
 Page 1 of 1

SBML Models and MathSBML

Bruce E. Shapiro*, Andrew Finney, Michael Hucka, Benjamin Bornstein, Akira

Funahashi, Sarah M. Keating, Nicolas LeNovère, Joanne Matthews, Maria Schilstra

*Corresponding Author: bshapiro@caltech.edu; 626-395-8161; Division of Biology and

Biological Network Modeling Center, California Institute of Technology, Mail Code 139-

74, Pasadena, CA, USA

Andrew Finney,Ph.D., Physiomics, Inc, Oxford, UK

Michael Hucka, Ph.D. Division of Control and Dynamical Systems and Biological

Network Modeling Center, California Institute of Technology, Pasadena, CA USA

Benjamin Bornstein, Machine Learning Systems Group, Jet Propulsion Laboratory,

California Institute of Technology, Pasadena, CA USA

Akira Funahashi, Ph.D., Kitano Symbiotic Systems, Japan

Sarah M. Keating, Science and Technology Research Center, University of Hertfordshire,

Hatfield, UK

Nicolas LeNovère, Computational Neurobiology, EMBL-EBI, Wellcome-Trust Genome

Campus, Hinxton, UK

Joanne Matthews, Science and Technology Research Center, University of Hertfordshire,

Hatfield, UK

Maria Schilstra, Ph.D., Science and Technology Research Center, University of

Hertfordshire, Hatfield, UK.

Keywords: SBML, libSBML, MathSBML, Systems Biology, XML, Biomodels

 Page 2 of 2

Abstract

MathSBML is an open-source, freely-downloadable Mathematica package that facilitates

working with Systems Biology Markup Language (SBML) models. SBML is a tool-

neutral, computer-readable format for representing models of biochemical reaction

networks, applicable to metabolic networks, cell-signaling pathways, genomic regulatory

networks, and other modeling problems in systems biology that is widely supported by

the systems biology community. SBML is based on XML, a standard medium for

representing and transporting data that is widely supported on the internet as well as in

computational biology and bioinformatics. Because SBML is tool-independent, it enables

model transportability, reuse, publication and survival. In addition to MathSBML, a

number of other tools that support SBML model examination and manipulation are

provided on the sbml.org website, including libSBML, a C/C++ library for reading

SBML models; an SBML Toolbox for MatLab; file conversion programs; an SBML

model validator and visualizer; and SBML specifications and schemas. MathSBML

enables SBML file import to and export from Mathematica as well as providing an API

for model manipulation and simulation.

 Page 3 of 3

1. Motivation

The Systems Biology Markup Language (SBML) is a tool-neutral, computer-readable,

text file (XML) format for representing models of biochemical reaction networks. It is

especially applicable to descriptions of cell signaling pathways, metabolic networks,

genomic regulatory networks, and other modeling problems in systems biology[1, 2].

SBML is based on XML (the eXtensible Markup Language), a standard medium for

representing and transporting data that is widely supported on the Internet [3] as well as

in computational biology and bioinformatics (a recent PubMed search on “XML”

returned 475 hits; INSPEC 7637 hits; and Web of Science 3009 hits; scholar.google.com,

15,900 hits) [4]. The central goal of SBML is model portability. By encoding models in

SBML, they can be freely interchanged between users, regardless of which software tool,

hardware platform, or operating system each uses. So long as each modeler uses SBML

compliant software, they will both be able to run simulations from the same model,

without modification, on their on platform, and compare results.

The benefits of this interoperability are enormous. Not only can users share models, but

they can use multiple simulation tools and techniques within a single research project

without rewriting their models [5]. Say, for example, that a modeler wants to perform a

combination of discrete stochastic and continuous dynamic simulations. Usually this

means that he will need to use two different simulation tools. Typically, each software

program has a unique model description format that is incompatible with other programs.

If both tools are SBML compliant then the model only needs to be encoded once.

 Page 4 of 4

A second benefit of this standardization is model publication and dissemination in the

peer-reviewed literature. Published models are described in a variety of formats:

differential equations, algebraic equations, reactions, pathway diagrams, event rules, etc.

If, in addition, the author encodes his model in SBML and makes it available to the

publisher (and eventually, the journal’s readers) via an auxiliary web site, then

computationally astute peer-reviewers can test the models and verify the purported results

independently of the authors. Furthermore, when the final paper is published, readers can

easily reproduce the same results and incorporate them into and/or compare/contrast them

with their own simulations. Journal editors appear to agree; for example, the instructions

for authors of Nature Molecular Systems Biology include the statement “Where relevant

and possible, authors are encouraged to submit datasets in SBML format.” [6]

Finally, SBML can help ensure model survivability [7]. When models are described in

unique data formats, particularly when their authors code their own simulation engines,

the software model survives only as long as the program is being used. Typically this

means that once a student graduates or a post-doctoral researchers moves on to a more

permanent positions this technology is lost by the original host institution. If commercial

or widely available tools from the public domain are used, on the other hand, models

typically only survive until a new version or software release requires a new data format,

or more commonly, the program stops being supported on the modeler’s preferred

hardware/software environment. While there is no guarantee that SBML will always be

around, the designers of nearly a hundred different tools are have already made their

software SBML compliant or announced an intention to do so in the near future [The

growing list is regularly updated on sbml.org].

 Page 5 of 5

2. The Evolution of SBML

SBML has been developed through an evolving international collaboration that reflects

the wide variety of research being performed in systems biology. Owing to both the

geographical diversity as well as the size of this group most discussions have taken place

electronically. Moderated (to edit out spam) discussion lists (sbml-discuss, libsbml-

discuss) are maintained and archived at http://sbml.org/forums. Over 2500 messages were

posted to these lists between Oct. 2002 and Oct.2005; another thousand or so were posted

on earlier discussion lists that were combined with Systems Biology Workbench

development, and countless other private messages have been sent between list members

(for example, the SBML Team has exchanged some 1900 messages amongst itself

between Feb 2003 and Oct 2005, and the authors of this chapter another 2000 or so

during the same period). These lists currently contain over 200 members coming from

academic, commercial and private environments, from all continents.

The ideas developed and discussed through these forums were crystallized through a

series of open workshops and working groups starting in 2000, many of which were

followed by detailed specification documents or proposals. To date, ten workshops and

three “hackathons” have been held in Japan, the US, the UK, Sweden, and Germany

(Table 1). Workshops provide a forum for users to become aware of new developments

in SBML software, discussion of proposed SBML features so that consensus decisions

can be made, and maximizing software interoperability by discussing issues that have

arisen in the various implementations. Hackathons, on the other hand, provide a forum

for software developers to gather and work simultaneously to solve interoperability

 Page 6 of 6

issues. The minutes of all workshops and hackathons are available at http://sbml.org/.

The specification of the original language, called SBML Level 1, was released on 2

March 2001. Minor deficiencies and corrections were incorporated in the next release,

SBML Level 1, Version 2 (L1V2), on 28 August 2003. Level 1, Version 2 replaces Level

1, Version 1 as it primarily corrects errors in the original document [8]. A major

revision, SBML Level 2, Version 1 (L2V1), was released on 28 June 2003 [9]. An initial

draft for SBML Level 2, Version (L2V2) was released on 26 March 2005 and posted on

the SBML Wiki but has not been finalized. [Update after Boston Forum] [10] SBML

compliant authors may choose to use either L1V2 or L2V1. All specification documents

and related resources are maintained on the web site at http://sbml.org.

