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Abstract

This review is a primer on recently established geometric methods for observ-
ables in quantum eld theories. The main emphasis is on amplituhedra, i.e.
geometries encoding scattering amplitudes for a variety of theories. These per-
tain to a broader family of geometries called positive geometries, whose basics
we review. We also describe other members of this family that are associated
with different physical quantities and brie y consider the most recent develop-
ments related to positive geometries. Finally, we discuss the main open prob-
lems in the eld. This is a Topical Review invited by Journal of Physics A:
Mathematical and Theoretical.

Keywords: scattering amplitudes in maximally supersymmetric Yang—Mills
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1 Introduction

Our understanding of quantum eld theories is rapidly changing. In recent years we have wit-
nessed the birth of a new paradigm for studying certain physical quantities. This development
has been mainly driven by the investigation of scattering amplitudes, with the discovery of
new fascinating geometric constructions underlying them. In this geometric description, the
scattering amplitudes—and, more generally, the physical quantities—are encoded in partic-
ular bounded regions, with appropriate properties on their boundaries. Despite differing in
detail, these constructions rely on a common mathematical structure called positive geometry.
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Nowadays, positive geometries are appearing for a wide spectrum of theories and quantities.
These range from scattering amplitudes to correlation functions and cosmological observables.
A positive geometry is de ned as a real, oriented, closed geometry with boundaries of all co-
dimension. Each boundary is again a positive geometry. The most important feature is that
every positive geometry has a unique differential form, called the canonical form, with log-
arithmic singularities along all boundaries. Moreover, the residue along a boundary is given
by the canonical form on the boundary, as will be de ned precisely in the next section. For
physically relevant positive geometries, the canonical form is a physical quantity. Locality and
unitarity manifest themselves by the fact that, when we approach one of the boundaries, the
quantity which we study appropriately factorizes into smaller pieces. This is a recurring pat-
tern in high-energy physics, where it is common to use recursion relations to construct more
complicated objects from simpler ones.

What we now call ‘positive geometries’ have made their rst appearance in supersymmetric
gauge theories, and were inspired by the work of Hodges [1], who rst showed that a partic-
ular amplitude could be written as the volume of a polytope. This led to the de nition of the
amplituhedron [2], which computes tree- and loop-level (integrands of) n-point amplitudes
of any helicity sector in maximally supersymmetric Yang—Mills theory in the planar limit in
momentum twistor space. Few years later, for the same theory, the momentum amplituhedron
was de ned [3], which computes the tree-level amplitudes directly in spinor helicity space.
Nowadays, we have found examples of such structures for scattering amplitudes and other
observables in a variety of theories. For instance, the kinematic associahedron [4] computes
tree-level amplitudes for the bi-adjoint 3 theory. On-going works have extended kinematic
and worldsheet associahedra to loop-level amplitudes in 2 theory, generalized worldsheet
and string integrals, and uncovered deep connections with mathematics such as cluster alge-
bras, tropical geometry and convex geometry. These geometrical constructions have appeared
very recently also in cosmology [5]: the cosmological polytope gives a connection between
positive geometries and the individual Feynman diagrams contributing to the wave function
of the Universe, analogously to the one seen for scattering amplitudes. Positive geometries
are arising also in more general conformal eld theories (CFT), beyond maximally super-
symmetric Yang—Mills theory. A novel geometric interpretation of the conformal bootstrap
equation has been discovered, which leads to new insights into the four-point functions in
CFT [6].

In this review, we present an extensive description of ‘amplituhedra’ and, more generally, of
positive geometries which underlie physical quantities. In section 2 we start by introducing the
mathematical notion of positive geometries, explaining how to determine the canonical form
and giving few simple examples. In particular, we de ne the positive Grassmannian, which
provides an auxiliary space used to de ne amplituhedra later on. Section 3 focuses on the pos-
itive geometries for (planar) N = 4 super Yang—Mills (sSYM). In particular we will describe
the amplituhedron, the correlahedron and the momentum amplituhedron, which is relevant for
tree-level amplitudes directly in spinor helicity space. We follow in section 4 with amplituhedra
for bi-adjoint cubic scalar theory and in section 5 with positive geometries relevant for observ-
ables other than scattering amplitudes. Finally, in section 6 we summarize recent advances
related to positive geometries, including relations to string theory and tropical geometry. We
devote the appendix to introduce some relevant notation.

2. Positive geometries

We start our survey by providing the de nition of positive geometries, somehow reversing
the chronological order of the developments described in this review. This has however the
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advantage of allowing us to discuss all objects in the following sections in a uni ed frame-
work. We provide here a simpli ed description of this class of geometries and we refer the
reader to the original paper where positive geometries were de ned [7], for a precise de nition.
Importantly, there are two main ingredients that we need to specify in order to de ne a posi-
tive geometry: a geometric space and a rational differential form. The space is given by a pair:
a complex variety X which provides an ambient space, inside which we de ne a subset X
of its real slice. Then the differential form (X, X o) needs to be meromorphic on X and to
behave logarithmically when approaching any boundary of X o. Moreover, when we restrict
the differential form (X, X ) to any boundary of X ¢ by performing an appropriate residue
operation, we obtain the canonical differential form for this boundary.

2.1 Definition

Positive geometries [7] naturally live in complex projective spaces, which we denote as PN,
and their real parts PN(R). We de ne X to be a complex projective algebraic variety of complex
dimension D and X(R) to be its real part, and we denote by X X(R) an oriented set of real
dimension D. A D-dimensional positive geometry is a pair (X, X ) equipped with a unique
non-zero differential D-form (X, X ) satisfying the following recursive axioms:

e ForD = Owehavethat X = X gisasinglereal pointand (X,X () = %1 dependingon
the orientation of X .

e For D > 0 we have that every boundary component (C,C ) of (X, X o) is a positive
geometry of dimension D — 1. Moreover, the form (X, X o) is constrained by the residue
relation

Resc (X,X 0): (C,C o), (21)

along every boundary component C, and has no singularities elsewhere.

