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Abstract 32 

Purpose  33 

Altered movement complexity, indicative of system dysfunction, has been demonstrated with increased 34 

running velocity and neuromuscular fatigue. The critical velocity (CV) denotes a metabolic and 35 

neuromuscular fatigue threshold. It remains unclear whether changes to complexity during running are 36 

coupled with the exercise intensity domain in which it is performed. The purpose of this study was to 37 

examine whether movement variability and complexity differ exclusively above the CV intensity during 38 

running. 39 

Methods  40 

Ten endurance-trained participants ran at 95%, 100%, 105% and 115% CV for 20 min or to task failure, 41 

whichever occurred first. Movement at the hip, knee, and ankle were sampled throughout using 3D 42 

motion analysis. Complexity of kinematics in the first and last 30 s were quantified using sample entropy 43 

(SampEn) and detrended fluctuation analysis (DFA-α). Variability was determined using standard 44 

deviation (SD).  45 

Results 46 

SampEn decreased during all trials in knee flexion/extension and it increased in hip internal/external 47 

rotation, whilst DFA-α increased in knee internal/external rotation. SD of ankle plantar/dorsiflexion and 48 

inversion/eversion, knee internal/external rotation, and hip flexion/extension and abduction/adduction 49 

increased during trials. Hip flexion/extension SampEn values were lowest below CV. DFA-α was lower 50 

at higher velocities compared to velocities below CV in ankle plantar/dorsiflexion, hip flexion/extension, 51 

hip adduction/abduction, hip internal/external rotation. In hip flexion/extension SD was highest at 115% 52 

CV. 53 

Conclusions 54 

Changes to kinematic complexity over time are consistent between heavy and severe intensity 55 

domains. The findings suggest running above CV results in increased movement complexity and 56 

variability, particularly at the hip, during treadmill running. 57 

Key Words: Running; exercise; non-linear dynamics; complexity; variability 58 

List of Abbreviations 59 

CV Critical velocity 

CWR Constant work rate 

D′ Curvature constant of velocity relative to time 

DFA Detrended fluctuation analysis 

DFA-α Detrended fluctuation analysis α exponent 

MAV Maximal aerobic velocity 

SampEn Sample entropy 

SEE Standard error of the estimate 

Tlim Time to task failure 

V Velocity 
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vGET Velocity evoking gas exchange threshold 

V̇O2 Oxygen uptake 
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Introduction 70 

Running is comprised of a series of repeated and rhythmic actions. The cyclic nature of running 71 

suggests that motion is regular, with low variability (Jordan et al. 2006). Previous studies examining the 72 

variability of movement during running have traditionally used linear measures such as standard 73 

deviation, coefficient of variation, and root mean square (Belli et al. 1995; Cher et al. 2017). Haken, 74 

Kelson and Bunz (1985) proposed that increased variability in movement during locomotion is indicative 75 

of a loss of stability and diminished ability to respond to external perturbations. Linear measures merely 76 

quantify the magnitude of variability, whereas non-linear measures quantify dynamic and temporal 77 

aspects of time series and provide greater insight into the complexity of underlying motor control 78 

(Stergiou and Decker 2011). Complexity is considered to be temporal regularity or randomness of a 79 

time-series (Pincus et al. 1994) and can be quantified using measures of entropy and fractal scaling. 80 

For example, sample entropy (SampEn) quantifies the regularity of fluctuations in a time (Pincus 1991; 81 

Richman and Moorman 2000), and long-range correlations and statistical persistence can be quantified 82 

using fractal measures such as detrended fluctuation analysis exponent-α (DFA-α; Hausdorff et al. 83 

1995). 84 

Healthy and unfatigued systems are typically characterised by complex outputs which allow for 85 

adaptability to external perturbations, but a loss of complexity is evident in ageing or diseased states 86 

(Lipsitz and Goldberger 1992). Within the context of gait fractal dynamics, it has been shown that 87 

healthy young adults exhibit statistical persistence in stride intervals (Hausdorff et al. 1998; Hausdorff 88 

et al., 1997). Conversely, stride interval time series from healthy older individuals and individuals with 89 

Huntingdon’s (Hausdorff et al., 1997) or Parkinson’s disease (Hausdorff et al., 1998) demonstrate anti-90 

persistence. Further to changes in gait dynamics caused by ageing and disease, fatigue has been 91 

shown to alter temporal dynamics (Meardon et al. 2011; Schütte et al. 2015, 2018). During running 92 
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tasks performed to task failure at 5 km race pace on a track, runners exhibited decreased DFA-α of 93 

stride time in the last lap compared to the first (Meardon et al. 2011). These findings were replicated by 94 

Schütte et al. (2018), demonstrating decreased DFA-α of stride time alongside increased complexity of 95 

stride length in the last lap compared to the first. Running-induced fatigue has also been shown to 96 

increase step complexity and complexity of trunk accelerations (Schütte et al. 2015). Importantly, both 97 

studies (Schütte et al. 2015; Schütte et al. 2018) quantified fatigue using rating of perceived exertion 98 

scales, without reference to objective markers of fatigue. 99 

In addition to fatigue, running velocity has been shown to affect complexity and variability of movement 100 

(Jordan et al. 2006; McGregor et al. 2009; Murray et al. 2017). A quasi U-shape in standard deviation 101 

and DFA-α was apparent with deviations from the preferred running velocity (Jordan et al. 2006; Mann 102 

et al. 2015). McGregor et al. (2009) further demonstrated decreased control entropy of accelerometery 103 

concomitant with increasing velocity during an incremental running test to exhaustion. When 104 

considering angular kinematics, Estep et al. (2018) recently demonstrated greater complexity of hip and 105 

knee movement during running when compared to walking. Importantly, Murray et al. (2017) showed 106 

SampEn and root mean square of shank and waist accelerations were positively correlated with blood 107 

[La] during a submaximal incremental test. Given the link between complexity and physiological 108 

responses such as increased blood [La] (Murray et al. 2017), and such responses are determined by 109 

physiological thresholds (Poole et al. 2016), changes in complexity during running may be defined by 110 

physiological thresholds. To date, the link between physiological boundaries and the complexity of 111 

movement during whole-body movement has not been investigated, it therefore remains unclear which 112 

mechanisms mediate complexity during locomotion.  113 

Previous work has shown the fatigue-mediated decrease in complexity of torque outputs exclusively 114 

above critical torque (Pethick et al. 2016). The critical torque is analogous to critical velocity (CV) and 115 

demarks the boundary between the heavy and severe exercise-intensity domains (Poole et al. 2016). 116 

Exercise above CV is characterised by an inexorable increase in metabolic flux (e.g. inorganic 117 

phosphate, H+ ions, phosphocreatine) and systemic (e.g. pulmonary oxygen uptake) responses to 118 

exercise, whereas exercise below CV allows for the attainment of a steady state (Jones et al. 2007; 119 

Poole et al. 2016). Pethick et al. (2019) have recently demonstrated that muscle torque complexity 120 

depends, in part, on metabolic rate, with greater intensities invoking lower complexity. However, this 121 

phenomenon may not be evident during whole-body exercise, with greater movement complexity 122 

exhibited at greater intensities (Jordan et al. 2006; Mann et al. 2015; Murray et al. 2017). At present, 123 

no studies have examined changes to complexity of movement during whole-body exercise relative to 124 

physiological thresholds.  125 

A recent review has eloquently highlighted the potential implementation of non-linear methods, 126 

including complexity, to forecast injury risk (Fonseca et al. 2020). However, without fundamental 127 

understanding and exploration of movement complexity during locomotion, the successful 128 

implementation of such methods in applied settings may be problematic and limited. The aim of this 129 

study, therefore, was to explore the variability and complexity of lower limb angular kinematics above 130 

and below CV. An additional aim was to examine whether there would be different temporal profiles of 131 