The sbml.org web site aims to provide for SBML what w3.org provides to the world wide

web. While formal membership in an equivalent consortium is neither required – nor

likely practical because of the smaller relative size of the community – the intent is to

provide a formal, nonbiased (from the perspective of individual modeling tools) location

where specifications, schemas, technical reports, discussion lists, a Wiki, and various

online tools can be maintained. The tools provided, such as a validator, visualizer,

conversion libraries, and libraries for reading and maintaining SBML files, are designed

to aid all modelers in their SBML implementations, and will be the subject of section 5 of

this chapter. The group that maintains sbml.org, the “SBML Team,” is an international

research team distributed at institutions around the world. The SBML Team is not the

“keeper” of SBML – that role is for the systems biology community – merely organizers,

editors, and fellow tool developers.

 Page 7 of 7

3. SBML Level 2 Models

In this section we will review the format of SBML Level 2 Models. Level 1 is omitted

due to space limitations as well as the overwhelming (and growing) prevalence of SBML

Level 2; the interested reader should consult the references for additional information.

The overall structure of an SBML model is

beginning of model definition
list of function definitions
list of unit definitions
list of compartment definitions
list of species
list of parameters
list of rules
list of reactions
list of events

end of model definition

The order of the lists cannot be modified, e.g., species must precede parameters, etc.

SBML models are encoded as XML files; each XML file contains a single “model”

object, which is itself enclosed within an sbml object (see figure 1). Each of the “lists” is

optional; when present it must contain a nonzero number of object definitions of the

general form

 <listOfFoos>
 <foo …> … </foo>
 <foo …> … </foo>
 …
 </listOfFoo>

where foo is one of functions, units, compartments, species,

parameters, rules, reactions, or events. With the exception of species,

the final “s” is omitted in the individual object definitions; in all cases, the first letter of

the object is upper case in the listOf definition, and lower case in the individual object

 Page 8 of 8

definition (hence listOfFoos has an upper case “F” and is plural, and foo is singular

and entirely lower case).

All SBML objects derive from a class SBASE (see figure 2). Class SBASE (and hence

all other SBML objects) contains three optional fields: a metaid, notes, and

annotation. The metaid field is present for supporting metadata annotations using

RDF, and has a data type of ID as defined by XML. Other tool users may also choose to

use this metaid field. The notes field is a container for XHTML content. There are no

restrictions on what a user may include in this content; however, unlike other fields,

which are designed to be read by machines, the notes field is intended to provide a place

to store information that can be easily read by humans. Furthermore, when a web

browser that does not support non-HTML XML display is used to view an SBML model,

it is usually only the notes field that will be visible. Finally, the annotation field is a

container for software-generate information that is not intended to be read by humans, but

nevertheless contains information that cannot otherwise be encoded in SBML that is

needed by particular software tools.

Nearly all SBML objects contain the following two fields: id and name. Most objects

that have an id field will require that field, which is used to identify the particular

instantiation of that object from other instantiations. The value of the id field must be an

identifier that begins with a letter and contains only letters, numbers, and the underscore

character. SBML is case-sensitive, so that “x” and “X” represent two different

identifiers. No two identifiers in the same scope may have the same name; thus no

species can have the same name as any compartment. Units are kept in a separate scope,

 Page 9 of 9

and (as will be seen below) reactions may (optionally) use locally defined parameters that

have a local scope. The name field is always optional and its value may be any string of

Unicode characters.

Several SBML objects allow (or require) mathematical expressions, notably

kineticLaw (for a reaction), stoichiometry (of a species in a reaction), event

triggers, event assignments, and rules. All mathematical expressions and formulas are

expressed using a subset of MathML [11]. MathML is an XML standard for encoding

such expressions in a machine-readable format. MathML contains two flavors:

presentation MathML, and content MathML. Presentation MathML is typically used to

describe the placement of symbols on a page or a screen, while content MathML is used

to describe the mathematical structure of an equation. For example the following

expresses E = mc
2 in content MathML,

<math xmlns='http://www.w3.org/1998/Math/MathML'>
 <apply>
 <eq/>
 <ci>E</ci>
 <apply>
 <times/>
 <apply>
 <power/>
 <ci>c</ci>
 <cn type='integer'>2</cn>
 </apply>
 <ci>m</ci>
 </apply>
 </apply>
</math>

For the remainder of this chapter, whenever we refer to MathML we will implicitly be

referring to that subset of content MathML that is implemented in SBML Level 2 (Table

2). MathML is intended to be both generated and read by computers, and not by human.

While short pieces of MathML are readable, the language’s verbosity quickly makes it

difficult to follow longer expressions. Fortunately there are tools available to perform this

 Page 10 of 10

translation; for example, in MathSBML (discussed in greater detail below) there are two

functions InfixToMathSBML[infix-expression] and MathMLToInfix[MathML-

string] that perform the conversion immediately.

A function definition associates a named identifier with a MathML lambda object that

represents a mathematical function. For example

<functionDefinition id="cube">
 <math xmlns="http://www.w3.org/1998/Math/MathML">
 <lambda>
 <bvar><ci> x </ci></bvar>
 <apply>
 <power/>
 <ci> x </ci>
 <cn> 3 </cn>
 </apply>
 </lambda>
 </math>
</functionDefinition>

defines a function cube that represents the mathematical expression x3 . A later

MathML expression could then refer to the function cube via the apply command.

<math xmlns='http://www.w3.org/1998/Math/MathML'>
 <apply>
 <ci>cube</ci>
 <ci>x</ci>
 </apply>
</math>

A unit definiton defines physical units that can be applied to model objects in terms of a

default set basic SI units (such as gram, litre, volt, etc.) For example, the user may

define a unit “mmls” as millimoles per liter per second:

<unitDefinition id="mmls">
 <listOfUnits>
 <unit kind="mole" scale="-3"/>
 <unit kind="liter" exponent="-1"/>
 <unit kind="second" exponent="-1"/>
 </listOfUnits>
</unitDefinition>

and then give the value of a rate constant, later in the model, in units of mmls, e.g.,

 <parameter id="K" value="0.007" units="mmls"/>

 Page 11 of 11

Compartments are finite sized containers for species. In SBML Level 1, a compartments

may be a hierarchy of a topological enclosures with volume but no geometric qualities.

For example,

<compartment id="Membrane" spatialDimensions="2"/>
<compartment id="Cell" outside="Membrane" size="1"/>

defines a compartment “Cell” surrounded by a second compartment “Membrane.” In this

example Membrane is a two dimensional surface surrounding a 3-dimensional cell. The

variable represents the compartment size, which may either be held fixed or allowed to

change dynamically (by setting constant=’False’) in a rule. Besides the

topological nesting, no other geometric information is normally encoded in SBML Level

2, although such information could be encapsulated in rules.

Species are any chemical substances that can be measured by quantity or concentration

that take part in a reaction. Examples include proteins, nucleic acids, and small molecules

such as O2 or ATP:

<species id="Glucose" compartment="cell" initialAmount="4" />

Other fields allow specifying initial concentration (instead of amount), units, charge, and

whether or not the value should be kept constant, held as a boundary condition (allowed

to be changed by rules but not by reactions), or variable.

Parameters are constants or variables that do not represent substances. Parameters may

be either global, or locally specified within reactions (discussed below); and example was

given above. A parameter may be held fixed or allowed to change dynamically (by

setting constant=’False’). The values of dynamic parameters may be changed by

rules, but not by reactions. Examples of parameters are rate constants, mass, and

physical constants such as Avogadro’s number. Rate constants and parameters that are

 Page 12 of 12

referenced in multiple reactions should be defined globally; a rate constant that is only

used in a single reaction should be defined as a local parameter.

