, S., Ochoa, G., Tomassini, M., 2010. Local optima
networks of the quadratic assignment problem, in: Evolutionary
Computation (CEC), 2010 IEEE Congress on, IEEE. pp. 1–8.

Detienne, B., Peridy, L., Pinson, E., Rivreau, D., 2009. Cut generation
for an employee timetabling problem. European Journal of Operational
Research 197, 1178–1184.

Donati, A.V., Darley, V., Ramachandran, B., 2008. An ant-bidding
algorithm for multistage flowshop scheduling problem: Optimization
and phase transitions, in: Advances in Metaheuristics for Hard
Optimization. Springer Berlin Heidelberg. Natural Computing Series,
pp. 111–136.

Easton, K., Nemhauser, G., Trick, M., 2004. Sports scheduling, in:
Handbook of Scheduling: Algorithms, Models, and Performance
Analysis. CRC Press. chapter 52.

Eley, M., 2006. Ant algorithms for the exam timetabling problem, in:

Mohammad Hassan Tayarani Najaran et al.: Preprint submitted to Elsevier Page 21 of 25

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/tableinfo.html
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/tableinfo.html
http://dx.doi.org/10.1109/ICAIS.2002.1048128
http://dx.doi.org/10.1016/S0304-3975(00)00239-5
http://dx.doi.org/10.1016/j.physa.2004.05.055
http://dx.doi.org/10.1016/j.physa.2004.05.055


How to Exploit Fitness Landscape Properties

Table 10
ANOVA and Kruskal-Wallis test on the data for different problems.

Source SS df MS F Prob > F Source SS df MS Chi-sq Prob>Chi-sq
Columns 2.616e+03 11 2.378e+02 5.328e+02 0 Columns 1.149e+08 11 1.045e+07 957 3.236e-198

I1 Error 5.303e+02 1188 4.464e-01 Error 2.905e+07 1188 2.445e+04
Total 3.146e+03 1199 Total 1.440e+08 1199
Columns 4.015e+03 11 3.650e+02 2.900e+04 0 Columns 1.412e+08 11 1.284e+07 1176 2.715e-245

I2 Error 1.495e+01 1188 1.258e-02 Error 2.791e+06 1188 2.350e+03
Total 4.030e+03 1199 Total 1.440e+08 1199
Columns 1.218e+04 11 1.107e+03 1.520e+03 0 Columns 1.323e+08 11 1.203e+07 1102 2.297e-229

I3 Error 8.650e+02 1188 7.281e-01 Error 1.167e+07 1188 9.824e+03
Total 1.304e+04 1199 Total 1.440e+08 1199
Columns 2.813e+03 11 2.557e+02 2.011e+03 0 Columns 1.308e+08 11 1.189e+07 1089 1.100e-226

I4 Error 1.511e+02 1188 1.272e-01 Error 1.317e+07 1188 1.108e+04
Total 2.964e+03 1199 Total 1.440e+08 1199
Columns 1.597e+04 11 1.452e+03 1.041e+03 0 Columns 1.282e+08 11 1.165e+07 1067 5.742e-222

I5 Error 1.656e+03 1188 1.394e+00 Error 1.580e+07 1188 1.330e+04
Total 1.763e+04 1199 Total 1.440e+08 1199
Columns 1.348e+04 11 1.226e+03 1.184e+03 0 Columns 1.311e+08 11 1.192e+07 1091 4.065e-227

I6 Error 1.230e+03 1188 1.035e+00 Error 1.292e+07 1188 1.088e+04
Total 1.471e+04 1199 Total 1.440e+08 1199
Columns 2.914e+04 11 2.649e+03 6.368e+02 0 Columns 1.232e+08 11 1.120e+07 1026 5.892e-213

I7 Error 4.943e+03 1188 4.160e+00 Error 2.082e+07 1188 1.753e+04
Total 3.408e+04 1199 Total 1.440e+08 1199
Columns 4.472e+04 11 4.066e+03 8.023e+02 0 Columns 1.234e+08 11 1.122e+07 1028 2.043e-213

I8 Error 6.020e+03 1188 5.067e+00 Error 2.057e+07 1188 1.731e+04
Total 5.074e+04 1199 Total 1.440e+08 1199
Columns 2.344e+04 11 2.131e+03 4.968e+02 0 Columns 1.149e+08 11 1.044e+07 957 4.250e-198

I9 Error 5.096e+03 1188 4.290e+00 Error 2.912e+07 1188 2.451e+04
Total 2.854e+04 1199 Total 1.440e+08 1199
Columns 7.660e+04 11 6.964e+03 3.333e+03 0 Columns 1.360e+08 11 1.237e+07 1133 5.248e-236

I10 Error 2.482e+03 1188 2.089e+00 Error 7.968e+06 1188 6.707e+03
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Table 11
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