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Abstract  

Since the discovery of the anti-influenza drugs Oseltamivir and Zanamivir using computer aided drug 
design methods, there have been significant applications of molecular modelling methodologies 
applied to influenza A virus drug discovery, such as molecular dynamics simulation, molecular 
docking and virtual screening. This review provides a brief general introduction to molecular 
modelling in the context of drug discovery and then focuses on the advances and impact of 
integrating these methods with specific reference to potential influenza A antiviral drug targets. 

Introduction 

The influenza A virus is capable of causing severe respiratory illness or health complications in 
humans and can result in high transmission and infectivity rates amongst different species. Out of 
the four antigenic types of Influenza viruses (A, B, C and D), type A viruses infect the widest host 
range and have been the cause of pandemics due to zoonoses, hence the focus of this review is on 
anti-influenza A drug discovery. Whilst vaccines are formulated annually based on global surveillance 
data, immunisation cannot guarantee extensive or long-term protection due to the continuously 
evolving nature of the virus. For many years there has been great focus on discovering novel anti-
influenza compounds which target various proteins of the virus life cycle as well as drug resistant 
mutants [1]. Current influenza A drug targets are shown in Figure 1. To date, only a small number of 
influenza A antivirals have been licensed for use throughout the world including the neuraminidase 
inhibitors (NAIs) and the M2 protein proton channel inhibitors [2]. However, widespread antiviral 
resistance has developed against the M2 inhibitors which are no longer recommended for use. 
Although there have been concerns over high levels of resistance to NAIs against certain strains in 
previous years, data from the USA and the UK has shown that fortunately, seasonal strains in current 
circulation remain susceptible [3].  Most recently the polymerase inhibitor Favipiravir gained 
approval with a limited license in Japan only [4], as well as the acid polymerase inhibitor Baloxavir 
marboxil which was approved for use in Japan and the USA in 2018 [5].  

The basic polymerase 2 (PB2) inhibitor Pimodivir (JNJ-63623872; previously VX-787) has shown 
promising results in phase II clinical trials [6] and is recruiting for phase III clinical trials.  In addition,  
monoclonal antibody preparations such as MEDI8852 which target the major surface glycoprotein 
haemagglutinin (HA) have also been clinically evaluated [7,8]. Despite this, the urgent need to 
develop novel effective antiviral therapeutics against seasonal, pandemic and NAI and M2 inhibitor 
resistant strains continues to be widely reported. It is also crucial that there is more than one 
treatment option available in the occurrence of a serious outbreak to overcome the possibility of 
resistance emerging. Drug discovery is aided immensely by the availability of 3D protein structures. 
For some potential drug target proteins, the structures are not or only partially known.  Even if a 
protein structure is available, it may not be in a conformation accessible to drug binding or potential 
binding sites may not be known. Here the techniques of molecular modelling can predict binding 
sites and through molecular simulation reveal hidden binding sites or previously unknown 
conformations.  Once models of protein structures have been developed and analysed, research can 
proceed to molecular docking of inhibitors and calculation of binding affinities using free energy 
calculations or simplified methods for selected inhibitors. 
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Molecular modelling methods are closely integrated with wet-lab research. Molecular modelling can 
be applied in the initial stages of the drug discovery process followed by wet-lab experiments, in the 
later stages of refinement of hits identified in high-throughput screening, or even in optimising 
ADMET (Absorption-Distribution-Metabolism-Excretion-Toxicity) properties. Molecular modelling 
methods are comparatively cheap compared to wet-lab based high-throughput screening that 
requires access to expensive equipment and maintenance of a large library of chemical compounds. 
Recently, more and more new drugs originate from academic or small biotech companies that have 
access to limited financial resources. Intelligent approaches based on a combination of molecular 
modelling and small-scale wet-lab based experiments can help to optimise the resources and may 
even lead to results in a shorter timeframe [9]. 

Molecular modelling – general overview 

Molecular modelling broadly covers the theoretical and computational methods used to model the 
structure, properties and dynamic behaviour of molecules at the atomic level. In the context of drug 
discovery, molecular modelling methods offer the important advantages of saving time and cost by 
allowing for detailed characterisation and analysis of predicted drug binding modes and strength of 
protein-ligand interactions without biological risks involved.  