Rules are mathematical expressions that describe the dynamics or values of variables. In

SBML Level 2 there are three types of rules: assignment rules, rate rules, and algebraic

rules. Assignment rules define the value of a parameter (or species) as a mathematical

function of other variables in the system. Rate rules define the rate of change (derivative

with respect to time) of a variable as a function of other system variables. Algebraic rules

express algebraic constraints that should be satisfied by the system, such as x + y ! 7 = 0 .

For example, the following defines a rate rule dk
1
/ dt = A / (1+ A) , followed by an

assignment rule k = k
1
/ k

2
and an algebraic rule 0 = k

1
+ k

2
+ k

3

<rateRule variable="k1">
 <math xmlns="http://www.w3.org/1998/Math/MathML">
 <apply>
 <divide/>
 <ci>A</ci>
 <apply>
 <plus/>
 <ci>A</ci>
 <cn type="integer">1</cn>
 </apply>
 </apply>
 </math>
 </rateRule>
 <assignmentRule variable="k">
 <math xmlns="http://www.w3.org/1998/Math/MathML">
 <apply>
 <divide/>
 <ci>k1</ci>
 <ci>k2</ci>
 </apply>
 </math>
 </assignmentRule>
<algebraicRule>
 <math xmlns="http://www.w3.org/1998/Math/MathML">
 <apply>
 <plus/>
 <ci>k1</ci>
 <ci>k2</ci>
 <ci>k3</ci>
 </apply>
 </math>
</algebraicRule>

 Page 13 of 13

The ordering of rules is critical: a program is expected to evaluate them in the order listed

in the model. Furthermore, (a) no more than one assignment or rate rule can be defined

for any given identifier; (b) assignment rules override any initial conditions for that

variable; (c) the math field of a rule can only contain identifiers that have been previously

defined, and (d) can not contain either the identifier for which the rule is defined or (e)

any element for which there is a subsequent assignment rule.

A reaction is a statement describing a transformation, transport or binding process that

can change the amount of one or more species. For example,

<reaction id="R1">
 <listOfReactants>
 <speciesReference species="X" stoichiometry="1"/>
 </listOfReactants>
 <listOfProducts>
 <speciesReference species="Y" stoichiometry="2"/>
 <speciesReference species="Z" stoichiometry="1"/>
 </listOfProducts>
 <listOfModifiers>
 <modifierSpeciesReference species=”A” />
 </listOfModifiers>
 <kineticLaw>
 <math xmlns="http://www.w3.org/1998/Math/MathML">
 <apply>
 <times/><ci>k</ci><ci>A</ci><ci>X</ci>
 </apply>
 </math>
 <listOfParameters>
 <parameter id="k" value="0.1" />
 </listOfParameters>
 </kineticLaw>
</reaction>

represents the reaction X kA
! "!! 2Y + Z . The parameter k defined in this example is

only defined locally; its existence is unknown outside of the reaction definition

(specifically, a separate parameter namespace is defined for each reaction to contain its

local parameters). Local parameters may not have the same id as global parameters,

although local parameters in different reactions are permitted to have the same id. Kinetic

 Page 14 of 14

laws can also reference global parameters. Stoichiometries can also be specified with

MathML expressions.

Events are explicit instantaneous discontinuous state changes that are triggered as a result

of changing conditions within a model. Events specify a trigger, the condition that

causes the event to occur (e.g., mass >1 and A < 2); an eventAssignment, an action that

occurs as a result of the event’s triggering (e.g., set mass = mass / 2); and a time delay

(and associated timeUnits) between the occurrence of the trigger and the application of

the eventAssignment. For example,

<event>
 <trigger>
 <math xmlns="http://www.w3.org/1998/Math/MathML">
 <apply>
 <and/>
 <apply><gt/><ci>mass</ci><cn>1</cn></apply>
 <apply><lt><ci>A</ci><cn>2</ci></apply>
 </apply>
 <apply><leq/><ci> P1 </ci> <ci> t </ci></apply>
 </math>
 </trigger>
 <listOfEventAssignments>
 <eventAssignment variable="mass">
 <math xmlns="http://www.w3.org/1998/Math/MathML">
 <apply><divide/><ci>mass</ci><cn>2</cn></apply>
 </math>
 </eventAssignment>
 <listOfEventAssignments>
</event>

sets mass = mass / 2 when the Boolean expressions ((mass >1)! (A < 2)) changes from

false to true. The event will only trigger when the condition changes from false to true. If

the condition later because false, and then true again, the event will trigger a second time.

4. Proposed modifications to SBML

SBML is intended to meet the evolving needs of the systems biology community.

Consequently SBML is being developed in levels, where each higher level adds

additional features to the model definitions. These separate levels of SBML are intended

 Page 15 of 15

to coexist; SBML Level 2 does not render SBML Level 1 obsolete. Software tools that do

not need or cannot support higher levels may continue to use lower SBML levels; tools

that can read higher levels are assured of also being able to interpret models defined in

the lower levels. Minor changes in SBML are called versions; versions within the same

level reflect minor changes within that level that were omitted from the earlier version,

clarifications of intent and syntax, and typographical corrections to the model

specifications.

As errors and omissions are discovered in the specifications they are posted on an errata

page at sbml.org. These corrections are then added to the next version of the

specification. No new major features were added in SBML Level 1, Version 2; however,

it did introduce several variant spellings (e.g., allow both meter and metre; species

instead of specie); and a number of typographical errors, earlier omissions, and

clarifications were introduced. SBML Level 2, Version 1 did introduce a number of

features, notably: events; functions; the use of MathML rather than C for formula strings;

id and name fields for most objects; the removal of pre-defined rate laws; spatial

dimensions; simplification of rule structure; and the addition of modifiers to a reaction

defintion.

Several minor language extensions have been proposed for SBML Level 2, Version 2

[10]. (1) Nested unit definitions will allow new units to units may be defined in terms of

other units defined in the same model, rather than merely in terms of the base SI units

listed in the specification. (2) A new list of species types will represent classes of

chemical entities independent of their locations; for example, two different species, one

in the cytosol and one in the extracellular medium can both be labeled as calcium ions.

 Page 16 of 16

(3) A new boolean constraint rule will define conditions (e.g., A + B < C) under which a

model is valid. If a specified constraint is violated then a simulator should halt and print

a message indicating that the constraint was violated.

A substantial number of additional changes have been proposed for Level 3 [12].

Because of their greater specialization and the fact that not all modelers will have need

for all of these features, it is likely that Level 3 will be modular, in the sense that users

will be able to specify at the beginning of a model which Level 3 features the model uses.

These features, which are summarized below in alphabetical order, are described in detail

on the SBML Wiki at http://sbml.org/wiki.

Alternative reaction extensions would provide the additional data structures that might

be required to describe reactions non-deterministically though such features as

probability models, markov chains, petric nets, pi-calculus, grammar rules, etc. The

present implementation of SBML is based on chemical reactions and rate laws, which

lends itself quite well to differential equation formalisms but does not provide the proper

set of information required for nondeterministic modeling. These reaction extensions

could be closely related to hybrid model extensions.

Array and set extensions would describe collections of elements (bunches of things that

are treated identically in some way) in terms of standard computational data structures

such as arrays, vectors, lists, sets, etc. These extensions can interact with the model

composition extensions, in that arrays or lists of models could be described. For example,

the Arabidopsis shoot apical meristem, the hemispherical tip of the growing plant shoot

that consists of around 500 cells, could be described by a dynamic array or list of models

 Page 17 of 17

(or compartments), with new models (or compartments) being instantiated when cells

divide, and old models being removed when cells die.

