
Graphical abstract

- 2 Graphic abstract mainly focuses on the preparation and modification of
- 3 photocatalytic degradation of organic pollutants by anodized TiO₂
- 4 nanotubes. The TiO₂ nanotubes have higher photocatalytic activity under
- 5 visible light after heat treatment or water-assisted treatment, and then
- 6 modification methods such as doping and surface modification.

- 1 Recent progress in anodic oxidation of TiO₂ nanotubes and enhanced
- 2 photocatalytic performance: a short review
- 3 Xiaojiang Nie ^{1, 2}, Siqi Yin ^{1, 2}, Wenchao Duan ^{1, 2}, Zilong Zhao³, Liang Li⁴,
- 4 Zhiqiang Zhang ^{1, 2, *}
- 5 ¹ Key Lab of Electromagnetic Processing of Materials, Ministry of Education,
- 6 Northeastern University, Shenyang, 110819, PR China; ² College of Materials Science
- 7 and Engineering, Northeastern University, Shenyang, 110819, PR China; ³ School of
- 8 Mechanical Engineering and Automation, Fuzhou University, Fuzhou, 350116, PR
- 9 China; ⁴ Department of Engineering, School of Engineering and Computer Science,
- 10 University of Hertfordshire, Hatfield, AL109AB, UK
- 11
- 12 *Corresponding author.
- 13 E-mail address: zqzhang@mail.neu.edu.cn (Z. Zhang).

Recent progress in anodic oxidation of TiO₂ nanotubes and enhanced

photocatalytic performance: a short review

ABSRTACT

By adjusting the oxidation voltage, electrolyte, anodizing time and other parameters, TiO₂ nanotubes with high aspect ratio can be prepared by oxidation in organic system because anodic oxidation method has the advantage of simple preparation process, low material cost and controllable morphology. Low material cost and controllable morphology by anodizing. This review focuses on the influence of anodizing parameters on the morphology of TiO₂ nanotube arrays prepared by anodizing. In order to improve the photocatalytic activity of TiO₂ nanotubes under visible light and prolong the life of photo-generated carriers, the research status of improving the photocatalytic activity of TiO₂ nanotubes in recent years is reviewed. This review focuses on the preparation and modification of TiO₂ nanotubes by anodic oxidation, which is helpful to understand the best structure of TiO₂ nanotubes and the appropriate modification methods, thus guiding the application of TiO₂ nanotubes in practical photocatalysis. Finally, the development of TiO₂ nanotubes is prospected.

KEYWORDS

TiO₂ nanotubes; anodizing; Photo-generated carriers; photocatalytic; Modified

1 Introduction

TiO₂ is nontoxic, acid and alkali resistant, high in chemical stability and excellent in biological phase. Since Fujishima and Honda first reported light-induced water splitting on the surface of TiO₂ in 1972,¹ it has been widely used in photocatalysis, dyesensitized cells, biomedicine and other fields. The TiO₂ is easy to generate electron-hole pairs when it is excited by external energy. Therefore, most of the organic pollutants could be degraded into CO₂ and H₂O without secondary pollution. Thus, TiO₂ has become a common catalyst for treating organic pollutants. P25, a commonly used photocatalyst in the market at present, has high photocatalytic activity, but TiO₂ powder

- and photocatalytic activity are difficult to recover and further improve, respectively.
- 2 Due to quantum size effect and surface effect of nano-materials, nano-TiO₂ exhibits
- 3 better performance than conventional TiO₂.
- 4 One-dimensional TiO₂ nanotube array is easy to separate photo-generated carriers 5 due to its special morphology, such as large aspect ratio and specific surface area,² which has become a promising photochemical/photoelectrochemical material.³⁻⁵ 6 7 Therefore, TiO₂ nanotubes are widely used in photocatalytic degradation.^{6, 7} TiO₂ is a 8 wide band gap N-type semiconductor ($\geq 3.0 \text{ eV}$), the electron-hole pair can be generated 9 only after TiO₂ absorbs photons with wavelength less than 387.5 nm. TiO₂ has high 10 photocatalytic activity only under ultraviolet light, so the utilization rate of solar energy 11 will be reduced, and only about 7 % of the solar spectrum will be absorbed. In addition, 12 photo-generated carriers generated by TiO₂ excitation are easy to recombine, which 13 limits the application of TiO₂ nano-photocatalyst.

2 Factors Affecting Structure and Morphology of TiO₂ Nanotubes by

15 Anodizing

16

17

18

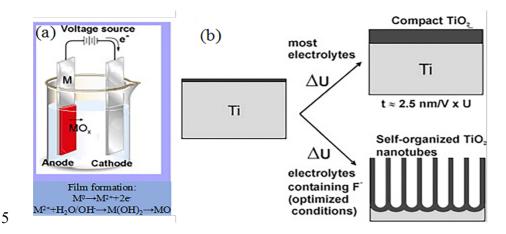
19

20

21

22

23


24

25

There are various methods for preparing One-dimensional TiO₂ nanotubes, such as solgel method,^{8, 9} template-assisted method,^{10, 11} hydrothermal/solvothermal method,^{12, 13} and electrochemical method.^{14, 15} Since Zwilling et al.¹⁶ initially reported the preparation of TiO₂ nanotube arrays, the preparation of TiO₂ nanotubes by anodic oxidation has become a hot research topic among researchers in recent years. The experimental principle setting is shown in Fig. 1a.¹⁷ Moreover, the dense oxides or TiO₂ nanotubes can be formed according to different electrolytes (Fig. 1b). The diameter and length of the nanotubes can be controlled by different parameters through the anodic oxidation method, which provides a better solution for controlling the morphology of nanotubes. In general, the diameter of TiO₂ nanotubes prepared by anodic oxidation

1 (tens of nanometers to hundreds of nanometers) is larger than that of TiO₂ nanotubes 2 prepared by hydrothermal method (more than ten nanometers). Therefore, it is 3 necessary to adjust various process parameters to prepare nanotubes with high aspect

4 ratio and preferable regularity and uniformity.

Fig. 1 (a) Schematic device of anodic oxidation experiment. (b) Anodic oxidation leads to oxidation of metal substances, forming solid oxides on the metal surface. ¹⁷

At present, there are various controversies about the formation mechanism of TiO₂ nanotube arrays. Nonetheless, the formation mechanism of this ordered nanotube array structure has not been perfectly explained. The generally accepted mechanisms of porous structure formation are field-assisted dissolution theory and field-assisted injection theory.¹⁸ The theory of "field dissolution" was first applied to explain the formation mechanism of anodic oxide film on aluminium surface.¹⁹ The typical current-time (j-t) curve is plotted and demonstrated in Fig. 2. The whole oxidation process consists of three stages: the initial oxidation film formation, porous oxide film formation, and nanotube arrays formation and stable growth. Firstly, when the voltage is applied, Ti⁴⁺ and O²⁻ are produce by dissolution and water, respectively. Meanwhile, the electricity separation near the anode forms a dense TiO₂ initial oxidation film, the loop current decreases exponentially.²⁰ After the initial oxide film is formed, O²⁻ near

the anode passes through the oxide film and reaches the interface between the oxide film and titanium substrate under the action of electric field force, which leads to realize field oxidation growth. On the other hand, F- in the electrolyte combines with Ti⁴⁺ in the TiO₂ film to generate TiF₆²⁻. In addition, TiF₆²⁻ is also produced by chemically attack of the formed TiO₂(TiO₂+4H⁺+6F⁻=[TiF₆]²⁻+2H₂O), which leads to realize field-induced dissolution.²¹ Stress and crystallization in the film layer lead to uneven energy distribution and F distribution, resulting in uneven oxide film surface, pore nucleus formation and subsequent pore formation. The un-oxidized Ti matrix bulge at the bottom of the small hole enhances the electric field, accelerates the dissolution of the top oxide film, and turns the small hole into a small cavity.²² The current gradually increases with the field-induced oxidation increases. At the end, the small cavities gradually deepen to form continuous and independent nanotube arrays. With the extension of oxidation time, the nanotube array grows stably and the current tends to be stable when the growth rate and dissolution rate reach equilibrium.²³ According to the theory of "field dissolution", porous anodic oxide are formed at metal/oxide interface, while dissolution occurs at the electrolyte/oxide interface. However, the reason of the metal ions migrated from metal/oxide interface to electrolyte/oxide interface before the formation of oxide can't be explained. To solve this problem, the field-assisted injection theory was developed. Under the condition of high current efficiency, oxide grows on two interfaces, while under the condition of relatively low current efficiency, metal ions moving outward are directly injected into electrolyte at electrolyte/oxide interface.²⁴

1

2

3

4

5

6

7

8

9

10

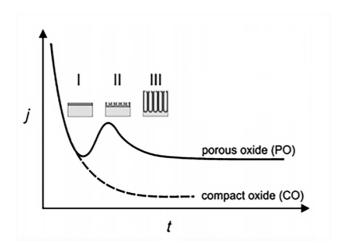
11

12

13

14

15


16

17

18

19

20

Fig. 2 Typical current-time (j-t) characteristics after voltage step in the absence of (---) and the presence of (—) fluoride ions in the electrolyte. Dense oxides (fluoride-free) or porous/tubular metal oxides (fluoride-containing) are formed through different morphological stages (I–III). 18

The theory of "field dissolution" explains the formation of holes and the deepening of channels, but it can't explain the formation mechanism of gaps between nanotubes. At the same time, TiO₂ nanotube arrays can also be obtained in fluorine-free electrolyte system, which proves that the "field dissolution" effect of fluorine ions in the growth process of nanotubes is controversial. Moreover, as we know, F- participates in the field-assisted dissolution or ejected reaction to reduce current efficiency and volume expansion coefficient. However, the total volume of nanotubes is basically the same under the given current condition, which has nothing to do with the concentration of F-28, 29 Based on the field dissolution theory, the growth of nanotubes is stable. The reason is that the oxide formation rate at the metal/oxide interface is equal to the dissolution rate at the electrolyte/oxide interface, but this balance has not been verified. On the contrary, there is evidence to prove that this balance does not exist. On the contrary, there is evidence to prove that this balance has been widely challenged. 32-34

The theory of "field dissolution" holds that nanotubes are formed in a "top-down" excavation mode, while the tracer atomic method proves that the formation of

nanotubes is opposite.³⁵ Based on this result, a new theory "viscous flow and stress model theory" is proposed,³⁶ which holds that under the stress caused by electrostriction or volume expansion stress, the barrier oxide fluid grows from bottom to top along the pipe wall under high electric field, and finally forms the nanotube array structure.²⁴ Moreover, viscous flow caused by the existence of internal stress in oxide during nanotube growth has been proved.³⁷ Fig. 3 simultaneously shows stress and current density measurements during the continuous anodizing experiment at 20 V.³⁸ In the first stage, the initial barrier oxide grows and produces compressive stress at the constant rate of 0.4 minutes. In the second stage, the compressive force is further increased, and then the tensile stress is continued for 20 minutes the oxide is separated and nanotubes are formed at this stage. In the third stage, the stress increases in the compression direction and the thickness of the nanotube layer increases in the remaining time of the anodizing cycle.²⁵

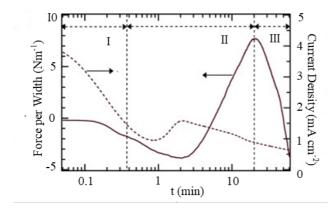


Fig. 3 Stress and current density transients at 20 V in 0.1 M NH_4F and 1.6 wt % water in ethylene glycol.³⁸

However, the viscous flow model can't explain how the nanotube embryo is formed, nor can it explicitly indicate whether the barrier oxide grows at two interfaces or one interface at the bottom of the nanotube.