   

 

  5 

angular kinematic complexity and variability above and below the CV. Since changes to motor control 132 

have been shown to be dependent on metabolic rate, and previous literature demonstrating greater 133 

complexity at increased velocities, it was hypothesised that compared to trials below CV decreased 134 

complexity would only be evident above CV. It was expected that greater decreases in complexity over 135 

time would be evident in trials above CV when compared to trials below CV. 136 

Methods 137 

Participants 138 

Ten recreationally trained males (age, 29.3 ± 10.1 years; stature, 1.76 ± 0.04 m; body mass, 72.1 ± 9.6 139 

kg; means ± SD) volunteered to participate in this study after giving written informed consent. The study 140 

was approved by the Health, Science, Engineering and Technology Ethics Committee of the University 141 

of Hertfordshire (protocol number: LMS/PGR/UH/03454) and adhered to the Declaration of Helsinki. All 142 

participants were male runners or multisport athletes e.g. triathletes, familiar with treadmill running, 143 

aged between 18 and 50 years, with a V̇O2max ≥ 45 ml∙min-1∙kg-1. The level of the participants 144 

corresponded to performance level 2 in the classification of participants groups in sport science 145 

research (De Pauw et al. 2013). Exclusion criteria included vestibular or vision disorders, an observed 146 

V̇O2max < 45 ml∙min-1∙kg-1, pulmonary, neurological, or cardiovascular diseases, and current or recent 147 

(6 months prior to participation) musculoskeletal injuries to the lower extremity or back. Assessment of 148 

the exclusion criteria, with the exception of V̇O2max, was carried out by questionnaire during an initial 149 

screening on their first visit. Participants were instructed to arrive at the laboratory rested and were 150 

advised to avoid caffeine and food 3 h prior each test, and to avoid strenuous exercise and refrain from 151 

alcohol in the 24 h before each test. All tests were performed at the same time of day (±2 h) in laboratory 152 

conditions within a controlled environment (18–22°C; 45–55% relative humidity). 153 

Experimental Design 154 

Participants were required to visit the laboratory on seven occasions within a 6-week period, with all 155 

tests separated by a minimum of 48 hours (Figure 1). All testing was performed on a motorised treadmill 156 

(Mercury, h/p/cosmos Sport and Medical, Traunstein, Germany). The first session was used to 157 

familiarise participants with the procedures and to conduct an incremental running test to determine 158 

velocity evoking gas exchange threshold (vGET), maximal aerobic velocity (MAV), and the maximum 159 

oxygen uptake (V̇O2max). During the second and third visits, a series of constant work rate tests (CWR) 160 

at different intensities were performed to determine CV. On visits four to seven, participants performed 161 

in randomised order four experimental trails consisting of constant velocity test to task failure at 162 

velocities ranging from 95 to 115 % of CV. During experimental trials lower limb kinematics were 163 

recorded throughout each trial.  164 

Throughout all tests, pulmonary gas exchange was measured breath-by-breath using an online gas 165 

analyser (MetaLyzer 3B, Cortex Biophysik, Leipzig, Germany). The participants wore a face mask with 166 

low dead space (125 mL) and breathed through a low-resistance (<0.1 kPa∙L-1∙s-1 at 20 L∙s-1) impeller 167 

turbine, while O2 and CO2 were sampled at 50 Hz. The gas analyser was calibrated before each test 168 

with gases of known concentration and the turbine volume transducer was calibrated using a 3 L syringe 169 

(Hans Rudolph, Inc., Kansas City, MO). The analyser rise time and the transit delay for O2 and CO2 170 
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were <100 ms and 800–1200 ms respectively, allowing breath-by-breath calculation. Therefore, V̇O2, 171 

V̇CO2, and V̇E data were recorded breath-by-breath and exported as a 10-s moving average for data 172 

analysis. Heart rate (HR) was recorded beat to beat using a heart rate monitor (Polar H7, Polar Electro, 173 

Kempele, Finland). Blood samples were collected from the fingertip into a capillary tube (10 μL) for 174 

analysis of blood [La] using an automated blood analyser (Biosen C-line, EKF Diagnostic, Barleben, 175 

Germany). 176 

Measurements 177 

Incremental exercise test 178 

To determine vGET and MAV, an incremental exercise test to exhaustion was performed. The incline 179 

of the treadmill during this and all subsequent tests was set at 1% (Jones and Doust 1996). Following 180 

the completion of a standardised warm-up at a velocity of 1.67 m∙s-1 for 5 min, the test started at a 181 

velocity of 2.22 m∙s-1 and was increased by 0.14 m∙s-1 every minute until volitional exhaustion despite 182 

strong verbal encouragement.  183 

Determination of Critical Velocity 184 

A minimum of four CWR trials to task failure were performed at intensities that corresponded, 185 

approximately, to 60% Δ, 70% Δ, 80% Δ and 100% MAV; where Δ refers to the velocity difference 186 

between vGET and the MAV. This range of velocities was selected so that each participant could 187 

perform between 2-15 minutes before exhaustion (Muniz-Pumares et al. 2019). The CWR trials were 188 

performed in randomised order across two separate sessions, although in all testing sessions the lower 189 

intensity test always preceded the highest intensity test (Triska et al. 2017). On the second laboratory 190 

visit, two CWR trials were performed, with the final two CWR trials performed on the third laboratory 191 

visit. To avoid a possible priming effect in V̇O2 and CV (Burnley et al. 2006; Karsten et al. 2018), a 192 

recovery period of 60-minutes was provided between CWR trials where participants were allowed to 193 

drink water ad libitum. Before the start of each CWR trial, all participants completed a standardised 194 

warm-up at a velocity of 1.67 m∙s-1 for 5 min, followed by a period of 3 min passive rest. The treadmill 195 

was then set to the criterion velocity where participants were required to stand with their feet astride the 196 

treadmill belt holding onto the handrails. The transitions from rest to running were performed by the 197 

participants using the handrails to suspend their body above the belt while they developed the velocity 198 

required with their legs. Timing for each trial began when the participant released the handrails and 199 

terminated when the participant grasped onto the handrails to signal task failure. Strong verbal 200 

encouragement was provided throughout, and participants were blinded to the velocity and elapsed 201 

time.  202 

Experimental Trials 203 

During the final four visits runs were performed at velocities corresponding to 95%, 100%, 105% and 204 

115% of the calculated CV (95% CV, 100% CV, 105% CV, and 115% CV). The velocities of 205 

experimental trials were calculated outside of the SEE for CV estimates, so that the trial below CV (95% 206 

CV) was 95% of CV minus 1 SEE, and trials above CV (105% CV and 115% CV) were the product of 207 

the percentage of CV plus 1 SEE. The order of these trials was randomised and completed in the same 208 
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manner as the CWR trials, with the participant running until task failure despite strong verbal 209 

encouragement or for 20 minutes, whichever occurred first. Kinematic data from the right leg were used 210 

for analysis. 211 

Motion Analysis 212 

Kinematic measures of the lower extremity were obtained using a 14-camera high speed motion capture 213 

system sampling at 200 Hz (10 Osprey cameras and 4 Raptor-E; Motion Analysis Corp., Santa Rosa, 214 