Since the historically successful identification of the NAI Zanamivir by structure based computer 
aided drug design [10], numerous studies have emerged which incorporate innovative molecular 
modelling and structure based methods. These include molecular dynamics (MD) simulation, 
molecular docking and ligand or receptor based virtual screening, or a combination of all three using 
various software and programs [11]. In drug discovery projects, MD simulations are typically 
performed to provide a dynamic view of protein structure over time and analyse protein 
conformation with or without bound ligands; cryptic binding sites (sites that are only visible when a 
ligand is bound to the protein) can also be revealed, whilst docking and screening of chemical 
libraries are applied to investigate interactions and calculate binding free energies between two 
molecules [12]. The receptor-based (also known as structure-based) virtual screening method 
requires knowledge of the target protein structure to predict the best binding conformation of small 
molecules to a specific site.  These techniques have proven to be useful in discovering and designing 
new antiviral drugs [13–15]. MD simulations are more time-consuming at setup- and runtime level 
compared to molecular docking. Hence molecular docking can be used as a high-throughput method 
to screen ten to hundred thousands of ligands. In molecular docking, the protein-ligand complex is 
given a score that correlates with or represents the predicted binding affinity. This score can be 
computed from a physics-based, empirical-based or knowledge-based potential energy function. 
More recently, grid-based convolutional neural network methods have shown increased scoring 
accuracy [16–18]. However, in critical evaluations these performance gains were attributed to 
overfitting of the model to the training data [19] or from detecting common differences between 
active and decoy compounds used for training [20]. Free energy calculation (FEC) based on MD 
simulations is considered the most accurate method of predicting the binding affinity of a ligand to 
its target. However, FECs are not used in systematic search procedures to find the best binding pose 
of a ligand, as this would be too time consuming. A complication of FEC based on MD simulations is 
the assignment of the force field parameters for the ligand that must be evaluated in separate 
simulations. First a docking is carried out followed by a small number of FECs that can be used to 
predict the binding affinity of a few compounds[21]. MD simulations can also be used to estimate 
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the kinetics of drug binding and un-binding as well as residence time, which is an estimation of how 
long a drug remains in a binding site and a potential determinant of efficacy; both of these 
parameters are considered to be key factors in the development of new therapeutics [22].  

MD has assisted many drug discovery studies and now with more accurate forcefields and practical 
simulation run times being achieved through use of graphical processor unit (GPU) acceleration, the 
interest in applying MD is certainly growing. However, regardless of these methods being well-
established, the accuracy of force fields used, simulation times and scoring functions remain a 
limitation. The number of experimentally resolved influenza A protein structures available is ever 
increasing enabling researchers to undertake innovative drug discovery studies without having to 
generate models through prediction methods. In the case of influenza A, there is also the specific 
need to address the issue of drug resistance, therefore, studies which integrate sequence based 
analysis and consider evolutionary information at residue level can enhance the impact of the 
overall findings [23,24].  This review will summarise advances in applications of molecular modelling 
based studies and highlight selected recent examples of these techniques in practice.  

Discovery of influenza A inhibitors and drug targets  

Given the essential and multi-functional roles of influenza A proteins, there are many options when 
it comes to selecting an antiviral drug target(s), with almost all major proteins having been the 
subject of extensive investigation. Furthermore, molecular dynamics, docking and virtual screening 
protocols have also been combined as integrative strategies to identify influenza A inhibitors, and 
identify binding pockets [25–28]  as shown in figure 2. These methods have also been applied after 
initial experimental work to analyse molecular interactions. An overview of studies that have used 
molecular modelling methods is shown in Table 1. 

The specific biology of the influenza A virus present further challenges to the process illustrated in 
figure 2. The negative-strand RNA genetic material of the influenza virus has a high mutation rate 
due to the absent proofreading capability of the viral RNA polymerase. It has been estimated that no 
two flu viruses in an infected individual are 100% genetically identical, hence the term quasispecies 
was introduced [37]. A further complication is the mixing of gene segments in a cell infected by two 
different virus strains, a process known as reassortment, that adds to genetic variability. This may 
render the process of drug development fruitless within a couple of years, if the virus becomes 
resistant. Thus, for the influenza virus in particular, it is important to analyse protein drug target 
variability not only among a specific virus strain and host, but overall strains and host ranges. Only, 
when a drug binding site and high conservation overlap, it is likely, albeit not guaranteed, that the 
virus does not develop resistance through mutations or genetic reassortment. For viral surface 
exposed proteins, overlap between conservation and a drug binding site may not always be found, 
but internal viral proteins usually show a high degree of conservation, as shown in figure 3 for the 
nuclear export protein [27]. 