The residue operation Resc for a meromorphic form  on X is de ned in the following
way: suppose C is a subvariety of X and z is a holomorphic coordinate whose zero setz= 0
parametrizes C. Denote as u the remaining holomorphic coordinates. Then a simple pole of
at C is a singularity of the form

(u2)= () %+ (2.2)

z
where the ellipsis denotes terms smooth in the small z limit, and  (u) is a non-zero
meromorphic form on the boundary component. One de nes

Resc = . (2.3)
If there is no such simple pole then one de nes the residue to be zero.

2.2. Positive geometries in physics

When exploring positive geometries from the point of view of physics, we are interested in
de ning a region inside the kinematic space relevant for the problem at hand. Often this region
can be determined by studying the physical properties of the observables and, in particular, by
studying the structure of their singularities. For example, in the case of scattering amplitudes it
is known that they diverge when particular combinations of momenta vanish. This determines
the boundary structure of the sought-after region and gives strong indications to determine the
complete geometry and, afterwards, its canonical form.
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Positive geometries provide a broad class of, yet unexplored, geometries. In the physics con-
text we will however restrict our attention to a narrower class of objects and we will distinguish
two types of positive geometries relevant for applications in high-energy physics:

= Inthe rstclass of geometries we will have X = PP and X o will be de ned as a collection
of linear inequalities and therefore will have properties of a convex polyhedron. Examples
include projective simplices, projective embeddings of associahedra relevant for the *
theory, cosmological polytopes, cyclic polytopes and positive geometries for CFT.
= The second class of objects is related to Grassmannian spaces® and can be pictured as a
curvy version of convex polyhedra. It includes positive Grassmannians, the amplituhe-
dron, the momentum amplituhedron and the correlahedron. The only member in this
class which is proven to be a positive geometry is the positive Grassmannian; however,
there is substantial evidence that also amplituhedra satisfy the axioms of positive geome-
tries. In particular, using physics motivations, explicit expressions for the canonical forms
(X, X o) of the amplituhedron and momentum amplituhedron can be found using the
Britto—Cachazo—Feng—-Witten (BCFW) recursion relations [8, 9].

2.3. Canonical forms and how to find them

In order to check whether a given pair (X, X o) is a positive geometry we need to have an
ef cientwayto nd rational differential forms (X, X g) associated to them. There are various
different ways to determine such forms and we list below some of the most commonly used:

e Triangulations: in this approach the geometry is divided into smaller pieces for which
the canonical forms are known. There are two types of triangulations: triangulations intro-
ducing spurious boundaries, or the so-called local triangulations, for which we have only
physical singularities but need to introduce additional points. Each element of a triangula-
tion of the rst type has non-physical singularities on spurious boundaries however, since
the canonical forms for each smaller geometry are logarithmic, then one gets cancella-
tions on each spurious boundary, leading to a differential form with singularities only on
the true boundaries of the positive geometry.

Finding triangulations of a given positive geometry is an interesting, and sometimes dif -
cult, task on its own. For projective convex polytopes there is a range of known algorithms to
accomplish it. On the other hand, for positive geometries in Grassmannian spaces it is often
possible to exploit the structure of the positive Grassmannian and arguments from physics to

nd their triangulations.

e Push-forwards: it is often possible to nd a simpler positive geometry which can be
mapped bijectively to (subsets of ) more complicated positive geometries. Then we can use
such a map to push-forward the known canonical form of the simpler positive geometry to
obtain the canonical form for the more complicated one. See appendix B for the de nition
of push-forward.

< Integral representations,dual geometry: for projective convex polytopes it is possible
to nd their dual polytopes using projective duality. The canonical differential form can
then be obtained from the volume of the dual geometry. This justi es the use of the notion
of volume form to indicate a canonical form. For positive geometries in Grassmannian

3 Since a projective space is also an example of a Grassmannian space, then some members of this family of geometries,
e.g. cyclic polytopes, will also belong to the rst class.
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spaces, the notion of a ‘dual’ is yet to be understood, but some work in this direction was
done in [7, 10].

« Direct construction from poles and zerosknowing that the singularities of the canonical
form are located solely at the boundaries of the space X o, it allows us to write (X, X o)
as a rational function with known denominator factors and a polynomial function in the
numerator. In various cases this numerator can be completely xed by imposing the residue
constraints from the de nition of the positive geometries [11].

 Integral representations,contour integrals: we will recall in the following that it is
possible to write the canonical forms for the amplituhedron and the momentum amplituhe-
dron as contour integrals over a Grassmannian space, and for the cosmological polytope as
a contour integral over the projective space. In simple cases, the positivity completely xes
the integration contour and allows one to write the volume form as a sum of appropriate
residues of this integral.

2.4. Basic examples of positive geometries

We start our exploration of positive geometries by giving few basic examples. In particular,
we introduce the general notion of projective polytopes, which include positive geometries
belonging to the rst class we mentioned earlier. We also recall the de nition of the pos-
itive Grassmannian and its properties, which will be relevant in our later explorations of
amplituhedra.

2.4.1 Projective polytopes. Positive geometries provide a class of spaces which are generi-
cally quite complicated; however, they also include simple and familiar objects. The simplest
examples of positive geometries are simplices, or rather their embedding into the projective
space. One de nes a projective m-simplex (P™, ) as a positive geometry in P™ cut out by
exactlym + 1 linear inequalities. If wetake Y  P™to be a pointin projective space with homo-
geneous components YA indexed by A= 0,1,..., m, then any linear inequality in projective
space is of the form Y - W = YAW, 0, where W R™ ! is a dual vector with components
W . The projective simplex is therefore the set

= {Y P"R)|Y-W; 0, fori=1,....m+ 1} (2.4)

Here the W;’s are projective dual vectors corresponding to the facets of the simplex. Every
boundary of a projective simplex is again a projective simplex, it is therefore easy to see
that projective simplices satisfy the axioms of a positive geometry. Moreover, we can write
down an explicit form of the canonical differential form (P™, ) in terms of the vertices
or, equivalently, in terms of the facets of . LetZ; R™ 1\{0} denote the vertices of  for
i=1,...,m+ 1. Then the canonical form is