CA). Prior to data collection the participants performed a static and dynamic calibration. The static 215 

calibration was performed using an L-frame with 4 retroreflective markers affixed placed on the corner 216 

of the force plate. The dynamic calibration was performed by waving a wand with 3 retroreflective 217 

markers within the capture volume (approximately 5 x 2 x 3 m). A maximum standard deviation of 1.0 218 

mm for the distance between markers was obtained. Data were inspected using Cortex software 219 

(Cortex-64 6.13.1751, Motion Analysis Corporation, Santa Rosa, CA) before importing into Visual 3D 220 

(Visual3D v6x64, C-motion, Germantown, MD).  221 

A modified Helen Hayes marker set (Kadaba et al. 1990) was used to place 39 passive retroreflective 222 

markers (diameter: 12 mm) on the skin bilaterally on the first metatarsals, between the second and third 223 

metatarsals, fifth metatarsals, calcaneus, lateral malleoli, medial malleoli, lateral femoral epicondyles, 224 

medial femoral epicondyles, iliac crests, anterior superior iliac spines and sacrum. Clusters of four 225 

markers were affixed bilaterally to the lateral aspect of the shank and thigh and were secured with rigid 226 

tape. To minimise interference effects and movement artifact during running, wands were not used 227 

during marker placement. Definitions for hip, knee, and ankle joint centres remained consistent with the 228 

Helen Hayes model (Kadaba et al. 1990), and additional markers were utilised to enable more 229 

consistent marker tracking. Previous pilot work demonstrated excellent intra- and inter-session 230 

reliability, evidenced by low coefficients of variation during dynamic movements using this marker set 231 

in sagittal (0.33 – 0.39%), frontal (1.22 – 1.41%), and transverse 2.11 – 3.12%) planes. From an initial 232 

static trial in the anatomical position, a kinematic model (pelvis, thigh, shank, and foot) was created for 233 

each participant. Ankle and knee joint centres were defined as the midpoint of the medial and lateral 234 

malleolus and the medial and lateral femoral epicondyle markers, respectively. The 3D coordinates of 235 

the hip joint centres were approximated using the coordinates of the reflective markers at the left and 236 

right anterior superior iliac spines and the marker at the sacrum (Bell et al. 1990). The foot, shank, and 237 

thigh were modelled as frustra of right cones, whereas the pelvis was modelled as a cylinder. Segmental 238 

anthropometric and geometrical properties were used based on the model by Hanavan (1964). 239 

Following the static trial, medial knee and medial ankle markers were removed for subsequent dynamic 240 

trials. Marker coordinates were smoothed using a 6 Hz fourth-order low-pass Butterworth filter. Joint 241 

rotations were calculated based on a right-hand convention using Euler angles in a X 242 

(flexion/extension), Y (adduction/abduction), Z (internal/external rotation) rotation sequence. Kinematic 243 

data were exported for the right hip, knee, and ankle joint rotations in the sagittal, frontal and transverse 244 

planes of motion. 245 

Data Analysis 246 

Determination of MAV and vGET 247 
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MAV was calculated as the velocity of the last stage of the incremental exercise test fully completed. If 248 

the final stage was not completed in full, MAV was calculated using the following equation:  249 

𝑀𝐴𝑉 = 𝑉𝐿 + (
𝑡

60 𝑠 
) 𝑥 0.14 m ∙ 𝑠−1     [Equation 1] 250 

where VL represents the last completed stage (m∙s-1), t is the time of the incomplete stage performed, 251 

60 s refers to the step duration, and 0.14 m∙s-1 denotes the delta velocity from the previous stage. This 252 

linear interpolation was based on the methodology used by Kuipers et al. (1985), where maximal 253 

workload was computed instead of MAV. In the current study, velocity of last completed stage and delta 254 

velocity from the previous stage were used in lieu of last workload completed and final load increment, 255 

respectively. V̇O2max corresponded to the highest V̇O2 average obtained over a 30-s rolling average. 256 

vGET was established as the velocity that elicited the following criteria: i) the first disproportionate 257 

increase in V̇CO2 from visual inspection of individual plots of V̇CO2 versus V̇O2; ii) an increase in 258 

V̇E/V̇CO2 with no concomitant increase in V̇E/V̇O2; and iii) the first increase in end-tidal O2 with no fall in 259 

end-tidal CO2 tension (Vanhatalo et al. 2016).  260 

CV Estimation 261 

The CV was estimated using three 2-parameter models: i) the hyperbolic v-Tlim model, where the 262 

velocity is plotted against time [Equation 2]; ii) the linear distance-time model, where the distance 263 

covered is plotted against time [Equation 3], and iii) the linear inverse-of-time model, where the velocity 264 

is plotted against the inverse of time [Equation 4]. 265 

 266 

𝑇𝑙𝑖𝑚  =  
𝐷’

𝑣−𝐶𝑉
      [Equation 2] 267 

  268 

𝐷 =  𝐷′ + 𝐶𝑉 ×  𝑇𝑙𝑖𝑚     [Equation 3] 269 

 270 

𝑣 =   𝐷′  ×  (
1

𝑇𝑙𝑖𝑚
) + 𝐶𝑉      [Equation 4] 271 

 272 

where Tlim is time to task failure, D’ is the curvature constant, v is the velocity of the task, D is the 273 

distance performed, and CV is the asymptote termed critical velocity. The SEE associated with the CV 274 

obtained from the three models was calculated and expressed as coefficient of variation. A pre-275 

determined threshold for SEE was set at 5% for estimates of CV and 10% for D′ (Muniz-Pumares et al. 276 

2019). Where four constant velocity trials did not result in estimations of CV and D′ falling with the SEE 277 

thresholds, additional trials were performed until the SEE of the estimated CV was <5%. To minimise 278 

error associated with modelling the velocity-duration relationship, the model (Equation 2, 3, or 4) with 279 

the smallest SEE for CV and D′ was used to give the ‘best individual fit’ estimate  (Black et al. 2015, 280 

2017). 281 

Variability and Complexity 282 

Variability and complexity analysis were performed using MATLAB 2018b (Mathworks, Natick, MA). 283 

First, the initial and final 5 s of each trial were discarded (Terrier and Olivier 2011). Prior to linear and 284 
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nonlinear analysis of the dependant variables time series were divided into 30 s epochs. Measures of 285 

complexity and variability were then performed on the steadiest 20 s of each epoch, identified as the 286 

consecutive 20 s with the lowest standard deviation (Pethick et al. 2016). The degree of complexity of 287 

dependant variables was quantified using SampEn (Eq. 5) in accordance with the algorithm detailed by 288 

Richman and Moorman (2000). SampEn (m, r, N) is the negative natural logarithm of the conditional 289 

probability that if two sequences of data of length m are both within the same distance r, then two 290 

sequences of data of length m+1 are also within the same r (Richman and Moorman 2000). The 291 

parameters (m, r) were set (m = 2, r = 0.2) to allow for good conditional probability estimates whilst 292 

maintaining sufficient system information (Pincus et al., 1994), and in accordance with several studies 293 

examining gait (Arshi et al. 2015; Schütte et al. 2015; Murray et al. 2017; Vieira et al. 2017). SampEn 294 

quantifies a positive number typically between 0 and 2, with lower values towards 0 reflecting a high 295 

system regularity and low complexity and high values towards 2 representing a low system regularity 296 

and high complexity (Richman and Moorman 2000; Ramdani et al. 2009). 297 

 298 

SampEn(m,r,N) = − log (
∑ 𝐴𝑖(𝑟)

