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1. ABSTRACT12 

Pasteuria penetrans is a gram-positive endospore forming bacterial parasite of Meloidogyne spp. the 13 
most economically damaging genus of plant parasitic nematodes globally. The obligate antagonistic 14 
nature of P. penetrans makes it an attractive candidate biological control agent. However, deployment 15 
of P. penetrans for this purpose is inhibited by a lack of understanding of its metabolism and the 16 
molecular mechanics underpinning parasitism of the host, in particular the initial attachment of the 17 
endospore to the nematode cuticle. Several attempts to assemble the genomes of species within this 18 
genus have been unsuccessful. Primarily this is due to the obligate parasitic nature of the bacterium 19 
which makes obtaining genomic DNA of sufficient quantity and quality which is free from 20 
contamination challenging. Taking advantage of recent developments in whole genome amplification, 21 
long read sequencing platforms, and assembly algorithms, we have developed a protocol to generate 22 
large quantities of high molecular weight genomic DNA from a small number of purified endospores. 23 
We demonstrate this method via genomic assembly of P. penetrans.  This assembly reveals a reduced 24 
genome of 2.64Mbp estimated to represent 86% of the complete sequence; its reduced metabolism 25 
reflects widespread reliance on the host and possibly associated organisms. Additionally, apparent 26 
expansion of transposases and prediction of partial competence pathways suggest a high degree of 27 
genomic plasticity. Phylogenetic analysis places our sequence within the Bacilli, and most closely 28 
related to Thermoactinomyces species. Seventeen predicted BclA-like proteins are identified which 29 
may be involved in the determination of attachment specificity. This resource may be used to develop 30 
in vitro culture methods and to investigate the genetic and molecular basis of attachment specificity. 31 
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2. DATA SUMMARY34 

1. Pasteuria penetrans RES148 genome has been deposited in the European Nucleotide35 
Archive; accession number: ERZ69050336 

37 

2. PacBio reads in ENA, accession ERR2736894 and ERR273689338 

39 

3. Legacy Illumina reads in ENA, accession ERR273689040 

41 

4. Scripts used in this analysis can be accessed on GitHub:42 
https://github.com/BioJNO/Ppenetrans_genomics43 

44 

I/We confirm all supporting data, code and protocols have been provided within the article or through 45 

supplementary data files. ☒ 46 
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3. IMPACT STATEMENT 50 

Pasteuria penetrans is a natural bacterial antagonist to the most economically damaging nematodes in 51 
agriculture. It may be possible to reduce or replace the use of rapidly declining chemical nematicides 52 
with biological control using this organism. However, this bacterium has high host specificity and is 53 
extremely difficult to mass produce. To provide a resource which is likely to help to solve these 54 
issues, we have generated the first genomic assembly of any bacterium within this genus. The 55 
genomic assembly generated is small but near complete, reflecting reliance on the host for many 56 
metabolic processes. This provides key insights into the metabolism of this bacterium which are likely 57 
to be of significant commercial and scientific interest. We have identified proteins which may be 58 
directly involved in host specificity, of interest to researchers involved in both agricultural and 59 
evolutionary biology. The methods we describe may be used to vastly expand the current availability 60 
of genomic data within this genus of bacteria, and may be applicable to other challenging genomic 61 
sequencing projects.  62 

 63 
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4. INTRODUCTION 66 

Pasteuria penetrans is an endospore forming Firmicute which is an obligate parasite of root-knot 67 
nematode (RKN, Meloidogyne spp.), a globally distributed genus of plant parasitic nematodes which 68 
are among the most economically devastating in agriculture [1, 2]. P. penetrans act as natural 69 
antagonists to RKN via two key mechanisms. Firstly, attachment of endospores to the nematode 70 
cuticle hinders movement, migration through the soil, and thus root invasion [3, 4]. Secondly, 71 
bacterial infection of the plant feeding nematode results in sterilisation. As such P. penetrans is of 72 
considerable interest as a biological alternative to chemical nematicides. The effective application of 73 
Pasteuria spp. for this purpose is currently limited by lack of understanding of nematode attachment 74 
specificity and in vitro culture method development. Attachment of the endospore to the nematode 75 
cuticle is a determinative process in infection [5]. Pasteuria spp. may exhibit extremely fastidious 76 
attachment profiles including species and population specificity [6, 7]. Attempts to characterise the 77 
molecular basis of attachment have identified two components which appear to be involved in this 78 
process from the perspective of the endospore: collagen and N-acetyl-glucosamine (NAG). Treatment 79 
of endospores with collagenase, NAGase, and the collagen binding domain of fibronectin inhibit 80 
attachment [8-11]. This has prompted the current “Velcro-model” of attachment involving bacterial 81 
collagen-like fibres, observable under electron microscopy on the exosporium surface, and nematode 82 
cuticle associated mucins [12]. Recently, Phani et al. [13] demonstrated that knockdown of a mucin-83 
like gene, Mi-muc-1, reduced cuticular attachment of P. penetrans endospores to M. incognita. 84 
However, the exact nature of this host-parasite interaction is not known at the genetic or molecular 85 
level. Additionally, no published medium is available in vitro production of P. penetrans [14]. This is 86 
attributable to its obligate parasitism of nematodes that are themselves obligate parasites. In short, it is 87 
not yet known what P. penetrans requires from its host in order to proliferate. Adding to this complex 88 
picture is the apparent influence of “helper-bacteria” which have been implicated in growth promotion 89 
[15]. This means that in order to complete its life cycle P. penetrans may rely on metabolic and/or 90 
signalling pathways from the plant, the nematode, and from associated bacteria.  91 