2175 .. Zpey ™ Y ATY

P" )= : 2.5
( ) m' YZy...Zn YZo... Zye1r oo YZpe1...Zn—1 ( )
where we denoted
1 m+ 1
Y dy = (=DAYAdY! ... dyA ... dy™? (2.6)
’ A=1

where hatted differentials are omitted, and we introduced the brackets  which are maximal
minors of the matrix (Y,Z1,Z5,...,Z,). One interesting way of obtaining formula (2.5) is
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to use projective duality and derive it as the volume of the dual m-simplex, for more details
see for example [12]. To illustrate how the canonical form of a projective m-simplex satis es
the conditions from the de nition of positive geometries, let us choose (Z;)) = ! and let us
parametrize Y in a particular patch of the projective space P™ as Y = (Y1,¥s, .-, Ym: 1). Then
(2.5) reduces to

dy; dy, .-+ dyn
Yi' Y2 Ym

Each boundary of this m-simplex corresponds to y; = 0 and calculating the residue of (2.7)
at any of these boundaries yields the canonical form of an (m — 1)-simplex, as expected. By
continuing this procedure recursively, we end up with 0-simplices, for which the canonical
forms are 1, con rming that the m-simplex is a positive geometry. A similar calculation can
be done for generic Z;.

More generally, we can de ne convex projective polytopes with vertices Z3,7Z5, ..., Z,
R™ 1\{0}. We denote by Z the n x (m+ 1) matrix whose rows are given by the Z; and
assume that Z is a positive matrix, i.e. a matrix with all maximal minors positive. We de ne
A=A@)= A(Z1,22,...,Zy) P™(R) to be the convex hull of points Z, ..., Z,

(P, )=

(2.7)

n
A = Conv(Z) = Conv(Zy,...,Z,) = ¢iZi P"(R)|ci 0,i=1,...,n
i=1

(2.8)

We usually restrict to the case where the points Z1, . . ., Z, are all vertices* of A. The polytope A
is called a convex projective polytope and it is easy to check that it de nes a positive geometry.
This follows from the fact that every polytope A can be triangulated by projective simplices.
The canonical form (P™, A) of a projective polytope can then be found as the sum of canonical
forms for the projective simplices triangulating it.

Finally, we observe that every convex polytope in R™ can be uplifted to a projective polytope
in the following way: a convex polytope A can be described as the convex span of some number
of vertices z3,...,z,, where z; R™. Then we can embed it into a projective space P™ by
constructing the points

1
Zi = , (2.9)
Z;

up to a rescaling. The projective polytope associated to A is then A(Zy, .. ., Zn).

2.4.2. Positive Grassmannian. A more involved example of positive geometry is given by
the positive Grassmannian—a generalisation of a projective simplex. This positive geometry
plays also a crucial role in the de nition of amplituhedra later on, which in turn can be viewed
as generalisations of projective polytopes.

We start by de ning the (real) Grassmannian G(k,n) (for 0 k n) which is the space
of all k-dimensional subspaces of R". An element of G(k, n) can be viewed as a k < n matrix
of rank k modulo invertible row operations, whose rows give a basis for the k-dimensional

subspace. We de ne [n] = {1,...,n}, and denote by [E] the set of all k-element subsets of

41f some Z; is not a vertex of A then it lies in the convex hull of the remaining Z’s and therefore can be removed
without altering the shape of A.
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[n]. Given a Grassmannian elementV  G(k, n) represented by a k < n matrix A, for | [E] ,
we denote by p, (V) the k < k minor of A constructed using the columns in I. The p, (V) do not
depend on our choice of the matrix A (up to simultaneous rescaling by a nonzero constant),
and are called the Pliicker coordinates of V.

We say that V. G(k, n) is totally nonnegative if all Pliicker coordinates p,(V) 0 are non-
negative for all | [E] . The set of all totally nonnegative V. Gr(k, n) is the totally nonneg-
ative Grassmannian G. (k, n), which we will often refer to as the positive Grassmannian. For
M [E] , we take Sy to be the set of V. G, (k, n) with the prescribed collection of Pliicker
coordinates strictly positive, i.e. p,(V) > 0 forall I M, and the remaining Pliicker coordi-
nates equal to zero. We call Sy a positroid cell of G, (k,n). As shown in [13], the positroid
cells of G. (k, n) are in bijection with various combinatorial objects, including decorated per-
mutations  on [n] with k anti-excedances, J-diagrams D of type (k,n), and equivalence
classes of reduced plabic graphs G of type (k, n). The positive Grassmannian G. (k,n) is a
k < (n — k) dimensional space, with an interesting and well-understood boundary structure
including positroid cells of all dimensions, which is known to be homeomorphic to a ball [14].
One can show, see e.g. [15], that for the positive Grassmannian G (k, n) there exists a set of
coordinates i, called canonical coordinates, such that its top-dimensional differential form
can be writtenas = ;dlog ;. The boundaries of the positive Grassmannian correspond
to taking one of these ; to zero and therefore the residue is obtained by removing one of the
dlog’s from . The resulting form is the canonical form of the boundary and this procedure
can be continued recursively until one arrives to zero-dimensional boundaries for which the
form is trivially 1. This shows that the positive Grassmannian is a positive geometry.

The positive Grassmannian has started to play a prominent role in the development for
scattering amplitudes after it was realized that the plabic graphs classi ed by Postnikov [13]
correspond to on-shell diagrams obtained by solving the BCFW recursion relations in pla-
nar N = 4 sYM theory. The latter allow one to nd the amplitude integrand as a sum of
(on-shell) graphs with trivalent vertices of two types, corresponding to two three-particle scat-
tering amplitudes As; and As,. Using this relation, the tree-level amplitude A5, where n
is the total number of particles and k refers to the helicity sector, corresponds to a partic-
ular collection of positroid cells in the positive Grassmannian G (k,n). A comprehensive
study of the relation between positive Grassmannians and scattering amplitudes can be found
in [15].

