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Abstract 

MathSBML is an open-source, freely-downloadable Mathematica package that facilitates 

working with Systems Biology Markup Language (SBML) models. SBML is a tool-

neutral, computer-readable format for representing models of biochemical reaction 

networks, applicable to metabolic networks, cell-signaling pathways, genomic regulatory 

networks, and other modeling problems in systems biology that is widely supported by 

the systems biology community. SBML is based on XML, a standard medium for 

representing and transporting data that is widely supported on the internet as well as in 

computational biology and bioinformatics. Because SBML is tool-independent, it enables 

model transportability, reuse, publication and survival. In addition to MathSBML, a 

number of other tools that support SBML model examination and manipulation are 

provided on the sbml.org website, including libSBML, a C/C++ library for reading 

SBML models; an SBML Toolbox for MatLab; file conversion programs; an SBML 

model validator and visualizer; and SBML specifications and schemas. MathSBML 

enables SBML file import to and export from Mathematica as well as providing an API 

for model manipulation and simulation.  
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1. Motivation  

The Systems Biology Markup Language (SBML) is a tool-neutral, computer-readable, 

text file (XML) format for representing models of biochemical reaction networks.  It is 

especially applicable to descriptions of cell signaling pathways, metabolic networks, 

genomic regulatory networks, and other modeling problems in systems biology[1, 2].  

SBML is based on XML  (the eXtensible Markup Language), a standard medium for 

representing and transporting data that is widely supported on the Internet [3] as well as 

in computational biology and bioinformatics (a recent PubMed search on “XML” 

returned 475 hits; INSPEC 7637 hits; and Web of Science 3009 hits; scholar.google.com, 

15,900 hits) [4]. The central goal of SBML is model portability.  By encoding models in 

SBML, they can be freely interchanged between users, regardless of which software tool, 

hardware platform, or operating system each uses.  So long as each modeler uses SBML 

compliant software, they will both be able to run simulations from the same model, 

without modification, on their on platform, and compare results.   

The benefits of this interoperability are enormous. Not only can users share models, but 

they can use multiple simulation tools and techniques within a single research project 

without rewriting their models [5].  Say, for example, that a modeler wants to   perform a 

combination of discrete stochastic and continuous dynamic simulations.  Usually this 

means that he will need to use two different simulation tools. Typically, each software 

program has a unique model description format that is incompatible with other programs. 

If both tools are SBML compliant then the model only needs to be encoded once.    
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A second benefit of this standardization is model publication and dissemination in the 

peer-reviewed literature. Published models are described in a variety of formats: 

differential equations, algebraic equations, reactions, pathway diagrams, event rules, etc. 

If, in addition, the author encodes his model in SBML and makes it available to the 

publisher (and eventually, the journal’s readers) via an auxiliary web site, then 

computationally astute peer-reviewers can test the models and verify the purported results 

independently of the authors. Furthermore, when the final paper is published, readers can 

easily reproduce the same results and incorporate them into and/or compare/contrast them 

with their own simulations.  Journal editors appear to agree; for example, the instructions 

for authors of Nature Molecular Systems Biology include the statement “Where relevant 

and possible, authors are encouraged to submit datasets in SBML format.” [6] 

Finally, SBML can help ensure model survivability [7]. When models are described in 

unique data formats, particularly when their authors code their own simulation engines, 

the software model survives only as long as the program is being used. Typically this 

means that once a student graduates or a post-doctoral researchers moves on to a more 

permanent positions this technology is lost by the original host institution. If commercial 

or widely available tools from the public domain are used, on the other hand, models 

typically only survive until a new version or software release requires a new data format, 

or more commonly, the program stops being supported on the modeler’s preferred 

hardware/software environment. While there is no guarantee that SBML will always be 

around, the designers of nearly a hundred different tools are have already made their 

software SBML compliant or announced an intention to do so in the near future [The 

growing list is regularly updated on sbml.org].  
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2. The Evolution of SBML 

SBML has been developed through an evolving international collaboration that reflects 

the wide variety of research being performed in systems biology.  Owing to both the 

geographical diversity as well as the size of this group most discussions have taken place 

electronically. Moderated (to edit out spam) discussion lists (sbml-discuss, libsbml-

discuss) are maintained and archived at http://sbml.org/forums. Over 2500 messages were 

posted to these lists between Oct. 2002 and Oct.2005; another thousand or so were posted 

on earlier discussion lists that were combined with Systems Biology Workbench 

development, and countless other private messages have been sent between list members 

(for example, the SBML Team has exchanged some 1900 messages amongst itself 

between Feb 2003 and Oct 2005, and the authors of this chapter another 2000 or so 

during the same period). These lists currently contain over 200 members coming from 

academic, commercial and private environments, from all continents. 

The ideas developed and discussed through these forums were crystallized through a 

series of open workshops and working groups starting in 2000, many of which were 

followed by detailed specification documents or proposals.  To date, ten workshops and 

three “hackathons” have been held in Japan, the US, the UK, Sweden, and Germany 

(Table 1). Workshops provide a forum for users to become aware of new developments 

in SBML software, discussion of proposed SBML features so that  consensus decisions 

can be made, and maximizing software interoperability by discussing issues that have 

arisen in the various implementations. Hackathons, on the other hand, provide a forum 

for software developers to gather and work simultaneously to solve interoperability 
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issues. The minutes of all workshops and hackathons are available at http://sbml.org/.  

The specification of the original language, called SBML Level 1, was released on 2 

March 2001.  Minor deficiencies and corrections were incorporated in the next release, 

SBML Level 1, Version 2 (L1V2), on 28 August 2003. Level 1, Version 2 replaces Level 

1, Version 1 as it primarily corrects errors in the original document [8].  A major 

revision, SBML Level 2, Version 1 (L2V1), was released on 28 June 2003 [9]. An initial 

draft for SBML Level 2, Version (L2V2) was released on 26 March 2005 and posted on 

the SBML Wiki but has not been finalized. [Update after Boston Forum] [10] SBML 

compliant authors may choose to use either L1V2 or L2V1. All specification documents 

and related resources are maintained on the web site at http://sbml.org. 

The sbml.org web site aims to provide for SBML what w3.org provides to the world wide 

web. While formal membership in an equivalent consortium is neither required – nor 

likely practical because of the smaller relative size of the community – the intent is to 

provide a formal, nonbiased (from the perspective of individual modeling tools) location 

where specifications, schemas, technical reports, discussion lists, a Wiki, and various 

online tools can be maintained. The tools provided, such as a validator, visualizer, 

conversion libraries, and libraries for reading and maintaining SBML files, are designed 

to aid all modelers in their SBML implementations, and will be the subject of section 5 of 

this chapter. The group that maintains sbml.org, the “SBML Team,” is an international 

research team distributed at institutions around the world. The SBML Team is not the 

“keeper” of SBML – that role is for the systems biology community – merely organizers, 

editors, and fellow tool developers.  
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3. SBML Level 2 Models 

In this section we will review the format of SBML Level 2 Models. Level 1 is omitted 

due to space limitations as well as the overwhelming (and growing) prevalence of SBML 

Level 2; the interested reader should consult the references for additional information. 