The difficulty of obtaining genomic DNA of sufficient quantity, quality, and purity from P. penetrans 92 
has so far impeded attempts to obtain a high quality genomic assembly. An assembly of 20,360bp 93 
with an N50 of 949bp (GCA_000190395.1) from P. nishizawae, a bacterial pathogen infective of the 94 
soybean cyst nematode (Heterodera glycines) [16], is available, along with some PCR generated 95 
marker gene sequences, and a 2.4Mbp Sanger shotgun sequence generated genome survey sequence 96 
of P. penetrans [17]. A 2.5Mbp shotgun sequence assembly in 563 contigs with a GC content of 97 
48.3% was described but not published [18]. Recent advances in both whole genome amplification 98 
(WGA) technology and assembly algorithms have enabled genomic assembly from low abundance 99 
microorganisms, single cells, and complex samples [19-24]. In order to provide insights into the 100 
metabolism and attachment specificity of P. penetrans we attempted to generate genomic assemblies 101 
of strain RES148 using two data sets. First we attempted to improve assembly metrics of previously 102 
generated Illumina data using GC-coverage plots to visualise, identify, and remove contamination 103 
[25]. Second, we developed a simple method of purifying small numbers of P. penetrans endospores. 104 
Then, using multiple displacement amplification (MDA), we were able to generate genomic DNA of 105 
sufficient length and quantity for PacBio sequencing and de novo assembly of this strain. Assembled 106 
genomic data reveals a reduced genome with a reduced metabolism, and unusually high plasticity. 107 
Several predicted proteins which may be involved in the attachment of endospores to the nematode 108 
cuticle are also identified. When compared to published and described genomic data this sequence 109 
presents a significant improvement in all available metrics. 110 
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5. METHODS 112 

5.1 Strains and culture 113 

Pasteuria penetrans were cultivated on Meloidogyne javanica 16, isolated from Greece and kindly 114 
provided by Emmanuel Tzortzakakis. Pasteuria penetrans strain RES148 is a highly passaged strain 115 
derived from strain RES147 (also referred to as strain PNG in earlier literature) which was isolated 116 
from Papua New Guinean soils by Dr John Bridge. Approximately 5000 juvenile M. javanica were 117 
encumbered with 3-5 endospores by centrifugation at 9500g for two minutes as described by Hewlett 118 
and Dickson [26]. Juvenile nematodes were counted and assessed visually for the attachment of 119 
spores under an inverted microscope (Hund Wilovert®) at 200x magnification. Spore encumbered 120 
juveniles were re-suspended in 5ml of sterile distilled water and inoculated onto 4-week old tomato 121 
plants (cv. MoneyMaker) in peat and allowed to grow at 25°C for 900 growing degree days. Roots 122 
were washed thoroughly in tap water to remove soil and stored at –20°C.s 123 

5.2 Removal of contamination 124 

Tomato roots containing P. penetrans infected M. javanica were subjected to three freeze-thaw cycles 125 
to weaken root tissue. Approximately 100 P. penetrans infected M. javanica females were dissected 126 
from root material in sterile 1X PBS solution using mounted needle and forceps. Dissected females 127 
were transferred to a clean 1.5ml LoBind Eppendorf (Sigma) and washed three times in 1ml of HPLC 128 
water containing Triton X-100 0.5%. Washed females were burst with a micropestle in a clean 1.5ml 129 
LoBind Eppendorf (Sigma), and the contents subjected to a series of washes at room temperature: first 130 
three times in 1ml HPLC water; second three times in 1ml 70% ethanol; and finally, once in a 500µl 131 
0.05% sodium hypochlorite solution, before density selection on a sterile 1.25g/ml sucrose gradient. 132 
All centrifugation steps were at 20817g for 15 minutes except spore pelleting after sodium 133 
hypochlorite incubation which was 5 minutes. The resulting clean endospore suspensions were 134 
inspected at 1000x magnification (Zeiss Axiosop). 135 