3. Amplituhedra for N = 4 sYM theory

After having presented simple examples of positive geometries and their properties, we are
now ready to study the rst example of such geometries relevant to physics. The focus of this
sectionison N = 4 sYM and we describe three geometries relevant for single-trace scattering

amplitudes in this theory: the amplituhedron Aff& and the loop amplituhedron An"L"Op, which

are de ned on the momentum twistor space, and the momentum amplituhedron Mfﬁz which
is de ned on the spinor helicity space. Moreover, we recall the de nition of the correlahe-
dron which is the geometry encoding the stress—energy correlators in planar N = 4 sYM.
The de nition of amplituhedra has been also extended beyond the cases relevant to physics: a
general de nition for the amplituhedron Af{‘:() was introduced in [2], while for the momentum

amplituhedron Mﬁ”ﬂ? for even m, in [16]. These are positive geometries which often serve as a
playground for testing the ideas for the physical case m = 4. In particular, much is known for
m = 1,2 as we summarize in the following sections.
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For each positive geometry we will follow a common template in describing its properties.
We start by providing a de nition, or in many cases few equivalent de nitions which highlight
different properties of the same geometry. Using these de nitions we explain the structure of
their boundaries which is necessary to determine whether they are positive geometries. Next,
we describe known methods for nding the canonical forms and, if available, provide explicit
expressions for them. In many cases no such explicit expressions are known and one needs to
refer to a case-by-case study. Finally, we explain how a relevant physical observable is encoded
by each positive geometry.

Before we delve into the world of amplituhedra, we remind the reader of a few basic
facts about scattering amplitudes for N = 4 sYM, which will set the stage and allow us to
compare the results which we obtain from positive geometries with known results for ampli-
tudes obtained using standard methods. We also comment on the symmetries of scattering
amplitudes.

3.1 Scattering amplitudesin N =4 sYM

Scattering superamplitudes in N = 4 sYM are de ned for on-shell chiral super elds, which
collect the on-shell multiplet into a single object by means of the Grassmann-odd variables ,
withA=1,...,4

_ At A, 1 e, 1 ABCD ™ 1 ABCD ~—
= G+ a +§ABS +§ABC D+EABCD G,

3.1)

with positive (resp. negative) helicity gluons G* (resp. G™), fermions , and scalars S. A
generic n-particle color-ordered superamplitude A, = An( 1, 2,-.., n)cCanbeexpandedin
terms of helicity sectors

An= A+ Ags+ oo+ Agpg,  (n 4), (3.2)

where A, is called the maximally-helicity-violating (MHV) amplitude, A, 3 is the next-to-
MHV (NMHV) amplitude and so on. More generally, Ay is the superamplitude for the
N“"2MHV sector and has Grassmann degree 4k, i.e. it is proportional to %, In the planar
limit, each amplitude A,k can be further expanded in the coupling constant

A= AIE+ AR, 3.3)
>0

where s the t"Hooft coupling. The positive geometries which encode the tree amplitudes A}{ﬁf
are A)_, and M), while the loop amplituhedron A, " encodes the integrands for A%
Importantly, the amplitudes are functions of kinematic variables and over the years various
kinematic spaces have been used to encode them. The most popular ones are momenta and
polarisation vectors, spinor helicity variables, twistor or momentum twistor variables, and their
appropriate supersymmetric extensions, see appendix A for a detailed descriptions of these

variables.

3.11 Grassmannian formulae. One of the early signs of positive geometries in the realm
of scattering amplitudes came from the realisation that momentum conservation, which is

8
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a quadratic constraint in the spinor helicity space®, can be linearized by introducing auxil-
iary spaces. More explicitly, the condition -, & &= 0 can be linearized by introducing an
auxiliary k-plane in n-dimensions, C = (c?), such that

C. =0 C- =0, (3.4)

where C is the orthogonal complement of C.

This led to a remarkable development proposed in [17], where the leading singularities of
the N = 4 sYM N¥"2MHV n-point amplitudes written in twistor space were described by an
integral over the space of k-planes in n dimensions, the Grassmannian G(k, n), along suitable
closed contours. Therefore the tree-level amplitudes can be written as

a k n
2 A€}

GLMA... 2. . .k+ D)...(n...n+ k—1) _ 4l4 izlc?w‘ !

Agie -
(3.5)

where WA are the super-twistor variables, see appendix A, and is a closed contour. The
denominator consists of the cyclic product of the minors M; = (ii+ 1...i+ k—1),i.e. the
determinants of (k < k) submatrices of the matrix C. The contour can be determined by
using e.g. the BCFW recursion relations, and performing the integral (3.5) reduces to eval-
uating a sum of residues, with each residue corresponding to a positroid cell in the positive
Grassmannian.

A very similar formula was proposed in [18] in terms of momentum supertwistors Z/A: one
can rewrite the amplitude as

AL = ATEW, (3.6)

where W, is the tree-level expectation value of the polygonal light-like Wilson loop dual to
the amplitude, see [19-22] and references therein, and we introduced k = k — 2. Then Wy
can be evaluated from

a,idtia
GLK)1.. K)2..k+1)...(n..n+k —1)
k n
x 44 t?Zi . (3.7
a=1 i=1

Wn,k =

The residues of the Grassmannian integral are in one-to-one correspondence with individual
terms in the BCFW recursion relations. Moreover, the BCFW recursion relations can be solved
in various independent ways and the identity between results can be understood as a conse-
quence of the residue theorem for these integrals. The different ways of solving the recursion
relations had also led Hodges [1] to argue that the NMHYV tree-level amplitude could be thought
of as the volume of a particular polytope in momentum twistor space, for which the different
BCFW solutions represent different triangulations. These ideas motivated the search for a geo-
metric representation of amplitudes and culminated with the formulation of the amplituhedron
[2], which we will describe in the next section.