Based on the viscous flow model and avalanche breakdown theory, ^{37, 39} an oxygen bubble model and a double current model are proposed to explain the relationship between the nanotube morphology and current density-time curve. Double current model refers to ion current and electron current model. The ratio of the two currents can be controlled by adjusting the concentration of NH₄F.⁴⁰ Zhu et al put forward the kinetic model of porous anodic oxide, 41 in which ion current was used to form oxide, and electron current was caused by impurity center in oxide, which was used to generate oxygen or spark. For a given electrolyte, electron current depends on impurity center and is independent of ion current. The formation of nanopores can be attributed to the precipitation of oxygen in oxides. Oxygen starts to release at the critical thickness, that is, oxide growth keeps the channel wall lengthening and oxygen evolution keeps the channel unblocking. By controlling the release rate of oxygen under different pressures, the shape of the channel can be adjusted.⁴¹ Regular and uniform thin films can be obtained with the stable current density.⁴² Electron current and oxygen release have a key influence on the formation of porous layer.⁴³ Oxygen bubble model theory can explain the experimental phenomenon that contradicts the field-assisted dissolution theory and has been recognized by many researchers. 44, 45 Especially for some special nanostructures formed by anodic oxidation, the oxygen bubble model has a well explanation. 46, 47 The cavity between the double walls of nanotubes obtained by anodic oxidation in electrolyte containing NH₄F and H₃PO₄ provides direct evidence of pore formation caused by oxygen bubbles.⁴⁸ Under this model, the formation diagram of nanotubes is shown in Fig. 4. In the stage I, a dense layer is formed under the front layer. In stage II–IV, the oxides exposed to electrolyte are usually contaminated by anions (usually fluorine). Once anions are introduced into the contaminated layer, they will soon meet the growth layer to form nanotube embryos. In stage II, the contaminated

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

layer does not reach the grown oxide. At this stage, O₂ bubbles are generated and trapped between the contaminated layer and the preformed layer. With the pollution in stage III, the accumulated O₂ may break the pre-layer, thus forming small cracks on the pre-layer. When the pollution reaches the growth layer, the nanotube embryo begins to grow in stage IV. In stage V, oxygen bubbles destroy the oxide layer and the electrolyte enters the nanotube. Oxide and nanotube grow steadily.⁴⁹

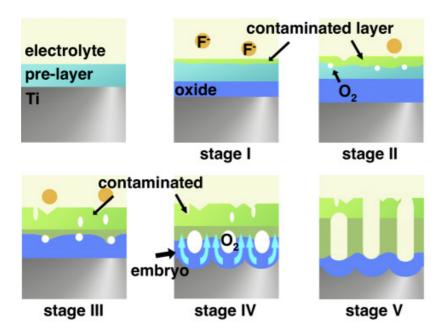
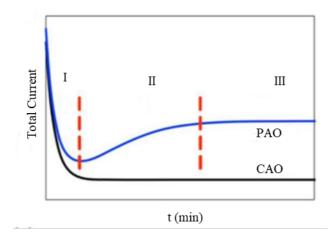



Fig. 4 The mechanism diagram of TiO₂ embryo initiation.⁴⁹

Fig, 5 shows the typical current-time curves of three stages (I, II and III respectively). Under the condition of constant voltage anodic oxidation, the initial high electric field intensity produces relatively high ion current, which decreases with the increase of oxide thickness, as shown in stage I. With the increase of the thickness of barrier layer and the accumulation of anions near the oxide surface, the electron current increases exponentially when the barrier layer grows to the critical thickness and the electric field intensity drops to the critical value. Due to the sufficient electron current, the release of oxygen remains in the anion contaminated layer. Closed small bubbles appear as bubble mold, which leads to the formation of pore embryo in stage II. With

the growth of barrier oxide, oxygen bubbles grow and expand upward. Until the oxygen bubble breaks, the electrolyte is allowed to enter, and the total anodic oxidation current reaches quasi-steady state (the stage III).⁵⁰ The larger electron current leads to the rapid overflow of oxygen bubbles on the anode membrane surface, while the barrier oxide produced by the small ion current cannot surround the oxygen bubbles, and only a dense membrane can be obtained. The balance between the ion current and electron current can lead to the formation of nanotubes.⁵¹

Fig. 5 The current-time curve of porous anodic oxide(PAO) or compact anodic oxide(CAO) prepared by constant voltage anodic oxidation.⁵²

In fact, because the formation mechanism is hard to be derived by direct in-situ experiments, it is difficult to successfully explain the formation mechanism of nanotubes by a single theoretical model, but well results can be obtained by combining various theories.⁵³ If the plastic flow model is combined with the oxygen bubble model, the formation of gaps and ribs around the anode TiO₂ nanotubes can be successfully clarified.⁵⁴ Based on the oxygen bubble model and oxide flow model, the formation mechanism of lotus-root-like nanostructures is proposed.⁵⁵

2.1 Surface pre-treatment

19 Nowadays, there are extensive researches on the influence of anodic oxidation

parameters on the morphology of TiO₂ nanotubes, ^{28, 56} but few researches are focused on the influence of anodic pre-treatment on the morphology of TiO₂ nanotubes. Coldworking Ti plate produces an intermediate structure between self-organized nanotubular and nanoporous morphology(Fig. 6a). The thickness decreases with the increase of cold-working amount. Long-time thermal annealing after cold-working can eliminate the defects of cold-working and form good nanotube morphology.⁵⁷ The residual stress in Ti foil can be eliminated by heat treatment of Ti plate, which is beneficial to reduce the diameter of anodized TiO₂ nanotube array and obtain good morphology with uniform arrangement. With the increase of annealing temperature, the growth rate of TiO₂ nanotubes increases.⁵⁸ Surface roughness of Ti can induce higher growth rate (extended nanotube length) and improved self-organization.⁵⁹ So that the grinding or polishing Ti plate affects the morphology of anodized TiO2 nanotubes. Surface irregularities caused by grinding make it easier to form nanonuclei, but their growth is more disordered. Therefore, unlike the smooth surface formed by polishing, the distribution of surface nanotubes on the ground surface is sparser and the height is more irregular. The polished surface forms nanotubes with larger outer diameter and wall thickness(Fig. 6b, c).⁶⁰ Different polishing methods (chemical polishing and mechanical polishing) also affect the TiO₂ nanotubes formed by subsequent anodic oxidation.⁶¹

1

2

3

4

5

6

7

8

9

10

11

12

13

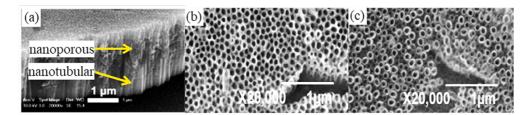
14

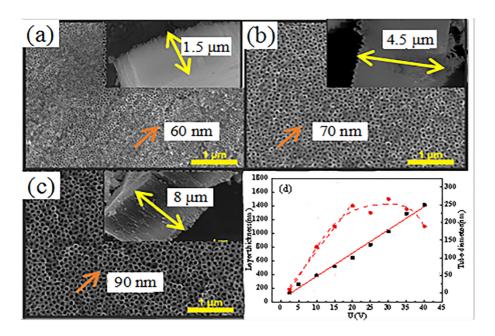
15

16

17

18




Fig. 6 (a) Intermediate structure of nanotubes and nanopores,⁵⁷ and SEM images of the anodized surfaces (b) ground and (c) polished.⁶⁰

2.2 Oxidation Voltage

1

2 The research shows that the anodic oxidation voltage has a great influence on the formation of the tube. 62, 63 Low voltage easily forms a mixed structure both at the top 3 nanopore layer and the bottom nanotube layer.⁶⁴ High voltage leads to rapid dissolution 4 5 of TiO₂, attenuation or fracture of the formed nanotubes, and even breakdown of Ti plate. 65 Therefore, TiO₂ nanotube arrays can only be oxidized within a certain voltage 6 range, which is called "voltage window". Mor et al. found that the voltage window was 7 10-23 V when anodizing Ti plates in HF solution system.⁶⁶ For organic electrolyte, the 8 voltage window is generally higher than that of aqueous electrolyte.⁶⁷ In addition, the 9 oxidation voltage is also related to the diameter and length of nanotubes.⁶⁸ The 10 11 structural characteristics of anodized TiO₂ nanotubes, such as grain size, inner pore size 12 and outer pore size, increase with the increasing anodizing voltage. ^{69, 70} As the oxidation 13 voltage increases, the diameter and length of nanotubes increase, and the linearity depends on the oxidation voltage.⁷¹ Furthermore, the voltage also affects the tube 14 15 spacing and tube morphology of TiO₂ nanotubes. Within the limited voltage range from 16 10 V to 40 V, the self-organized spacing of TiO₂ nanotubes can be obtained from 21 nm~168 nm,⁷² and the tube length gradually increases with the increase of voltage(Fig. 17 18 7a, b, c).⁷³ However, when the applied potential exceeds a critical value (usually higher 19 than 60 V), the diameter of the porous anodized nanostructure decreases(Fig. 7d), and 20 the critical value is determined by the electrolyte, 74, 75 therefore, the aspect ratio is 21 reduced. While decreasing the voltage can reduce the porosity and increase the 22 roughness coefficient and aspect ratio of TiO₂ nanotubes. At the same time, decreasing 23 the voltage can separate TiO₂ nanotubes prepared by anodic oxidation in the second-24 step from the titanium substrate, and obtain independent TiO₂ nanotubes with closed end and hexagonal structure.⁷⁶ If square voltage is applied to Ti sheet, the morphology 25

- 1 and morphological characteristics of the nanotubes will be changed, and bamboo-knot
- 2 walls will be formed.⁷⁷

4 Fig. 7 The morphology of surface and cross section of TiO₂ nanotubes obtained at (a) 20 V, (b) 30 V,

- 5 (c) 40 V for 60 minutes respectively in the solution system of NH₄F/ethylene glycol, ⁷³ and (d)
- 6 variation curve of inner diameter and length of TiO₂ nanotubes with voltage.⁷⁵

7 2.3 Electrolyte

3

8

9

10

11

12

13

14

15

- After continuous development, anodizing electrolytes have experienced four generations of electrolyte types: the first generation is HF-containing aqueous electrolytes,⁷⁸ the second generation is buffered neutral aqueous electrolytes with fluoride salts (such as KF, NaF),⁷⁹ the third generation is viscous organic electrolytes containing fluoride (such as NH₄F/ethylene glycol),⁸⁰ and the fourth generation is non-fluoride-based electrolytes (such as HCl).⁸¹
- Ethylene glycol containing NH₄F and H₂O is widely used because it can produce nanotubes with uniform diameter and smooth walls.⁸² The pH value, F⁻ concentration and water content in the electrolyte affect the formation and dissolution of oxide film.

Temperature mainly affects the migration rate of ions in electrolyte. Therefore, temperature is very important for the formation of TiO₂ nanotubes.⁸³ Anodizing is usually carried out at room temperature, because it is beneficial to the formation of TiO₂ nanotubes in this temperature range. However, by changing the electrolyte temperature, it is found that TiO₂ nanotubes can be formed in a large temperature range. In this temperature range, there is no significant change in the diameter of nanotubes, but the wall thickness of TiO₂ nanotubes changes significantly.⁴ At low temperature, the rate of oxide dissolution reaction is slower than that of titanium etching, resulting in the formation of thicker nanotube walls.⁸⁴ At high temperature, the rate of chemical etching is faster than that of anodic oxidation, and no nanotube structure is formed at this time.⁸⁵ Elevated temperature accelerates the formation of TiO₂ nanotubes, and at the same time, it also aggravates the chemical corrosion on the top, so it is unfavourable to prepare longer TiO₂ nanotubes. However, if only the Ti surface is heated and the electrolyte is kept at a low temperature, the TiO₂ nanotubes can grow rapidly and a high aspect ratio can be obtained.86 The hydrolysis content increases with the increasing pH value, resulting in a large amount of hydrated TiO₂ deposited on the surface of nanotubes.⁸⁷ Shorter and cleaner nanotubes are formed with lower pH value, while higher pH value could cause longer nanotubes to suffer unnecessary precipitation. Alkaline solution is not conducive to the formation of self-organized nanotubes. 88 F is mainly related to the dissolution of oxide film. The nanotube length increases to the maximum value and then gradually decreases with the increase of NH₄F concentration. If the concentration is very high, the nanotubes become disordered and irregularly arranged, forming a very thick precipitate on the TiO2 film.⁸⁹ Typical F- concentration is between 0.3 wt% and 0.5 wt%.90,91

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

When the electrolyte contains no water or its content is low, the diffusion of H⁺ and F ions in high viscosity ethylene glycol electrolyte is inhibited. With the increase of water content, the concentration of H⁺ increases gradually, the electrochemical oxidation rate is faster than the chemical dissolution rate, and the tube length of TiO₂ nanotubes increases. However, when excessive water is added, the H⁺ concentration increases to the point where the chemical dissolution rate is higher than the electrochemical oxidation rate, which leads to the destruction of the oriented tubular structure, and even completely dissolves to form nanoparticles.⁹² In addition, the solution viscosity of NH₄F and ethylene glycol electrolyte is very unfavourable to the diffusion of various ions in the electrolyte, so the uniformity of electrolyte also has a great influence on the morphology of TiO₂ nanotubes. The morphology of TiO₂ nanotubes can be better than that of prepared without stirring before anodic oxidation or during oxidation. 93, 94 The increase of stirring rate has little effect on the morphology of TiO₂ nanotubes, but the higher the stirring rate, the more serious the fracture of TiO₂ nanotubes. 95 The effects of various electrolyte parameters on the tube diameter, length and wall thickness of anodized TiO₂ nanotubes are shown in Table 1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

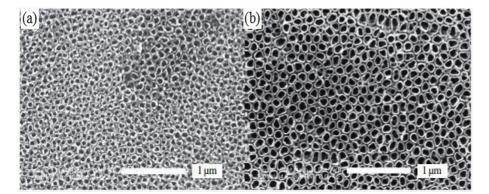
16

17

Table 1 Tube diameter, length and wall thickness of TiO₂ nanotubes prepared with different electrolyte parameters in ethylene glycol system.