5.3 DNA extraction and MDA 136 

Clean endospores were subjected to a 30-minute lysozyme digestion, spun to pellet, ground for 1 137 
minute with a micropestle, re-suspended in 4µl scPBS, and then passed immediately into the Repli-g 138 
whole genome amplification protocol for single cells (Qiagen). A 16hr isothermal amplification 139 
protocol produced 15µg of genomic DNA. Amplified genomic material was visualised on a 0.5% 140 
agarose gel, quantified with a Qubit hsDNA quantification kit (ThermoFisher), and assayed for 141 
Pasteuria spp. specific 16S rRNA gene sequence using primers 39F and 1166R as previously 142 
described [27]. The resultant library was submitted to Oslo Genomic Sequencing Centre for two runs 143 
of PacBio SMRT cell sequencing. Legacy WGA Illumina data, from the same strain was included in 144 
these analyses. The clean-up protocol for this material has been previously described [27]. The WGA, 145 
debranching, S1 nuclease treatment, and Illumina library prep for this sample are described in 146 
supplementary methods file 1.  147 

5.4 Legacy Illumina assembly 148 

Legacy illumina data was reduced to exclude contaminating material using the BlobTools pipeline 149 
[25].  Briefly, Illumina data was assembled using MIRA (v4.9.6) [28]; contigs were aligned against 150 
the NCBI non-redundant protein database (nr, circa June 2015) using BLAST (v2.7.1) [29]; raw 151 
illumina reads were mapped to contigs using BWA (v0.7.12) [30]; GC coverage plots were generated 152 
using BlobTools (v1.0) [25]; reads mapping to contaminant contigs were removed using mirabait 153 
(v4.9.6); and "clean" Illumina read sets were re-assembled using MIRA.  This was repeated 154 
iteratively, a total of 14 times, until no further improvements in assembly metrics were observed.  155 
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5.5 PacBio assembly 156 

The PacBio sequence reads were trimmed and assembled initially using Canu (v1.5) [3], this initial 157 
assembly was polished to correct sequencing errors twice, first using FinisherSC (v2.1) [31], and then 158 
using Arrow (v2.1.0) with raw read alignment from PBalign (v0.3.0), both from PacBio’s SMRT® 159 
Analysis suite (v4.0.0). Hybrid Pacbio and Illumina assemblies were compiled using Spades (v3.5.0) 160 
[20]. Assembly merging was carried out using quickmerge (v0.2) [32]. 161 

5.6 Genome quality assessment 162 

Genome completeness, heterogeneity, and contamination were determined by alignment with lineage 163 
specific marker genes using CheckM (v1.0.7) [11]. Genomic average nucleotide alignments were 164 
carried out using Pyani (v0.2.7) using mummer (ANIm) [33].  165 

5.7 Comparative genomics 166 

Coding sequences were predicted from P. penetrans PacBio assemblies using RASTtk 167 
(http://rast.nmpdr.org, 18-07-2017). A multiple gene maximum likelihood tree was generated using 168 
bcgTree (v1.0.10) [34] with alignment to related genomic annotations from assemblies listed in the 169 
data bibliography. Metabolic modelling of P. penetrans was carried out using BLASTKoala [35] to 170 
identify KEGG database orthologues and KEGG Mapper (v3.1) to construct and visualise pathways 171 
on the KEGG  server [36]. Metabolic profiles of Thermoactinomyces vulgaris (GCA_001294365.1), 172 
Xiphinematobacter spp. (GCA_001318295.1) and the Wolbachia symbiont of Brugia malayi 173 
(GCA_000008385.1) were also generated for comparison. Coding sequences were re-predicted from 174 
B. subtilis, B. thuringiensis, B. cereus, T. vulgaris, and C. difficile (Genbank accessions 6,9,16,17, and 175 
20 as listed in the data bibliography) using RASTtk. Resultant predicted proteomes were clustered 176 
with P. penetrans predicted proteins using OrthoFinder (v2.2.1) [37], and functionally annotated 177 
using InterProScan (v5.29-68.0) [38]. Clusters and annotations were aggregated using KinFin (v1.0) 178 
[39]. Clusters annotated with sporulation related terms were extracted using an R script (this study). 179 
Cluster intersections were plotted using UpSetR (v1.3.3) [40]. 180 

5.8 Putative attachment proteins 181 

Pasteuria penetrans gene predictions were interrogated for collagens using Pfam collagen domain 182 
(PF01391) and HMMER (v3.1b2) hmmsearch (http://hmmer.org/). Predicted collagens were aligned 183 
to contigs and to each other using BLASTn (v2.7.1) [13]. Unique collagen sequence structural models 184 
and predicted binding sites were produced using the RaptorX server [41]. Surface electrostatic 185 
potential was computed using the Adaptive Poisson-Boltzmann Solver (APBS) [42, 43]. RaptorX 186 
generated protein pdb files were converted to pqr using pdb2pqr [44]. Command line apbs (v1.5) was 187 
used to generate electrostatic potential maps. Protein structure visualisations were generated in the 188 
NGL viewer [45, 46]. BclA-like signal peptide prediction was performed with PRED-TAT [47].  189 