5 Spinor helicity variables are introduced in appendix A.
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3.12. Symmetries of scattering amplitudes.  Animportant property of N = 4 sYM in the pla-
nar limit is the fact that it possesses a Yangian symmetry, which is an algebraic manifestation of
its quantum integrability. Indeed, the Lagrangian of N = 4 sYM is invariant under the super-
conformal group PSU(2, 2|4). Moreover, in the planar limit a hidden symmetry not visible at
the Lagrangian level appears: the dual superconformal symmetry [23]. This is a second, distinct
copy of PSU(2, 2|4). The combination of the two superconformal symmetry algebras forms a
Yangian structure, whose de nition we recall brie y in the following. For details see e.g. the
reviews [24, 25] and references therein. Let us call g the simple Lie algebra generated by the
generators J{:

PO, 301 = 1,539, (3.8)

where f,¢ are the structure constants of g and a= 1,...,dim g. The J’s form the so-
called level-zero Yangian generators. The Yangian Y (g) of a Lie algebra g is the Hopf algebra
generated by the set of J(’s together with another set J{, the level one, which obeys

O, 30 = 1,890, (3.9)

and therefore transforms in the adjoint representation of g.

Since N = 4 sYM is a superconformal eld theory, one expects this to be re ected in the
structure of its scattering amplitudes. This turns out to be true for tree-level amplitudes but not
at loop level, where the presence of infrared divergences breaks the symmetry. If we denote
with j, any generator of the superconformal algebra psu(2, 2|4) we can write®

jaAllee = 0, (3.10)

At loop level, the infrared effects can be taken into account by deforming the superconformal
generators: as for example in [26—-28] where it was shown how to rede ne them to restore
the symmetry at one loop. The dual superconformal symmetry is generated by a set of J;’s
being the dual copy of psu2,2|4). Through a suitable modi cation of (some of) the dual
superconformal generators, one can show the invariance of A, at tree level

jLAlee = 0. (3.11)

In [29] it was shown that the generators j, (3.10) together with one j, generate the Yangian
of the superconformal algebra, Y (psu(2, 2|4)). If instead we consider the amplitude with the
MHV-part factorized out, i.e. Wp in (3.6), the dual superconformal generators are the level
zero, and one (suitable modi ed) superconformal generator forms the level-one.

While proving the Yangian invariance in the spinor helicity and dual spaces is rather dif -
cult, and was explicitly veri ed only on a limited number of cases, using formulae (3.5) and
(3.7) allows one to beautifully check it for any n and k [30]. These formulae are invariant under
the Yangian Y psl(4]4) , which in momentum twistor space is generated by

JOHA = zZA | JIA = ZA___ 7 (i & i
( )B - i ZiB ( )B - i Zic j ZJB (| J)

(3.12)

A similar set of generators can be written in the twistor space.

6 In fact (3.10) is not completely exact, because of the so-called holomorphic anomaly.

10
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3.2. Amplituhedron

We start our journey through positive geometries relevant for physics with two prime examples,
the tree amplituhedron and the loop amplituhedron. The tree amplituhA(ﬂfkbis a positive
geometry encoding the tree-level scattering amplitGotethe momentum super-twistor spéce

and we can think of it as the generalisation ofjpotive polytopes intdte Grassmannian space,

in the same way as the positive Grassmannian is the generalisation of a projective simplex.
Originally, the tree amplituhedron was de ned 2] using an auxiliary Grassmannian space;

it can be however translated directly to momentum twistor space by performing a particular
projection. In both spaces the points inside the tree amplituhedron satisfy particular positivity
conditions B1], which uniquely determine them. Finally, using these positivity conditions, the
tree amplituhedron can be de ned directly iretmomentum twistor space as the intersection

of a subset of points satisfying particulagsipatterns with an af ne subspace, without any
reference to an auxiliary space. The majority of known results for tree amplituhedra has been
found form= 1, m= 2 and for the physical casa = 4, and we will mostly focus on these
cases. In particular, the complete boundary structure of these spaces is knawn fbr2 and

an explicit form of canonical forms can be found in all three cases (although there is no closed
formula form= 4).

The loop amplituhedroA njfo" has been de ned in] and provides a positive geometry for
integrands of loop amplitudeshh = 4 sYM. Itis de ned as the image of a space, generalizing
the positive Grassmannian, through a linear map. This construction is available only for the
case relevant for physies = 4. The loop amplituhedron also satis es particular sign patterns
[31]. While for one-loop amplitudes and for the four-point MHV amplitude at any loop various
results are available, at the moment not much is known beyond these cases.

3.2.1 Tree amplituhedron. Original de nition . Let us denote by (p, g) the set ofpx q
matrices with all maximal ordered minors positive. We consider a positive nzatrij .. (m+
k,n) with entrieszA for A= 1,...m+ k,i= 1...,n. These will be later reinterpreted as the
bosonisation of the momentum twistors.§). The tree amplituhedroA () is de ned as the
image of the map

2:G, (k,n) Gk, m+ k), (3.13)

which to each elemer® G (k,n), whereC = (c'), associate¥ = 2(C)= c-Z, orin
components

n
YA=  c'ZA (3.14)
i=1

On Ag"f() G(k,m+ k) one can de ne ak - m)-dimensional canonical differential form
f{“k) , thevolume formwith logarithmic singularitis on all boundaries of the space:

k
N (Y,2) = Y. Yed™y o (v, 2), (3.15)
=1

7Recall the relation between and the helicity sectd: k = kS 2, see sectio.1.1
8 For this reason the amplituhedron describes the dugtpal Wilson loop, which suggests that it should rather be
called Wilsonahedron.
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where (V' is thevolume functiorand  “_; Y1...Y, d"Y the standard measure on the
Grassmannia@(k , m+ k), which is a straightforward generalization of tB€L, m+ 1) mea-
sure @.6). We will describe more extensively the volume form later on. The geometric space

AL together with the form ! is (conjecturally) a positive geometry for allk andm.
Interestingly, the tree amplituhedrt&ﬂ“k) recovers familiar objects for special values of
its labels: ifZ is a square matrix, i.em+ k = n, thenAf{fk) is isomorphic to the posi-
tive Grassmannia®. (k,n). If k = 1, thenAg’f"l) is a projective cyclic polytope3]. Finally,
whenm= 1, Af}& can be identi ed with the complex of bounded faces of a cyclic hyperplane

arrangementd3]. Most importantly, the canonical form fflz encodes the tree-level amplitude

Anicr 2
Topological description The amplituhedron de nition implies that the points inside the
amplituhedron satisfy certain sign patter@d][ In particular, abbreviating; i for con-

venience, it is straightforward to show that¥if A f{“k) then the following determinants of
(m+ k) x (m+ k) matrices are positive

Yiig + 1...ir;ir;+1 > 0, (3.16)

whenmis even and

(S Y 1igiq + 1...imgringi+1 >0, Yihiz+ 1...imsiieg:+ 10 >0,

(3.17)
whenmis odd. Moreover, the following sequence of brackets
{ Y12...mS 1)m,..., Y12...(mS 1)n} (3.18)

has exactlyk sign ips. It was argued in31] that also the converse is true and we can de ne
the amplituhedron by demanding these sign patterns. This will allow us in the following to
introduce a de nition of the amplituhedron wdi does not refer to any auxiliary space.