Electrolyte parameters	Condition	Tube diameter	Tube length	Wall thickness	References
Water content	2 wt%	52.73 nm	21.8 μm	36.91 nm	
	3 wt%	111.5 nm	25.6 μm	15.75 nm	96
	4 wt%	121.2 nm	24.2 μm	31.9 nm	
Temperature	5 °C	Premature pores	No	No	97

	10 °C	35 nm (porous)	No	No	
	25 °C	125 nm	250 nm	30 nm	
	30 °C	175 nm	-	27 nm	
	50 °C	190 nm	-	22 nm	
	70 °C	200 nm	-	20 nm	
NH ₄ F content	0.1 wt%	45.1 nm	4.479 μm	94.1 nm	
	0.3 wt%	50.2 nm	4.243 μm	65.75 nm	28
	0.5 wt%	49.4 nm	4.421 μm	47.2 nm	
Stirrer rate	No	60 nm	0.66 μm	6.7 nm	
	150 rpm	62 nm	0.75 μm	13.3 nm	0.5
	300 rpm	62 nm	0.71 μm	6.7 nm	95
	600 rpm	61 nm	0.67 μm	6.7 nm	


⁻ means that this data is not available in the references

2 2.4 Anodizing steps

1

3 The multiple oxidation of TiO2 is to form ordered hexagonal depressions on the Ti 4 substrate through the first anodic oxidation, which serves as a template for the further 5 growth of TiO2 nanotubes. The first anodic oxidation is actually the surface pretreatment of Ti foil and the first anodic oxidation could provide ordered marks. TiO2 6 nanotube arrays with more uniform diameter and arrangement order can be obtained by 7 multiple anodic oxidation methods.⁹⁸ However, due to the active nature of the Ti 8 9 substrate, an excessively thick oxide film may form before the sunken substrate reacts 10 again. Thus, multiple anodization may deteriorate the morphology of nanotubes.

TiO₂ nanotubes grown in the second step of anodization are obviously superior to TiO₂ nanotubes prepared by conventional one-step Ti anodization in terms of size uniformity and arrangement order. By adjusting the experimental parameters in the second step of anodization, two new types of TiO₂ nanostructures are obtained: lotus root-like nanostructures, double-layer nanotube arrays with bamboo-like upper part and smooth wall lower part.⁹⁹ The TiO₂ nanotube array constructed by the third anodization shows more regular structure than the sample constructed by the conventional single anodization.¹⁰⁰ In addition, as anodic oxidation moves from the first, second and third steps, the diameter of the inner pores of TiO₂ nanotubes increases, but the wall thickness of TiO₂ nanotubes gradually decreases.¹⁰¹ By carefully studying the influence of multiple anodizing on the morphology and geometric properties of TiO₂ nanotubes, it is found that the length of TiO₂ nanotubes increased sharply by two-step anodizing, which is from 2 μ m in one-step anodizing to 4 μ m in two-step anodizing. In addition, it also has high roughness factor, surface area and aspect ratio, as well as very orderly structure and clear opening (Fig. 8).^{102, 103}

Fig. 8 SEM images of TiO₂ nanotubes under different anodizing steps (a) one-step oxidation and (b) two-step oxidation.¹⁰³

2.5 Oxidation Time

When the TiO₂ porous oxide film is formed, the tube length of TiO₂ nanotubes

1 gradually increases with the increasing oxidation time. In addition, with the further extension of oxidation time, the diameter of TiO₂ nanotubes increases similarly. ¹⁰⁴ For 2 3 NH₄F solution organic system, as the solution has a certain viscosity, ion transport is slow and oxidation time is long (usually as long as several hours). 105, 106 If the oxidation 4 time is short, only TiO₂ porous oxide film can be formed without TiO₂ array.¹⁰⁷ With 5 the increase of anodizing time, the diameter of nanotubes may increase linearly (Fig. 9a, 6 b, c, d), ¹⁰⁸ or increases and decreases repeatedly, but eventually increases. ¹⁰⁹ However, 7 with the increasing oxide film thickness, the migration rate of H⁺ and F⁻ plasma 8 9 decreases, the increase of tube length gradually slows down, and finally reaches stability(Fig. 9e).¹¹⁰ 10

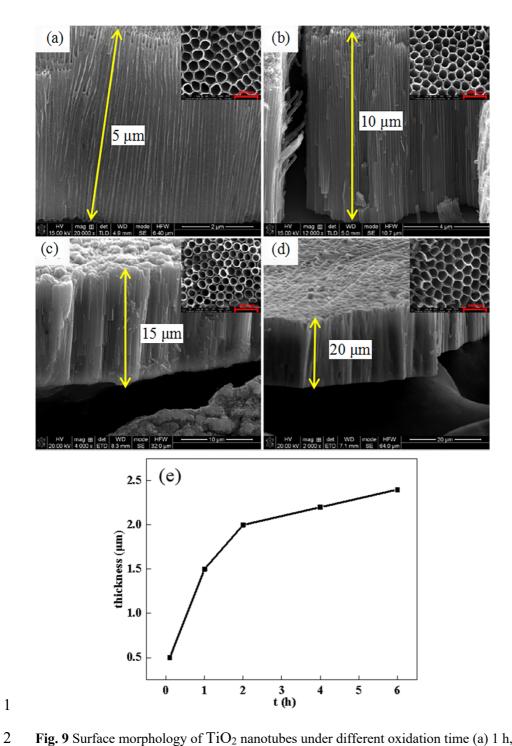


Fig. 9 Surface morphology of TiO2 nanotubes under different oxidation time (a) 1 h, (b) 3 h, (c) 5 h,

(d) 7 h 108 and (e) wall thickness of TiO_2 nanotubes under different oxidation time. 110 3

2.6 In-situ radiation

- 5 In recent years, in-situ radiation has been used to adjust the structure of TiO₂ nanotubes.
- 6 For example, when the TiO2 nanotubes are prepared by anodic oxidation under
- ultraviolet-visible(UV-vis) radiation, because of the photooxidation of water by 7

nanotubes, the concentration of H⁺ is higher at the bottom, the nanotubes with larger diameter and thicker wall are produced after irradiation, and the length of nanotubes remains unchanged compared with that without UV-vis radiation. 111 In addition, the thickness of the inner wall and outer wall of the double-walled TiO₂ nanotube prepared with UV assistance can be changed by altering the power of UV light. 112 Aliabadi et al. carefully studied the influence of UV irradiation time on geometric characteristics, and the results showed that the UV irradiation has a significant impact on geometric characteristics in the two-step anodic oxidation process. After irradiation for 120 minutes, the size of TiO₂ nanotubes was increased, meanwhile, the surface area, roughness and aspect ratio were also significantly improved. 113

In summary, the structure of TiO₂ nanotubes is affected by oxidation voltage, electrolyte, oxidation times and other parameters. The three stages of the oxidation process could be coordinated with each other to obtain TiO₂ nanotubes with desirable structure by adopting appropriate preparation conditions. Albu et al. prepared TiO₂ nanotubes with a length of more than 250 μm and a significantly higher aspect ratio in HF acid system for the first time by comprehensively adjusting the voltage, HF acid concentration and oxidation time.¹¹⁴ The high voltage may break through the Ti plate, which is not conducive to the formation of TiO₂ nanotubes. However, by optimizing the NH₄F content under different voltages, a uniform thin film without any oxide breakdown can be obtained, and ordered TiO₂ nanotubes with high aspect ratio can be rapidly prepared in a few minutes under the high anodic oxidation voltage of 220 V, and the fastest growth rate is 2.45 μm/min.¹¹⁵

2.7 Heat treatment and water-assisted treatment

24 Except for some special cases, 116 TiO2 nanotubes prepared by anodic oxidation are

amorphous. In order to change them into stable crystalline phase, there are currently two methods: heat treatment and water-assisted treatment. The research shows that the amorphous tube layer is obviously transformed into anatase at about 280 °C. 117 At about 500 °C, rutile phase begins to appear. As the temperature further increases, anatase phase disappears and completely transforms into rutile phase. In nanoscale, anatase is relatively stable, while rutile is thermodynamically considered as the most stable bulk phase. However, with the increasing temperature, the morphology of nanotubes will be worse and worse. When Roy annealed nanotubes at 450 °C, cracks appeared in the tube wall(Fig. 10a). 119 Moreover, with the increasing temperature, the grain size becomes larger, which is the main reason for tube collapse. Tube collapse will significantly affect the specific surface area of TiO₂ nanotubes.

Another method is water-assisted treatment. In 2011, Liao et al. used deionized water to place amorphous TiO₂ nanotubes at room temperature for 3-4 days, and the amorphous nanotubes were transformed into stable anatase phase, ¹²⁰ and part of TiO₂ nanoparticles would be deposited on the surface and side of nanotubes(Fig. 10b), which significantly increased the specific surface area of TiO₂ nanotubes. The mechanism of water-assisted crystallization is as follows:¹²¹

18
$$\text{TiO}_{2(a)} + 4\text{H}_2\text{O} \rightarrow \text{Ti}(\text{OH})_6^{2-} + 2\text{H}^+$$
 (1)

19
$$Ti(OH)_6^{2-} + 2H^+ \rightarrow TiO_{2(c)} + 4H_2O$$
 (2)

Here, $TiO_{2(a)}$ is amorphous TiO_2 nanotube. $TiO_{2(c)}$ is anatase TiO_2 nanotube.