The overall structure of an SBML model is  

beginning of model definition 
list of function definitions 
list of unit definitions 
list of compartment definitions 
list of species 
list of parameters 
list of rules 
list of reactions 
list of events 

end of model definition 

The order of the lists cannot be modified,  e.g., species must precede parameters, etc. 

SBML models are encoded as XML files; each XML file contains a single “model” 

object, which is itself enclosed within an sbml object (see figure 1). Each of the “lists” is 

optional; when present it must contain a nonzero number of object definitions of the 

general form 

 <listOfFoos> 
  <foo …> … </foo> 
  <foo …> … </foo> 
  … 
 </listOfFoo> 

   

where foo is one of  functions, units, compartments, species, 

parameters, rules, reactions, or events.   With the exception of species, 

the final “s” is omitted in the individual object definitions; in all cases, the first letter of 

the object is upper case in the listOf definition, and lower case in the individual object 



 Page 8 of 8 

definition (hence listOfFoos has an upper case “F” and is plural, and foo is singular 

and entirely lower case).  

All SBML objects derive from a class SBASE (see figure 2).  Class SBASE (and hence 

all other SBML objects) contains three optional fields: a metaid, notes, and 

annotation. The metaid field is present for supporting metadata annotations using 

RDF, and has a data type of ID as defined by XML. Other tool users may also choose to 

use this metaid field. The notes field is a container for XHTML content. There are no 

restrictions on what a user may include in this content; however, unlike other fields, 

which are designed to be read by machines, the notes field is intended to provide a place 

to store information that can be easily read by humans.  Furthermore, when a web 

browser that does not support non-HTML XML display is used to view an SBML model, 

it is usually only the notes field that will be visible. Finally, the annotation field is a 

container for software-generate information that is not intended to be read by humans, but 

nevertheless contains information that cannot otherwise be encoded in SBML that is 

needed by particular software tools. 

Nearly all SBML objects contain the following two fields: id and name. Most objects 

that have an id field will require that field, which is used to identify the particular 

instantiation of that object from other instantiations. The value of the id field must be an 

identifier that begins with a letter and contains only letters, numbers, and the underscore 

character.  SBML is case-sensitive, so that “x” and “X” represent two different 

identifiers. No two identifiers in the same scope may have the same name; thus no 

species can have the same name as any compartment. Units are kept in a separate scope, 
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and (as will be seen below) reactions may (optionally) use locally defined parameters that 

have a local scope. The name field is always optional and its value may be any string of 

Unicode characters.  

Several SBML objects allow (or require) mathematical expressions, notably 

kineticLaw (for a reaction), stoichiometry (of a species in a reaction), event 

triggers, event assignments, and rules. All mathematical expressions and formulas are 

expressed using a subset of MathML [11].  MathML is an XML standard for encoding 

such expressions in a machine-readable format. MathML contains two flavors: 

presentation MathML, and content MathML. Presentation MathML is typically used to 

describe the placement of symbols on a page or a screen, while content MathML is  used 

to describe the mathematical structure of an equation. For example the following 

expresses E = mc
2  in content MathML,  

<math xmlns='http://www.w3.org/1998/Math/MathML'> 
 <apply> 
  <eq/> 
  <ci>E</ci> 
  <apply> 
   <times/> 
   <apply> 
    <power/> 
    <ci>c</ci> 
    <cn type='integer'>2</cn> 
   </apply> 
   <ci>m</ci> 
  </apply> 
 </apply> 
</math> 

For the remainder of this chapter, whenever we refer to MathML we will implicitly be 

referring to that subset of content MathML that is implemented in SBML Level 2 (Table 

2). MathML is intended to be both generated and read by computers, and not by human. 

While short pieces of MathML are readable, the language’s verbosity quickly makes it 

difficult to follow longer expressions. Fortunately there are tools available to perform this 
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translation; for example, in MathSBML (discussed in greater detail below) there are two 

functions InfixToMathSBML[infix-expression] and MathMLToInfix[MathML-

string] that perform the conversion immediately. 

A function definition associates a named identifier with a MathML lambda object that 

represents a mathematical function.  For example 

<functionDefinition id="cube"> 
  <math xmlns="http://www.w3.org/1998/Math/MathML"> 
    <lambda> 
      <bvar><ci> x </ci></bvar> 
      <apply> 
        <power/> 
        <ci> x </ci> 
        <cn> 3 </cn> 
      </apply> 
    </lambda> 
  </math> 
</functionDefinition>  

defines a function cube that represents the mathematical expression x3 .  A later 

MathML expression could then refer to the function cube via the apply command.  

<math xmlns='http://www.w3.org/1998/Math/MathML'> 
 <apply> 
  <ci>cube</ci> 
  <ci>x</ci> 
 </apply> 
</math> 

A unit definiton defines physical units that can be applied to model objects in terms of a 

default set basic SI units (such as gram, litre, volt, etc.)   For example, the user may 

define a unit “mmls” as millimoles per liter per second: 

<unitDefinition id="mmls"> 
  <listOfUnits> 
    <unit kind="mole" scale="-3"/> 
    <unit kind="liter" exponent="-1"/> 
    <unit kind="second" exponent="-1"/> 
  </listOfUnits> 
</unitDefinition> 

and then give the value of a rate constant, later in the model,  in units of mmls, e.g.,  

 <parameter id="K"  value="0.007" units="mmls"/> 
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Compartments are finite sized containers for species. In SBML Level 1, a compartments 

may be a hierarchy of a topological enclosures with volume but no geometric qualities. 

For example,  

<compartment id="Membrane" spatialDimensions="2"/> 
<compartment id="Cell" outside="Membrane" size="1"/> 

defines a compartment “Cell” surrounded by a second compartment “Membrane.”  In this 

example Membrane is a two dimensional surface surrounding a 3-dimensional cell.  The 

variable represents the compartment size, which may either be held fixed or allowed to 

change dynamically (by setting constant=’False’) in a rule.  Besides the 

topological nesting, no other geometric information is normally encoded in SBML Level 

2, although such information could be encapsulated in rules.  

Species are any chemical substances that can be measured by quantity or concentration 

that take part in a reaction. Examples include proteins, nucleic acids, and small molecules 

such as O2 or ATP:  

<species id="Glucose" compartment="cell" initialAmount="4" /> 

Other fields allow specifying initial concentration (instead of amount), units, charge, and 

whether or not the value should be kept constant, held as a boundary condition (allowed 

to be changed by rules but not by reactions), or variable.   