 190 
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6. RESULTS 193 

6.1 Assembly 194 

The highest scoring PacBio assembly resulted from a 200x coverage assembly of the second 195 
SMRTcell only. This assembly consisted of five contigs, with a total size of approximately 2.64Mbp, 196 
an N50 of 2.26Mbp and a completeness score of 86%. Some coding sequences were predicted in one 197 
version of the assembly but not in another, including lineage specific marker genes used by CheckM 198 
for completeness scoring. A high number of contaminant and heterogenic markers were observed in 199 
the legacy Illumina data assemblies; however, this was significantly reduced using the BlobTools 200 
pipeline (Fig. 1 and Fig 2). BLAST annotation of lineage specific marker genes returned by CheckM 201 
within raw and cleaned Illumina assemblies returned with 73% and 74% of markers aligning to 202 
Pelosinus spp. with an average identity of 93% and 92% respectively. Clostridium spp. returned as the 203 
best hit in 14% of markers in both Illumina assemblies with an average identity of 89%. Although the 204 
GSS also scored highly for contamination no high scoring BLAST hits indicating specific identifiable 205 
contaminants were observable.  206 

Contamination and heterogeneity were consistently lower in PacBio only assemblies; while 207 
completeness was typically higher, except for raw Illumina assemblies whose completeness score was 208 
inflated by contaminant markers. Hybrid assembly of the raw or BlobTools cleaned Illumina reads 209 
with initial SMRT cell long reads offered a slight improvement on either Illumina assembly but a 210 
significant decrease in the overall quality of the same PacBio data assembled alone.  211 

Comparison with existing published genomic sequences revealed high identity alignment with our 212 
PacBio assembly (Fig. 3a), although the coverage and length of alignments was often limited (Fig. 213 
3b). Of the 2.4Mbp genome survey sequence (GSS) [17] 0.48Mbp aligned with our genome with 214 
98.5% identity. Legacy Illumina data, which had been restricted to firmicute contigs using 215 
the BlobTools pipeline, aligned with 99.4% identity to 0.77Mbp of our assembly. In contrast, 216 
1.97Mbp of the legacy Illumina assembly aligned with 95% identity to the Pelosinus fermentans 217 
genome. ANIm of the published P. nishizawae contigs aligned to only 286bp of both P. 218 
penetrans PacBio assembly and GSS sequences with 88.5% identity.  219 

6.2 Comparative Genomic Analysis 220 

Multiple marker gene phylogenetic analysis places P. penetrans within the Bacilli. Furthermore, 221 
within the Bacilli P. penetrans is most closely related to Thermoactinomycetae (Fig. 4).    222 

Pasteuria penetrans contained the most unique clusters both in absolute and relative terms compared 223 
to firmicute genomes included in our analysis (Fig. 5a). Sporulation associated clusters showed much 224 
higher conservation (Fig. 5b). Pasteuria penetrans contained predicted proteins which clustered with 225 
Spo0F, Spo0B, and Spo0A from Bacillus species. Spo0A and Spo0F were also annotated by 226 
BlastKOALA; Spo0B was not. No SinI or SinR domain containing proteins were predicted from P. 227 
penetrans. 228 

Of 3511 unique P. penetrans protein clusters 136 were annotated with transposase domains, 15 with 229 
collagen triple helix domains, and 3223 were not annotated. An additional two transposase protein 230 
clusters were shared by P. penetrans, B. thuringiensis, and T. vulgaris, giving a total transposase 231 
cluster count of 138 in P. penetrans. The total number of transposase annotated clusters was 163 232 
across all predicted proteomes. One P. penetrans protein functionally annotated with a collagen triple 233 
helix repeat clustered with six proteins of B. thuringiensis and three proteins of C. difficile.  234 
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6.3 Metabolic modelling 235 

Pasteuria penetrans showed a reduced metabolism relative to Thermoactinomyces vulgaris (Fig. 6), 236 
returning 755 KEGG orthologues compared to 1871, representing a relative reduction of 59.6% in 237 
components of well characterised pathways. The reduction of P. penetrans genome size is 238 
approximately 30% relative to T. vulgaris. 239 

When compared to the plant parasitic nematode symbiont Xiphinematobacter spp. and the Wolbachia 240 
symbiont of the filarial parasite Brugia malayi (wBm), P. penetrans showed a comparative reduction 241 
in pathways, each of these returning 572 and 545 KEGG orthologues respectively.  242 