After that, researches on water-assisted crystallization of TiO₂ nanotubes have emerged one after another. ¹²²⁻¹²⁴ The mixed phase of anatase and rutile can be obtained by adding dilute HCl or HNO₃ into deionized water. ¹²⁵ However, the crystallization cycle of water-assisted TiO₂ nanotubes is longer, and the crystallinity is much lower than that of heat-treated TiO₂ nanotubes. So, for TiO₂ applications requiring higher

- 1 crystallinity, such as dye-sensitized solar cells, water-assisted TiO2 nanotube
- 2 crystallization can't replace heat-treated TiO₂ nanotubes, ¹²⁶ which also limits the
- 3 application of water-assisted TiO₂ nanotube crystallization. Therefore, heat treatment is
- 4 generally adopted at present. 127, 128

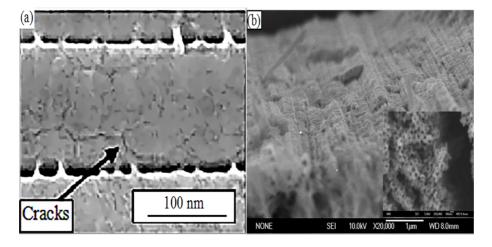


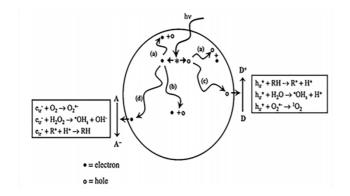
Fig. 10 (a) After annealing at 450 °C, TiO₂ nanotubes with cracks in the tube wall, ¹¹⁹ and (b) Water-

7 assisted treatment of side and surface morphology of TiO₂ nanotubes. 120

8 3 Factors Affecting Photocatalytic Activity of TiO₂ Nanotubes

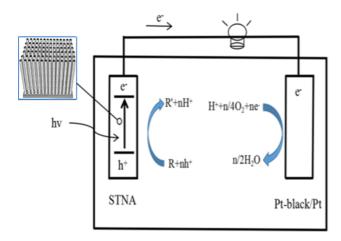
The photocatalytic mechanism of TiO₂ is shown in Fig. 11. After absorption of TiO₂ nanoparticles, photons with energy is equal to or higher than their band gap collide, and electrons are excited from the valence band (VB) into the unoccupied conduction band (CB), resulting in excited electrons in the conduction band and positive holes in the valence band. These charge carriers can be recombined nonradiatively or radiatively (dissipating input energy as heat), or captured and reacted with electron donors or receptors adsorbed on the surface of the photocatalyst.¹²⁹ At the same time, electrons in the CB usually participate in the reduction process. The reduction process usually reacts with molecular oxygen in air to generate superoxide radical anion (O²-), O²- and H⁺ form H₂O₂, which is further converted into OH⁻.¹³⁰ These free radicals can oxidize macromolecular pollutants to form non-polluting inorganic small molecules, such as

1 CO₂ and water. The overall mechanism can be summarized as the following steps. 131


$$Ti(IV)+e^{-} \rightarrow Ti(III)$$
 (3)

$$Ti(III) + O_2 \rightarrow Ti(IV) + O_2^{-1}$$
 (4)

$$H_2O + h^+ \rightarrow OH \cdot + H^+ \tag{5}$$


5
$$OH' + OP \rightarrow intermediates \rightarrow H_2O + CO_2$$
 (6)

6
$$O_2^{-} + OP \rightarrow intermediates \rightarrow H_2O + CO_2$$
 (7)

8 Fig. 11 Process occurring on bare TiO₂ particles after ultraviolet excitation. ¹³⁰

Many researchers have developed photocatalytic fuel systems that can not only degrade organic pollutants in water under visible light, but also make full use of their chemical energy for power generation, thus greatly improving the utilization rate of polluted water (Fig. 12). 132, 133

Fig. 12 Schematic diagram of working principle of PFC system based on STNA wherein R and R' are organic compounds and oxidation products thereof.¹³³

The ideal photocatalyst should exhibit the following characteristics: well chemical corrosion resistance, good light corrosion resistance, ability of absorbing a wide range of UV, vis and even infrared light, and effective charge separation. In addition, the photocatalyst should be made of the elements which are rich in earth, cost-effective, suitable for cheap synthesis methods, and can be used on a large scale. 134 As a common photocatalyst, there are some disadvantages for TiO₂. Firstly, TiO₂ is a semiconductor with a large forbidden band, which has photocatalytic activity only under UV irradiation. Thus, the utilization rate of solar energy is low. Secondly, the photo-generated hole-electron pair excited by TiO₂ is easy to recombine, which will obviously weaken the photocatalytic activity of TiO₂. In order to solve these issues, effective improvement methods include: 1) improving nanotube structure and morphology, 2) introducing other elements, and 3) surface modification.

3.1 Structure and morphology of TiO₂ nanotubes

14 3.1.1 Morphology of TiO₂ Nanotubes

Compared with these modifications introduced with foreign substances, it is also remarkable to enhance the photocatalytic activity by improving the structure and morphology of TiO₂ nanotubes.^{135, 136} As the unique aspect ratio structure of TiO₂ nanotubes, it is easy to separate the photo-generated carriers. Thus, the preparation of TiO₂ nanotubes with higher aspect ratio is a way to improve their catalytic performance.¹³⁷ With the increasing oxidation voltage and time, the diameter, length and surface area of TiO₂ nanotubes are further increased, and the surface reaction rate constant is linearly related to the surface area.¹³⁸ TiO₂ nanotubes grown on Ti substrate are selectively dissolved at the bottom, and then HF acid is used to dissolve the oxide film on the top of the nanotubes. TiO₂ nanotube arrays with open ends are prepared,

which have better permeability and photocatalytic performance.^{139, 140} Alternatively, double-walled TiO₂ nanotube arrays can be prepared by imprint technology, and then highly hexagonal ordered single-walled TiO₂ nanotube arrays can be obtained after optimizing chemical treatment in piranha solution, and its catalytic activity is higher than that of classic self-ordered TiO₂ nanotubes.¹⁴¹ TiO₂ nanotubes with nano grating structure can be prepared by oxidation in fluorine-containing electrolyte, which accelerates electron-hole separation and also provided lower recombination rate.¹⁴² The performance of TiO₂ nanotubes is greatly improved even through simple surface treatment.¹⁴³

The regularity and uniformity of TiO₂ nanotubes and their photocatalytic activity increase with the increasing oxidation voltage. However, if the voltage is excessively high, the regularity will be destroyed and the catalytic activity will be reduced. Therefore, when the oxidation voltage increases to a certain value, the catalytic activity of TiO₂ nanotubes reaches an extreme value (Fig. 13).¹⁴⁴

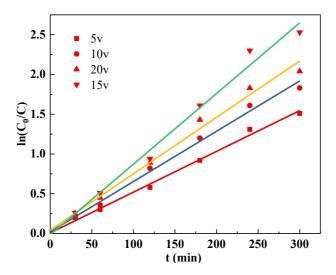


Fig. 13 Photocatalytic activity of TiO₂ nanotubes under different voltages. 144

3.1.2 Crystalline phase of TiO₂ Nanotubes

Anatase phase is the main photocatalytic phase, and its catalytic activity is better than

that of amorphous and rutile TiO₂ nanotubes. Early studies have shown that the activity of pure anatase was higher than that of mixed phase.^{145, 146} Macak et al.¹⁴⁷ believed that the decrease of anatase is the reason for the decrease in photocatalytic activity (Fig. 14).

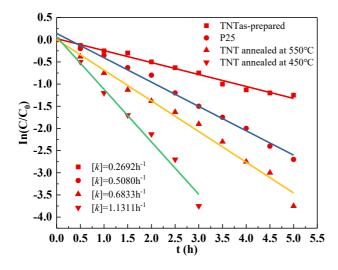


Fig. 14 Photocatalytic degradation rate of AO7 with different crystal phase structures (▼-anatase
 phase. ▲-mixed crystal structure of anatase and rutile).¹⁴⁷

However, recent studies have shown that the catalytic activity of the mixed crystal structure of anatase and rutile is higher than that of pure anatase phase. ^{148, 149} According to the corresponding research, Li et al. showed that when it is annealed at about 500 °C, anatase and rutile can be obtained in a special layered mixed crystal phase. TiO₂ with mixed crystal structures can effectively inhibit the photogenerated hole-electron recombination, thus having higher catalytic activity. ¹⁵⁰ The main photocatalytic phase is the anatase which distributes at the top of the nanotube. However, rutile phase at the bottom of the nanotube may form an internal electric field to promote effective separation of the photo-generated carriers, thus improving the activity. TiO₂ nanotubes prepared in acidic electrolyte can be annealed at 650 °C for 30 minutes to obtain a mixed phase of anatase and rutile with the highest crystallinity and also obtain the best catalytic degradation effect on methyl orange. ¹³⁶

3.3 Doping Modification

1

3

2 3.3.1 Non-metallic doping

and the doping ions are widely distributed, such as non-metallic cations (I⁵⁺, Si⁴⁺, etc.), 4 and anions (N, C, etc.). However, the B ion is special, which can replace Ti⁴⁺ in the 5 crystal lattice in the form of B³⁺, or replace O²⁻in the crystal lattice in the form of B²⁻. ¹⁵¹ 6 7 Until now, the most successful research is N doping, which can narrow the optical gap and improve the visible light catalytic activity. 152-154 Because N has the atomic size 8 9 equivalent to oxygen, small ionization energy, formation and stability of metastable 10 center, so it is easier to dope into TiO₂ crystal lattice. Since Asahi et al. successfully doped N in TiO₂ for the first time, 152 the research on the mechanism of enhancing the 11 12 photocatalytic activity of TiO₂ nanotubes by N doping has become increasingly perfect. ¹⁵⁵After doping, N may also serve as the recombination center of photo-generated 13 carriers, reducing the photocatalytic activity under UV light. 156The effect of C doping is 14 15 similar to N doping. It is generally believed that C doping can improve the adsorption of organic molecules and the conductivity of TiO₂.¹⁵⁷ Therefore, C doped TiO₂ nanotubes 16 17 show better activity than TiO₂ nanotubes under UV light. C doped TiO₂ nanotubes can 18 be prepared by calcining the amorphous TiO₂ nanotubes in air and natural gas 19 atmosphere successively, which reduces the band gap of TiO₂ nanotubes and has higher activity under visible light. 158 However, when the C doping amount is extremely high, C 20 21 will become the recombination center of electrons and holes, and the catalytic performance will be reduced. 159 22 Many studies demonstrated that C doping is the substitution of C for O²-, thus 23 forming TiO_{2-x}C_x type C doped TiO₂ nanotubes, ¹⁶⁰ while, according to Valentin et al's 24 25 theory, C was preferred to replace O under anoxic conditions, and was conducive to

Non-metallic ion doping modification is a key area in the research of TiO₂ nanotubes,

- 1 replace Ti under oxygen-enriched conditions.¹⁶¹ The diameter of C doped TiO₂
- 2 nanotubes could be adjusted by changing the flow rate of carrier gas. The optical band
- 3 gap (2.72 eV) after doping was much smaller than that of anatase TiO_2 (3.20 eV). ¹⁶²

4 3.3.2 Metal doping

5 The metal doping of TiO₂ nanotubes can be divided into three categories: transition 6 metal ions, rare earth metal ions and noble metal ions. Metal ions are doped into TiO₂ 7 lattice to replace Ti⁴⁺ ions, thus affecting energy band structure and reducing the light 8 absorption edge energy of TiO₂. Karvinen et al. studied the doping effect of various transition metal ions (V3+, Cr3+, Fe3+, etc.) on anatase and rutile, and found that the 9 10 doping of these ions can obviously reduce the band gap of anatase, but has no effect on 11 the rutile. 163 Rare earth elements have unique 4f orbitals and 5d orbitals, which can 12 reduce the recombination rate of electron-hole pairs. In addition, rare earth elements can 13 effectively prevent grain growth after doping. Compared with other rare earth ions, Gd 14 ion has the smallest energy band gap and grain size after doping, the largest specific surface area and highest photocatalytic activity. 164 Mazierski et al. studied the 15 16 lanthanide doped TiO₂ nanotubes, and got different conclusions. Under visible light, Ho 17 doped TiO₂ nanotubes had the highest photocatalytic activity, and they thought that the 18 photocatalytic activity under visible light irradiation was not caused by oxygen center, but by other forms of active oxygen (O2., HO2., H2O2). 165 Noble metal deposition is 19 20 also one of the most effective methods to improve the photocatalytic performance of TiO₂ nanotubes. 165 Noble metals such as (Ag, Au, etc.) can induce charge carriers by 21 22 light, thus realizing the effective separation of electron-hole pairs and improving the photocatalytic activity. 166, 167 It is generally believed that uniform doping can promote 23 the performance of element-doped TiO₂ nanotubes, 168 while non-uniform doping is 24

detrimental to the performance, because it may lead to partial aggregation of doped elements and become the recombination center of carriers. However, Zhang et al. found that non-uniform doping can form "platinum island" and interface separation effect in Au-doped TiO₂ nanotubes, which is beneficial to isolate photogenerated electrons and holes, so the photocatalytic activity of non-uniform Au-doped TiO₂ is enhanced compared with uniform Au-doped TiO2 nanotubes. 169 Although metal ions can effectively reduce the band gap of TiO2, metal ions can easily become the recombination center of electron-hole pairs, which will reduce the photocatalytic activity.170