De nition in the kinematic space. From the point of view of scattering amplitudes, the natural
space is the physical kinematic spaceesf see A.3), while theY-space on which the ampli-
tuhedron is de ned plays the role of an auxiliary space. In order to de ne the amplituhedron
directly on the kinematic spacetles rst notice that each elemeit G(k,m+ k) de nes

an mdimensional subspace mdimensions in the following way: leY be an orthogonal
complement ofY and let us de ne

Z= (Y Az (3.19)

Formula @.19 provides a map : G(k,m+ k) Z (n) from the auxiliary spac&(k , m+

k), where the amplituhedron lives, to the kinematic spa@® whose elements are the bosonic
components of momentum supertwistors, nanZgly) = (2). By composing this map with z

we can de ne the amplituhedro@ng"f()'Z directly in the momentum twistor space as the image
of the positive Grassmannia. (k , n):

Al = z Gi(k,n) . (3.20)

12
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The canonical form on this spaé«sgf;)'Z depending on thees variables can be found by using
the push-forward from Aﬁ'j"k):

W= (3.21)

This opens up the possibility of a description of the amphtuhe@rfﬂﬁ without the need of

introducing auxiliary variable¥. To show this, let us start by writing in a particular patch
of the Grassmannian space as

Sy
Yh= (Y )A= Loerl ¥ (3.22)
k x k

Then, by decomposing the matixin the following way

a

zZh = , (3.23)

where ¢ ) is a xed m-plane inn dimensions and is a xed k -plane inn dimensions, we
have that8.19 can be directly written as

F=z4y . (3.24)
This allows us to de ne the followingk - m)-dimensional subspace of the kinematic space
VIR = {Z2: 2= 7%+ y }, (3.25)

where we assume that when we assenmablend as in 8.23 thenZ is a positive matrix.

We also de ne a winding spacw(m) as the subset of kinematic space consisting of points
satisfying conditions3.16)...8.18 after we project them down to the kinematic space (which
results in removing from the brackets). For example, flor= 2 this winding space takes the
following form:

W@ = {ii+1,>0 andthesequen¢el2,, 13 ..., In ;} hask sign ips},
(3.26)

where we have de ned the bracket$ , = 7'Z S Zz}. The amplltuhedrovfk(m)Z can then be
alternatively de ned directly in kinematic space as the intersection:

A (m) z_ V(m) W (m)

3.2.2. Boundaries and volume form.  The amplituhedrorA () is (conjecturally) a positive
geometry: its canonical form | (m) has logarithmic singularitgeon all its boundaéis. The rst
step to rigorously check this statement isto ndthe boundary strati caﬂdkﬁ@f The general
structure of the amplituhedron boundaries is however unknowmfer2. Despite this fact, it

is often enough to know the facets of the amplitditom, i.e. the co-dimension one boundaries,
to nd a candidate logarithmic form. The facets of the amplituhedron are known for the rst
few values ofm:

13
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€m=1:.Yi =0,fori=1,...,n,
€m=2:Yi+1 =0,fori=1,...,n,
€m=4: Yii+ 1jj+1 =0,fori< j=1,...,n

Beyond facets, we know the complete boundary strati cation onlyrfer 1, 2: form= 1
[33] the amphtuhedron\(l) can be identi ed with the wi-known complex of bounded faces
of a cycllc hyperplane arrangement while for= 2 the complete boundary strati cation
of A( has been studied iBfl]. At the moment, the boundary strati cation for the most
mterestrng physical casa = 4 is not known.

Knowing the boundaries of the amplituhedron are now looking for a differential form
with logarithmic singularities on these boundsi As we have already advertised there are
various different methods to nd such canonical form, as we describe below.
Triangulations. The dimension of the positive Grassmann@n(k,n) is larger than the
dimension of the amplituhedrdh(m) provided thain > m+ k. This means that the map;
is not injective and the image is covered in nitely many times. One way to nd the canoni-
cal form is to nd a triangulation of the amplitudeon, namely a collection of positroid cells
S = {S} in G: (k,n) with each mapping injectively to iisnage and their images being dis-
joint and dense in the amplrtuhedron Since we know canonical fornfsr each cell inS,
then the volume form can be found by evaluating the push-forward of the canonical forms

via the function 7 and then summing over all positroid cells in the triangulagon

m= (2 (3.27)
S S
The result of the push-forward is a logarithmic differential form@(& , m+ k) which can be
written as

MW= dylog 4(Y.2) dylog ,(Y,2) --- dylog ,(Y.2), (3.28)
S S

where (Y, Z) are the canonical positive coordinates parametrizing theScell

Triangulations of amplituhedra hawbeen studied for various valuesof Form= 4 a
large class of triangulations can be found from BCFW recursion relationsmFoR they
were studied in35], where the number of triangles agach triangulation was conjectured to
be a Narajama number, while i@€] it was rigorously proved thaék(z) admits a triangulation
and in [L6] its triangulations were related to positroidal trrangulatlons of the hypersimplex

k+1n. FOrm= 1 examples of BCFW-like triangulations have been studie®8}. [In the
following we summarize the known resultsrfilhve canonical forms of amplituhedra coming
from triangulations:

€ m= 1 casefT]: for evenk we have

k

51:52: Yl"'Yk dY [1!jléllj1!"'1jk é:I-ljk]r (329)
=1 2 j181<ji<-<j, Sl<n 2 2
2
while for oddk
k
E]llz: YlkaY 1|jls1ljlr"'!jkslSl!ijl ’
' 2 2