Pasteuria penetrans appears to possess a complete fatty acid biosynthesis pathway, although lacks the 243 
fatty acid degradation pathway in its entirety. Both wBm and Xiphinematobacter spp. also lack this 244 
pathway. Enzymes involved in glycolysis are absent up to and including the conversion of alpha-D-245 
glucose 6-phosphate to beta-D-fructose 6-phosphate. Similarly, the pentose phosphate pathway 246 
includes no glucose processing enzymes appearing to begin at β-D-fructose 6 phosphate and/or D-247 
ribulose 5 phosphate. Pasteuria penetrans also possesses a partial chitin degradation pathway capable 248 
of degrading chitin to chitobiose and N-acetyl D glucosamine. 249 

Synthesis pathways for a significant majority of amino acids are absent except for Aspartate and 250 
Glutamate. Conversion of glycine to serine and vice versa is predicted due to the presence of glyA. 251 
The lysine biosynthesis pathway proceeds only as far as miso-diamelate which feeds directly into a 252 
complete peptidoglycan synthesis pathway. Purine and pyrimidine biosynthesis pathways are present 253 
but appear to be peripherally reduced. Several predicted proteases are also present. 254 

ABC transporters carrying zinc, iron (II), manganese, phosphate, and branched chain amino acids are 255 
present. An additional nucleotide binding ABC transporter implicated in cell division and/or salt 256 
transport is also present. One component of an Iron complex transporter (FhuD) is predicted.  From 257 
this model, isoprenoid biosynthesis appears to proceed following the non-mevalonate pathway. No 258 
pathways for the biosynthesis of siderophores were predicted from this assembly. None of the 259 
components of a flagellar assembly were observed. 260 

Sec-SRP and Twin arginine targeting (TAT) secretion pathways are predicted from KEGG 261 
orthologies. We did not find evidence of orthologues to characterised toxins or virulence factors in the 262 
P. penetrans genome.  263 

A complete pathway for prokaryotic homologous recombination is predicted in our assembly. Base 264 
excision and mismatch repair machinery also appears to be intact. Competence related proteins 265 
ComEA and ComEC are predicted from KEGG orthologues. KinFin analysis also returned a putative 266 
P. penetrans orthologue for ComEA as well as predicted proteins which clustered with competence 267 
related proteins CinA and MecA from related firmicutes.  268 

6.4  Characterisation of collagenous fibres 269 

Collagen domains were identified in 32 unique predicted genes across assemblies of the second 270 
PacBio SMRT cell at 40X and 200X coverage. Of these 32: 17 were predicted in both versions of the 271 
assembly; 5 were unique to the 40X coverage assembly; and 10 were unique to the 200X coverage 272 
assembly.  273 

RaptorX server structural predictions returned significant alignments to BclA/C1q-like structures in 274 
17 of 32 predicted collagens (supplementary text file 2). Fifteen of these consisted of N-terminal 275 
collagenous filament domains of varying length each with a C1q/BclA-like C terminal globular head 276 
(Fig. 7). The remaining two possessed this predicted structure but contained three and six domains in 277 
total. Net charge, Sec/TM domain prediction and binding site predictions for each BclA-like collagen 278 
are listed in Table 1. 279 
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Of the 17 previously reported P. penetrans RES148 collagen-like proteins [48], one exact match and 280 
four additional BLAST alignments at or above 90% identity were found with the 32 predicted 281 
collagens identified in our analysis. Of these, two returned a predicted BclA-like structure. No 282 
significant alignment was observable between the predicted BclA-like collagens in this assembly and 283 
those described in P. ramosa [49, 50].  284 

 285 

7. DISCUSSION 286 

7.1 Comparison with legacy assembly data 287 

PacBio only assemblies were of higher quality than hybrid or merged PacBio-Legacy Illumina 288 
assemblies. The high identity of marker gene BLAST hits, coupled with the presence of multiple 289 
distinct marker gene copies, and clear separate peaks on GC coverage plots indicate true 290 
contamination in the legacy Illumina dataset as opposed to P. penetrans alignment to related 291 
firmicutes. Marker gene alignments, GC coverage plots, and ANIm alignments point to significant 292 
Pelosinus spp. contamination in the firmicute restricted legacy Illumina data assembly. Initial GC 293 
coverage plots also point to contamination from Mimiviridae, human, Clostridium spp., and 294 
Pseudomonas species in the unrestricted assembly analysed by Srivastava et al. [48] . 295 