N-m

i=1

∑ 𝐵𝑖(𝑟)
N-m

i=1

) =  − log (
A

B
)   [Equation 5] 299 

where r  is the tolerance threshold, m is the template length, N is the length of the time series. Bi is the 300 

number of matches that remain similar, given the tolerance r, of the ith template of length m. Ai is then 301 

given as the number of matches that remain similar for the ith template of length m+1. The quantity 302 

given as A/B is therefore the probability that two sequences within a tolerance of r for m points, remain 303 

within r of each other at the next point (m + 1). The fractal scaling of the time series was assessed using 304 

detrended fluctuation analysis (DFA; Eq. 6) as defined by Peng et al. (1994) . Briefly, this method 305 

integrates the time series N, and then divides it into boxes of length n. A least-squares line is then fitted 306 

yn(k) in each box of length n, representing the trend in each box. The y coordinate of the straight line 307 

segments is denoted by yn(k). The integrated time series y(k) is detrended, by subtracting yn(k) from 308 

the local trend in each box. A root-mean-square calculation is then used to compute the magnitude of 309 

fluctuation, F(n), of y(k), from the least square trend in each box. For a box of length n, the size of 310 

fluctuation for the integrated and detrended time series is given as:  311 

𝐹(𝑛) = √
1

𝑁
∑ [𝑦(𝑘) − 𝑦𝑛(𝑘)]2𝑁

𝑘=1    [Equation 6] 312 

where F(n) is the average fluctuation, n is the box length, N is the total number of data points, k is the 313 

order of integration, y(k) is the integrated time series, and yn(k) is the local trend in its respective box.  314 

This process is then repeated across a range of box sizes (56 box sizes ranging from 4 – N/4 data 315 

points) to provide a relationship between box size and F(n). The slope between log F(n) and log(n) 316 

represents the scaling exponent α, which corresponds to the correlational properties of the signal (Hu 317 

et al. 2001; Seely and Macklem 2004). Variability of the time series were quantified using standard 318 

deviation. Coefficient of variation was not used due to it being overly sensitive for mean values close to 319 

zero (Abdi 2010) which would be expected of transverse and frontal kinematics. 320 
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Statistical Analysis 321 

Kolmogorov–Smirnov tests for normality were conducted on the data. A two-way analysis of variance 322 

was performed on the SampEn and DFA values to test the effects of velocity (95% CV, 100% CV, 105% 323 

CV, and 115% CV) and time (Start and End) on the results. A one-way analysis of variance was 324 

performed to test the effects of velocity (95% CV, 100% CV, 105% CV, and 115% CV) on time to task 325 

failure (Tlim), end pulmonary V̇O2, and blood [La] responses. Differences in V̇O2 between CWR trials 326 

incremental exercise test, as well as experimental trials and incremental exercise test, were assessed 327 

using a one-way analysis of variance. Pairwise comparisons were conducted using Bonferroni 328 

adjustments where main effects and interactions were significant (P < 0.05). The assumption of 329 

sphericity was tested using Mauchly’s test, with Huynh-Feldt corrections made for violations (P < 330 

0.05). All data are presented as means ± SD, and results were deemed statistically significant when P 331 

< 0.05. All statistical analyses were performed using SPSS (version 25.0; SPSS Inc, Chicago, IL).  332 

Results 333 

Preliminary Measures and Physiological Responses 334 

The mean vGET  and MAV recorded during the first visit were 3.20 ± 0.44 m∙s-1 and 4.88 ± 0.41 m∙s-1, 335 

respectively. The mean V̇O2max measured in the incremental exercise test was 3.77 ± 0.30 L∙min-1 (53 336 

± 5 ml∙min-1∙kg-1) and was not significantly different from the mean V̇O2 in CWR trials performed to 337 

estimate CV (3.62 ± 0.37 L∙min-1) measured at Tlim (P = 0.696). Estimates of CV derived from Equations 338 

2-4 and “best individual fit” model are presented in Table 1. All participants were able to continue for 20 339 

min without reaching task failure at 95% CV. Increased velocities resulted in significantly reduced Tlim 340 

above CV (Table 2). There was a significant effect on pulmonary V̇O2 at Tlim (P = 0.022) with post-hoc 341 

analysis showing pulmonary V̇O2 at Tlim was significantly greater in the trial at 105% CV (3.53 ± 0.39 342 

L∙min-1) compared to trials performed at 100% CV (3.40 ± 0.35 L∙min-1) and 95% CV (3.27 ± 0.30 L∙min-343 

1) (P < 0.05). Trials performed at 115% CV resulted in a V̇O2 at Tlim of 3.37 ± 0.40 L∙min-1 which was 344 

not significantly different from other velocities. The V̇O2 measured during the incremental exercise test 345 

differed from V̇O2 at Tlim in trials performed at 95% CV (P < 0.001), 100% CV (P = 0.009), and 115% 346 

CV (P = 0.012), but not 105% CV (P = 0.847). Similarly, a significant effect was evident on HR at Tlim 347 

(P < 0.001; Table 2). Trials performed at or above CV resulted in significantly higher blood [La] when 348 

compared to the trial performed at 95% CV (P < 0.001; Table 2).  349 

Linear Analysis 350 

The standard deviation of each running velocity for dependent variables in the first and last epoch is 351 

presented in Table 3. There were no significant velocity x time interactions (P > 0.05). There was a 352 

significant effect for time on standard deviation for ankle plantar/dorsiflexion (P = 0.032) and 353 

internal/external rotation (P = 0.006), knee internal/external rotation (P = 0.001), and hip 354 

flexion/extension (P = 0.001) and abduction/adduction (P = 0.002), with greater variability during the 355 

last 30-second epoch. There was a significant main effect for velocity on hip flexion/extension standard 356 

deviation with greater variability observed at higher velocities (P < 0.001, Figure 2). There were 357 

significant main effects for velocity on knee flexion/extension SD (P = 0.015) and hip 358 
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abduction/adduction standard deviation (P = 0.044) but no significant differences were observed using 359 

Bonferroni correction. 360 

Nonlinear Analysis 361 

The SampEn and DFA-α values for the first and last epoch for all conditions are presented in Table 4 362 

and Table 5, respectively. No significant velocity x time interactions were evident in SampEn (P > 0.05). 363 

There was a significant effect for time on SampEn in knee flexion/extension, with greater regularity in 364 

the last epoch compared to the first (P = 0.014). Conversely, hip internal/external rotation demonstrated 365 

more complex fluctuations in the last epoch when compared to the first during trials at or above CV (P 366 

= 0.001, Figure 4). There was a significant effect for velocity on SampEn for hip flexion/extension (P = 367 

0.001). There was also a significant effect for velocity on SampEn of hip internal/external rotation (P = 368 

0.049), but subsequent pairwise comparisons showed no significant differences between velocities. 369 

There were significant velocity x time interactions of DFA-α evident in knee adduction/abduction (P = 370 