Complex-species extensions would allow models to describe a single species in terms of

its different states, such as phosphorylated/non-phosphorylated, or having different

numbers or types of ligands bound to different sites. It is related to the level 2 version 2

extension of species types, but takes the idea further, in that a species can have both a

type (e.g., MAP-Kinase) and a state (double-phosphorylated).

Constraints would add minimal and/or maximal values for numerical fields; a simulation

would then be required to ensure that constraints are met. For example, a geometric

constraint would ensure that a species does not leave its compartment; a conservation of

mass constraint would require that the sums of certain species are fixed; a parameter

constraint would ensure that values are only allowed to range within certain observed

physiological values. Constraints could also be used to describe uncertainties in

numerical values.

Controlled Vocabulary extensions would provide common terms to describe multiple

aspects of the same thing. Different models might used different controlled vocabularies.

For example, a reaction might be labeled as “Michaelis-Menten” or “Bi-Uni-Uni-Bi-Pin-

Pong-Ter-Ter”, or it might be described as “transcriptional”, “transport”, “activation”,

etc; a species might be labeled “substrate” or “catalyst” or “Calcium” or “Sodium.” A

controlled vocabulary could also include a mechanism for synonyms, indicating that

“niacin”, “niacinamide”, “nicotinic acid”, and “Vitamin_B_3” refer to the same thing in a

particular model.

 Page 18 of 18

Diagramming or layout extensions would allow a model to include specific descriptions

of diagrams that describe the model. It would contain lists of graphical representations, or

glyphs, of SBML model elements such as compartments, species, and reactions, and

information about where to place the different glyphs on an diagram (digital or paper).

The actual form of a specific glyph – e.g., whether a a species should be represented by a

simple black character string or by filled green oval – would be left to the individual tool.

Dynamic model extensions provide ways to enable model structures to vary during a

simulation. For example, a dynamic event might trigger cell division and add an

additional compartment to the model. Dynamic extensions are closely related to array and

model composition extensions.

Hybrid-model extensions would allow different parts of the same model to be described

by different formalisms. For example one process could be described by a continuous

differential equation, and another could be a discrete markov process. Hybrid models

could also involve alternative reaction formalisms and rules that allow dynamic switching

between the formalisms for specific processes, constraints that need to be enforced during

a simulation, and instantiations of sub-models via model-compositions.

Model Composition would provide the capability to define one SBML model in terms of

other models (either in the same file or linked to another file), and include mechanisms

for creating a hierarchy of sub-models as “instances” of these models. For example, a

model of a cell may contain multiple instances of a model of a mitochondria, with

different parameter values, initial conditions, etc, or a tissue model may include various

instances of a cell model.

 Page 19 of 19

Parameter Set extensions would facilitate the separation of initial conditions and

parameter values of a model form the model structure itself. Some aspects are related to

the idea of model composition. It is most basic form, a parameter set is a collection of

key-value pairs where the key refers to an SBML object attribute; a specific parameter set

could then be applied to an existing model, with the appropriate name-value pair

substitutions made.

Spatial feature extensions would add geometric characteristics to a model. The only

geometric aspects in SBML Level 2 are hierarchies of compartments that are described as

being inside or outside of one another, and some aspect of area or volume. Spatial feature

extensions could add information ranging from location, and adjacency lists to finite

element or spline-models describing the surface shape and features of a compartment.

5. Resources at sbml.org

In the following paragraphs we briefly describe the tools at sbml.org that have been

designed to support SBML development and could be of use to nearly all SBML

modelers. All of these tools described here are freely accessible at sbml.org.

5.1. Online Tools

The online tools enable the user to validate and visualize models in any version or level

of SBML and convert Level 1 models to Level 2. The validator checks the model against

the SBML XML schema and does limited consistency checks. It is possible for a model

that is not valid of SBML to be passed by the tool (because it does not include complete

consistence checking) but it will invalidate any model that does not follow the schema.

 Page 20 of 20

When a model is validated, the user will be provided with a model summary (e.g.,

number of each class of SBML object) and given the option to visualize the model or

convert it to Level 2 (if the model is in Level 1). Errors are indicated by line number in

the original model. The validator and converter are based on libSBML (see section 5.2).

Visualization is provided utilizing Graphviz dot combined with an XSLT script, and

displays the visualization as a gif image in the web browser. Because of server

limitations visualization is limited to models containing 100 or fewer reactions.

5.2. LibSBML

LibSBML is a C/C++ library providing an application programming interface (API) for

reading, writing and manipulation data expressed in SBML. LibSBML is a library

designed to help read, write, manipulate, translate, and validate SBML files and data

streams. It is not an application itself (though it does come with many example

programs), but rather a library you can embed in your own applications. While it is

implemented in C and C++, it includes Java, Python, Perl, Lisp and MATLAB language

bindings in the distribution, and is written in such a way that users can write bindings

from virtually any computer language implementation that allows cross-language

bindings. The code is very portable and is supported on Linux, native Windows, and

Mac OS-X operating systems.

The API (application programming environment) provides an exhaustive list of getters

(e.g. species_getInitialAmount), setters/unsetters (species_unsetSpatialSizeUnits), field

state booleans (species_isSetCompartment), object getters and creators

(UnitDefiniton_addUnit, UnitDefinition_getUnit), enumerators, abstract classes

 Page 21 of 21

corresponding to every SBML object, including full SBML field inheritence, and so

forth. It also provides facilities for reading and writing SBML files, parsing models into

abstract syntax trees, and SBML validation.

LibSBML understands all versions of SBML including Level 1, Versions 1 and 2, Level

2 version 1, and the draft SBML Layout Proposal. It is written in portable, pure ISO C

and C++ and can be easily ported to nearly any operating system; the build uses GNU

tools. It includes support for standard XML libraries, including both Expat and Xerces;

and provides full XML schema validation (Xerces only).

5.3. SBML Tools for MatLab and Mathematica

The SBML Toolbox is a package for working with SBML models in MATLAB. Rather

than providing a simulator per-se, the SBMLToolbox provides facilities for converting an

SBML model into a MATLAB-accessible format, so that the both standard MATLAB

solvers and/or user-developed simulators and libraries can be applied. The toolbox

currently includes functions for reading and writing SBML models, converting SBML

models into MATLAB data structures, viewing and manipulating those structures,

converting them to MATLAB symbolic format, and simulating them using MATLAB's

ODE solvers. At present the toolbox includes functions to translate an SBML document

into a MATLAB_SBML structure, save and load these structures to/from a MATLAB

data file, validate each structure (e.g. reaction structure), view the structures using a set of

GUIs and to convert elements of the MATLAB_SBML structure into symbolic form and

thus allow access to MATLAB's Symbolic Toolbox. There are a small number of

functions to facilitate simulation and a function that will output an SBML document from

 Page 22 of 22

the MATLAB_SBML structure definition of a model. The toolbox is based on libSBML

and requires a prior MATLAB installation. It has been tested in Windows, Linux, Unix,

Cygwin and MacOSX. Unix versions require a prior installation of libSBML; this is not

required for the Windows version.

MathSBML provides facilities for reading and writing SBML models, converting them to

systems of differential equations for simulation and plotting in Mathematica, and

translating them to other formats. As with the SBMLToolbox, its main purpose is to get

models in and out of Mathematica, so that the user can apply and or all of the standard

features of that language to the SBML Model. MathSBML requires a prior installation of

Mathematica, and is fully platform independent. MathSBML is the subject of Section 7

of this chapter.

5.4. SBML Conversion Utilities

SBML Conversion utilities provide the ability to convert models described in other

modeling languages into SBML. So far we have implemented two different model

conversion utilities: KEGG2SML and CELLML2SBML. In addition, the online tools

provide conversion form SBML Level 1 models to SBML Level 2 models.