Nucleoprotein 

One successful example is the discovery that the nonsteroidal anti-inflammatory drug Naproxen can 
be repurposed as an inhibitor of the nucleoprotein (NP), which was identified through virtual 
screening of compounds filtered from a database initially containing 100,335 compounds into the 
RNA binding groove. The docked complex obtained from the screening was then subjected to MD 
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simulations and further docking to assess the stability of the complex and the binding interactions. 
Naproxen was also verified in vitro and in vivo and showed reduced levels of virus replication [26]. 
Although, since this discovery, more potent NP inhibitors have been discovered from high-
throughput or cell-based screening assays [38]. 

Neuraminidase targeting 430-loop with MM-GBSA/ MM-PBSA methods 

A new NA inhibitor known as 6a has been identified to target the 430-loop [30], in this work, virtual 
screening of 670,000 compounds was initially performed and the top 30 compounds were docked to 
explore binding modes. MD simulations were then performed for more precise binding predictions 
and to calculate binding free energy via the molecular mechanics generalised born surface area 
(MM-GBSA) and molecular mechanics Poisson Boltzmann surface area (MM-PBSA) method. 
Compound 6a showed the lowest binding free energy, as well as good inhibitory in vivo activity and 
provided a basis for the design of six other NA inhibitor compounds. One advantage of structurally 
refining post-docking complexes through MD simulation in a solvated environment is that effects of 
water molecules can be accounted for in drug binding, and it can also be observed if a compound 
leaves or remains in the binding site. It is therefore suggested that the dynamics of the target 
protein with (or without) the bound compound should be investigated where possible to account for 
receptor flexibility [39].   

By using MD in conjunction with docking or virtual screening, the limitation of the receptor being 
considered as a rigid structure can also be overcome.  Furthermore, a multiple receptor 
conformation docking approach combined with virtual screening can be applied to account for 
receptor plasticity and distinguish active compounds from decoys and improve overall docking 
results [40,41]. Consequently, end point analysis methods such as MM-PBSA and MM-GBSA 
methods can be applied to calculate the free energy of binding which could improve virtual 
screening and docking results. These calculations have been proven to be useful in drug design [42] 
prior to experimental validation. Free energy methods also allow focused optimisation to increase 
the inhibitory potency of drug leads by assessing the effects of modifications to a chemical structure 
[43]. 

Nuclear Export Protein (NEP) and Non-Structural Protein 1 (NS1) 

As well as potential drug compounds, new drug target sites are also being discovered. In a recent 
study, the full length nuclear export protein (NEP) was modelled and MD simulations were 
performed with partial restraints. The simulations were analysed through clustering to extract 
representative structures for prediction of binding hot spots which were mapped to conserved 
regions of the NEP. This was followed by consensus virtual screening which involved using two 
docking software [44]  to screen over 50,000 drug-like compounds from two chemical libraries 
against a selected target site [27]. It would be of considerable interest to know if any of the 
identified compounds were capable of inhibiting virus replication in vitro. Another protein 
considered an attractive antiviral target is the multi-functional non-structural protein 1 (NS1) as it 
plays an essential role in counteracting the hosts interferon based immune response [45,46]. In a 
similar study to[27], the flexibility of the RNA binding domain of NS1 was explored through MD 
simulations followed by clustering and root mean square fluctuation (RMSF) analysis. Subsequently, 
the suitability of all estimated NS1 drug binding pockets were thoroughly evaluated for their 
potential to bind drug-like ligands [35]. Though both of these studies account for protein flexibility to 
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some extent through conventional MD simulations, the sampling of conformations can be improved 
with enhanced sampling methods [47]. These methods have emerged to overcome the limitation of 
standard MD simulation to sample conformations by providing an effective boost in terms of 
potential energy, thus moving the system over high energy barriers so that molecular conformations 
may be sampled more extensively, compared to unbiased simulations. A few examples of such 
methods include replica exchange MD, metadynamics, accelerated MD and simulated annealing; 
each having their own advantages and limitations, as described by[48,49]. 