0.049) and hip flexion/extension (P = 0.003, Figure 2). DFA-α in knee adduction/abduction was lower 371 

in trials performed at 115% CV (P = 0.001). DFA-α was lower in ankle plantar/dorsiflexion during trials 372 

at 115% CV, indicating less statistical persistence, than at 105% CV and 100% CV (P = 0.003). Trials 373 

performed at higher velocities resulted in reduced statistical self-similarity at the hip, with lower DFA-α 374 

values in hip flexion/extension (P < 0.001, Figure 2), hip adduction/abduction (P = 0.008, Figure 3), and 375 

hip internal/external rotation (P = 0.001, Figure 4). In trials at or below CV, DFA-α in knee 376 

internal/external rotation increased over time (P = 0.042).  377 

Discussion 378 

The purpose of the current study was to characterise changes to the pattern of variability and complexity 379 

of lower limb joint kinematics during running at different velocities relative to CV. The distinct 380 

physiological profile observed during the experimental trials (Table 2) suggests CV was approximated 381 

correctly (Ozyener et al. 2001). Data observed in the sagittal plane at the hip suggest that there was an 382 

increase in complexity and variability of proximal lower limb joint kinematics above the CV . Significant 383 

decreases in DFA-α observed at 115% CV in ankle plantar/dorsiflexion, knee abduction/adduction, hip 384 

abduction/adduction, and hip external/internal rotation indicated increased complexity above CV. The 385 

hypothesis that lower complexity would be evident above the CV when compared to trials at or below 386 

the CV is therefore refuted. Variability increased in a number of variables from the first epoch to last 387 

epoch. Demonstrable changes as a result of time were not evident across complexity of all variables 388 

and DFA-α and SampEn values behaved consistently between velocities below, at, and above CV. 389 

Changes in locomotor behaviour in some variables were evident only through the use of non-linear 390 

methods, suggesting these may be complimentary to non-linear methods. Ultimately, this may enable 391 

better understanding on running biomechanics in research and clinical practice. The current study has 392 

elucidated phenomena, herein discussed, which form the basis of further research in the application of 393 

non-linear analyses in running. 394 

Effect of running velocity on variability and complexity 395 

The findings of the current study suggest that greater complexity, as demonstrated by higher SampEn 396 

values and lower DFA-α values, and variability of angular kinematics, are evident at 115% CV compared 397 
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to lower velocities higher velocities. This was observed alongside similar metabolic conditions, as 398 

inferred by comparable blood [La], between 105% CV and 115% CV, which suggests that complexity 399 

and variability of movement during running may be more strongly mediated by velocity rather than 400 

metabolic rate per se. It has previously been suggested that increases to complexity and variability at 401 

greater velocities of locomotion may be a protective mechanism against injury, allowing for greater 402 

accommodation of external stressors (Estep et al. 2018). Indeed, running at greater velocities has been 403 

shown to increase the magnitude of potentially injurious variables including: ground reaction force 404 

(Keller et al. 1996), and accelerations acting on the body in the vertical, mediolateral, and 405 

anteroposterior planes (Sheerin et al. 2019). Risk of injury as a result of external perturbations may be 406 

increased at greater velocities due to increased forces and, if there is a resultant angular excursion, 407 

greater external joint moments. Furthermore, the time in which the system has to detect, identify, and 408 

adapt to external perturbations when moving at greater velocities is decreased (Biewener and Daley 409 

2007). Indeed, runners with a history of medial tibial stress syndrome exhibited decreased complexity 410 

towards the end of a 3.2 km run (Schütte et al. 2018). Previous literature has expounded the relationship 411 

between runners with overuse injuries and diminished coordinative variability (Miller et al. 2008; Hamill 412 

et al. 2012; Schütte et al. 2018). It could therefore be argued that the decrease in complexity may 413 

predispose runners to injury due to a diminished ability to adapt to environmental threats. Future lines 414 

of inquiry may wish to examine the role of complexity in mitigating injury risk and overcoming external 415 

perturbations. Indeed, a recent review proposed a greater understanding of non-linear systems may 416 

lead to better injury forecasting in athletes (Fonseca et al. 2020). 417 

It is unclear whether complexity and variability of angular kinematics change proportionately with 418 

increased velocity of running over a range of different intensity domains. Both Murray et al. (2017) and 419 

McGregor et al. (2006) have demonstrated proportional changes in complexity in relation to velocities 420 

ranging from moderate to severe intensities using accelerometers. There has been evidence to suggest 421 

that critical torque, and by inference CV, may be a phase transition rather than a sudden threshold, 422 

whereby some physiological responses associated with the severe intensity domain are apparent 2 423 

standard errors below the estimate (Pethick et al. 2020). Although the current study used velocities 424 

outside the 95% confidence intervals associated with CV estimates (95% confidence limits 3.86 to 4.08 425 

m∙s-1), the velocities used for 95% CV (3.71 ± 0.38 m∙s-1) and 105% CV (4.21 ± 0.42 m∙s-1) were close 426 

to CV. This may have resulted in less pronounced differences in motor control between heavy and 427 

severe domains. Further research should examine changes to variability and complexity of lower limb 428 

angular kinematics over a greater range of intensities. 429 

Previous works have demonstrated increased complexity of movement, as quantified by 430 

accelerometers (McGregor et al. 2009; Murray et al. 2017) as well as through the use of stride-to-stride 431 

measurements (Jordan et al. 2006) with greater running velocities. When considering the regularity of 432 

angular kinematics, greater complexity has been demonstrated during running when compared to 433 

walking (Estep et al. 2018). The entropy values shown by Estep et al. (2018) during running at a self-434 

selected velocity are lower than the current study. The authors used approximate entropy which should 435 

result in similar values when similar data lengths are inputted to SampEn (Pethick et al. 2015). During 436 

running, Estep and colleagues (2018) reported an average velocity of running (2.56 ± 0.27 m∙s-1) was 437 
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much lower when compared velocities in the current study which may account for the discrepancy 438 

between studies. No previous investigators have examined changes to the complexity of angular 439 

kinematics at different velocities of running using non-linear analysis, limiting direct comparisons to 440 

existing literature. 441 

Effect of time on variability and complexity 442 

Alterations to the complexity of lower limb kinematics during exercise were only evident in few variables 443 

at the hip and knee as a result of time (Table 4; Table 5). When changes to complexity and variability 444 

were apparent over time, these occurred irrespective of intensity. In line with previous studies examining 445 

variability of spatiotemporal gait parameters including stride intervals (Mo and Chow 2018; García-446 

Pinillos et al. 2020), a greater number of changes were evident in variability, demonstrated by increases 447 

in standard deviation between the first epoch and last epoch (Table 3). To the best of our knowledge, 448 

changes to the complexity of lower limb angular kinematics over time have not previously been 449 

explored. In line with previous studies using accelerometers (Schütte et al. 2018), it was anticipated 450 

that complexity of movement would decrease with time. It was expected that greater decreases in 451 

complexity in trials above CV would be evident. Increased regularity was evident in internal/external 452 

rotation at the hip at velocities equal to or above the CV. Similarly, when running at or below CV, knee 453 

internal/external rotation exhibited greater self-similarity in the last epoch when compared to the first. 454 

Changes as a result of time in this study are likely to be attributed to two mechanisms: fatigue or 455 

habituation. Habituation in this case would be changes to variability and complexity in order to adapt 456 

the neuromuscular system to the running environment (e.g. surface) and running demands (e.g. 457 

velocity). 458 

Fatigue has been implicated with the onset of maladaptive movement patterns at the hip and has been 459 

implicated with numerous lower limb injuries (Dierks et al. 2008; Powers 2010; Schütte et al. 2018). 460 