KEGG2SBML is a Perl script that converts KEGG (Kyoto Encyclopedia of Genes and

Genomes, http://www.genome.jpg/kegg) Pathway database files to SBML (Systems

Biology Markup Language) files using LIGAND database files [13, 14]. It is compatible

with all levels and versions of SBML, and includes support for <annotations> tags for

CellDesigner. KEGG is a suite of databases and associated software for describing high-

order functional behaviors of cells, systems, and organisms, and for relating those

 Page 23 of 23

behaviors to the organisms’ genomes. It includes several databases that describe protein

interaction networks (the pathway database); chemical reactions (the ligand database);

full-organism networks (gene and SSDB); functional genomic (expression) and

proteomic (BRITE) references. Despite the large amount of information (nearly one

million different proteins and/or genes are in the gene database, for example) and

extensive synonym and cross-links, it provides little or no information for actual reaction

mechanisms or rate constants. KEGG2SBML requires Perl 5.6.1, expat, the Perl XML

parser (XML::Parser) and libxml-perl, all of which are publicly available; and KEGG

pathway database, KGML, and ligand database files that are available at the Kegg

website. . It has been tested on FreeBSD and Linux platforms as well as Cygwin under

Microsoft Windows.

CellML2SBML converts CellML models [15] to SBML. Like SBML, CellML (see

chapter 40 for more details on CellML) is an XML-based modeling language used for

storage and exchange of biological models. While there are some common facilities in

both languages, the two languages have slightly different goals. In particular, CellML is

closely affilitiated with anatomy and finite element modeling languages (AnatML and

FieldML). The CellML developers have been involved in the development of the SBML

standard, and is currently developing a second tool (SBML2CellML) that will perform

the conversion in the opposite direction. CellML2SBML is available for Windows and

Linux systems and requires an XSLT processor and four XSLT stylesheets to run.

 Page 24 of 24

5.5. Schemas, Specifications, and Test Suites

Full XML schemas (.xsd documents) have been defined for all versions of SBML, and

are also included in the download of libSBML as well as the specification documents.

The SBML Test Suite is a collection of models and associated automation scripts intended

to serve as a test set for developers of SBML-enabled software. It also includes sample

models in SBML Level 1 and Level 2 format. Syntactic testing determines if a tool

accepts only well-formed SBML and rejects any syntactically incorrect SBML input.

This may be accomplished by validation against a full XML-schema. Semantic testing

determines if the tool interprets well-formed SBML correctly: does the software construct

the correct model and does that model behave correctly. This is usually tested by

simulation and comparison with tabular output. The semantic test suite at sbml.org

includes over 100 tests, including annotated SBML models and tabulated output, as well

as an automated script for running the tests against your simulator, so long as the

simulator can be invoked either from windows cygwin or a unix command line.

6. The Biomodels Database

The BioModels database [16-18], developed through an international collaboration

between the SBML team (US/UK/Japan), EMBL-EBI (UK), the Keck Graduate Institute

(US), and Systems Biology Institute (Japan), and JWS online (South Africa), provides

access to published peer-reviewed quantitative biological models. The peer-review is

provided by the publication process: a model must be published in some peer-reviewed

form (e.g., a journal article) before it can be encoded in the database. The original paper’s

author does not have generate the SBML model, and the model can be described in any

 Page 25 of 25

language (e.g., differential equations, stochastic, lists of chemical reactions, etc) within

the paper, but only SBML (or CellML) models are incorporated within the database.

Anybody an submit a model to the database, so long as it has been published and has the

appropriate references, but it will not be propagated until the model has been verified by

a database curator. Curators verify that the SBML model is valid, well-formed,

syntactically correct and correctly represents the referenced publication and that

simulations based on these models reproduce (at least some of) the published results.

Curators also annotate the components of the models with terms from controlled

vocabularies and links to other relevant data resources such as GO (the Gene Ontology

database) and links to other databases (such as UniProt, KEGG, and Reactome). This

allows the users to search accurately for the models they need and retrieve them in SBML

format.

7. Managing SBML with MathSBML

MathSBML [19] is an open-source Mathematica package that facilitates working with

SBML models. Its primary purpose is to import SBML files into a Mathematica data-

structure so that users can manipulate the models within Mathematica without having to

worry about the details of SBML structure. Mathematica is one of several platforms

widely used by biological modelers and is available in many academic and commercial

environments (e.g., over 500 US colleges and universities have site licenses).

Mathematica is a symbolic computation environment that includes a wide range of

features of use to computational biologists, notably numerical computation, graphics, and

a programming language. Symbolic computation environments, also known as computer-

algebra systems, allow the users to process equations symbolically, using formats that are

 Page 26 of 26

similar to mathematical equations. From the perspective of computational biologists, this

means that reactions and kinetic laws can be expressed in that they are used to, such

as

A + B! C or !C [t] == k1A[t]B[t]" k2C[t] . Besides the import feature, MathSBML

also includes functions for simulation and plotting of SBML models, including

differential-algebraic equations and events; a complete API (Application Programming

Environment; see Tables 3 and 4) for manipulating SBML Level 2 models; the ability to

display models in human-readable form as annotated html (or within Mathematica

notebooks); and the ability to export new or modified models back to XML format. A

summary of MathSBML commands is given in Table 5.

MathSBML provides full model interoperability with Mathematica as well as a candidate

reference implementation of SBML. MathSBML will run on any platform that has

Mathematica 4.1 or higher installed. The solution of differential-algebraic systems

(SBML models that have algebraic rules) requires Mathematica 5.0 or higher; purely

differential systems (SBML without algebraic rules) can be solved on Mathematica 4.1.

MathSBML is compatible with all levels and versions of SBML released to date, as well

as several features proposed for future releases.

7.1 Model Format

Model import is performed using SBMLRead. Suppose, for example, that we are

interested in modeling the cell cycle, and download the model “Novak1997_CellCycle”

from the biomodels database into a local file BIOMD0000000007.xml. This file

implements a model of DNA replicaton in the fission yeast Schizosaccharomyces pombe

 Page 27 of 27

[20]. We can read the model into the Mathematica computing environment with the

command

 m =SBMLRead[“BIOMD0000000007.xml”, context! None]

returns a Mathematica rule list (a standard technique used in Mathematica to describe

complex data structures) as shown in figure 2. This type of data structure allows the user

to access all features of the model directly with Mathematica; a more SBML-oriented

approach would be to use the model builder, which is described in a later section. A user

could get a list of all of the assignment rules in the model, for example, by entering

 r =SBMLAssignmentRules/.m

which will return

{IEB[t]==1-IE[t],UbEB[t]==1-UbE[t],UbE2B[t]==1-UbE2[t],

 Wee1B[t]==1- Wee1[t],Cdc25B[t]==1-Cdc25[t],

 Rum1Total[t]== G1R[t]+G2R[t]+PG2R[t]+R[t],

 Cdc13Total[t]== G2K[t]+G2R[t]+PG2[t]+PG2R[t],

 Cig2Total[t]== G1K[t]+G1R[t],

 k2[t]==0.0075 (1-UbE[t])+0.25 UbE[t],

 k6[t]==0.0375 (1-UbE2[t])+7.5 UbE2[t],

 kwee[t]==0.035 (1- Wee1[t])+0.35 Wee1[t],

 k25[t]==0.025 (1-Cdc25[t])+0.5 Cdc25[t],

 MPF[t]== G2K[t]+0.05 PG2[t],SPF[t]==0.25 G1K[t]+ MPF[t]}

The third rule can be obtained as rule3=r[[3]], which would return

 Rum1Total[t]== G1R[t]+G2R[t]+PG2R[t]+R[t]

as the value of the variable rule3.