Neuraminidase 150-loop 

Molecular modelling methods have also given further insight into well established drug targets such 
as the neuraminidase. An enhanced sampling approach was applied to the NA enzyme, where 
replica exchange MD simulations were used to explore the structural flexibility of the 150-loop cavity 
associated with NAI binding. The simulations sampled open, intermediate and closed conformations. 
RMSD, volumetric, clustering and principle component analyses were performed to identify residues 
involved with inter-conversion of the loop region to facilitate NA specific drug design and to help 
understand the mechanism of antiviral resistance [29]. This work also builds on previous research 
based on standard MD simulation demonstrating that the NA 150-cavity of the 2009 H1N1 pandemic 
virus exists in an open state, which became a new target for drug design not visible in the crystal 
structure [50].  

M2 proton channel 

MD simulations have been applied to rationally design inhibitors of M2 carrying drug-resistant 
mutations such as V27A, L26F, and S31N [51], as well as to elucidate the mechanism of action of 
novel dual inhibitors targeting  the wild-type and Amantadine-resistant M2 [34], which represent 
promising inhibitors for further development. Recently, MD simulations have also revealed insights 
into the drug resistance mechanism of M2-S31N inhibitors through widening of the channel pore 
[52]. 

The well-tempered form of the metadynamics technique has also been exploited to investigate the 
stability and binding pathways of amantadine and its derivative adamantyl bromothiophene to the 
S31 and N31 mutant M2 [33].  The simulation free energy profiles suggest how the ligands are 
positioned and move through the proton channel pore during entry. Despite valuable insights 
enhanced sampling methods could offer to analyse protein conformational dynamics, there are a 
limited number of recent influenza A related drug discovery studies published which apply enhanced 
sampling methods, presumably due to the difficulty of implementing them. 

 

Polymerase 

The PA subunit of the viral polymerase complex has been the subject of intensive modelling and 
docking studies. This was aided by the initial determination of the structure of the N-terminal part 
(residues 1-195) of PA [53,54], which contains an active site involved in cleaving the 5’-cap of host 
pre-mRNA in order to be used for the synthesis of primers for viral mRNA. In subsequent studies the 
PA N-terminus was successfully co-crystallised with seven inhibitors which resulted in seven atomic 
structures of PA with different inhibitors bound (PDB-IDs: 4E5E to 4E5J and 4E5L) [55]. This lead 
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eventually to the approved drug Baloxavir marboxil. Research presented in a study on 19 mutated 
models of the cap – dependent endonuclease proposed the mechanism by which reduced sensitivity 
to Baloxavir marboxil occurs [36]. In this analysis, MD simulations of the endonuclease in complex 
with Baloxavir revealed different modes of interaction between the aromatic ring of the drug and 
the endonuclease binding site I38 (shown in Figure 1b). Binding free energy was also lower for 13 
out of 19 mutation models calculated using MM-GBSA method compared to the wild type 
endonuclease. Through computational mutagenesis, this study clearly illustrates how loss of 
molecular recognition due to mutations correspond with reduced drug sensitivity and drug 
resistance. MD simulations and docking have also been successfully applied to identify inhibitors 
targeting the PA-PB1 subunit interactions [28], and PA-PB1 inhibitors with a cycloheptathiophene-3-
carboxamide scaffold have shown broad-spectrum antiviral activity and a high barrier to drug 
resistance [56]. 
 

Neuraminidase with QM/MM methods 

Another useful approach for drug discovery is the combined quantum mechanics/molecular 
mechanics (QM/MM) method which must be used to study chemical and enzyme reactions with 
greater accuracy and to support binding affinity calculations. The QM/MM approach can be used to 
simulate bond breaking or formation through a quantum mechanical treatment of a subset of 
atoms, such as the drug binding site, whilst a molecular mechanical description is used for the rest of 
the system without explicit consideration of electrons. This method has been applied to gain further 
insights into the binding interactions of H1N1 NA with Oseltamivir, Zanamivir, Laninamivir octanoate 
and Laninamivir [31] and it was reported that the predicted binding free energies were in good 
agreement with previous experimental results. Although, in comparison to other (MM) methods, 
this technique does not appear to be widely applied for influenza A drug discovery, as simulations 
are very time consuming and expert knowledge in quantum mechanics in setting up and analysing 
simulations is required. 

Multi-scale modelling studies 

Protein structure prediction and protein docking algorithms have also been used to model the 
additional NA domains including the stalk, transmembrane and intravirion domains. From 
subsequent MD simulations of the NA protein modelled with the stalk embedded in the lipid bilayer 
with and without amino acid deletions in the stalk, it was shown how the length of the NA stalk 
influences the dynamics of sialic acid binding pocket residues in the NA surface region, and therefore 
binding affinity to the host sialic acid substrate. In addition to these important features, new 
druggable hot spots on the NA surface head were also identified through computational mapping 
and suggest opportunities for virtual screening and docking [57]. These results reflect how overall 
structural changes in areas other than the active/binding site impact ligand binding affinity.   