The increased complexity of hip movement in the transverse plane over time in this study may indicate 461 

a protective mechanism which allows for greater adaptability to external stressors during increased 462 

fatigue. The increase in complexity observed in the current study suggests that the ability of the system 463 

to explore solutions to perturbations affecting the transverse plane improves over time at velocities 464 

equal to or above CV. This may be a strategy which mitigates the increased risk of injury by rendering 465 

the system more able to stabilise joints and decrease loading on passive structures. Conversely, at the 466 

knee during velocities at or below CV, DFA-α values increase over time indicating greater self-similarity. 467 

A similar finding was found at 95% in knee flexion/extension, with SampEn values decreasing indicating 468 

greater regularity. These phenomena may be due to habituation and a lack of external stressors acting 469 

about the knee joint at low velocities allowing it to ‘switch off’. The roles of the knee during running are 470 

to act as an intermediary between hip and ankle as well as contributing to lower extremity stiffness to 471 

ensure efficiency of movement. Extraneous complexity at lower velocities may be inefficient and this 472 

may be a method of maintaining efficiency during running at lower velocities. A similar strategy may 473 

have not been necessitated at the hip due to the importance of hip musculature in maintaining lower 474 

limb stability (Powers 2010), and the ankle due to its ability to respond rapidly to proprioceptive feedback 475 

(Voloshina and Ferris 2015). 476 



   

 

  14 

A common feature of performing sustained running is a reduction in the force generating capacity of 477 

musculature over time (Nicol et al. 1991; Boullosa et al. 2011; Girard et al. 2012). Previous research 478 

has consistently demonstrated increased variability concomitantly with a decrease in force production 479 

(Pethick et al. 2015). Briefly, this phenomenon has been attributed to alterations in muscle activation 480 

including increased motor unit synchronisation (Taylor et al. 2003), changes to the physiological 481 

organisation of motor units (Missenard et al. 2009), and possible changes to common drive (Farina and 482 

Negro 2015). Whether these central mechanisms are independent of, or are adjustments to, peripheral 483 

mechanisms remain unclear. Given that changes to standard deviation were observed above and below 484 

CV, our findings support the notion that changes to variability are controlled centrally (Missenard et al. 485 

2009). Due to increased motor unit synchronisation associated with fatigue (Taylor et al. 2003), the 486 

observation of changes to variability alongside minimal changes to the temporal structure of kinematics 487 

was unexpected. This may be due to temporal constraints on movement placed upon the participants 488 

by the use of a motorised treadmill (Lindsay et al. 2014). When considering whole body movements the 489 

variability of ground reaction force and knee moments decreased and time-dependent measures of 490 

variability (SampEn) increased with fatigue during a side stepping task (Cortes et al. 2014). The contrary 491 

findings of the current study may be explained by differences in task. Cortes et al. (2014) measured 492 

variability of a side-stepping task which had greater degrees of freedom than running on a treadmill. It 493 

has previously been suggested that excessive variability of movement as a result of running fatigue 494 

may represent a lack of coordination, leading to an increased energy expenditure (Le Bris et al. 2006). 495 

The increased variability in this study may be either be viewed as a loss of system control (Stergiou 496 

and Decker 2011), or as a response to increase adaptability in a temporally constrained environment 497 

to mitigate increased injury risks associated with fatigue. 498 

In the current study, fatigue was not measured directly and so changes to complexity or variability 499 

between the first and last epochs cannot be solely attributed to the effects of fatigue. However, it is 500 

likely that task failure observed in velocities above CV coincided with a marked decrease in the force 501 

generating capacity of the lower limb musculature (Boullosa et al. 2011). It is likely that due to the lack 502 

of distinctive changes of complexity between velocities above and below CV, changes to variability 503 

during running are mediated by both central and peripheral fatigue. Pethick et al. (2019) showed 504 

decreases in the complexity and variability of torque output was inextricably linked to the accumulation 505 

of metabolites in isolated movements. It could be that due to greater cognitive demands of whole-body 506 

movement that the complexity and variability of lower limb kinematics are not wholly determined by 507 

accumulation of metabolites. Indeed, previous research examining dual-task gait has demonstrated 508 

changes to variability in walking with the addition of cognitive tasks (Beauchet et al. 2005; Yogev-509 

Seligmann et al. 2008). These results alongside the current findings suggest that executive function 510 

and finite attentional resources affect variability and complexity of locomotion. This may explain the lack 511 

of clear differences between changes to movement complexity and variability throughout trials between 512 

velocities above and below CV. Moreover, the mechanisms by which fatigue occurs may be different in 513 

single joint isometric exercise when compared to running. The decline of torque production during single 514 

joint isometric exercise is likely to be due to events occurring at the muscle (Place et al. 2009; Burnley 515 

et al. 2012). In addition to locomotor muscles, whole-body exercise is associated with greater demands 516 
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on the pulmonary system (Amann 2012), and is usually terminated with the attainment of V̇O2max 517 

(Burnley and Jones 2018). Further research may seek to expound on the relationship between central 518 

and peripheral fatigue and complexity during whole body movement. 519 

Proximal changes to movement variability and complexity 520 

Differences in the amount of variability and complexity as a result of manipulating velocity occurred 521 

more frequently at the hip joint when compared to the knee and ankle. This may be explained by the 522 

morphology and neurology of the lower limb musculature. Previous studies have examined the 523 

respective contribution of the hip, knee and ankle muscular function when running velocity is increased 524 

(Lemaire and Robertson 1989; Belli et al. 2002; Hanon et al. 2005). According to the findings of the 525 

previous authors, the relative contribution of the hip musculature increases concomitantly with 526 

increased running velocity. During running, the knee and ankle maintain high joint stiffness before and 527 

during the contact phase to allow for economical force production and elastic energy savings (Biewener 528 

and Roberts 2000). The largely unchanged complexity and variability observed at the knee and ankle 529 

may be a control strategy to preserve running efficiency at higher velocities (Schütte et al. 2017). 530 

Furthermore, it has been suggested that muscles that act around the ankle rely on higher gain 531 

proprioceptive feedback from ground contact, in contrast to the hip which is primarily feed-forward 532 

controlled (Daley and Biewener 2006). Increases in complexity as a result of higher velocities seen 533 

primarily at the hip may increase the adaptability to external stressors within proximal musculature, 534 

which is relatively insensitive to changes during stance (Daley et al. 2007). This could act to preserve 535 

stability of the centre of mass during running at greater velocities. An increase in complexity of ankle 536 

movement at greater velocities may not be necessary to accommodate external stressors, due to higher 537 

gain proprioceptive feedback regulation and enhanced capability to respond to perturbations (Voloshina 538 

and Ferris 2015). Given the movement about the knee is largely dependent on the force balance 539 

between hip and ankle (Daley et al. 2007), the velocity mediated alterations at proximal and distal joints 540 

may not be large enough to alter knee dynamics. 541 

Limitations 542 

A motorised treadmill was used to maintain a controlled environment between testing sessions and to 543 

enable the collection of large kinematic datasets using 3D motion analysis. The velocity of running is 544 

more variable overground when compared to treadmill running, even when pacing is controlled (Riley 545 

et al. 2008). Furthermore, when compared to overground running, treadmill running has been shown to 546 

result in greater regularity through greater constraint and increased voluntary control (Lindsay et al. 547 