=1 2 j1S1<ji< <, g, 51<nS1
2

(3.30)

14
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where
Liojare--0ik]i= .j°"'jk o, (3.31)
YJO Y]k
€ m= 2 case: seef] or [37]:
k
@ = Yi...Ye Y [1,ig,00+ 1;.. .51, ik + 1],
=1 2 ig<..i nS1
(3.32)
where
[plvql!rl;---;pqukvrk]
_ LSy (YD PGk s, 1 (3.33)
2 Ypgr Yaqr:s Ypr:s ... YROe York Ypre '
for any indicesp,, g., rs with s= 1,...,k and
VRS Ty v Seeke (3.34)

€ m= 4 case: the explicit answer for afl is known only fork = 1 for which the
amplituhedron is a cyclic polytope, see eq, [

@ = vidtyy L + 3j+ 1], (3.35)
i<j
where
..... i1iizigis 4
o LESES S (3.36)
Yiiolsla Yhisisls Yiglalgly Yiglsiglo  Yisiqiols
is a bosonized version &-invariants. Beyond = 1, the BCFW triangulation as a sum
over positroid cells can easily be found, and is for example implemented in the Mathe-

matica packagpositroid [38], however there is no known explicit general answer in
this case.

An interesting problem is to classify all possible triangulations, which produce a large set
of possible representations cdinonical forms and therefore of amplitudes. This problem has
been studied fam = 2in [16], where a subclass of triangulations, called regular triangulations,
has been identi ed with the nest cones in the positive tropical GrassmanB8@nKnowing
all regular triangulations orean de ne a secondary polytope, ea@rttex of which is a regular
triangulation. For conver-gons, which are the amplituhed&éﬂ, the secondary polytope is
the associahedron. For= 2 and generdt the secondary polytope is given by the dual of the
positive tropical fan16]. Form = 4 a construction of the secondary geometry is still unknown.
One possible approach to nd this geometry is to generalize the Jeffrey...Kirwan construction
of amplituhedron volume form#] beyondk = 1.

15
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Contour integrals. An alternative way to compute the volume function is given by evaluating
the following integral

d“"c | k g
m — [ 3 m+ K A A
T (2...K)(@3. .k + ). (L. § 1) V=S ez,

(3.37)

taken over a suitable closed contoyrn analogy with the Grassmannian integial4. The
contour can be determined for example by using the BCFW recursion relations: the BCFW
terms are residues of the integr8l37) and the relations select a particular combination of
them; see41] for a Mathematicé package implementing this. Theris de ned as the contour
encircling the poles of the integrand evaluating to these residues. Each residue corresponds to
the volume function on a triangles in the tree amplituhedron. Then the volume fundﬂbn
is calculated as a particular sum of such residues. There have been few attempts to x the
contour of integration without making referee to e.g. BCFW recursion relations. One can
use the sFeynman prescriptione and modify the denominato& 8%)(by adding a positivé
to each factor in the denominatat, [LQ]. Then, after solving the delta function i8.87), one
endsupwith& x (nS mS k)-dimensionaliintegral which can be performed over the product
of real lines. Using the positivity of external data one can show that this contour produces the
correct answer fok = 1 and everm. A generalisation to ank is not known at the moment.
Alternatively, fork = 1 ork = nS mS 1, the contour can be xed using the Jeffrey...Kirwan
prescription £0].
Poles and zerosAn alternative approach was suggestedlif],[where canonical forms were
found by demanding their regularity everywhere outmdeAﬁﬁ) This was based on the
observation that only a small subset of intersections of the co-dimension one boundaries are
themselves the amplituhedron boundaries. The majority of intersections is located outside the
amplituhedron and the canonical form must be regular when approaching them.

Letus present an example fior= 2. The facets oA 2’ are characterized byrii+ 1 = 0
and positivityimpliesYii+ 1 > Oforallp0|ntsY|n5|dethe amplituhedron. Therefore a factor
of Yii+ 1 for anyi has to appear in the denominator cff)

N (Y)

@ = yd; .
n ' vy12 v23 ... Yyn

=1

(3.38)

By taking residues of ) we can access the lower-dimensional boundariea . The
residues are found by settiny . . Y... = --.= 0and only a small subset of them will
correspond to amplituhedron boundaries,,themalnlng are spurious poles and the numera-
tor N (Y) has to vanish whel approaches them. This requirent is suf cient to determine
the numerator uniquely. Moreover, the numer&idiy) is always positive for all points inside
the amplituhedron, which implies that the differential form is always positive. This positivity
is conjectured to hold true for afi, k (at all loop orders). This approach allows one to nd
new formulas for amplitudes, not involving triangulations, coming directly from the global
geometry of the amplituhedron.

Dual geometry. Finally, we want to mention that for projective polytopes the canonical func-
tion can be found by computing the volume of the dual polytope. In thelcasd and anym,

the amplituhedrom\ﬂ’“f is a cyclic polytope irP™ and we can rewrite its canonical forrrﬂ“l)

16
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as

wWdmw
™M= ydmy Wy (3.39)

where the dual polytope is de ned as
A= w P™:W-.Y 0 foraly A | (3.40)

and the integral computes its projective volume. ko¢ 1 there is no known generalisation
of the corresponding dual geometry yet.