Parameters are constants or variables that do not represent substances.  Parameters may 

be either global, or locally specified within reactions (discussed below); and example was 

given above. A parameter may be held fixed or allowed to change dynamically (by 

setting constant=’False’).  The values of dynamic parameters may be changed by 

rules, but not by reactions.  Examples of parameters are rate constants, mass, and 

physical constants such as Avogadro’s number.  Rate constants and parameters that are 
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referenced in multiple reactions should be defined globally; a rate constant that is only 

used in a single reaction should be defined as a local parameter.    

Rules are mathematical expressions that describe the dynamics or values of variables. In 

SBML Level 2 there are three types of rules: assignment rules, rate rules, and algebraic 

rules. Assignment rules define the value of a parameter (or species) as a mathematical 

function of other variables in the system. Rate rules define the rate of change (derivative 

with respect to time) of a variable as a function of other system variables. Algebraic rules 

express algebraic constraints that should be satisfied by the system, such as x + y ! 7 = 0 .  

For example, the following defines a rate rule dk
1
/ dt = A / (1+ A) , followed by an 

assignment rule k = k
1
/ k

2
and an algebraic rule 0 = k

1
+ k

2
+ k

3
 

<rateRule variable="k1"> 
  <math xmlns="http://www.w3.org/1998/Math/MathML"> 
  <apply> 
   <divide/> 
   <ci>A</ci> 
   <apply> 
    <plus/> 
    <ci>A</ci> 
    <cn type="integer">1</cn> 
   </apply> 
  </apply> 
 </math> 
 </rateRule> 
 <assignmentRule variable="k"> 
  <math xmlns="http://www.w3.org/1998/Math/MathML"> 
   <apply> 
    <divide/> 
    <ci>k1</ci> 
    <ci>k2</ci> 
   </apply> 
  </math> 
 </assignmentRule> 
<algebraicRule> 
 <math xmlns="http://www.w3.org/1998/Math/MathML"> 
  <apply> 
   <plus/> 
   <ci>k1</ci> 
   <ci>k2</ci> 
   <ci>k3</ci> 
  </apply> 
 </math> 
</algebraicRule> 
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The ordering of rules is critical: a program is expected to evaluate them in the order listed 

in the model. Furthermore, (a) no more than one assignment or rate rule can be defined 

for any given identifier; (b) assignment rules override any initial conditions for that 

variable; (c) the math field of a rule can only contain identifiers that have been previously 

defined, and (d) can not contain either the identifier for which the rule is defined or (e) 

any element for which there is a subsequent assignment rule.  

A reaction is a statement describing a transformation, transport or binding process that 

can change the amount of one or more species. For example, 

<reaction id="R1"> 
  <listOfReactants> 
    <speciesReference species="X" stoichiometry="1"/> 
  </listOfReactants> 
  <listOfProducts> 
    <speciesReference species="Y" stoichiometry="2"/> 
    <speciesReference species="Z" stoichiometry="1"/> 
  </listOfProducts> 
  <listOfModifiers> 
    <modifierSpeciesReference species=”A” /> 
  </listOfModifiers> 
  <kineticLaw> 
    <math xmlns="http://www.w3.org/1998/Math/MathML"> 
      <apply> 
        <times/><ci>k</ci><ci>A</ci><ci>X</ci> 
      </apply> 
    </math> 
    <listOfParameters> 
      <parameter id="k" value="0.1" /> 
    </listOfParameters> 
  </kineticLaw> 
</reaction> 

represents the reaction X kA
! "!! 2Y + Z .   The parameter k defined in this example is 

only defined locally; its existence is unknown outside of the reaction definition 

(specifically, a separate parameter namespace is defined for each reaction to contain its 

local parameters).  Local parameters may not have the same id as global parameters, 

although local parameters in different reactions are permitted to have the same id. Kinetic 
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laws can also reference global parameters.  Stoichiometries can also be specified with 

MathML expressions.  

Events are explicit instantaneous discontinuous state changes that are triggered as a result 

of changing conditions within a model.  Events specify a trigger, the condition that 

causes the event to occur (e.g., mass >1 and A < 2 ); an eventAssignment, an action that 

occurs as a result of the event’s triggering (e.g., set mass = mass / 2 ); and a time delay 

(and associated timeUnits) between the occurrence of the trigger and the application of 

the eventAssignment. For example,  

<event> 
  <trigger> 
    <math xmlns="http://www.w3.org/1998/Math/MathML"> 
      <apply> 
        <and/> 
        <apply><gt/><ci>mass</ci><cn>1</cn></apply> 
        <apply><lt><ci>A</ci><cn>2</ci></apply> 
      </apply> 
      <apply><leq/><ci> P1 </ci> <ci> t </ci></apply> 
    </math> 
  </trigger> 
  <listOfEventAssignments> 
    <eventAssignment variable="mass"> 
      <math xmlns="http://www.w3.org/1998/Math/MathML"> 
        <apply><divide/><ci>mass</ci><cn>2</cn></apply> 
   </math> 
   </eventAssignment> 
  <listOfEventAssignments> 
</event> 

sets mass = mass / 2  when the Boolean expressions ((mass >1)! (A < 2))  changes from 

false to true.  The event will only trigger when the condition changes from false to true. If 

the condition later because false, and then true again, the event will trigger a second time.  

4. Proposed modifications to SBML 

SBML is intended to meet the evolving needs of the systems biology community.  

Consequently SBML is being developed in levels, where each higher level adds 

additional features to the model definitions.  These separate levels of SBML are intended 
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to coexist; SBML Level 2 does not render SBML Level 1 obsolete. Software tools that do 

not need or cannot support higher levels may continue to use lower SBML levels; tools 

that can read higher levels are assured of also being able to interpret models defined in 

the lower levels. Minor changes in SBML are called versions; versions within the same 

level reflect minor changes within that level that were omitted from the earlier version, 

clarifications of intent and syntax, and typographical corrections to the model 

specifications.  

As errors and omissions are discovered in the specifications they are posted on an errata 

page at sbml.org. These corrections are then added to the next version of the 

specification. No new major features were added in SBML Level 1, Version 2; however, 

it did introduce several variant spellings (e.g., allow both meter and metre; species 

instead of specie); and a number of typographical errors, earlier omissions,  and 

clarifications were introduced.  SBML Level 2, Version 1 did introduce a number of 

features, notably: events; functions; the use of MathML rather than C for formula strings; 

id and name fields for most objects; the removal of pre-defined rate laws;  spatial 

dimensions; simplification of rule structure; and the addition of modifiers to a reaction 

defintion.  

Several minor language extensions have been proposed for SBML Level 2, Version 2 

[10].  (1) Nested unit definitions will allow new units to units may be defined in terms of 

other units defined in the same model, rather than merely in terms of the base SI units 

listed in the specification.  (2) A new list of species types will represent classes of 

chemical entities independent of their locations; for example, two different species, one 

in the cytosol and one in the extracellular medium can both be labeled as calcium ions. 
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(3) A new boolean constraint rule will define conditions (e.g., A + B < C ) under which a 

model is valid.  If a specified constraint is violated then a simulator should halt and print 

a message indicating that the constraint was violated.  