3.3.3 Co-doping of Multiple Elements

Although the doping of single element makes the photocatalytic performance of TiO₂ nanotubes better than that of un-doped TiO₂ nanotubes, there is still much room for improvement in photocatalytic activity under visible light. In recent years, many literatures show that the performance of multi-element co-doped TiO₂ nanotubes is obviously higher than that of single-element doped TiO₂ nanotubes due to their synergistic effect.^{171, 172}

Multi-element co-doping includes metal-metal co-doping, metal-non-metal co-doping, and non-metal-non-metal co-doping. For example, Lanthanum, gallium co-doped TiO₂ nanotubes can accelerate the electron capture and dye adsorption. This is because La³⁺ and Gd³⁺ replace Ti⁴⁺, resulting in a large number of oxygen vacancies and surface defects. Thereby accelerating the separation of photo-generated electron-hole pairs and promoting photocatalytic degradation.¹⁷³ Co-doping Ti³⁺ and Ni changes the band structure of TiO₂ nanotubes, narrows the band gap to 2.84 eV, and enhances the light absorption. Ni doping widens the VB of TiO₂, which can promote the

separation and transmission process of charge carriers. The performance is about 10 times larger than that of un-doped TiO₂ nanotubes.¹⁷⁴ When metallic element Zr is codoped with non-metallic element N, and the element ratio of Zr to N is 2:1, the recombination of electron-hole pairs can be effectively inhibited due to the joint action of metal and non-metal, so that TiO₂ nanotubes have higher photocatalytic activity under visible light.¹⁷⁵ Non-metallic element B and metallic element Co are successfully doped into TiO₂ nanotubes for the first time. Because the surface hydroxyl groups have obvious advantages in different current densities, pH values, initial degradation concentrations and degradations of different types of pollutants, the doping of Co significantly enhances the stability of TiO₂ nanotubes, although it is detrimental to photocatalytic activity.¹⁷⁶

Doping with various of non-metallic elements, such as N and F co-doping, will lead to wormhole-like mesopores, which are beneficial to capture more photons for

lead to wormhole-like mesopores, which are beneficial to capture more photons for stimulating the formation of photo-generated carriers, as well as larger surface area and enhanced light absorption, thus having enhanced photocatalytic activity. ¹⁷⁷ In addition, the band gap of TiO₂ nanotubes is shortened from 3.2 eV to 3.04 eV by co-doping with three or more non-metallic elements such as C, N, and F. Among all doped non-metallic elements, C, N doping improves the visible light absorption of TiO₂, while F doping leads to the formation of oxygen vacancy. In addition, C doping can also improve the specific surface area of TiO₂ nanotubes, thus having good photocatalytic activity under sunlight. ¹⁷⁸

The general photocatalytic mechanism of doped TiO₂ is shown in Fig. 15. The metal doping produces defect level near the CB of TiO₂, while non-metal doping causes extra defect level above the VB of TiO₂. The defect energy level will shorten the band gap of TiO₂, thus contributing to visible light photoactivity. In co-doped and multi-

doped TiO₂, electrons can transition from these defect energy levels or the VB of TiO₂ to metal defect impurity energy levels, or to the highest energy level of CB of TiO₂. Metal ions in variable oxidation state can be used as electron capture centers. Capture centers lead to the increase of charge carrier life, thus increasing the photocatalytic activity of TiO₂.¹⁷⁹ How to select appropriate co-doping elements to exert synergistic effect and to improve the performance of TiO₂ nanotubes are the theoretical premises of co-doping modification, because the co-doping of some elements will reduce the performance of TiO₂ nanotubes.¹⁸⁰

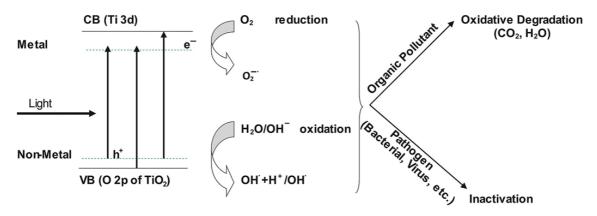


Fig. 15 General photocatalytic mechanism of doped TiO₂. ¹⁸¹

3.4 Filling and Surface Modification

Because photo-generated carriers generated by TiO_2 excitation are easy to recombine, so it is very important to improve the catalytic activity by filling or surface modification to reduce carrier recombination. The recombination of charges e^- and h^+ is reduced, more hydroxyl radicals and peroxides (O^{2-}) are generated, and the photocatalytic degradation of organic matters is promoted.¹⁸²

It has been reported that many TiO₂ nanotubes are decorated or filled with different foreign materials. In recent years, the photocatalytic activity of TiO₂ nanotubes has been enhanced by constructing heterojunction (more than two layers of different semiconductor thin films are deposited on the same substrate in turn). Fe₂O₃ can form

the type I heterojunction with TiO₂, which shows enhanced separation of e⁻/h⁺ pairs and enhanced photocatalytic activity.¹⁸⁶ In addition, similar to co-doping, when multiple materials with synergistic effect sensitize TiO₂ nanotubes, the performance of TiO₂ nanotubes is higher than that of single material sensitized TiO₂ nanotubes. However, when materials without synergistic effect are sensitized together, the performance is reduced.¹⁸⁷ Fe₂O₃ and graphite nitrogen carbide (g-C₃N₄) are loaded on the surface of N-doped TiO₂ nanotubes, and the excitation energy of TiO₂ nanotubes is reduced due to the loading of N and Fe₂O₃, thus exhibits a lower Eg value (2.15 eV) than single TiO₂ nanotubes, N-doped TiO₂ nanotubes and g-C₃N₄ loaded N-doped TiO₂ nanotubes. In addition, g-C₃N₄ can promote charge migration, so it has higher hydroxyl generation and degradation efficiency (Fig. 16a).¹⁸⁸ This synergistic effect is also applicable to TiO₂ with other structures (Fig. 16b).¹⁸⁹

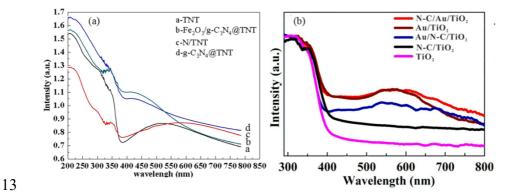
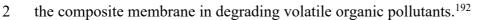



Fig. 16 UV-vis diffuse reflectance spectra of different TiO₂ nanotubes¹⁸⁸ and TiO₂ samples. ¹⁹⁰

WO₃ has a band position matched with TiO₂, which can form the type II heterojunction (Fig. 17),¹⁹¹ and the separation of electron-hole pairs is enhanced under visible light.¹⁸⁹ In addition to the WO₃/TiO₂ heterojunction alone, BiVO₄ is selected to be introduced into WO₃/TiO₂ nanotubes, and oxygen vacancy is also introduced. With the introduction of BiVO₄, the inherent degradation path dominated by hydroxyl and hole into the degradation path dominated by oxygen vacancy and hole. The stable oxygen vacancy is used to construct the separation and transmission of charge carriers

1 in heterogeneous materials, thus realizing the high catalytic performance and stability of

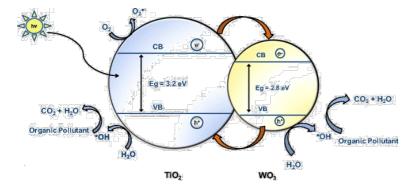


Fig. 17 Mechanisms of degradation proposed for (a) WO₃/TiO₂ and (b) Fe₂O₃/TiO₂. ¹⁹³

Ag₂O is a visible light active photocatalyst with a band gap of 1.2 eV, which forms a heterojunction with TiO₂ (type III heterojunction). ¹⁹¹Photogenerated electrons in CB of Ag₂O are transferred into CB of TiO₂, and react with adsorbed O₂ to form O²⁻. In addition, photogenerated h⁺ in VB of Ag₂O reacts with OH⁻ to form -OH, and participates in degradation. ¹⁹⁴

In addition, the Z-scheme structure is another connection mode between the above two semiconductors. Z-scheme structure can reduce the band gap of semiconductor and make CB potential more negative and VB potential more correct. This structure is a promising strategy for improving photocatalysts. Compared with the traditional type II heterostructure, Z-scheme structure can not only realize the effective separation of photogenerated electrons and holes, but also enhances redox ability. See By constructing the Z-scheme structure of TiO2 nanotubes-graphene (GR)-CdS quantum dots, the light absorption range of TiO2 nanotubes is extended to a wider sunlight area due to the coupling of TiO2 nanotubes, GR and CdS quantum dots. The principle of photocatalytic degradation of 4-nitrophenol (4-NP) by the direct Z-scheme structure formed by MoSe2 and TiO2 nanotubes is shown in Fig. 18, the electrons (-0.93 V) stored in the CB of MoSe2 are mainly captured by 4-NP ions and reduced to form 4-

aminophenol. Furthermore, the absorbed water molecules are easily oxidized to free radicals • OH by the holes (2.91V) accumulated in high potential TiO₂ VB. Then, the benzene ring of 4-NP is easily attacked by free radical • OH and degraded into small organic molecules. In addition, highly ordered anodic TiO₂ nanotubes are beneficial to the reaction of transferred free radicals • OH with adsorbed organic molecules, thus realizing the effective removal of 4-NP.¹⁹⁸

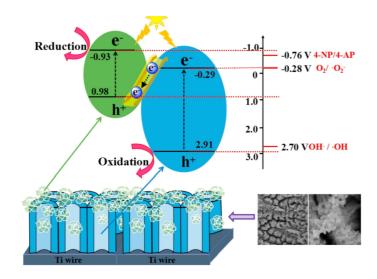


Fig. 18 Mechanism of photocatalytic degradation of 4-NP by MoSe₂@TiO₂ nanotubes direct Z-

9 Scheme composite under sunlight. 198

Of course, there are still other types of heterojunctions. By constructing the 0D/1D heterostructure of GdS quantum dots/TiO₂ nanotubes, the combination of CdS quantum dots and TiO₂ nanotubes significantly accelerates the process of trapping electrons in the heterostructure. Furthermore, the recombination lifetime of electrons at the shallow and deep traps with holes can be extended to 73.2 ps and 622.6 ps, respectively.¹⁹⁹

4 Conclusions

In this paper, the preparation and modification of anodized TiO₂ nanotubes in recent years are briefly reviewed. Due to the novel physical properties of vertically aligned TiO₂ nanotubes prepared by anodic oxidation, anodic oxidation method is widely used. However, there are still many problems to be solved, including the lack of clear

- 1 explanation of many basic mechanisms and the development of TiO₂ nanotubes with
- 2 significant photocatalytic activity under sunlight. In recent years, the rapid development
- 3 in the preparation and modification of anodized TiO₂ nanotubes has enabled TiO₂
- 4 nanotubes to meet the increasingly severe challenges of photocatalysts, so as to cope
- 5 with the practical application of environmental pollution. However, the inherent wide
- 6 band gap of TiO₂ nanotubes is the main bottleneck which restricts its wide applications.
- 7 In order to improve the visible light photocatalytic activity of TiO₂ nanotubes, various
- 8 means are needed to change the electronic structure and energy band structure of the
- 9 crystal, or to reduce the recombination rate of electron-hole pairs. Some new
- modification methods developed in recent years make the practical application of TiO₂
- 11 nanotubes longer. Facing the increasingly serious environmental pollution problem, the
- 12 photocatalyst- TiO₂ nanotube is playing an important role in protecting our environment.

13 Acknowledgements

- 14 This research was financially supported by the National Key Research and Development
- Program of China (Grant No. 2016YFB0301101), the National Natural Science Foundation of
- 16 China (Grant No. 51971054) and the Fundamental Research Funds for the Central Universities
- 17 (Grant No. N180904006).
- 18 Conflicts of interest
- 19 There is no conflict of interest.