The genome size of P. penetrans has been estimated to be between 2.5 and 4Mbp with a GC content 296 
approximately similar to that of Bacillus subtillis and B. halodurans at 44% [51]. Our assemblies are 297 
consistently placed at the lower end of this size range, with a GC content of around 46%. An 298 
unpublished P. penetrans genome approaching 2.5Mbp was described by Waterman et al., [18] 299 
however, as this data has not been made available it is not possible to evaluate this assembly directly. 300 
Our assembly is small with reference to free living bacilli but large in comparison to other bacteria 301 
obligately associated with nematodes such as wBm (~1.1Mbp) [52] and Xiphinematobacter spp. 302 
(~0.9Mbp) [53]. The completeness score of our assembly was high at 86% based on lineage specific 303 
marker genes. Notably, the same lineage specific markers were not predicted in PacBio assemblies at 304 
varying levels of coverage. This may indicate the interference of sequencing or amplification errors in 305 
gene prediction. 306 

7.2 Phylogeny 307 

Maximum likelihood phylogenetic analysis of core genes (Fig. 3) confirms the position of our 308 
sequence within the endospore forming Bacilli with strong bootstrap support [51, 54]. However, it 309 
was not possible to determine that Pasteuria spp. are ancestral to Bacillus spp. as previously described 310 
[51]. Early observations of Pasteuria spp. pointed to a potential grouping with Thermoactinomyces 311 
based on morphological comparisons, noting that both P. penetrans and T. vulgaris form filamentous 312 
tubes on germination as opposed to vegetative rods [2]. These morphological comparisons were also 313 
observed by Ebert et al. [55], however, these researchers, and many others thereafter, highlight that 314 
genetically inferred phylogenies point to a more distant relationship than these morphological 315 
similarities might suggest [9, 18, 51, 54, 55]. Despite the apparent distance of this relationship 316 
Thermoactinomyces spp. remain the closest observable relations within Bacilli within our analysis. 317 
Genomic sequencing of Thermoactinomyces sp. strains AS95 and Gus2-1 display similarly small 318 
genomes of 2.56Mbp and 2.62Mbp respectively with GC content around 48% [56, 57]. Both 319 
Thermoactinomyces vulgaris and Thermoactinomyces daqus H-18 were however found to be larger at 320 
3.70Mbp and 3.44Mbp respectively [58, 59].  321 

7.3 Plasticity 322 

The largest component of P. penetrans specific predicted proteome clusters which returned InterPro 323 
annotations contained transposase domains. This is surprising as transposases typically constitute a 324 
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lower proportion of genes in smaller genomes generally, and are completely absent in most obligate, 325 
host-restricted bacteria [60, 61]. However, enhanced genome plasticity may be better tolerated by 326 
bacteria which have recently adapted to a symbiotic or pathogenic lifestyle which are able to 327 
compensate for non-specific transposase insertions due to functional redundancy enabled by the host 328 
[62, 63]. Indeed, genome plasticity may be selected for in such organisms allowing for faster 329 
adaptation to the host [61]. This does not necessarily indicate the recent conversion to obligate 330 
parasitism in the case of P. penetrans as some ancient symbiotic bacteria, such as Wolbachia 331 
pipientis, may also exhibit high numbers of transposable elements (TEs) [64]. This may be explained 332 
by the “intracellular arena hypothesis” where foreign TEs exchanged during a host switching event 333 
are retained because they are advantageous or are better tolerated by obligate bacteria [65]. Kleiner et 334 
al.,  described high transposase gene number and expression in symbiotic bacteria of the oligochaete 335 
worm Olavius algarvensis [61]. They hypothesised that loss of tight regulation of transposase 336 
expression may play a role in the expansion of TEs in host-restricted bacteria and thus in their 337 
adaptation to the host. Notably, the genomes of the tropical apomictic RKNs, from which P. 338 
penetrans was isolated,  also exhibit extensive plasticity [66-70] thought to promote their 339 
extraordinarily broad host range, compared to their sexually reproducing counterparts, which 340 
encompasses most flowering plants [71]. 341 

In addition to transposase expansion P. penetrans appears to possess complete bacterial homologous 342 
recombination pathways and partial components of known competence pathways. Waterman 343 
[18] described the presence of competence related ComC, ComE, and ComK predicted proteins from 344 
their P. penetrans genomic assembly. The presence of ComEA, ComEC, CinA, and MecA predicted 345 
orthologues supports their assessment of the potential of P. penetrans for competence although we did 346 
not find ComC, or ComK in our assembly. RecA, which is involved in DNA repair 347 
, recombination, and competence [72] was also present in both assemblies.  348 

7.4 Metabolic pathways 349 

The reduction of metabolic pathways does not scale with the reduction in total genome size with the 350 
reduction in genome size when compared to T. vulgaris being approximately half the reduction of 351 
known metabolic pathways. Pasteuria penetrans shows a reduction of metabolic pathways which is 352 
comparable to Xiphinematobacter spp. and wBm despite a total genome size more than double both 353 
organisms [52, 53]. The large number of unannotated gene predictions which do not cluster with 354 
related proteomes may suggest the use of alternate pathways.  355 