A substantial number of additional changes have been proposed for Level 3 [12].  

Because of their greater specialization and the fact that not all modelers will have need 

for all of these features, it is likely that Level 3 will be modular, in the sense that users 

will be able to specify at the beginning of a model which Level 3 features the model uses. 

These features, which are summarized below in alphabetical order, are described in detail 

on the SBML Wiki at http://sbml.org/wiki.  

Alternative reaction  extensions would provide the additional data structures that might 

be required to describe reactions non-deterministically though such features as 

probability models, markov chains, petric nets, pi-calculus, grammar rules, etc.  The 

present implementation of SBML is based on chemical reactions and rate laws, which 

lends itself quite well to differential equation formalisms but does not provide the proper 

set of information required for nondeterministic modeling.  These reaction extensions 

could be closely related to hybrid model extensions.  

Array and set extensions would describe collections of elements (bunches of things that 

are treated identically in some way) in terms of standard computational  data structures 

such as arrays, vectors, lists, sets, etc. These extensions can interact with the model 

composition extensions, in that arrays or lists of models could be described. For example, 

the Arabidopsis shoot apical meristem, the hemispherical tip of the growing plant shoot 

that consists of around 500 cells, could be described by a dynamic array or list of models 
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(or compartments), with new models (or compartments) being instantiated when cells 

divide, and old models being removed when cells die.  

Complex-species extensions would allow models to describe a single species in terms of 

its different states, such as phosphorylated/non-phosphorylated, or having different 

numbers or types of ligands bound to different sites. It is related to the level 2 version 2 

extension of species types, but takes the idea further, in that a species can have both a 

type (e.g., MAP-Kinase) and a state (double-phosphorylated). 

Constraints would add minimal and/or maximal values for numerical fields; a simulation 

would then be required to ensure that constraints are met. For example, a geometric 

constraint would ensure that a species does not leave its compartment; a conservation of 

mass constraint would require that the sums of certain species are fixed; a parameter 

constraint would ensure that values are only allowed to range within certain observed 

physiological values.  Constraints could also be used to describe uncertainties in 

numerical values. 

Controlled Vocabulary extensions would provide common terms to describe multiple 

aspects of the same thing. Different models might used different controlled vocabularies. 

For example, a reaction might be labeled as “Michaelis-Menten” or “Bi-Uni-Uni-Bi-Pin-

Pong-Ter-Ter”, or it might be described as “transcriptional”, “transport”, “activation”, 

etc; a species might be labeled “substrate” or “catalyst” or “Calcium” or “Sodium.” A 

controlled vocabulary could also include a mechanism for synonyms, indicating that 

“niacin”, “niacinamide”, “nicotinic acid”, and “Vitamin_B_3” refer to the same thing in a 

particular model.  
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Diagramming or layout extensions would allow a model to include specific descriptions 

of diagrams that describe the model. It would contain lists of graphical representations, or 

glyphs, of SBML model elements such as compartments, species, and reactions, and 

information about where to place the different glyphs on an diagram (digital or paper). 

The actual form of a specific glyph – e.g., whether a a species should be represented by a 

simple black character string or by filled green oval – would be left to the individual tool.  

Dynamic model extensions provide ways to enable model structures to vary during a 

simulation. For example, a dynamic event might trigger cell division and add an 

additional compartment to the model. Dynamic extensions are closely related to array and 

model composition extensions.  

Hybrid-model extensions would allow different parts of the same model to be described 

by different formalisms. For example one process could be described by a continuous 

differential equation, and another could be a discrete markov process. Hybrid models 

could also involve alternative reaction formalisms and rules that allow dynamic switching 

between the formalisms for specific processes, constraints that need to be enforced during 

a simulation,  and instantiations of sub-models via model-compositions.   

Model Composition would provide the capability to define one SBML model in terms of 

other models (either in the same file or linked to another file), and include mechanisms 

for creating a hierarchy of sub-models as “instances” of these models. For example, a 

model of a cell may contain multiple instances of a model of a mitochondria, with 

different parameter values, initial conditions, etc, or a tissue model may include various 

instances of a cell model. 
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Parameter Set extensions would facilitate the separation of initial conditions and 

parameter values of a model form the model structure itself.  Some aspects are related to 

the idea of model composition.  It is most basic form, a parameter set is a collection of 

key-value pairs where the key refers to an SBML object attribute; a specific parameter set 

could then be applied to an existing model, with the appropriate name-value pair 

substitutions made.  

Spatial feature extensions would add geometric characteristics to a model. The only 

geometric aspects in SBML Level 2 are hierarchies of compartments that are described as 

being inside or outside of one another, and some aspect of area or volume. Spatial feature 

extensions could add information ranging from location, and adjacency lists to finite 

element or spline-models describing the surface shape and features of a compartment.  

5. Resources at sbml.org 

In the following paragraphs we briefly describe the tools at sbml.org that have been 

designed to support SBML development and could be of use to nearly all SBML 

modelers. All of these tools described here are freely accessible at sbml.org.  

5.1. Online Tools 

The online tools enable the user to validate and visualize models in any version or level 

of SBML and convert Level 1 models to Level 2.  The validator checks the model against 

the SBML XML schema and does limited consistency checks. It is possible for a model 

that is not valid of SBML to be passed by the tool (because it does not include complete 

consistence checking) but it will invalidate any model that does not follow the schema.  
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When a model is validated, the user will be provided with a model summary (e.g., 

number of each class of SBML object) and given the option to visualize the model or 

convert it to Level 2 (if the model is in Level 1). Errors are indicated by line number in 

the original model. The validator and converter are based on libSBML (see section 5.2).  

Visualization is provided utilizing Graphviz dot combined with an XSLT script, and 

displays the visualization as a gif image in the web browser.  Because of server 

limitations visualization is limited to models containing 100 or fewer reactions.  

5.2. LibSBML 

LibSBML is a C/C++ library providing an application programming interface (API) for 

reading, writing and manipulation data expressed in SBML. LibSBML is a library 

designed to help read, write, manipulate, translate, and validate SBML files and data 

streams. It is not an application itself (though it does come with many example 

programs), but rather a library you can embed in your own applications. While it is 

implemented in C and C++,  it includes Java, Python, Perl, Lisp and MATLAB language 

bindings in the distribution,  and is written in such a way that users can write bindings 

from virtually any computer language implementation that allows cross-language 

bindings.  The code is very portable and is supported on Linux, native Windows, and 

Mac OS-X operating systems.  