20 References

- 21 1. H. K. Fujishima A. *Nature*. **238**, 37 (1972).
- 22 2. K. Shankar, G. K. Mor, H. E. Prakasam, S. Yoriya, M. Paulose, O. K. Varghese, C.
- 23 A. Grimes. *Nanotechnology*. **18**, (2007).
- 24 3. K. Shankar, J. I. Basham, N. K. Allam, O. K. Varghese, G. K. Mor, X. J. Feng, M.
- Paulose, J. A. Seabold, K. S. Choi, C. A. Grimes. Journal of Physical Chemistry C. 113,
- 26 6327 (2009).
- 4. G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, C. A. Grimes. *Nano Lett.* 5, 191
- 28 (2005).
- 29 5. Y. Zhao, N. Hoivik, K. Y. Wang. *Nano Energy*. **30**, 728 (2016).
- 30 6. P. Mazierski, J. Luczak, W. Lisowski, M. J. Winiarski, T. Klimczuk, A. Zaleska-
- 31 Medynska. *Appl Catal B-Environ.* **214**, 100 (2017).
- 32 7. J. S. Souza, W. A. Alves. *J. Nanosci. Nanotechnol.* **20**, 5390 (2020).
- 33 8. Y. L. Pang, S. Bhatia, A. Z. Abdullah. Sep Purif Technol. 77, 331 (2011).

- 9. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara. *Langmuir*. **14**, 3160
- 2 (1998).
- 3 10. M. Karaman, F. Sariipek, O. Koysuren, H. B. Yildiz. Applied Surface Science. 283,
- 4 993 (2013).
- 5 11. H. J. Shin, D. K. Jeong, J. G. Lee, M. M. Sung, J. Y. Kim. *Adv Mater.* **16**, 1197
- 6 (2004).
- 7 12. B. Abida, L. Chirchi, S. Baranton, T. W. Napporn, C. Morais, J. M. Leger, A.
- 8 Ghorbel. Journal of Power Sources. 241, 429 (2013).
- 9 13. S. D. Perera, R. G. Mariano, K. Vu, N. Nour, O. Seitz, Y. Chabal, K. J. Balkus. Acs
- 10 Catal. 2, 949 (2012).
- 11 14. J. G. Yu, B. Wang. Appl Catal B-Environ. 94, 295 (2010).
- 12 15. D. Kuang, J. Brillet, P. Chen, M. Takata, S. Uchida, H. Miura, K. Sumioka, S. M.
- 13 Zakeeruddin, M. Gratzel. *Acs Nano.* **2**, 1113 (2008).
- 14 16. V. Zwilling, E. Darque-Ceretti, A. Boutry-Forveille, D. David, M. Y. Perrin, M.
- 15 Aucouturier. Surf Interface Anal. 27, 629 (1999).
- 16 17. J. M. Macak, H. Tsuchiya, A. Ghicov, K. Yasuda, R. Hahn, S. Bauer, P. Schmuki.
- 17 *Curr Opin Solid St M.* **11**, 3 (2007).
- 18. P. Roy, S. Berger, P. Schmuki. *Angew Chem Int Ed Engl.* **50**, 2904 (2011).
- 19. T. P. Hoar, N. F. Mott. *Journal of Physics and Chemistry of Solids.* **9**, 97 (1959).
- 20. D. Regonini, C. R. Bowen, A. Jaroenworaluck, R. Stevens. *Mat Sci Eng R.* 74, 377
- 21 (2013).
- 22 21. J. V. Pasikhani, N. Gilani, A. E. Pirbazari. Mater Res Express. 5, (2018).
- 23 22. J. L. Zhao, X. H. Wang, R. Z. Chen, L. T. Li. Solid State Commun. 134, 705 (2005).
- 24 23. K. Indira, U. K. Mudali, T. Nishimura, N. Rajendran. Journal of Bio- and Tribo-
- 25 *Corrosion.* **1**, (2015).
- 26 24. D. J. LeClere, A. Velota, P. Skeldon, G. E. Thompson, S. Berger, J. Kunze, P.
- 27 Schmuki, H. Habazaki, S. Nagata. J Electrochem Soc. 155, C487 (2008).
- 28 25. Q. Dou, P. Shrotriya, W. F. Li, K. R. Hebert. *Electrochim Acta.* **295**, 418 (2019).
- 29 26. C. L. Chang, X. B. Huang, Y. P. Liu, L. Bai, X. N. Yang, R. Q. Hang, B. Tang, P.
- 30 K. Chu. *Electrochim Acta.* **173**, 345 (2015).
- 31 27. F. Hu, X. Lin, S. L. Zhu, X. J. Yang, Z. D. Cui. Applied Surface Science. 258, 3260
- 32 (2012).
- 33 28. Z. Y. Zhang, Q. Wang, H. Q. Xu, W. C. Zhang, Q. Y. Zhou, H. P. Zeng, J. L. Yang,
- J. W. Zhu, X. F. Zhu. *Electrochemistry Communications*. **114**, (2020).
- 35 29. Z. Y. Zhang, Q. Q. Liu, M. F. He, F. R. Tang, Z. R. Ying, H. Q. Xu, Y. Song, J. W.
- 36 Zhu, X. F. Zhu. *J Electrochem Soc.* **167**, (2020).
- 30. M. S. Yu, H. M. Cui, F. P. Ai, L. F. Jiang, J. S. Kong, X. F. Zhu. *Electrochemistry*
- 38 *Communications.* **86**, 80 (2018).
- 39 31. J. J. Zhang, W. Q. Huang, K. Zhang, D. Z. Li, H. Q. Xu, X. F. Zhu.
- 40 Electrochemistry Communications. **100**, 48 (2019).
- 41 32. K. Zhang, S. K. Cao, C. Li, J. R. Qi, L. F. Jiang, J. J. Zhang, X. F. Zhu.
- 42 Electrochemistry Communications. 103, 88 (2019).
- 43 33. Q. Zhou, D. Niu, X. Feng, A. Wang, X. Zhu. *Electrochemistry Communications*.
- 44 **119**, 106815 (2020).
- 45 34. M. S. Yu, Y. Chen, C. Li, S. Yan, H. M. Cui, X. F. Zhu, J. S. Kong.
- 46 Electrochemistry Communications. **87**, 76 (2018).
- 47 35. S. J. Garcia-Vergara, P. Skeldon, G. E. Thompson, H. Habazaki. *Electrochim Acta*.
- 48 **52**, 681 (2006).
- 49 36. W. Lee, S. J. Park. Chem Rev. 114, 7487 (2014).

- 1 37. O. O. Capraz, P. Shrotriya, P. Skeldon, G. E. Thompson, K. R. Hebert. *Electrochim*
- 2 *Acta.* **167**, 404 (2015).
- 3 38. Q. Dou, P. Shrotriya, W. F. Li, K. R. Hebert. *Electrochim Acta.* **292**, 676 (2018).
- 4 39. Y. Li, Z. Y. Ling, X. Hu, Y. S. Liu, Y. Chang. Rsc Adv. 2, 5164 (2012).
- 5 40. M. S. Yu, W. K. Zhang, S. Y. Zhang, S. W. Zhao, F. P. Ai, X. F. Zhu. Surf Coat
- 6 *Tech.* **334**, 500 (2018).
- 7 41. X. F. Zhu, Y. Song, L. Liu, C. Y. Wang, J. Zheng, H. B. Jia, X. L. Wang.
- 8 *Nanotechnology.* **20**, (2009).
- 9 42. D. Xu, X. Feng, Y. Song, X. Li, X. Shen. *Electrochemistry Communications*.
- 10 106822 (2020).
- 43. H. Y. Lu, H. W. Fan, R. Jin, B. Chong, X. P. Shen, S. Yan, X. F. Zhu. *Electrochim*
- 12 Acta. 215, 380 (2016).
- 13 44. W. Q. Huang, H. Q. Xu, Z. R. Ying, Y. X. Dan, Q. Y. Zhou, J. J. Zhang, X. F. Zhu.
- 14 Electrochemistry Communications. **106**, (2019).
- 15 45. S. Y. Zhang, D. H. Yu, D. D. Li, Y. Song, J. F. Che, S. Y. You, X. F. Zhua. *J*
- 16 *Electrochem Soc.* **161**, E135 (2014).
- 17 46. X. F. Zhu, L. Liu, Y. Song, H. B. Jia, H. D. Yu, X. M. Xiao, X. L. Yang. *Monatsh*
- 18 *Chem.* **139**, 999 (2008).
- 19 47. D. D. Li, L. A. Zhao, C. H. Jiang, J. G. Lu. *Nano Lett.* **10**, 2766 (2010).
- 20 48. M. S. Yu, C. Li, Y. B. Yang, S. K. Xu, K. Zhang, H. M. Cui, X. F. Zhu.
- 21 Electrochemistry Communications. **90**, 34 (2018).
- 49. S. W. Zhao, C. Li, T. F. Wei, C. Y. Li, M. S. Yu, H. M. Cui, X. F. Zhu.
- 23 Electrochemistry Communications. 91, 60 (2018).
- 24 50. B. Chong, D. L. Yu, R. Jin, Y. Wang, D. D. Li, Y. Song, M. Q. Gao, X. F. Zhu.
- 25 *Nanotechnology.* **26**, (2015).
- 26 51. Q. Y. Zhou, M. M. Tian, Z. R. Ying, Y. X. Dan, F. R. Tang, J. P. Zhang, J. W. Zhu,
- 27 X. F. Zhu. *Electrochemistry Communications*. **111**, (2020).
- 52. S. W. Zhao, J. Xing, H. W. Fan, S. Y. Zhang, D. D. Li, X. F. Zhu. J Electrochem
- 29 *Soc.* **164**, E187 (2017).
- 30 53. X. F. Zhu, Y. Song, D. L. Yu, C. S. Zhang, W. Yao. *Electrochemistry*
- 31 *Communications.* **29**, 71 (2013).
- 32 54. B. Chong, D. L. Yu, M. Q. Gao, H. W. Fan, C. Y. Yang, W. H. Ma, S. Y. Zhang, X.
- 33 F. Zhu. *J Electrochem Soc.* **162**, H244 (2015).
- 34 55. R. Jin, H. W. Fan, Y. T. Liu, W. Ma, H. Y. Lu, P. Yang, W. H. Ma. Electrochim
- 35 Acta. 188, 421 (2016).
- 36 56. I. P. Torres-Avila, I. I. Padilla-Martinez, N. Perez-Hernandez, A. E. Banuelos-
- 37 Hernandez, J. C. Velazquez, J. L. Castrejon-Flores, E. Hernandez-Sanchez. *Coatings*.
- **10**, (2020).
- 39 57. H. Li, L. X. Zheng, S. W. Shu, H. Cheng, Y. Y. Li. *J Electrochem Soc.* **158**, C346
- 40 (2011).
- 41 58. W. He, S. J. Park, D. H. Shin, S. J. Yoon, Y. Wu, J. Qiu, Y. H. Hwang, H. K. Kim,
- 42 B. Kim. J Korean Phys Soc. **58**, 575 (2011).
- 43 59. A. Apolinario, C. T. Sousa, J. Ventura, J. D. Costa, D. C. Leitao, J. M. Moreira, J.
- 44 B. Sousa, L. Andrade, A. M. Mendes, J. P. Araujo. *J Mater Chem A.* **2**, 9067 (2014).
- 45 60. V. Jordanovova, M. Losertova, M. Stencek, T. Lukasova, G. S. Martynkova, P.
- 46 Peikertova. Materials. 13, (2020).
- 47 61. H. Budiman, R. Wibowo, O. Zuas, J. Gunlazuardi, Iop, Photo-electrochemical
- properties of TiO₂ nanotube arrays: effect of different polishing method of Ti substrate
- 49 prior to anodization in fluoride-H₂O₂-containing electrolyte. In 9th International