 Page 28 of 28

One particularly useful feature of SBMLRead is that it constructs the complete set of

differential equations that describe the model by combining all of the kinetic laws and

rate rules in the model. This set of differential equations is returned as the field

SBMLODES. SBMLRead also returns the stoichiometry matrix as a separate field, and

this can be used to simulate models that do not have complete sets of kinetic laws. The

corresponding mass-action and mass-balance equations are also generated.

7.2. Variable Scoping and Names

MathSBML attempts to match all identifiers in the Mathematica version of the model as

closely as possible to the name in the model. In addition, the hierarchies of variable

scoping are preserved, e.g., units and reaction parameters are kept in their own

namespaces. Mathematica represents the scope of a symbol by its context. The context

of a variable is indicated by predicating it with a string of characters ending in the back-

quote character (normally found to the left of the number 1 on American keyboards).

SBML model variables are defined in a local context; the name of the context is

determined by the model "name" in SBML Level 1, and by the model "id" in SBML

Level 2. Thus if the SBML model foo contains species A and B, and global parameters

f and k, they will be represented as foo`A, foo`B, foo`f, and foo`k, respectively.

Local parameters k and kf defined in reactions R1 and R2 will become foo`R1`k,

foo`R1`kf, foo`R2`k, and foo`R2`kf, respectively. The only character that is

allowed in an SBML identifier that is not allowed in a Mathematica identifier is the

underscore ("_") character. The underscore has a special meaning in Mathematica that is

used for pattern matching. SBMLRead replaces the underscore character with the

 Page 29 of 29

\[UnderBracket] character (Unicode bottom square bracket 9141), which looks like a

bracket ("[") turned on its side, with the ends pointing up. The underbracket is translated

back to an underscore when a model is written back out as an XML file.

Mathematica contains a number of standard contexts. In particular, any variables that you

type in during a Mathematica session that do not explicitly include a context are placed in

the Global` context. You do not have to explicitly include the context in Global`

variables. Thus the identifiers A and Global`A represent the same variable. You can

change the default context form Global` to something else by changing the value of

the Mathematica identifier $Context.

In SBMLRead, the option context! None indicates that the model should be placed in

the local context. Thus in the example in the previous section, we had a variable

Cdc13Total and a global parameter mu, would normally be represented as represented

as NovakTyson1997CellModel`Cdc13Total and

NovakTyson1997CellModel`mu. The units of the compartment Cell are specified in

litre, which is represented as NovakTyson1997CellModel`Units`litres,

because units are kept in their own namespace. This particular model does not use any

local parameters in the kinetic laws form reactions; however, if we were to add a

parameter k to the reaction Cdc25Reaction it would become

NovakTyson1997CellModel`Cdc25Reaction`k. By using the option

 context! CellCycle in our call to SBMLRead these would become

CellCycle`Cdc13Total, CellCycle`Units`litre, and

CellCycle`Cdc25Reaction`k.

 Page 30 of 30

7.3 Simulation and Plotting

Suppose you are interested in running a deterministic simulation of the model that was

imported in the previous section. This feat is accomplished with SBMLNDSolve, which is

a wrapper for the Mathematica numerical solver NDSolve. To run a simulation of

NovakTyson1997CellModel for 400 minutes (the units of time are redefined as minutes

in the model) you would enter

 r =SBMLNDSolve[m,400]

The result is returned as a list of interpolation sets that are compatible with Mathematica

interpolation and plotting functions. If you wanted to write a table of values of the model

variables Rum1Total and Cdc13Total at intervals of 1 minutes from t =150 to t=200 to

a comma-separated value file “results.csv,”

dt = dataTable[{Rum1Total, Cdc13Total}, {t, 150, 200, 1}, r];

Export["results.csv", dt, "csv"]

Other standard output file formats including .dif, .fit, fits, .hdf, .h5, .mat, .mtx, .tsv, .txt,

.xls are also supported.

Suppose instead of generating a table of data you want a plot of those same variables:

SBMLPlot[r, {Rum1Total, Cdc13Total}]

The plot will normally be displayed on the screen and remain embedded in the

Mathematica notebook. SBMLPlot is a wrapper for the Mathematica function Plot.

Any standard plotting options can be specified:

 Page 31 of 31

p = SBMLPlot[r, {Rum1Total, Cdc13Total},

PlotStyles ! {

!!!!!{Dashing[{.02}], Thickness[.005], Blue},

!!!!!{Thickness[.002], RGBColor[1,0,0]}},

ImageSize!600,

TextStyle!{FontFamily! Times, FontSize!18},

holdLegend! True]

will generate a 600-pixel wide image (figure 2) with Rum1Total as a thick dashed blue

line and Cdc13Total as a thinner solid red line. Figures can be exported, e.g., via

 Export["myplot.jpg",p,"jpg"]

many standard graphics types are supported, including bmp, dcm, dic, eps, gif, jpg, pbm,

pcx, pdf, pgx, pict, pnm, png, ppm, svg, tif, wmf and xbm file formats.

The MathSBML simulator, SBMLNDSolve, is a wrapper for Mathematica’s NDSolve,

which in turn evolved from the LSODA, IDA, and DASPK solvers. It incorporates a

wide range of methods, including stiff and non-stiff integrators and switching methods

and a framework for incorporating external solvers.

Events are implemented by the following algorithm, which ensures that events activate

only when an event’s trigger changes from false to true. Each event E in an SBML model

in has a trigger expression TE and assignments AE. We replace the event E, with the

following:

• a boolean variable VE with initial value false

• an event E1 with trigger

T
E1
= (!V

E
)! T

E
and assignments AE and V

E
= true

 Page 32 of 32

• an event E2 with trigger

T
E2

= (! T
E
)!V

E
 and assignment VE = false .

The existence of the pseudo-events E1 and E2 and new model variable VE is completely

transparent to the user, who is only aware of the existence of the events specified in the

model. Events with delays are similarly handled by creating a pseudo-event that triggers

once when the specified delay has elapsed. Our cell cycle model actually has two events,

one with a delay, and one with multiple assignments:

• Event start (the start of S-phase) occurs when SPF (S-phase promoting factor)

crosses 0.1 from below; after a delay of 60 minutes, the model parameter kp is

cut in half.

• Event Division (cell division) occurs when UbE crosses 0.1 from above. This

triggers halving if the parameter Mass and doubling of the parameter kp.

Events are then detected in Mathematica 5.1 (and higher) by throwing and catching the

event occurance via the NDSolve StepMonitor option; in earlier versions they are

detected by the option StoppingTest. In all cases the precise event time is found by

backward interpolation. If multiple events occur simultaneously all are detected and

processed.

7.4. The Model Builder: An SBML API

MathSBML contains a simple model editor, allowing users to create SBML models

compatible with other simulators, as well as a Mathematica text-command based API that

 Page 33 of 33

can be used to produce arbitrarily complex SBML files. The model editor contains a suite

of commands to add, modify, or remove single SBML objects (such as a reaction,

chemical species, or equation) from the current model (Tables 2 and 3). The model may

be either created de-novo or read from a file. After building the model, the user can test it

by running simulations, continue to modify it, or write the results as an SBML file, in any

order.

There is a set of functions addX, modifyX, and removeX, for each class of SBML

model object: compartment, event, function, parameter, reaction, rule, species, and unit.