2014). Therefore, the dynamics of lower limb kinematics exhibited in this study may not be fully  548 

representative of lower limb kinematics of overground running. Moderately trained endurance runners 549 

participated in this study, so comparisons with other level groups may be limited since biomechanical 550 

differences have been reported between endurance runners of different performance levels (Ogueta-551 

Alday et al. 2018). 552 

Conclusion 553 

The findings of this study demonstrate changes to kinematic complexity and variability over time are 554 

consistent between heavy and severe intensity domains during running. The findings suggest the CV 555 
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does not demark a boundary above which there are changes to complexity or variability in kinematics 556 

during treadmill running over time. Decreases in DFA-α and increased SampEn in a number of 557 

kinematic variables at 115% CV suggest that running at a velocity substantially above CV results in 558 

increased complexity of movement. Changes over time to angular kinematics during running on a 559 

motorised treadmill may be limited to fluctuations in variability in lieu of changes to complexity due to 560 

temporal constraints. Furthermore, changes to movement strategies adopted may be more pronounced 561 

at the hip when compared to more distal joints. 562 
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 791 

Figure 1. Schematic of experimental design. CWR, constant work rate trials performed in a 792 
randomised order. Visits 2 and 3 were identical apart from the velocity at which the four CWR trials 793 
were performed (60% Δ, 70% Δ, 80% Δ and 100% MAV; where Δ refers to the velocity difference 794 
between vGET and the MAV). The numbers denote the order and not the velocity at which they were 795 
performed. Each of the visits 4-7 differed only in the velocity at which trials were performed (either 796 
95%, 100%, 105%, or 115% CV in a randomised order). 797 
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Figure 2. Changes to hip flexion/extension sample entropy (A), DFA-α (B), and standard 
deviation (C) over the course of trials performed at 95% CV (open circles), 100% CV (black 
circles), 105% CV (open squares), and 115% CV (black squares). For clarity error bars (± SD) 
have been omitted for all but the final data point. *Different from first epoch P < 0.05; 
aDifferent from 115% CV P < 0.05; bDifferent from 105% CV P < 0.05. 
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Figure 3. Changes to hip adduction/abduction sample entropy (A), DFA-α (B), and standard 
deviation (C) over the course of trials performed at 95% CV (open circles), 100% CV (black 
circles), 105% CV (open squares), and 115% CV (black squares). For clarity error bars (± SD) 
have been omitted for all but the final data point. *Different from first epoch P < 0.05; 
aDifferent from 115% CV P < 0.05. 
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Figure 4. Changes to hip internal/external rotation sample entropy (A), DFA-α (B), and 
standard deviation (C) over the course of trials performed at 95% CV (open circles), 100% 
CV (black circles), 105% CV (open squares), and 115% CV (black squares).  For clarity error 
bars (± SD) have been omitted for all but the final data point. *Different from first epoch P 
< 0.05; aDifferent from 115% CV P < 0.05. 
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 995 
 996 
Table 1. Parameter estimates derived from Equations 2-4 and the “best individual fit” model 997 

 998 

 999 

 1000 
 1001 

Table 2. Trial parameters, pulmonary V̇O2,blood [La], and heart rate responses during trials 1002 
performed below (95% CV), at (100% CV), and above (105% CV and 115% CV) critical velocity 1003 

 
R2 CI 95% (m∙s-1) CV (m∙s-1) CV SEE (m∙s-1) CoV% D′ (m) D′ SEE (m) CoV% 

v-Tlim model 0.885 - 1.000 0.27 ± 0.18 3.94 ± 0.39 0.04 ± 0.03 1.05 ± 0.69 144 ± 49 10 ± 7 6.64 ± 3.68 

D-Tlim model 0.987 – 1.000 0.27 ± 0.15 3.97 ± 0.41 0.04 ± 0.02 1.07 ± 0.61 141 ± 44 10 ± 7 6.71 ± 3.84 

1/Tlim model 0.913 – 1.000 0.31 ± 0.15 3.99 ± 0.41 0.05 ± 0.02 1.22 ± 0.58 138 ± 41 10 ± 6 7.06 ± 3.87 

BIF 0.987 – 1.000 0.22 ± 0.12 3.94 ± 0.42 0.04 ± 0.02 0.92 ± 0.70 141 ± 44 9 ± 6 6.34 ± 3.32 

Values are expressed as Mean ± SD. R2 values are presented as the range. SEE, standard error of estimate; CV, critical 
velocity; CI 95% CoV, coefficient of variation;  v-Tlim, hyperbolic velocity-time;  D-Tlim, linear distance-time; 1/Tlim, linear 
inverse-of-time; BIF, ‘best individual fit’. 

 95% CV 100% CV 105% CV 115% CV 

Velocity (m∙s-1) 3.71 ± 0.38 3.94 ± 0.42 4.21 ± 0.42 4.64 ± 0.49 

Tlim (min) 20.00 ± 0.00a,d,f 16.68 ± 4.41b,e,f 8.03 ± 2.36c,d,e 3.27 ± 0.67a,b,c 

V̇O2 at Tlim (L∙min-1) 3.27 ± 0.30a,b 3.40 ± 0.35b 3.53 ± 0.39a 3.37 ± 0.40 

B[La] (mmol.L-1) 4.45 ± 1.38a,c,e 7.25 ± 1.84b,d,e 9.03 ± 1.98c,d 9.48 ± 1.52a,b 

HR at Tlim (bpm) 169 ± 9a,d 177 ± 7b,d 184 ± 7a,b,c 176 ± 10c 

Values are expressed as Mean ± SD. Tlim, time to task failure; HR, heart rate. Mean values in the same 
row sharing the same superscript letters are significantly different from each other P < 0.05. 
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Table 3. Standard deviation values of lower limb kinematics in the first and last epoch of trials performed below (95% CV), at (100% CV), and above (105% 
CV and 115% CV) critical velocity 

 

 
 
 

 95% CV 100% CV 105% CV 115% CV 

 Start End Start End Start End Start End 

Ankle         

Plant/Dorsi 12.4 ± 1.2 13.1 ± 1.6 12.8 ± 0.8 13.8 ± 2.1 12.7 ± 1.1 13.8 ± 1.8* 12.8 ± 1.4 13.9 ± 1.8* 

Ever/Inv 4.8 ± 1.6 5.0 ± 1.2 4.4 ± 1.5 4.6 ± 1.0 4.6 ± 1.0 4.7 ± 0.9 5.1 ± 1.2 5.2 ± 1.2 

Int/Ext Rot 5.6 ± 1.3 6.9 ± 1.7* 5.7 ± 1.5 6.3 ± 1.6 5.4 ± 1.3 6.0 ± 1.2* 6.6 ± 1.3 7.1 ± 1.3* 

         

Knee         

Flex/Ext 28.3 ± 3.5 30.7 ± 3.4 29.9 ± 5.1 31.5 ± 4.2 30.1 ± 4.2 31.8 ± 3.9 32.3 ± 4.4 32.7 ± 4.1 

Ab/Add 8.6 ± 2.7 9.0 ± 3.0 9.0 ± 3.5 9.0 ± 3.3 8.7 ± 2.6 8.8. ± 2.7 8.9 ± 2.7 8.8 ± 2.5 

Int/Ext Rot 10.5 ± 1.6 12.1 ± 1.6* 10.7 ± 3.1 11.4 ± 2.4* 9.8 ± 1.8 10.6 ± 2.4 11.3 ± 3.4 11.9 ± 3.5* 