- 1 Conference on Physics and Its Applications, Iop Publishing Ltd: Bristol, 2019; Vol.
- 2 1153.
- 3 62. S. P. Albu, P. Schmuki. *Electrochim Acta.* **91**, 90 (2013).
- 4 63. K. Lee, A. Mazare, P. Schmuki. *Chem Rev.* **114**, 9385 (2014).
- 5 64. Y. Sun, K. P. Yan. *Int J Hydrogen Energ.* **39**, 11368 (2014).
- 6 65. C. C. Chen, J. H. Chen, C. G. Chao, W. C. Say. *J Mater Sci.* **40**, 4053 (2005).
- 7 66. G. K. Mor, O. K. Varghese, M. Paulose, N. Mukherjee, C. A. Grimes. *J Mater Res*.
- 8 **18**, 2588 (2003).
- 9 67. S. K. Mohapatra, M. Misra, V. K. Mahajan, K. S. Raja. *J Catal.* **246**, 362 (2007).
- 10 68. I. M. Mehedi, M. F. Hossain, T. Takahashi, M. S. Islam. J Photoch Photobio A. 335,
- 11 200 (2017).
- 12 69. J. Kapusta-Kolodziej, K. Syrek, A. Pawlik, M. Jarosz, O. Tynkevych, G. D. Sulka.
- 13 Applied Surface Science. **396**, 1119 (2017).
- 14 70. M. M. Muzakir, Z. Zainal, H. N. Lim, A. H. Abdullah, N. N. Bahrudin, M. S. M.
- 15 Ali. Energies. 13, (2020).
- 16 71. S. Bauer, S. Kleber, P. Schmuki. *Electrochemistry Communications*. **8**, 1321 (2006).
- 17 72. S. Ozkan, N. T. Nguyen, A. Mazare, I. Cerri, P. Schmuki. *Electrochemistry*
- 18 *Communications.* **69**, 76 (2016).
- 19 73. J. Gomes, J. Lincho, E. Domingues, M. Gmurek, P. Mazierski, A. Zaleska-
- 20 Medynska, T. Klimczuk, R. M. Quinta-Ferreira, R. C. Martins. Sci Total Environ. 689,
- 21 79 (2019).
- 22 74. Z. Su, M. Buhl, W. Zhou. J Am Chem Soc. 131, 8697 (2009).
- 23 75. J. M. Macak, H. Hildebrand, U. Marten-Jahns, P. Schmuki. *J Electroanal Chem*.
- **621**, 254 (2008).
- 25 76. Javad, Vahabzadeh, Pasikhani, Neda, Gilani, Azadeh, Ebrahimian, Pirbazari. Nano-
- 26 Structures & Nano-Objects. (2016).
- 27 77. H. P. Quiroz, J. E. Serrano, A. Dussan. J. Alloy. Compd. **825**, 8 (2020).
- 78. D. Gong, C. A. Grimes, O. K. Varghese, W. C. Hu, R. S. Singh, Z. Chen, E. C.
- 29 Dickey. J Mater Res. 16, 3331 (2001).
- 30 79. A. Ghicov, H. Tsuchiya, J. M. Macak, P. Schmuki. *Electrochemistry*
- 31 *Communications.* 7, 505 (2005).
- 32 80. S. Ozkan, F. Valle, A. Mazare, I. Hwang, N. Taccardi, R. Zazpe, J. M. Macak, I.
- 33 Cerri, P. Schmuki. *Acs Appl Nano Mater.* **3**, 4157 (2020).
- 34 81. N. K. Allam, K. Shankar, C. A. Grimes. *J Mater Chem.* **18**, 2341 (2008).
- 35 82. J. M. Macak, H. Tsuchiya, L. Taveira, S. Aldabergerova, P. Schmuki. *Angewandte*
- 36 Chemie-International Edition. 44, 7463 (2005).
- 37 83. T. Ghani, M. Mujahid, M. Mehmood, M. Ubaidullah, A. Shah, A. Mahmood. J
- 38 Electron Mater. 49, 1881 (2020).
- 39 84. H. C. Liang, X. Z. Li. J. Hazard. Mater. 162, 1415 (2009).
- 40 85. M. Erol, T. Dikici, M. Toparli, E. Celik. J. Alloy. Compd. **604**, 66 (2014).
- 41 86. V. Asgari, M. Noormohammadi, A. Ramazani, M. A. Kashi. *J Porous Mat.* (2020).
- 42 87. G. K. Mor, O. K. Varghese, M. Paulose, K. Shankar, C. A. Grimes. Sol Energ Mat
- 43 *Sol C.* **90**, 2011 (2006).
- 44 88. Q. Y. Cai, M. Paulose, O. K. Varghese, C. A. Grimes. *J Mater Res.* **20**, 230 (2005).
- 45 89. Y.-C. Lim, Z. Zainal, M. Z. Hussein, W.-T. Tan, Morphology and Dimensions
- 46 Controlled of Titania Nanotubes in Mixed Organic-Inorganic Electrolyte. In *Green*
- 47 Technologies for Sustainable & Innovation in Materials, Harun, M. K.; Yahya, M. Z.
- 48 A.; Abdullah, S.; Chan, C. H., Eds. 2013; Vol. 686, pp 13.
- 49 90. A. Kaczmarek, T. Klekiel, E. Krasicka-Cydzik. Surface and Interface Analysis. 42,
- 50 510 (2010).

- 1 91. C. C. Chen, S. J. Hsieh. *J Electrochem Soc.* **157**, K125 (2010).
- 2 92. Y. Sun, Q. Zhao, G. X. Wang, K. P. Yan. J. Alloy. Compd. 711, 514 (2017).
- 3 93. H. F. Li, M. Ding, J. Jin, D. Sun, S. Zhang, C. K. Jia, L. D. Sun. Chemelectrochem.
- **5**, 1006 (2018).
- 5 94. Y. J. Chang, J. W. Lee, H. P. Chen, L. S. Liu, G. J. Weng. Thin Solid Films. 519,
- 6 3334 (2011).
- 7 95. R. Liu, W. D. Yang, L. S. Qiang, J. F. Wu. *Thin Solid Films*. **519**, 6459 (2011).
- 8 96. Z. Jedi-Soltanabadi, M. Ghoranneviss, Z. Ghorannevis, H. Akbari. *Vacuum.* 155,
- 9 387 (2018).
- 10 97. L. Mohan, C. Dennis, N. Padmapriya, C. Anandan, N. Rajendran. *Mater Today*
- 11 *Commun.* **23**, (2020).
- 12 98. Z. B. Yang, D. Y. Pan, C. Xi, J. H. Li, J. W. Shi, F. Xu, Z. Q. Ma. Journal of Power
- 13 *Sources.* **236**, 10 (2013).
- 14 99. S. Q. Li, G. M. Zhang, D. Z. Guo, L. G. Yu, W. Zhang. Journal of Physical
- 15 *Chemistry C.* **113**, 12759 (2009).
- 16 100. J. J. Gong, Y. K. Lai, C. J. Lin. *Electrochim Acta*. **55**, 4776 (2010).
- 17 101. S. C. Han, J. M. Doh, J. K. Yoon, G. H. Kim, J. Y. Byun, S. H. Han, K. T. Hong,
- 18 S. I. Kwun. Met Mater Int. 15, 493 (2009).
- 19 102. J. V. Pasikhani, N. Gilani, A. E. Pirbazari. Solid State Sci. 84, 57 (2018).
- 20 103. Z. X. Peng, J. H. Ni. Roy Soc Open Sci. 6, (2019).
- 21 104. S. Palmas, A. Da Pozzo, F. Delogu, M. Mascia, A. Vacca, G. Guisbiers. *Journal of*
- 22 Power Sources. **204**, 265 (2012).
- 23 105. H. Wang, H. Y. Li, J. S. Wang, J. S. Wu. Mater Lett. 80, 99 (2012).
- 24 106. O. K. Varghese, D. W. Gong, M. Paulose, C. A. Grimes, E. C. Dickey. *J Mater*
- 25 Res. 18, 156 (2003).
- 26 107. V. A. Sugiawati, F. Vacandio, A. Galeyeva, A. P. Kurbatov, T. Djenizian. Front
- 27 *Phys-Lausanne*. 7, (2019).
- 28 108. Z. Yi, Y. Zeng, H. Wu, X. F. Chen, Y. X. Fan, H. Yang, Y. J. Tang, Y. G. Yi, J. Q.
- 29 Wang, P. H. Wu. Results Phys. 15, (2019).
- 30 109. S. Y. Yoo, H. G. Park. Korean J Met Mater. 57, 521 (2019).
- 31 110. J. M. Macak, K. Sirotna, P. Schmuki. *Electrochim Acta*. **50**, 3679 (2005).
- 32 111. Y. R. Smith, B. Sarma, S. K. Mohanty, M. Misra. ACS Appl. Mater. Interfaces. 4,
- 33 5883 (2012).
- 34 112. G. Ali, H. J. Kim, J. J. Kim, S. O. Cho. *Nanoscale*. **6**, 3632 (2014).
- 35 113. B. G. Aliabadi, N. Gilani, J. V. Pasikhani, A. E. Pirbazari. Ceram. Int. 46, 19942
- 36 (2020).
- 37 114. S. P. Albu, A. Ghicov, J. M. Macak, R. Hahn, P. Schmuki. Nano Lett. 7, 1286
- 38 (2007).
- 39 115. Z. Chamanzadeh, M. Noormohammadi, M. Zahedifar. Mater Res Express. 5,
- 40 (2018).
- 41 116. L. Giorgi, T. Dikonimos, R. Giorgi, F. Buonocore, G. Faggio, G. Messina, N. Lisi.
- 42 *Nanotechnology.* **29**, (2018).
- 43 117. H. Y. Hwang, A. A. Prabu, D. Y. Kim, K. J. Kim. Sol Energy. 85, 1551 (2011).
- 44 118. A. Ghicov, S. P. Albu, R. Hahn, D. Kim, T. Stergiopoulos, J. Kunze, C. A.
- 45 Schiller, P. Falaras, P. Schmuki. *Chem Asian J.* 4, 520 (2009).
- 46 119. P. Roy, D. Kim, K. Lee, E. Spiecker, P. Schmuki. *Nanoscale*. **2**, 45 (2010).
- 47 120. Y. L. Liao, W. X. Que, P. Zhong, J. Zhang, Y. C. He. ACS Appl. Mater. Interfaces.
- 48 **3**, 2800 (2011).
- 49 121. Y. L. Liao, X. Y. Wang, Y. B. Ma, J. Li, T. L. Wen, L. J. Jia, Z. Y. Zhong, L. P.
- 50 Wang, D. N. Zhang. *Cryst Growth Des.* **16**, 1786 (2016).