The API (application programming environment) provides an exhaustive list of getters 

(e.g. species_getInitialAmount), setters/unsetters (species_unsetSpatialSizeUnits),  field 

state booleans (species_isSetCompartment),  object getters and creators 

(UnitDefiniton_addUnit, UnitDefinition_getUnit), enumerators, abstract classes 
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corresponding to every SBML object, including full SBML field inheritence, and so 

forth. It also provides facilities for reading and writing SBML files, parsing models into 

abstract syntax trees, and SBML validation.  

LibSBML understands all versions of SBML including Level 1, Versions 1 and 2, Level 

2 version 1, and the draft SBML Layout Proposal.  It is written in portable, pure ISO C 

and C++ and can be easily ported to nearly any operating system; the build uses GNU 

tools. It includes support for standard XML libraries, including both Expat and Xerces; 

and provides full XML schema validation (Xerces only).  

5.3. SBML Tools for MatLab and Mathematica 

The SBML Toolbox is a package for working with SBML models in MATLAB.  Rather 

than providing a simulator per-se, the SBMLToolbox provides facilities for converting an 

SBML model into a MATLAB-accessible format, so that the both standard MATLAB 

solvers and/or user-developed simulators and libraries can be applied. The toolbox 

currently includes functions for reading and writing SBML models, converting SBML 

models into MATLAB data structures, viewing and manipulating those structures, 

converting them to MATLAB symbolic format, and simulating them using MATLAB's 

ODE solvers. At present the toolbox includes functions to translate an SBML document 

into a MATLAB_SBML structure, save and load these structures to/from a MATLAB 

data file, validate each structure (e.g. reaction structure), view the structures using a set of 

GUIs and to convert elements of the MATLAB_SBML structure into symbolic form and 

thus allow access to MATLAB's Symbolic Toolbox. There are a small number of 

functions to facilitate simulation and a function that will output an SBML document from 
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the MATLAB_SBML structure definition of a model. The toolbox is based on libSBML 

and requires a prior MATLAB installation. It has been tested in Windows, Linux, Unix, 

Cygwin and MacOSX. Unix versions require a prior installation of libSBML; this is not 

required for the Windows version.  

MathSBML provides facilities for reading and writing SBML models, converting them to 

systems of differential equations for simulation and plotting in Mathematica, and 

translating them to other formats.  As with the SBMLToolbox, its main purpose is to get 

models in and out of Mathematica, so that the user can apply and or all of the standard 

features of that language to the SBML Model. MathSBML requires a prior installation of 

Mathematica, and is fully platform independent. MathSBML is the subject of Section 7 

of this chapter. 

5.4. SBML Conversion Utilities 

SBML Conversion utilities provide the ability to convert models described in other 

modeling languages into SBML. So far we have implemented two different model 

conversion utilities: KEGG2SML and CELLML2SBML. In addition, the online tools 

provide conversion form SBML Level 1 models to SBML Level 2 models.  

KEGG2SBML is a Perl script that converts KEGG (Kyoto Encyclopedia of Genes and 

Genomes, http://www.genome.jpg/kegg) Pathway database files to SBML (Systems 

Biology Markup Language) files using LIGAND database files [13, 14].  It is compatible 

with all levels and versions of SBML, and includes support for <annotations> tags for 

CellDesigner.  KEGG is a suite of databases and associated software for describing high-

order functional behaviors of cells, systems, and organisms, and for relating those 
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behaviors to the organisms’ genomes.  It includes several databases that describe protein 

interaction networks (the pathway database); chemical reactions (the ligand database); 

full-organism networks (gene and SSDB); functional genomic (expression) and 

proteomic (BRITE) references. Despite the large amount of information (nearly one 

million different proteins and/or genes are in the gene database, for example) and 

extensive synonym and cross-links, it provides little or no information for actual reaction 

mechanisms or rate constants.  KEGG2SBML requires Perl 5.6.1, expat,  the Perl XML 

parser (XML::Parser) and libxml-perl, all of which are publicly available; and KEGG 

pathway database, KGML, and ligand database files that are available at the Kegg 

website. . It has been tested on FreeBSD and Linux platforms as well as Cygwin under 

Microsoft Windows. 

CellML2SBML converts CellML models [15] to SBML. Like SBML, CellML (see 

chapter 40 for more details on CellML) is an XML-based modeling language used for 

storage and exchange of biological models.  While there are some common facilities in 

both languages, the two languages have slightly different goals.  In particular, CellML is 

closely affilitiated with anatomy and finite element modeling languages (AnatML and 

FieldML).  The CellML developers have been involved in the development of the SBML 

standard, and is currently developing a second tool (SBML2CellML) that will perform 

the conversion in the opposite direction.   CellML2SBML is available for Windows and 

Linux systems and requires an XSLT processor and four XSLT stylesheets to run. 
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5.5. Schemas, Specifications, and Test Suites 

Full XML schemas (.xsd documents) have been defined for all versions of SBML, and 

are also included in the download of libSBML as well as the specification documents.  

The SBML Test Suite is a collection of models and associated automation scripts intended 

to serve as a test set for developers of SBML-enabled software. It also includes sample 

models in SBML Level 1 and Level 2 format.  Syntactic testing determines if a tool 

accepts only well-formed SBML and rejects any syntactically incorrect SBML input. 

This may be accomplished by validation against a full XML-schema. Semantic testing 

determines if the tool interprets well-formed SBML correctly: does the software construct 

the correct model and does that model behave correctly. This is usually tested by 

simulation and comparison with tabular output. The semantic test suite at sbml.org 

includes over 100 tests, including annotated SBML models and tabulated output, as well 

as an automated script for running the tests against your simulator, so long as the 

simulator can be invoked either from windows cygwin or a unix command line.  

6. The Biomodels Database 

The BioModels database [16-18], developed through an international collaboration 

between the SBML team (US/UK/Japan), EMBL-EBI (UK), the Keck Graduate Institute 

(US), and Systems Biology Institute (Japan), and JWS online (South Africa), provides 

access to published peer-reviewed quantitative biological models. The peer-review is 

provided by the publication process: a model must be published in some peer-reviewed 

form (e.g., a journal article) before it can be encoded in the database. The original paper’s 

author does not have generate the SBML model, and the model can be described in any 
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language (e.g., differential equations, stochastic, lists of chemical reactions, etc) within 

the paper, but only SBML (or CellML) models are incorporated within the database. 

Anybody an submit a model to the database, so long as it has been published and has the 

appropriate references, but it will not be propagated until the model has been verified by 

a database curator. Curators verify that the SBML model is valid, well-formed, 

syntactically correct and correctly represents the referenced publication and that 

simulations based on these models reproduce (at least some of) the published results.  

Curators also annotate the components of the models with terms from controlled 

vocabularies and links to other relevant data resources such as GO (the Gene Ontology 

database) and links to other databases (such as UniProt, KEGG, and Reactome). This 

allows the users to search accurately for the models they need and retrieve them in SBML 

format.  