Also notably absent are synthesis pathways for the majority of amino acids again mirroring the 356 
metabolism of wBm [52] and to a lesser extent Xiphinematobacter [53]. This, combined with the 357 
presence of a branched chain amino acid transporter and multiple proteases, suggests that P. 358 
penetrans is near completely reliant on the host for amino acids. 359 

Less clear is where P. penetrans may be acquiring carbon. The absence of glucose, sucrose, mannose, 360 
and starch catabolising pathways in the assembled genomic sequence is notable. This parallels the 361 
metabolic profile of wBm which rely on pyruvate dehydrogenase and TCA cycle intermediates 362 
produced by the degradation of proteins [52]. Possible carbon sources include fructose, and/or partial 363 
gluconeogenesis from TCA cycle intermediates such as citrate, malate, fumarate, and succinate. Initial 364 
D-fructose phosphorylation to fructose-1-P is not predicted but complete pathways from conversion 365 
of fructose-1P to both glyceraldehyde-3P and fructose-6P appear to be present. 366 

Duponnois et al. [15] identified an apparent positive influence of Enterobacter spp. on the 367 
development of P. penetrans in the field. Production of organic acids in the rhizosphere by 368 
Enterobacter spp. is well documented [73] and the production of such acids in Enterobacter spp. 369 
culture filtrates is highlighted in in vitro Pasteuria spp. culture patents filed by Gerber et al. [74]. 370 
Earlier unsuccessful attempts to culture P. penetrans in vitro also noted that culture filtrates from 371 

.CC-BY 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/485748doi: bioRxiv preprint first posted online Dec. 4, 2018; 

http://dx.doi.org/10.1101/485748
http://creativecommons.org/licenses/by/4.0/


Thermoactinomyces spp. and fungi were capable of improving the maintenance of P. penetrans 372 
replicative stages [14]. Bacillus subtillis is capable of growing with citrate as a sole carbon source 373 
[75], whilst iron citrate uptake is required for the virulence of B. cereus [76].  374 

Pasteuria penetrans appears capable of breaking chitin down into NAG and chitobiose. Possible 375 
functions of these enzymes are in the degradation of chitin as the structural component of nematode 376 
eggs or in the breakdown of mucins in the nematode cuticular matrix. Simple digestion of the 377 
nematode egg shell may explain the mechanism by which P. penetrans reduces host fecundity. The 378 
apparent involvement of NAG in attachment may provide another important requirement for chitin 379 
catabolism. 380 

7.5 Collagen-like proteins 381 

Of 32 unique collagens identified by pooled gene prediction algorithms 17 returned structural 382 
alignments matching C1q or BclA like proteins. Collagenous fibres on the surface of endospores 383 
within the bacilli are often components of the infection process. Among these the most well 384 
characterised is BclA, a C1q-like collagenous glycoprotein which forms the hair-like nap of fibres 385 
present on B. anthracis [77]. C1q is a component of human complement pathway which binds IgG, 386 
and apoptotic keratinocytes [78, 79]. BclA is implicated in a number of processes in B. anthracis 387 
infection including specific targeting to macrophages [80], and immunosuppressive activity via 388 
binding to complement factor H [81]. Notably, BclA does not appear to be directly involved in 389 
attachment as ΔbclA spores show no reduced binding to host cells but do exhibit a reduction in 390 
specific targeting to professional phagocytic cells [80]. Conversely, three fibres paralogous to BclA 391 
are also described in C. difficile which appear to be directly involved in the early stages of infection 392 
[82, 83]. Further, it has been demonstrated that C. difficile bclA- mutants display reduced adherence to 393 
human plasma fibronectin [84]. Fibronectin has been proposed as a binding target of Pasteuria spp. 394 
spores [85]. However, fibronectin does not appear to be an abundant component of the Meloidogyne 395 
incognita J2 cuticle [86]. 396 

Along with this set of BclA-like collagens, CotE is also predicted from our assembly where it is 397 
possible that it might similarly be involved in a multi-component attachment process. The CotE 398 
protein is also thought to be involved in the colonisation of the gut by C. difficile through C-terminal 399 
binding and degradation of mucins [87]. Glycosylated mucins on the nematode cuticle are implicated 400 
as the target in the ‘Velcro’ model of attachment [12].  401 