- 1 122. K. Assaker, C. Carteret, B. Lebeau, C. Marichal, L. Vidal, M. J. Stebe, J. L. Blin.
- 2 Acs Sustain Chem Eng. 2, 120 (2014).
- 3 123. Y. L. Liao, J. Brame, W. X. Que, Z. M. Xiu, H. X. Xie, Q. L. Li, M. Fabian, P. J.
- 4 Alvarez. J. Hazard. Mater. 260, 434 (2013).
- 5 124. A. Lamberti, A. Chiodoni, N. Shahzad, S. Bianco, M. Quaglio, C. F. Pirri. Sci Rep-
- 6 *Uk.* **5**, (2015).
- 7 125. B. M. Rao, S. C. Roy. *Rsc Adv.* **4**, 49108 (2014).
- 8 126. N. Liu, S. P. Albu, K. Lee, S. So, P. Schmuki. *Electrochim Acta.* **82**, 98 (2012).
- 9 127. L. A. Pereira, D. A. D. Almeida, A. B. Couto, N. G. Ferreira. *Mater Res Bull.* 122,
- 10 (2020).
- 11 128. L. Q. Zhang, H. H. Cao, Y. H. Lu, H. B. Zhang, G. Y. Hou, Y. P. Tang, G. Q.
- 12 Zheng. J Solid State Electr. 24, 447 (2020).
- 13 129. X. Chen, S. S. Mao. *Chem Rev.* **107**, 2891 (2007).
- 14 130. K. Nakata, A. Fujishima. *J Photoch Photobio C.* **13**, 169 (2012).
- 15 131. S. Riaz, S. J. Park. J Ind Eng Chem. 84, 23 (2020).
- 16 132. Y. Liu, J. Li, B. Zhou, X. Li, H. Chen, Q. Chen, Z. Wang, L. Li, J. Wang, W. Cai.
- 17 *Water Res.* **45**, 3991 (2011).
- 18 133. Y. B. Liu, J. H. Li, B. X. Zhou, H. C. Chen, Z. S. Wang, W. M. Cai. *Chem*
- 19 *Commun.* **47**, 10314 (2011).
- 20 134. V. R. Subramanian, S. Sarker, B. W. Yu, A. Kar, X. D. Sun, S. K. Dey. J Mater
- 21 Res. 28, 280 (2013).
- 22 135. S. P. Albu, A. Ghicov, J. M. Macak, R. Hahn, P. Schmuki. Nano Lett. 7, 1286
- 23 (2007).
- 24 136. J. Vujancevic, A. Bjelajac, J. Cirkovic, V. Pavlovic, E. Horvath, L. Forro, B.
- Vlahovic, M. Mitric, D. Janackovic, V. Pavlovic. Sci Sinter. 50, 39 (2018).
- 26 137. P. Mazierski, A. Malankowska, M. Kobylanski, M. Diak, M. Kozak, M. J.
- Winiarski, T. Klimczuk, W. Lisowski, G. Nowaczyk, A. Zaleska-Medynska. Acs Catal.
- 28 7, 2753 (2017).
- 29 138. S. Nagamine, K. Inohara. *Adv Powder Technol.* **29**, 3100 (2018).
- 30 139. S. P. Albu, A. Ghicov, J. M. Macak, P. Schmuki. physica status solidi (RRL) –
- 31 Rapid Research Letters. 1, R65 (2007).
- 32 140. S. Gao, J. Y. Yang, M. Liu, H. Z. Yan, W. X. Li, J. Q. Zhang, Y. B. Luo. Journal
- 33 of Power Sources. **250**, 174 (2014).
- 34 141. N. T. Nguyen, I. Hwang, T. Kondo, T. Yanagishita, H. Masuda, P. Schmuki.
- 35 Electrochemistry Communications. **79**, 46 (2017).
- 36 142. H. Fraoucene, D. Hatem, F. Vacandio, M. Pasquinelli. *J Electron Mater.* 48, 2046
- 37 (2019).
- 38 143. H. Zhou, Y. R. Zhang. *Journal of Power Sources*. **239**, 128 (2013).
- 39 144. T. Dikici, M. Yurddaskal, S. Demirci, E. Celik. *J Porous Mat.* **24**, 1535 (2017).
- 40 145. Y. K. Lai, L. Sun, Y. C. Chen, H. F. Zhuang, C. J. Lin, J. W. Chin. J Electrochem
- 41 *Soc.* **153**, D123 (2006).
- 42 146. A. J. *Electrochim Acta.* **38**, 43 (1993).
- 43 147. J. M. Macak, M. Zlamal, J. Krysa, P. Schmuki. *Small.* **3**, 300 (2007).
- 44 148. W. B. Huang, X. Y. Wang, Y. L. Xue, Y. Yang, X. Y. Ao. *Rsc Adv.* **5**, 56098
- 45 (2015).
- 46 149. X. R. Zhang, Y. H. Lin, D. Q. He, J. F. Zhang, Z. Y. Fan, T. F. Xie. Chem Phys
- 47 *Lett.* **504**, 71 (2011).
- 48 150. D. H. Li, S. W. Lin, S. P. Li, X. Huang, X. K. Cao, J. B. Li. J Mater Res. 27, 1029
- 49 (2012).

- 1 151. Y. L. Su, X. W. Zhang, S. Han, X. Q. Chen, L. C. Lei. *Electrochemistry*
- 2 *Communications.* **9**, 2291 (2007).
- 3 152. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga. Science. 293, 269 (2001).
- 4 153. G. D. Yang, Z. Jiang, H. H. Shi, T. C. Xiao, Z. F. Yan. J Mater Chem. 20, 5301
- 5 (2010).
- 6 154. X. G. Hou, X. L. Liu, J. Han, H. L. Liu, J. H. Yao, D. J. Li, L. Q. Wang, B. Liao, J.
- 7 Li, R. J. Zhang. *J Mater Sci.* **55**, 5843 (2020).
- 8 155. Y. J. Hwang, S. Yang, H. Lee. *Appl Catal B-Environ*. **204**, 209 (2017).
- 9 156. M. Antonopoulou, A. Giannakas, F. Bairamis, M. Papadaki, I. Konstantinou.
- 10 Chem. Eng. J. 318, 231 (2017).
- 11 157. J. H. Park, S. Kim, A. J. Bard. Nano Lett. 6, 24 (2006).
- 12 158. C. K. Xu, Y. A. Shaban, W. B. Ingler, S. U. M. Khan. Sol Energ Mat Sol C. 91,
- 13 938 (2007)
- 14 159. J. Q. Geng, D. Yang, J. H. Zhu, D. M. Chen, Z. Y. Jiang. *Mater Res Bull.* 44, 146
- 15 (2009).
- 16 160. S. K. Mohapatra, M. Misra, V. K. Mahajan, K. S. Raja. Journal of Physical
- 17 *Chemistry C.* **111**, 8677 (2007).
- 18 161. C. Di Valentin, G. Pacchioni, A. Selloni. *Chem Mater.* 17, 6656 (2005).
- 19 162. G. Wu, T. Nishikawa, B. Ohtani, A. Chen. *Chem Mater.* **19**, 4530 (2007).
- 20 163. S. Karvinen, P. Hirva, T. A. Pakkanen. *J Mol Struc-Theochem.* **626**, 271 (2003).
- 21 164. Z. M. El-Bahy, A. A. Ismail, R. M. Mohamed. J. Hazard. Mater. 166, 138 (2009).
- 22 165. P. Mazierski, W. Lisowski, T. Grzyb, M. J. Winiarski, T. Klimczuk, A.
- 23 Mikolajczyk, J. Flisikowski, A. Hirsch, A. Kolakowska, T. Puzyn, A. Zaleska-
- 24 Medynska, J. Nadolna. *Appl Catal B-Environ.* **205**, 376 (2017).
- 25 166. A. Bumajdad, M. Madkour. *Phys Chem Chem Phys.* **16**, 7146 (2014).
- 26 167. J. Z. Dong, J. Z. Ye, D. Ariyanti, Y. X. Wang, S. H. Wei, W. Gao. Chemosphere.
- **27 204**, 193 (2018).
- 28 168. X. Fan, J. Wan, E. Z. Liu, L. Sun, Y. Hu, H. Li, X. Y. Hu, J. Fan. Ceram. Int. 41,
- 29 5107 (2015).
- 30 169. Y. Y. Zhang, H. W. Hu, M. L. Chang, D. C. Chen, M. Zhang, L. P. Wu, X. J. Li.
- 31 *Ceram. Int.* **43**, 9053 (2017).
- 32 170. W. Choi, A. Termin, M. R. Hoffmann. The Journal of Physical Chemistry. 98,
- 33 13669 (1994).
- 34 171. X. S. Zhou, F. Peng, H. J. Wang, H. Yu, J. A. Yang. *Electrochemistry*
- 35 *Communications.* **13**, 121 (2011).
- 36 172. L. H. Huang, C. Sun, Y. L. Liu. Applied Surface Science. 253, 7029 (2007).
- 37 173. X. Q. Zhang, Y. C. Chai, L. Lin, K. Zhang, B. Zhao, D. N. He. Catal Lett. 144,
- 38 987 (2014).
- 39 174. Z. B. Dong, D. Y. Ding, T. Li, C. Q. Ning. *Applied Surface Science*. **480**, 219
- 40 (2019).
- 41 175. H. J. Liu, G. G. Liu, X. Y. Shi. Colloid Surface A. 363, 35 (2010).
- 42 176. J. J. Cai, M. H. Zhou, X. Xu, X. D. Du. J. Hazard. Mater. **396**, 11 (2020).
- 43 177. Z. L. He, W. X. Que, J. Chen, X. T. Yin, Y. C. He, J. B. Ren. *ACS Appl. Mater.*
- 44 *Interfaces.* **4**, 6815 (2012).
- 45 178. X. Wang, L. L. Wang, D. Guo, L. L. Ma, B. L. Zhu, P. Wang, G. C. Wang, S. M.
- 46 Zhang, W. P. Huang. Catal. Today. 327, 182 (2019).
- 47 179. R. M. Li, G. J. Dong, G. M. Chen. New J. Chem. **39**, 6854 (2015).
- 48 180. S. In, A. Orlov, R. Berg, F. Garcia, S. Pedrosa-Jimenez, M. S. Tikhov, D. S.
- 49 Wright, R. M. Lambert. *J Am Chem Soc.* **129**, 13790 (2007).
- 50 181. S. Yadav, G. Jaiswar. *J Chin Chem Soc-Taip.* **64**, 103 (2017).

- 1 182. S. R. Kim, I. Ali, J. O. Kim. *Applied Surface Science*. **477**, 71 (2019).
- 2 183. X. J. Yuan, J. H. Yi, H. J. Wang, H. Yu, S. Q. Zhang, F. Peng. Mater Chem Phys.
- **196**, 237 (2017).
- 4 184. W. Teng, Y. M. Wang, H. H. Huang, X. Y. Li, Y. B. Tang. Applied Surface
- 5 Science. **425**, 507 (2017).
- 6 185. L. Yang, X. Bai, J. Shi, X. Y. Du, L. Xu, P. K. Jin. Appl Catal B-Environ. 256,
- 7 (2019).
- 8 186. S. R. Mirmasoomi, M. M. Ghazi, M. Galedari. Sep Purif Technol. 175, 418 (2017).
- 9 187. D. W. Gao, L. Wang, Q. Y. Wang, Z. M. Qi, Y. Jia, C. X. Wang. Spectrochim Acta
- 10 A. **229**, (2020).
- 11 188. X. Q. Kong, J. Y. Li, C. W. Yang, Q. Tang, D. Wang. Sep Purif Technol. 248,
- 12 (2020).
- 13 189. E. Mugunthan, M. B. Saidutta, P. E. Jagadeeshbabu. *Environmental*
- *Nanotechnology, Monitoring and Management.* **10**, 322 (2018).
- 15 190. L. M. Sun, X. X. He, Y. S. Yuan, J. Q. Chen, W. W. Zhan, X. J. Wang, Y. L. Zhao,
- 16 X. G. Han. Chem. Eng. J. 397, 11 (2020).
- 17 191. K. Perovic, F. M. dela Rosa, M. Kovacic, H. Kusic, U. L. Stangar, F. Fresno, D. D.
- 18 Dionysiou, A. L. Bozic. *Materials*. **13**, 44 (2020).
- 19 192. M. H. Sun, X. G. Wang, Z. Q. Chen, M. Murugananthan, Y. Chen, Y. R. Zhang.
- 20 Appl Catal B-Environ. 273, 13 (2020).
- 21 193. R. Macias-Tamez, M. Villanueva-Rodriguez, N. A. Ramos-Delgado, L. Maya-
- Trevino, A. Hernandez-Ramirez. Water Air Soil Pollut. 228, 12 (2017).
- 23 194. A. Kaur, D. B. Salunke, A. Umar, S. K. Mehta, A. S. K. Sinha, S. K. Kansal. New
- 24 J. Chem. 41, 12079 (2017).
- 25 195. K. Z. Qi, B. Cheng, J. G. Yu, W. K. Ho. Chinese J Catal. 38, 1936 (2017).
- 26 196. L. J. Zhang, S. Li, B. K. Liu, D. Wang, T. F. Xie. Acs Catal. 4, 3724 (2014).
- 27 197. J. J. Xian, D. Z. Li, J. Chen, X. F. Li, M. He, Y. Shao, L. H. Yu, J. L. Fang. ACS
- 28 Appl. Mater. Interfaces. **6**, 13157 (2014).
- 29 198. X. T. Zheng, L. M. Yang, Y. B. Li, L. X. Yang, S. L. Luo. *Electrochim Acta.* 298,
- 30 663 (2019).

- 31 199. Z. P. Yan, W. C. Wang, L. L. Du, J. X. Zhu, D. L. Phillips, J. S. Xu. Appl Catal B-
- 32 Environ. **275**, 10 (2020).