7. Managing SBML with MathSBML 

MathSBML [19] is an open-source Mathematica package that facilitates working with 

SBML models. Its primary purpose is to import SBML files into a Mathematica data-

structure so that users can manipulate the models within Mathematica without having to 

worry about the details of SBML structure. Mathematica is one of several platforms 

widely used by biological modelers and is available in many academic and commercial 

environments (e.g., over 500 US colleges and universities have site licenses). 

Mathematica is a symbolic computation environment that includes a wide range of 

features of use to computational biologists, notably numerical computation, graphics, and 

a programming language. Symbolic computation environments, also known as computer-

algebra systems, allow the users to process equations symbolically, using formats that are 
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similar to mathematical equations. From the perspective of computational biologists, this 

means that reactions and kinetic laws can be expressed in that they are used to, such 

as
 
A + B! C  or  !C [t] == k1A[t]B[t]" k2C[t] .  Besides the import feature, MathSBML 

also includes functions for simulation and plotting of SBML models, including 

differential-algebraic equations and events; a complete API (Application Programming 

Environment; see Tables 3 and 4) for manipulating SBML Level 2 models; the ability to 

display models in human-readable form as annotated html (or within Mathematica 

notebooks);  and the ability to export new or modified models back to XML format.  A 

summary of MathSBML commands is given in Table 5. 

MathSBML provides full model interoperability with Mathematica as well as a candidate 

reference implementation of SBML.  MathSBML will run on any platform that has 

Mathematica 4.1 or higher installed. The solution of differential-algebraic systems 

(SBML models that have algebraic rules) requires Mathematica 5.0 or higher; purely 

differential systems (SBML without algebraic rules) can be solved on Mathematica 4.1.  

MathSBML is compatible with all levels and versions of SBML released to date, as well 

as several features proposed for future releases.  

7.1 Model Format 

Model import is performed using SBMLRead. Suppose, for example, that we are 

interested in modeling the cell cycle, and download the model “Novak1997_CellCycle” 

from the biomodels database into a local file BIOMD0000000007.xml. This file 

implements a model of DNA replicaton in the fission yeast Schizosaccharomyces pombe 
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[20]. We can read the model into the Mathematica computing environment with the 

command 

 m =SBMLRead[“BIOMD0000000007.xml”, context! None] 

returns a Mathematica rule list (a standard technique used in Mathematica to describe 

complex data structures) as shown in figure 2. This type of data structure allows the user 

to access all features of the model directly with Mathematica; a more SBML-oriented 

approach would be to use the model builder, which is described in a later section.  A user 

could get a list of all of the assignment rules in the model, for example,  by entering 

 r =SBMLAssignmentRules/.m  

which will return 

 

{IEB[t]==1-IE[t],UbEB[t]==1-UbE[t],UbE2B[t]==1-UbE2[t],

  Wee1B[t]==1- Wee1[t],Cdc25B[t]==1-Cdc25[t],

  Rum1Total[t]== G1R[t]+G2R[t]+PG2R[t]+R[t],

  Cdc13Total[t]== G2K[t]+G2R[t]+PG2[t]+PG2R[t],

  Cig2Total[t]== G1K[t]+G1R[t],

  k2[t]==0.0075 (1-UbE[t])+0.25 UbE[t],

  k6[t]==0.0375 (1-UbE2[t])+7.5 UbE2[t],

  kwee[t]==0.035 (1- Wee1[t])+0.35 Wee1[t],

  k25[t]==0.025 (1-Cdc25[t])+0.5 Cdc25[t],

  MPF[t]== G2K[t]+0.05 PG2[t],SPF[t]==0.25 G1K[t]+ MPF[t]}

 

The third rule can be obtained as  rule3=r[[3]], which would return 

  Rum1Total[t]== G1R[t]+G2R[t]+PG2R[t]+R[t] 

as the value of the variable rule3.  
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One particularly useful feature of SBMLRead is that it constructs the complete set of 

differential equations that describe the model by combining all of the kinetic laws and 

rate rules in the model. This set of differential equations is returned as the field 

SBMLODES. SBMLRead also returns the stoichiometry matrix as a separate field, and 

this can be used to simulate models that do not have complete sets of kinetic laws. The 

corresponding mass-action and mass-balance equations are also generated.  

7.2. Variable Scoping and Names 

MathSBML attempts to match all identifiers in the Mathematica version of the model as 

closely as possible to the name in the model.  In addition, the hierarchies of variable 

scoping are preserved, e.g., units and reaction parameters are kept in their own 

namespaces.  Mathematica represents the scope of a symbol by its context. The context 

of a variable is indicated by predicating it with a string of characters ending in the back-

quote character (normally found to the left of the number 1 on American keyboards).  

SBML model variables are defined in a local context; the name of the context is 

determined by the model "name" in SBML Level 1, and by the model "id" in SBML 

Level 2. Thus if the SBML model foo contains species A and B, and global parameters 

f and k, they will be represented as foo`A, foo`B, foo`f, and foo`k, respectively. 

Local parameters k and kf defined in reactions R1 and R2 will become foo`R1`k, 

foo`R1`kf, foo`R2`k, and foo`R2`kf, respectively. The only character that is 

allowed in an SBML identifier that is not allowed in a Mathematica identifier is the 

underscore ("_") character.  The underscore has a special meaning in Mathematica that is 

used for pattern matching. SBMLRead replaces the underscore character with the 
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\[UnderBracket] character (Unicode bottom square bracket 9141), which looks like a 

bracket ("[") turned on its side, with the ends pointing up.  The underbracket is translated 

back to an underscore when a model is written back out as an XML file. 

Mathematica contains a number of standard contexts. In particular, any variables that you 

type in during a Mathematica session that do not explicitly include a context are placed in 

the Global` context. You do not have to explicitly include the context in Global` 

variables. Thus the identifiers A and Global`A represent the same variable. You can 

change the default context form Global` to something else by changing the value of 

the Mathematica identifier $Context. 

In SBMLRead, the option  context! None  indicates that the model should be placed in 

the local context. Thus in the example in the previous section, we had a variable 

Cdc13Total and a global parameter mu, would normally be represented as represented 

as NovakTyson1997CellModel`Cdc13Total and 

NovakTyson1997CellModel`mu. The units of the compartment Cell are specified in 

litre, which is represented as NovakTyson1997CellModel`Units`litres, 

because units are kept in their own namespace. This particular model does not use any 

local parameters in the kinetic laws form reactions; however, if we were to add a 

parameter k to the reaction Cdc25Reaction it would become 

NovakTyson1997CellModel`Cdc25Reaction`k. By using the option 

 context! CellCycle  in our call to SBMLRead these would become 

CellCycle`Cdc13Total, CellCycle`Units`litre, and  

CellCycle`Cdc25Reaction`k. 
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7.3 Simulation and Plotting 

Suppose you are interested in running a deterministic simulation of the model that was 

imported in the previous section. This feat is accomplished with SBMLNDSolve, which is 

a wrapper for the Mathematica numerical solver NDSolve.  To run a simulation of 

NovakTyson1997CellModel for 400 minutes (the units of time are redefined as minutes 

in the model) you would enter 

  r =SBMLNDSolve[m,400] 

The result is returned as a list of interpolation sets that are compatible with Mathematica 

interpolation and plotting functions. If you wanted to write a table of values of the model 

variables Rum1Total and Cdc13Total at intervals of 1 minutes from t =150 to t=200 to 

a comma-separated value file “results.csv,”  

 
 

dt = dataTable[{Rum1Total, Cdc13Total}, {t, 150, 200, 1}, r];

Export["results.csv", dt, "csv"]
 

Other standard output file formats including .dif, .fit, fits, .hdf, .h5, .mat, .mtx, .tsv, .txt,  

.xls are also supported.   