Moving beyond analyses of single proteins, pioneering results from the first all-atom MD simulations 
of the entire influenza A viral lipid envelope model including water, lipids, 30 NA tetramers and 236 
HA tetramers have been published [58], highlighting the significant progress achieved in simulating 
large, complex biomolecular systems. Thorough conformational sampling in these simulations 
enabled characterisation of a secondary sialic acid binding site of the NA enzyme that participates in 
initial substrate binding, followed by the substrate sliding into the active site. Principle component 
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analysis revealed notable insights into the transitions between the open and closed states of the 
150-loop cavity and the primary binding site, including changes to catalytic-site volume, which can 
strongly influence drug binding. This study paves the ground for new types of NA inhibitors, that can 
be available, if resistance emerges. An interesting aspect was that improved sampling of binding 
pocket states was achieved, in contrast to studies focusing on single proteins. This was explained by 
either the molecular crowding effect of the whole lipid envelope, or alternatively the number of NA 
molecules (30x4) over which conformations were sampled. This work also presents a novel 
integrative modelling strategy for antiviral drug development targeting enveloped viruses.  

Likewise, in a previous integrative structural modelling study, sialic acid (SIA) association rates to the 
HA and NA active site and secondary binding site to the entire viral surface were modelled and 
simulated. Based on the predicted association results from the SIA simulation complexes,  the 
authors outline how targeting the secondary NA site presents new opportunities for drug 
development by disrupting the HA/NA functional balance [59].  

 

Conclusion and Future Perspective 

The studies reviewed highlight some of the latest applications and impact of molecular modelling 
over the years in antiviral discovery. Examples of combined approaches that researchers have taken 
increase the chance of identifying the most promising targets and compounds for drug 
development. Many of the aforementioned studies have also elucidated atomic level detail on 
structure and dynamics of influenza A protein targets and emphasise how drug discovery could 
benefit from incorporating these techniques. In addition to the physico-chemical considerations of 
macromolecular conformations and molecule binding, the rapid rate of evolution of the influenza 
virus was addressed focussing drug discovery efforts at conserved binding sites.  

Given the various molecular modelling methods available to choose from, it raises the question of 
how to implement the most suitable for a drug discovery project. Furthermore, the software and 
parameters to use also need to be carefully selected. On one hand, sufficient (enhanced) sampling 
followed by accurate binding affinity calculations of protein-ligand complexes could be considered as 
best practice and theoretically should provide better estimates and assessment of biomolecular 
motion and interactions. On the other hand, a simple and more computationally efficient procedure 
such as docking a ligand to a static protein structure with prior knowledge of an appropriate binding 
site could possibly be sufficient for antiviral discovery. In order to address this question, positive and 
negative controls should be included into the modelling process. While controls are standard 
practice in wet-lab experiments, published computer-lab experiments have not widely applied this 
principle.  In either case, predictions need to be validated experimentally to provide proof of binding 
and antiviral activity in order to justify the choice of method and guide further work. 
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Table 1. An overview of selected studies using MD/Docking including a list of structures and 
identified antiviral inhibitors. 

Figure 1.  Current influenza A antiviral targets a) Neuraminidase (NA) (PDB: 2HU0 [60]), b) Acid 
Polymerase (PA) (PDB: 6FS6 [61]), c) Basic polymerase 2 (PB2) (PDB: 4P1U [62] and d) 
Haemagglutinin (HA) (PDB: 5JW4 [63] in complex with inhibitor compounds in red. This figure was 
made with Rasmol [64]. 

Figure 2.  Flow chart illustrating the integration of some of the most consistently used molecular 
modelling approaches to predict and discover potential antiviral drugs using molecular docking. 
(PDB, Protein Data Bank; PCA, Principle Component Analysis; MSM, Markov State Modelling, MM-
PBSA, Molecular Mechanics Poisson Boltzmann Surface Area; MM-GBSA, Molecular Mechanics 
Generalised Born Surface Area). 

Figure 3. Overlap between predicted binding sites (green spheres) and amino acid sequence 
conservation for a partially modelled structure of the influenza A nuclear export protein. Reprinted 
from [27] with permission from Elsevier under STM guidelines. 
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