Options allow users to specify specific object field values. For example, a partial list of

the commands needed to create the cell-cycle model from scratch is illustrated in figure

3. The last step in the box creates an xml file cellCycle.xml. A large number of

consistency checks are made as the commands are typed to ensure that the SBML

specification is satisfied. For example every species must be associated with a

compartment; if a compartment is not specified by the addSpecies statement, then the

most recently referenced compartment is used. If no compartment has been defined yet, a

new one is defined.

As the current model is built it is stored internally by MathSBML. At any point in model

development, either before or after the xml file has been written, the model can be loaded

into the simulator and tested via the loadSimulator command. The return value of

loadSimulator is identical to the return value from SBMLRead, and therefore

compatible with SBMLNDSolve. Similarly, SBMLRead will automatically load the

model builder whenever a level-2 model is read in, so that it can be modified by add,

remove, or modify commands.

 Page 34 of 34

Internally, an SBML model is stored as symbolic XML, a standard Mathematica data

structure for handling XML files. The functions getX[n] return the nth object of class

X in symbolic XML; the argument may be a number, an id, or a list of both. For example

getReaction[2] returns the second reaction in the model. The function XMLOut is

used there to generate the corresponding XML fragment. Other functions

XtoSymbolicSBML and XtoSBML allow one to generate the corresponding symbolic

XML or XML fragment for any SBML object.

MathSBML is freely downloadable (LGPL license) from sourceforge at

http://sf.net/projects/sbml. Full documentation with examples of all entry points including

the entire API is available on the sbml.org website at http://sbml.org/software/mathsbml/.

Instructions for downloading and installing MathSBML are also provided on that site.

MathSBML will run under any operating system or platform on which Mathematica is

already installed; a complete list of compatible systems is given at the Wolfram Research

web site.

Acknowledgements

SBML was started by Hamid Bolouri, Hiroaki Kitano and John Doyle in the year 2000.

The projects were initially funded by a generous grant from the Japan Science and

Technology Agency under the ERATO Kitano Symbiotic Systems Project. Support for

the continued development of SBML and associated software and activities today comes

from the following sources: the National Human Genome Research Institute (USA), the

National Institute of General Medical Sciences (USA), the International Joint Research

 Page 35 of 35

Program of NEDO (Japan), the ERATO-SORST Program of the Japan Science and

Technology Agency (Japan), the Ministry of Agriculture (Japan), the Ministry of

Education, Culture, Sports, Science and Technology (Japan), the BBSRC e-Science

Initiative (UK), the DARPA IPTO Bio-Computation Program (USA), the Army Research

Office's Institute for Collaborative Biotechnologies (USA), and the Air Force Office of

Scientific Research (USA). Additional support is provided by the California Institute of

Technology (USA), the University of Hertfordshire (UK), the Molecular Sciences

Institute (USA), and the Systems Biology Institute (Japan). Besides the authors, other

SBML Team members include or have included Ben Bornstein (primary developer of

libBML), Sarah Keating (SBML Toolbox), Ben Kovitz, Joanne Matthews (online tools),

Akira Funahashi (KEGG/SBML conversion), Hamid Bolouri, Herbert Sauro, and Maria

Schilstra (CellML conversion), Hiroaki Kitano, John Doyle and Roger Brent. The

authors would also like to thank Nicolas Le Novère for his extraordinary efforts to

develop the Biomodels database. Mathematica is a commercial product produced by

Wolfram Research.

 Page 36 of 36

References

1. Hucka M et al. The systems biology markup language (SBML): a medium for

representation and exchange of biochemical network models. Bioinformatics

2003; 19: 524-531.

2. Hucka M et al. Evolving a lingua franca and associated software infrastructure for

computational systems biology: the Systems Biology Markup Language Project.

IEE Systems Biology. 2004; 1:41-53.

3. XML Core Working Group. Extensible Markup Language (XML). Available on

the world wide web at http://www.w3.org/xml

4. Achard F, Vaysseix G, Barillot E. XML, bioinformatics, and data integration.

Bioinformatics. 2001; 17: 115-125.2

5. Wanner BL, Finney A, Hucka M. Modeling the E. coli cell: The need for

computing, cooperation, and consortia. In Alberghina L, Westerhoff HV, ed.,

Systems Biology: Definitions and Perspective. Berlin: Springer-Verlag. 2005; in

press.

6. Nature Molecular Systems Biology. For Authors. Available on the world wide

web at http://www.nature.com/msb/authors/index.html.

7. Finney A et al. Chapter 1. Software Infrastructure for Effective Communication

and Reuse of Computational Models. In Szallasi Z and Stelling J, ed. System

modeling in cellular biology: From concepts to nuts. MIT Press (in press).

 Page 37 of 37

8. Hucka M, Finney A, Sauro H, Bolouri H. Systems Biology Markup Language

(SBML) Level 1: Structures and facilities for Basic Model Definitions. SBML

Level 1, Version 2 (Final), 28 August 2003. Available on the world wide web at

http://sbml.org/specifications/sbml-level-1/version-2/html/sbml-level-1.html.

9. Finney A, Hucka M. Systems Biology Markup Language (SBML) Level 2:

Structures and Facilities for Model Definitions. SBML Level 2, Version 1 (Final),

June 28, 2003. Available on the world wide web at

http://sbml.org/specifications/sbml-level-2/version-1/html/sbml-level-2.html.

10. Finney A and Hucka M. Systems Biology Markup Language (SBML) Level 2:

Structures and Facilities for Model Definitions, SBML Level 2, Version 2 (Draft)

26 March 2005.

11. Asbrooks R, Buswell S, Carlisle D, Dalmas S, Devitt S, Diaz A, Froumentin M,

Hunter R, Io P, Kohlase M, Miner R, Poppelier N, Smith B, Soiffer N, Sutor R,

Watt S. Mathematical Markup Language (MathML) Version 2.0 (Second

Edition), http://www.w3.org/TR/2003/REC-MathML2-20031021/.

12. Finney A. Developing SBML Beyond Level 2: Proposals for Development, in

Computational Methods in Systems Biology, ed. V. Danos and V. Schachter,

Lecture Notes in Computer Science, 2005; 3082:242-247.

13. Goto S, Nishioka T, and Kanehisa, M. LIGAND: Chemical Database for Enzyme

Reactions, Bioinformatics, 1998; 14:591-599.

 Page 38 of 38

14. Goto S, Okuno Y, Hattori M, Nishioka T, Kanehisa M, LIGAND: database of

chemical compounds and reactions in biological pathways. Nucleic Acids

Research, 2002; 30:402-404.

15. Lloyd C, Halstead MDB, Nielson PF. CellML: its future, present, and past,

Progress in Biophysics and Molecular Biology, 2004; 85(2-3):433-450.

16. LeNovère N, Finney A, Hucka M, Bhall U, Campagne F, Collado-Vise J,

Crampin, Halstead M, Klipp, E, Mendes, P, Nielsen,P, Sauro,H, Shapiro B, Snoep

J, Spence H and Wanner B. Minimal information requested in the annotation of

models (MIRIAM). Nature Biotechnol, (in press), 2005.

17. LeNovère N, Bornstein B, Broicher A, Courtot M, Donizelli M, Dharuri H, Li L,

Sauro H, Schilstra M, Shapiro B, Shoep JL, Hucka M. Biomodels, database of

curated quantitative kinetics models. Nucleic Acids Research, submitted,2005.

18. Le Novère N, Donizell M, Bornstein B, Courtot M, Li L, Hucka M. Biomodels

database, storage, and exchange of curated quantitative models in Systems

Biology, Nature Molecular Systems Biology, submitted, 2005.

19. Shapiro BE, Hucka M, Finney A, Doyle JC. MathSBML: A Package for

Manipulating SBML-Based Biological Models. Bioinformatics, 2004;

20(16):2829-2831.