Suppose instead of generating a table of data you want a plot of those same variables: 

 
 
SBMLPlot[r, {Rum1Total, Cdc13Total}] 

The plot will normally be displayed on the screen and remain embedded in the 

Mathematica notebook.  SBMLPlot is a wrapper for the Mathematica function Plot. 

Any standard plotting options can be specified: 
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p = SBMLPlot[r, {Rum1Total, Cdc13Total}, 

PlotStyles ! {

!!!!!{Dashing[{.02}], Thickness[.005], Blue}, 

!!!!!{Thickness[.002], RGBColor[1,0,0]}}, 

ImageSize!600,

TextStyle!{FontFamily! Times, FontSize!18}, 

holdLegend! True]

 

will generate a 600-pixel wide image (figure 2) with Rum1Total as a thick dashed blue 

line and Cdc13Total as a thinner solid red line.  Figures can be exported, e.g., via 

  Export["myplot.jpg",p,"jpg"] 

many standard graphics types are supported, including bmp, dcm, dic, eps, gif, jpg, pbm, 

pcx,  pdf, pgx, pict, pnm, png, ppm, svg, tif, wmf and xbm file formats.  

The MathSBML simulator, SBMLNDSolve, is a wrapper for Mathematica’s NDSolve, 

which in turn evolved from the LSODA, IDA, and DASPK solvers. It incorporates a 

wide range of methods, including stiff and non-stiff integrators and switching methods 

and a framework for incorporating external solvers.  

Events are implemented by the following algorithm, which ensures that events activate 

only when an event’s trigger changes from false to true. Each event E in an SBML model 

in has a trigger expression TE and assignments AE. We replace the event E, with the 

following: 

• a boolean variable VE with initial value false 

• an event E1 with trigger 
 
T
E1
= (!V

E
)! T

E
and assignments AE and V

E
= true  
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• an event E2 with trigger 
 
T
E2

= (! T
E
)!V

E
 and assignment VE = false . 

The existence of the pseudo-events E1 and E2 and new model variable VE is completely 

transparent to the user, who is only aware of the existence of the events specified in the 

model. Events with delays are similarly handled by creating a pseudo-event that triggers 

once when the specified delay has elapsed. Our cell cycle model actually has two events, 

one with a delay, and one with multiple assignments: 

• Event start (the start of S-phase) occurs when SPF (S-phase promoting factor) 

crosses 0.1 from below; after a delay of 60 minutes, the model parameter kp is 

cut in half. 

• Event Division (cell division) occurs when UbE crosses 0.1 from above. This 

triggers halving if the parameter  Mass and doubling of the parameter kp. 

Events are then detected in Mathematica 5.1 (and higher) by throwing and catching the  

event occurance via the NDSolve StepMonitor option; in earlier versions they are 

detected by the option StoppingTest. In all cases the precise event time is found by 

backward interpolation. If multiple events occur simultaneously all are detected and 

processed.   

 

7.4. The Model Builder: An SBML API 

MathSBML contains a simple model editor, allowing users to create SBML models 

compatible with other simulators, as well as a Mathematica text-command based API that 
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can be used to produce arbitrarily complex SBML files. The model editor contains a suite 

of commands to add, modify, or remove single SBML objects (such as a reaction, 

chemical species, or equation) from the current model (Tables 2 and 3). The model may 

be either created de-novo or read from a file. After building the model, the user can test it 

by running simulations, continue to modify it, or write the results as an SBML file, in any 

order. 

There is a set of functions addX, modifyX, and removeX, for each class of SBML 

model object: compartment, event, function, parameter, reaction, rule, species, and unit.  

Options allow users to specify specific object field values. For example, a partial list of 

the commands needed to create the cell-cycle model from scratch is illustrated in figure 

3.  The last step in the box creates an xml file cellCycle.xml. A large number of 

consistency checks are made as the commands are typed to ensure that the SBML 

specification is satisfied. For example every species must be associated with a 

compartment; if a compartment is not specified by the addSpecies statement, then the 

most recently referenced compartment is used. If no compartment has been defined yet, a 

new one is defined.  

As the current model is built it is stored internally by MathSBML. At any point in model 

development, either before or after the xml file has been written, the model can be loaded 

into the simulator and tested via the loadSimulator command. The return value of 

loadSimulator is identical to the return value from SBMLRead, and therefore 

compatible with SBMLNDSolve. Similarly, SBMLRead will automatically load the 

model builder whenever a level-2 model is read in, so that it can be modified by add, 

remove, or modify commands. 
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Internally, an SBML model is stored as symbolic XML, a standard Mathematica data 

structure for handling XML files. The functions getX[n] return the nth object of class 

X in symbolic XML; the argument may be a number, an id, or a list of both. For example 

getReaction[2]  returns the second reaction in the model. The function XMLOut is 

used there to generate the corresponding XML fragment. Other functions 

XtoSymbolicSBML and XtoSBML allow one to generate the corresponding symbolic 

XML or XML fragment for any SBML object.  

MathSBML is freely downloadable (LGPL license) from sourceforge at 

http://sf.net/projects/sbml. Full documentation with examples of all entry points including 

the entire API is available on the sbml.org website at http://sbml.org/software/mathsbml/.    

Instructions for downloading and installing MathSBML are also provided on that site. 

MathSBML will run under any operating system or platform on which Mathematica is 

already installed; a complete list of compatible systems is given at the Wolfram Research 

web site. 
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Figure 1 

A skeleton SBML Level 2 model .  

 

<?xml version="1.0" encoding="UTF-8"?> 
<sbml xmlns="http://www.sbml.org/sbml/level2" level="2" version="1"> 

<model id="My_Model"> 
<listOfFunctionDefinitions> 
... 
</listOfFunctionDefintions> 
<listOfUnitDefinitions> 
... 
</listOfUnitDefinitions> 
<listOfCompartments> 
... 
</listOfCompartments> 
<listOfSpecies> 
... 
</listOfSpecies> 
<listOfParameters> 
... 
</listOfParameters> 
<listOfRules> 
... 
</listOfRules> 
<listOfReactions> 
... 
</listOfReactions> 
<listOfEvents> 
... 
</listOfEvents> 

</model> 
</sbml> 
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Figure 2.  