         

Hip         

Flex/Ext 19.3 ± 1.5a,d 20.7 ± 1.4a,d* 20.4 ± 1.9b,e 21.8 ± 1.7b,e* 21.6 ± 1.6d,e 23.2 ± 2.1d,e* 22.4 ± 1.7a,b,c 23.8 ± 1.6a,b,c* 

Ab/Add 4.4 ± 0.5 5.1 ± 0.7* 4.4 ± 0.6 5.0 ± 0.8* 4.4 ± 0.6 5.2 ± 1.0* 4.2 ± 0.7 4.9 ± 0.7* 

Int/Ext Rot 7.8 ± 2.0 7.8 ± 2.1 8.3 ± 2.5 8.0 ± 2.2 8.5 ± 2.4 8.2 ± 2.2 8.2 ± 1.6 7.9 ± 1.8 

Values are expressed as means ± SD;  Plant, plantarflexion; Dorsi, dorsiflexion; Flex, flexion; Ext, extension; Ever, Eversion; Inv, Inversion; Int, internal 
rotation; Ext, external rotation; Ab, abduction; Add, adduction; *Different from first epoch  P < 0.05; Mean values in the same row sharing the same 
superscript letters are significantly different from each other P < 0.05. 



   

 

  29 

Table 4. Sample entropy values of lower limb kinematics in the first and last epoch of trials performed below (95% CV), at (100% CV), and above (105% CV 
and 115% CV) critical velocity 

 
 
 
 

 95% CV 100% CV 105% CV 115% CV 

 Start End Start End Start End Start End 

Ankle         

Plant/Dorsi 0.130 ± 0.027 0.140 ± 0.024 0.134 ± 0.009 0.136 ± 0.017 0.147 ± 0.022 0.138 ± 0.017 0.162 ± 0.344 0.146 ± 0.033 

Ever/Inv 0.296 ± 0.065 0.270 ± 0.080 0.311 ± 0.057 0.307 ± 0.060 0.309 ± 0.046 0.312 ± 0.077 0.336 ± 0.067 0.335 ± 0.066 

Int/Ext Rot 0.346 ± 0.070 0.319 ± 0.076 0.332 ± 0.060 0.317 ± 0.087 0.339 ± 0.068 0.335 ± 0.056 0.375 ± 0.125 0.363 ± 0.131 

         

Knee         

Flex/Ext 0.185 ± 0.021 0.163 ± 0.025* 0.178 ± 0.030 0.168 ± 0.025 0.174 ± 0.032 0.167 ± 0.030 0.180 ± 0.024 0.172 ± 0.025 

Ab/Add 0.125 ± 0.038 0.135 ± 0.066 0.146 ± 0.040 0.144 ± 0.042 0.154 ± 0.050 0.162 ± 0.065 0.172 ± 0.066 0.175 ± 0.077 

Int/Ext Rot 0.294 ± 0.056 0.272 ± 0.057 0.291 ± 0.051 0.281 ± 0.047 0.274 ± 0.068 0.273 ± 0.071 0.322 ± 0.039 0.327 ± 0.070 

         

Hip         

Flex/Ext 0.113 ± 0.022a 0.119 ± 0.012a 0.119 ± 0.021b 0.115 ± 0.017b 0.121 ± 0.018c 0.119 ± 0.013c 0.136 ± 0.020a,b,c 0.132 ± 0.014a,b,c 

Ab/Add 0.245 ± 0.054 0.246 ± 0.048 0.235 ± 0.047 0.240 ± 0.049 0.242 ± 0.033 0.239 ± 0.033 0.263 ± 0.045 0.250 ± 0.036 

Int/Ext Rot 0.211 ± 0.062 0.229 ± 0.080 0.200 ± 0.066 0.220 ± 0.069* 0.227 ± 0.85 0.251 ± 0.094* 0.243 ± 0.079 0.257 ± 0.077* 

Values are expressed as means ± SD;  Plant, plantarflexion; Dorsi, dorsiflexion; Flex, flexion; Ext, extension; Ever, Eversion; Inv, Inversion; Int, internal 
rotation; Ext, external rotation; Ab, abduction; Add, adduction; *Different from first epoch  P < 0.05; Mean values in the same row sharing the same superscript 
letters are significantly different from each other P < 0.05. 
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Table 5. Detrended fluctuation analysis-α values of lower limb kinematics in the first and last epoch of trials performed below (95% CV), at (100% CV), and 
above (105% CV and 115% CV) critical velocity 

 95% CV 100% CV 105% CV 115% CV 

 Start End Start End Start End Start End 

Ankle         

Plant/Dorsi 0.723 ± 0.047 0.741 ± 0.029 0.720 ± 0.033a 0.740 ± 0.036a 0.718 ± 0.040b 0.736 ± 0.038b 0.698 ± 0.048a,b 0.702 ± 0.038a,b 

Ever/Inv 0.669 ± 0.050 0.688 ± 0.053 0.673 ± 0.044 0.660 ± 0.034 0.658 ± 0.037 0.664 ± 0.044 0.663 ± 0.054 0.651 ± 0.055 

Int/Ext Rot 0.621 ± 0.102 0.619 ± 0.129 0.653 ± 0.061 0.640 ± 0.059 0.665 ± 0.105 0.645 ± 0.062 0.628 ± 0.080 0.624 ± 0.076 

         

Knee         

Flex/Ext 0.732 ± 0.029 0.756 ± 0.027 0.729 ± 0.026 0.745 ± 0.023 0.730 ± 0.031 0.739 ± 0.025 0.724 ± 0.040 0.726 ± 0.030 

Ab/Add 0.754 ± 0.033 0.760 ± 0.043 0.744 ± 0.040a 0.756 ± 0.039a 0.737 ± 0.040 0.735 ± 0.043 0.719 ± 0.058a 0.715 ± 0.053a 

Int/Ext Rot 0.631 ± 0.071 0.660 ± 0.072* 0.624 ± 0.066 0.640 ± 0.067* 0.630 ± 0.073 0.639 ± 0.066 0.606 ± 0.075 0.617 ± 0.060 

         

Hip         

Flex/Ext 0.802 ± 0.027a,d 0.810 ± 0.018a,d 0.790 ± 0.024b 0.811 ± 0.020b 0.783 ± 0.029c,d 0.799 ± 0.018c,d 0.765 ± 0.035a,b,c 0.768 ± 0.023a,b,c 

Ab/Add 0.778 ± 0.044 0.775 ± 0.031 0.783 ± 0.049 0.775 ± 0.031 0.751 ± 0.049a 0.758 ± 0.025a  0.753 ± 0.062a 0.735 ± 0.039a 

Int/Ext Rot 0.758 ± 0.067a 0.765 ± 0.064a 0.763 ± 0.048b 0.775 ± 0.046b 0.743 ± 0.060c 0.751 ± 0.063c 0.722 ± 0.061a,b,c 0.721 ± 0.061a,b,c 

Values are expressed as means ± SD; Plant, plantarflexion; Dorsi, dorsiflexion; Flex, flexion; Ext, extension; Ever, Eversion; Inv, Inversion; Int, internal rotation; 
Ext, external rotation; Ab, abduction; Add, adduction; *Different from first epoch  P < 0.05; Mean values in the same row sharing the same superscript letters are 
significantly different from each other P < 0.05. 

 