20. Novak B, Tyson JJ. Modeling the control of DNA replication in fission yeast.

PNAS, 1997; 94:9147-9152.

 Page 39 of 39

Figure 1

A skeleton SBML Level 2 model .

<?xml version="1.0" encoding="UTF-8"?>
<sbml xmlns="http://www.sbml.org/sbml/level2" level="2" version="1">

<model id="My_Model">
<listOfFunctionDefinitions>
...
</listOfFunctionDefintions>
<listOfUnitDefinitions>
...
</listOfUnitDefinitions>
<listOfCompartments>
...
</listOfCompartments>
<listOfSpecies>
...
</listOfSpecies>
<listOfParameters>
...
</listOfParameters>
<listOfRules>
...
</listOfRules>
<listOfReactions>
...
</listOfReactions>
<listOfEvents>
...
</listOfEvents>

</model>
</sbml>

 Page 40 of 40

Figure 2.

UML diagram of the SBML inheritance hierarchy showing the major data types in

SBML.

 Page 41 of 41

Figure 3.

Abbreviated form of data structure returned by SBMLRead after importing the cell cycle

model described in the text. The ellipsis is used to indicate that some parts of the data

structure have not been illustrated to save space in the present book chapter; in fact,

MathSBML will display the entire data structure.

 Page 42 of 42

Figure 4.

A plot of the two variables Rum1Total (dashed line) and Cdc13Total (solid line)

 Page 43 of 43

Figure 5

Model builder commands needed to create the cell cycle model. Due to space limitations

only a subset of the commands are shown; the vertical ellipsis indicates that many

commands were omitted. All of the omitted commands are of the form “addX”. The last

statement in the list, createModel, generates the SBML file cellCycle.xml.

<<mathsbml.m
newModel["CellCycle"];
addCompartment["Cell",size->1];
addUnit[id->"time",name->"minutes",

unit->{"second"->{multiplier->60}}];
addParameter[id->"mu",value->0.00495];
addParameter[id->"Mass",value->1,constant->False];
addRule[type->"RateRule",variable->"Mass",math->Mass*mu];

addSpecies[IEB,boundaryCondition->True,initialAmount->0];
addSpecies[UbEB,boundaryCondition->True,initialAmount->0];

addRule[type->AssignmentRule,variable->IEB,math->1-IE];
addRule[type->AssignmentRule,variable->UbEB,math->1-UbE];

addSpecies[Rum1Total];
addSpecies[Cdc13Total];

addRule[type->AssignmentRule,variable->Rum1Total,

math->R+G1R+G2R+PG2R];
addRule[type->AssignmentRule,variable->Cdc13Total,

math->G2K+G2R+PG2+PG2R];

addEvent[id->"Start",trigger->SPF≥0.1,
 eventAssignment->{kp->kp2},delay->60];
addEvent[id->"Division",trigger->UbE≤0.1,
 eventAssignment->{kp->kp*2,Mass->Mass/2}];

addReaction[products->{G2K},id->"G2K_Creation",kineticLaw->k1];

createModel["cellCycle.xml"];

 Page 44 of 44

Table 1. SBML Workshops and Hackathons.

Meeting Date Location

1st Workshop April 2000 Pasadena, CA, USA

2nd Workshop Nov. 2000 Tokyo, Japan

3rd Workshop June 2001 Pasadena, CA,USA

4th Workshop Dec. 2001 Pasadena, CA, USA

5th Workshop July 2002 Hatfield, UK

6th Workshop Dec. 2002 Stockholm, Sweden

7th Workshop May 2003 Ft. Lauderdale, FL, USA

1st Hackathon July 2003 Blacksburg, VA, USA

8th Workshop Nov 2003 St. Louis, MO, USA

2nd Hackathon May 2004 Hinxton, UK

9th Workshop Oct. 2004 Heidelberg, Germany

3rd Hackathon May 2005 Tokyo, Japan

10th Workshop Oct. 2005 Boston, MA, USA

 Page 45 of 45

Table 2. The subset of MathML that is allowed in SBML Level 2.

Object Elements* Allowed

Token cn**, ci, csymbol***, sep

Basic content apply, piecewise, piece, otherwise

Relational

operators

eq,neq, gt, lt, geq, leq

Arithmetic

operators

plus, minus, times, divide, power, root, abs, exp, ln, log,
floor, ceiling, factorial

Logical

operators

and,or, xor, not

Qualifiers degree, bvar, logbase

Trigonometric sin, cos, tan, sec, csc, cot, sinh, cosh, tanh,

sech, csch, coth, arcsin, ���rcos, arctan, arcsec,

arccsc, arccot, arcsinh, arccosh, arctanh,

arcsech, arccsch, arccoth

Constants true, false, notanumber, pi, infinity,

exponentiale

Annotation semantics, annotation***, annotation-xml***

*The attributes style, class and id may be used on any element. **The attribute

type may only take on one of the following: ”e-notation”,”real”,

“integer”, or ”rational”; *** encoding and definitionURL

attributes are allowed are csymbol elements, and encoding is permitted on

annotation and annotation-xml elements.

 Page 46 of 46

Table 3. Summary of the MathSBML API. The “_” in the name can be replaced with

any checked object, e..g., addFunction or modifyRule. Controllable options are

summarized in Table 4.

M
o
d
e
l

C
o
m
p
a
r
t
m
e
n
t

E
v
e
n
t

F
u
n
c
t
i
o
n

P
a
r
a
m
e
t
e
r

R
e
a
c
t
i
o
n

R
u
l
e

S
p
e
c
i
e
s

U
n
i
t

a
n
n
o
t
a
t
i
o
n

add_

_ToSBML

_ToSymbolciSBML

get_

modify_

remove_

create_

createSymbolic_

 Page 47 of 47

Table 4. SBML attributes that can be controlled via the API commands in table 3. The

“options” shown generally have a one-to-one correspondence with SBML attributes,

although sometimes the spelling is different. For example, reaction products option refers

to the SBML speciesReferences within the SBML listOfProducts; however,

for the most part the correspondence is clear.

API commands
for:

Options*

species
id, name, compartment, initialAmount,

initialConcentration, substanceUnits, spatialSizeUnits,

hasOnlySubstanceUnits, boundaryCondition, charge,

constant

compartment
id, name, constant, outside, spatialDimensions, size,

units

event
id, name, trigger, delay, timeUnits, eventAssignment

function
id, name, math

parameter
id, name, annotation, notes, value, units, constant

reaction
id, name, fast, kineticLaw, modifiers, name, products,

productStoichiometry, reactants, reactantStoichiometry,

reaction, reversible, parameters (sub-options: value, name),

timeUnits, substanceUnits;

rule
type, variable, math

species
id, name, compartment, initialAmount,

initialConcentration, substanceUnits,

hasOnlySubstanceUnits, boundaryCondition, charge,

constant

unit
id, name, unit (sub-options: exponent, scale, multiplier,

offset)

model
id, name; also: comments (XML Comments)

*All objects have modifiable annotation, notes, and metaid fields. Some options are mutually exclusive.

 Page 48 of 48

Table 5. Summary of MathSBML commands excluding the API.

Function MathSBML Entry Points

Algebraic/MathML conversion InfixToMathML, MathMLToInfix

Convert model file format SBMLCopy

Plot results of a simulation SMBLPlot, SBMLGridPlot, SBMLListPlot

Simulation dataTable, SBMLNDSolve

Import a model SBMLRead

Export a model SBMLWrite, createModel

Annotation control setAnnotationPackage, setAnnotationURL,

setModelAnnotation, setSBMLAnnotation

Model display showModel