UML diagram of the SBML inheritance hierarchy showing the major data types in 

SBML. 
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Figure 3. 

 

Abbreviated form of data structure returned by SBMLRead after importing the cell cycle 

model described in the text. The ellipsis is used to indicate that some parts of the data 

structure have not been illustrated to save space in the present book chapter; in fact, 

MathSBML will display the entire data structure. 
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Figure 4. 

A plot of the two variables Rum1Total (dashed line) and Cdc13Total (solid line) 
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Figure 5 

Model builder commands needed to create the cell cycle model. Due to space limitations 

only a subset of the commands are shown; the vertical ellipsis indicates that many 

commands were omitted. All of the omitted commands are of the form “addX”.  The last 

statement in the list, createModel, generates the SBML file cellCycle.xml. 

 

 

 

 

 

 

 

 

 

 

 

<<mathsbml.m 
newModel["CellCycle"]; 
addCompartment["Cell",size->1]; 
addUnit[id->"time",name->"minutes", 

unit->{"second"->{multiplier->60}}]; 
addParameter[id->"mu",value->0.00495]; 
addParameter[id->"Mass",value->1,constant->False]; 
addRule[type->"RateRule",variable->"Mass",math->Mass*mu]; 

 
addSpecies[IEB,boundaryCondition->True,initialAmount->0]; 
addSpecies[UbEB,boundaryCondition->True,initialAmount->0]; 

 
addRule[type->AssignmentRule,variable->IEB,math->1-IE]; 
addRule[type->AssignmentRule,variable->UbEB,math->1-UbE]; 

 
addSpecies[Rum1Total]; 
addSpecies[Cdc13Total]; 

 
addRule[type->AssignmentRule,variable->Rum1Total, 

math->R+G1R+G2R+PG2R]; 
addRule[type->AssignmentRule,variable->Cdc13Total, 

math->G2K+G2R+PG2+PG2R]; 
 

addEvent[id->"Start",trigger->SPF≥0.1, 
 eventAssignment->{kp->kp2},delay->60]; 
addEvent[id->"Division",trigger->UbE≤0.1, 
 eventAssignment->{kp->kp*2,Mass->Mass/2}]; 

 
addReaction[products->{G2K},id->"G2K_Creation",kineticLaw->k1]; 

 
createModel["cellCycle.xml"]; 
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Table 1. SBML Workshops and Hackathons. 

 

Meeting Date Location 

1st Workshop April  2000 Pasadena, CA, USA 

2nd Workshop Nov. 2000 Tokyo, Japan 

3rd Workshop June 2001 Pasadena, CA,USA 

4th Workshop Dec. 2001 Pasadena, CA, USA 

5th Workshop July 2002 Hatfield, UK  

6th Workshop Dec. 2002 Stockholm, Sweden 

7th Workshop May 2003 Ft. Lauderdale, FL, USA 

1st Hackathon July 2003 Blacksburg, VA, USA  

8th Workshop Nov 2003 St. Louis, MO, USA 

2nd Hackathon  May 2004 Hinxton, UK  

9th Workshop Oct. 2004 Heidelberg, Germany 

3rd Hackathon May 2005 Tokyo, Japan 

10th Workshop Oct. 2005 Boston, MA, USA 
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Table 2. The subset of MathML that is allowed in SBML Level 2. 

Object Elements* Allowed 

Token cn**, ci, csymbol***, sep 

Basic content apply, piecewise, piece, otherwise 

Relational 

operators 

eq,neq, gt, lt, geq, leq 

Arithmetic 

operators 

plus, minus, times, divide, power, root, abs, exp, ln, log, 
floor, ceiling, factorial 

Logical 

operators 

and,or, xor, not 

Qualifiers degree, bvar, logbase 

Trigonometric sin, cos, tan, sec, csc, cot, sinh, cosh, tanh, 

sech, csch, coth, arcsin, ���rcos, arctan, arcsec, 

arccsc, arccot, arcsinh, arccosh, arctanh, 

arcsech, arccsch, arccoth 

Constants true, false, notanumber, pi, infinity, 

exponentiale 

Annotation semantics, annotation***, annotation-xml*** 

*The attributes style, class and id may be used on any element. **The attribute 

type may only take on one of the following: ”e-notation”,”real”, 

“integer”, or  ”rational”; *** encoding and definitionURL 

attributes are allowed are csymbol elements, and encoding is permitted on 

annotation and annotation-xml elements.  
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Table 3. Summary of the MathSBML API.  The “_” in the name can be replaced with 

any checked object, e..g., addFunction or modifyRule. Controllable options are 

summarized in Table 4.  
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add_           

_ToSBML           

_ToSymbolciSBML           

get_           

modify_           

remove_           

create_           

createSymbolic_           
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Table 4. SBML attributes that can be controlled via the API commands in table 3. The 

“options” shown generally have a one-to-one correspondence with SBML attributes, 

although sometimes the spelling is different. For example, reaction products option refers 

to the SBML speciesReferences within the SBML listOfProducts; however, 

for the most part the correspondence is clear. 

API commands 
for: 

Options* 

species 
id, name, compartment, initialAmount, 

initialConcentration, substanceUnits, spatialSizeUnits,  

hasOnlySubstanceUnits, boundaryCondition, charge, 

constant 

compartment 
id, name, constant, outside, spatialDimensions, size, 

units 

event 
id, name, trigger, delay, timeUnits, eventAssignment 

function 
id, name, math 

parameter 
id, name, annotation, notes, value, units, constant 

reaction 
id, name, fast, kineticLaw, modifiers, name, products, 

productStoichiometry, reactants, reactantStoichiometry, 

reaction, reversible, parameters (sub-options: value, name), 

timeUnits, substanceUnits;  

rule 
type, variable, math 

species 
id, name, compartment, initialAmount, 

initialConcentration, substanceUnits, 

hasOnlySubstanceUnits, boundaryCondition, charge, 

constant 

unit 
id, name, unit (sub-options: exponent, scale, multiplier, 

offset) 

model 
id, name; also: comments (XML Comments) 

 
*All objects have modifiable annotation, notes, and metaid fields. Some options are mutually exclusive. 
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Table 5. Summary of MathSBML commands excluding the API. 

Function MathSBML Entry Points 

Algebraic/MathML conversion InfixToMathML, MathMLToInfix 

Convert model file format SBMLCopy 

Plot results of a simulation SMBLPlot, SBMLGridPlot, SBMLListPlot 

Simulation dataTable, SBMLNDSolve 

Import a model SBMLRead 

Export a model SBMLWrite, createModel 

Annotation control setAnnotationPackage, setAnnotationURL, 

setModelAnnotation, setSBMLAnnotation 

Model display showModel 

 