Variation in the lengths of the predicted collagenous fibres reflects the observable variation in 402 
endospore surface fibres observable with electron microscopy [12]. The presence of 17 such fibres 403 
may be indicative of functional redundancy. It has been observed that NAGase treatment can invert 404 
endospore attachment in some instances [9] and in cross-generic attachment of  Pasteuria HcP to 405 
Globodera pallida endospores are predominantly inverted in their attachment to the cuticle [88]. The 406 
absence of the majority of the collagen sequences reported by Srivastava et al. [48] likely reflects the 407 
contamination we report within the legacy Illumina data assemblies. No alignment to putative 408 
collagens identified in Pasteuria ramosa [49, 50, 89, 90], infective of the water flea Daphnia magna, 409 
was observed. If specificity is determined by the presence of unique collagens, or unique sets of 410 
collagens, then this is unsurprising due to the vastly different host range of these species. Further 411 
sequencing across species or strains of this genus with differing attachment profiles may reveal 412 
divergent BclA-like collagen profiles. The nature of attachment is of practical interest to the 413 
application of Pasteuria spp. as biocontrol agents; however, in the case of P. ramosa, elucidation of 414 
the molecular mechanics of this interaction may impact our fundamental understanding of host-415 
parasite evolution as this infection system is a prominent model for the study of the red-queen 416 
hypothesis [49, 50, 55, 89-92]. The variable electrostatic potential of these predicted proteins is 417 
notable as it has been suggested that electrostatic interactions may play an initial role in the 418 
attachment process; the electrostatic potential of P. penetrans endospores having previously been 419 
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characterised as negative [93]. The predicted collagens in this assembly match very well with our 420 
expectations of the molecular components of attachment based on experimental evidence to date. 421 
However, further work is required to evaluate their role in this process, and to evaluate the Velcro-like 422 
attachment model.  423 
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12. FIGURES AND TABLES 724 

 725 

  726 

Figure 1: A histogram of genome completeness, heterogeneity, and contamination as 

assessed by the presence and length of lineage specific marker genes for various 

Pasteuria assembly versions. This figure was created using bin_qa_plot in CheckM 

v1.0.7. 
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Figure 2: BlobTools GC coverage plot of MIRA assembled legacy Illumina reads after two (a) 

and 14 (b) iterations of contaminant read removal with taxonomic assignment from BLAST 

hits at the genus level.  
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 734 

Figure 3: ANIm alignment percentage identity (a) and coverage (b) of PacBio and legacy 

illumina assemblies with related firmicutes and published Pasteuria spp. sequences. 
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 735 

 736 
 737 Figure 4: Multi-gene maximum likelihood phylogeny of Pasteuria penetrans within Firmicutes. Branches are 

labelled by bootstrap support. Produced in bcgTree and graphically represented within figtree. 109 essential 

genes are aligned from provided proteomes to generate this tree.  
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  738 

Figure 5: KEGG reconstruct pathway metabolic overview map of P. penetrans and 

Thermoactinomyces vulgaris KOALABlast output. Pathways predicted in both organisms are 

coloured in blue; pathways predicted in T. vulgaris only in red; and in P. penetrans only in green.  
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Figure 6: (a) an intersect plot produced in UpSetR showing clusters shared between proteomes 

indicated by connecting dots below the x axis and ordered by total number of clusters. (b) An 

intersect plot of clusters which returned sporulation or spore related terms from InterProScan 

functional annotation. 
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Collagen Net charge 

(pH=7) 

Sec/TM 

domain 

BclA/C1q binding sites 

PclP01 -3 Sec NAG(x3), CA, ACT, GOL 

PclP02 -6 Sec NAG, EDO(x4), CL(x3), GOL, ACT  

PclP03 0 Sec None 

PclP04 0 None EDO(x3), SEP, U, ACT(x3), IOD 

PclP05 0 Sec None 

PclP06 -2 Sec NAG(x2), GOL, DIO(x2), MG, ACT, EDO, 

144, CL 

PclP07 9 None NAG(x2), CA 

PclP08 -2 Sec None 

PclP09 -2 TM NAG, DIO(x2), CA 

PclP10 -4 Sec NAG(x3), CA, SO4 

PclP11 -1 Sec NAG(x2) GN1, CA 

PclP12 -5 Sec NAG(x3), CA, EDO(x2), CA, SO4, DIO, GOL 

PclP13 0 None CA, NAG(x3), EDO(x2), CPS, DIO 

PclP14 15 Sec CA, GN1, NAG(x2), DIO(x3), GOL, CL 

PclP15 -2 None CA, NAG(x2), GOL, EDO(x3), CPS, SO4, ACT 

PclP16 0 TM 
 

PclP17 -2 Sec CA, CL(x2), GN1, NAG, GOL(2), ACT, EDO, 

GOL SO4 

 742 

743 

Table 1: BclA/C1q-like collagens identified in the P. penetrans genome with net charge from 

pdb2pqr, Sec/TM domain prediction from PREDTAT, and predicted binding sites in the 

globular C-terminal domains from the RaptorX server.  
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 744 

Figure 7: Predicted structure of four BclA-like attachment candidate proteins recovered from the 

Pasteuria penetrans genome. Molecular structure left and corresponding electrostatic surface 

potential right. Protein structure was modelled in the RaptorX server and electrostatic potential 

was calculated using the pdbtopqr server and apbs (v1.5). Images were produced using the NGL 

viewer.  
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