3.2.3. Amplitudes from amplituhedron. We have already mentioned that tree-level scattering
amplitudesATt¢in N = 4 sYM can be extracted from canonical forms of the amplituhedron

Affﬁgz. There are two ways in which we can calculate them:
€ Taking the original de nition of the amplituhedron in the Grassmannian space, we start

from the volume function g“ﬁ and localizeY on the reference point = (Osy | «)7.
Furthermore, we parametrize the maias

z i=1,...,n,
A

A _ 1 1A _

4= . A=1,..,4+Kk, (3.41)
A A a,A=1,...,4,

which corresponds to the bosonization of the momentum twistors mentioned earlier, and
integrate the volume function over the Grassmann-odd parameters

Aez)= d* By ,2), (3.42)

whereZ® = (2| ) (.4 | #) are momentum supertwistory]see appendiA.
€ Alternatively, one can nd the amplitude from the canonical forr['j'ﬁ)'Z de ned on the

kinematic space. Recall thalﬂ“k)'Z isarankm- k differential form. We can nd the ampli-
tude by replacing the differentialz d/ith the Grassmann-odd variables parametrizing the
on-shell superspace

Arcezy= * w o (3.43)

3.2.4. Yangian invariance. We have already commented thagdrlevel scattering amplitudes
are Yangian invariant. The bosonized amplitude encoded in the volume function is however
not invariant under a straightforward bosonisation of the Yangian generators. Nevertheless,
it was showed in42] that Yangian invariance is still present, even though in a non-standard
way. Using the quantum inverse scattering method, it was shown that there exists a matrix of
functions closely related to the volume functio(ﬂ) which is invariant under the Yangian of
gl(m+ k). In particular, if we de ne
k
Gy)g= YA ve k ‘&, (3.44)
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then the matrix of functions
B(.2)= 0% DY), (3.45)
is annihilated by the Yangian generatorsvg¢fl(m+ k)).

3.2.5. Loop level. Until now we have discussed the tree amplituhedwﬂﬁ which encodes
tree-level scattering amplitudeé\il;{j"f+2 when we sem = 4. The natural next step would be

to also nd a positive geometry which captures further terms in the perturbative expansion
(3.3),this is not known at the moment. There exists however a geometric construction which
computes integrands of amplitudes at loop le2glthe loop amplituhedroA njf°”. As for the

tree amplituhedron, it depends on the number of partici@sd the helicity sectdt, but has

been de ned so far only fan = 4, allowing us to omit this label. Itis conjectured tb&er{:f"’p is

a positive geometry calculating thdoop integrands contributing to the scattering amplitude
Ank + 2-

Similarly to the tree amplituhedron, the loop amplituhedron is de ned as the image of a
particular space, generalizing the positive Grassmannian, through a linear map. For a given
n, k and , we denote byG(k , n; ) the space which consists kfplanesC in n dimensions
together with two-planesD(), living in the (@' S k)-dimensional complement &. A point
in G(k,n; )isrepresented via&(+ 2 ) x nmatrixC:

c= _ . (3.46)

We denote bys, (k, n; ) the positive part o6(k , n; ) which is de ned by demanding that all
the ordered maximal minors of the matrices

DD
D( SRUR -
D ST - :
C, - pt2 .. i, (3.47)
C SRUPRR - Do)
C T oaes ser owas =
C
are positiveforall, I, ...,1 = 1,..., andl; = |;. These positivity constraints can be seen as

the sechoe of the standard positivity of a bigger{ 2 ) x (n+ 2 ) matrix, of which pairs of
adjacent columns have been removed. The loop amplituhedronis then the inag&oh; )
through the linear map speci ed by the external data

ASPP= (Y G(k,4+k; Y=CZ C Gi(k,m ),Z M. (4+k,n)},
(3.48)
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whereY is ak-planeY in (4+ k) dimensions, together withtwo-planes. ® living in the
four-dimensional orthogonal complement\af

L®

Y= . .. ... LOA= pliza (3.49)

One observes thdt ;" andA?) are formally identical spaces and hence the one-loop MHV
integrands are related to the canonlcal forms ofitive 2 tree amplituhedron.

The de nition of A | '°°p implies that any point inside the loop amplituhedron satis es par-
ticular sign patterns:{l] in addition to 3.16)...3.18 we have the following conditions for
each loop. ®

YLD+ 1 >0, (3.50)

{yL®12 ..., yL®1n} hask + 2sign ips, (3.51)
and for any pair of loopsi(?, L (2)) we have
yLDL (2 > 0, (3.52)

The sign- ip characterisation of the loop amplituhedron is particularly useful when showing
that locality and unitarity follow from positivity at loop levesf] and to nd new represen-
tations of canonical form&H]. It is also useful for determining the branch points of general
amplitudes from the loop amplituhedron using the Landau equations45e47].

As for other positive geometries, the next step after de ning the space is to understand its
boundaries and nd the canonical forms with loijlamic singularities on all of them. However,
not much is known for the general loop amplituhedron. A comprehensive study of the one-loop
case was presented g, where a Grassmannian igt@l formula generalizing3.37) was
postulated. As for tree level, a suitable sum of residues of this new integral allows one to nd
canonical forms foA 1,°°°. A two-loop study for MHV amplitudes can be found #g]. More-
over, the study of a part|cular class of boundarior the loop amplituhedron, corresponding
to particular cuts of loop integrands, has been initiate&@) aind expanded to all loop orders
in [51, 52]. Beyond that, the main focus has been on understanding the simplest possible case:
the integrands for the four-point MHV amplitude.

The loop amplituhedron de nition simpli es signi cantly for MHV amplitudes. Indeed in
this casek = 0 andCis composed only of matricd3!): therefore, the only positivity condi-
tions one needs to consider are between thesdaeat The situation simpli es even further
when considering = 4, where the matriceB"” G (2, 4) can be parametrized as

1 x O éW|

Do =
0Oy 1 17

: (3.53)

(1)
and we only need to impose def (,, > O, for all pairs (3, I2). This reduces to the following
inequalities
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X, ¥i,Wi,z > 0, (Xll S Xlz)(zll S le) + (y|1 S ylz)(W|1 S W|2) <0 (3-54)

The canonical form for this geometry, i.e. the four-point MHV integrand, has been found up
to three loops in%0]. The boundary strati cation fothe loop amplituhedrovfk[{"é"’p has been
described in$3, 54] up to three loops.

3.3. Correlahedron

As an intermission, we mention another geometry underlying observabls=n4 sYM

which also naturally lives in the momemh twistor space: the correlahedrdd]. The corre-
lahedrornG, x is the geometry encoding timepoint stress-tensor correlation function, whire

is associated with the fermionic degree of theretatores expansion in the analytic superspace
[5€]. As in the amplituhedron story, one bosonizes the Grassmann-odd variables parametrizing
the analytic superspace. This leads to a pubelgonic space: the external data is encoded in

a collection ofn two-planesX; G(2,n+ k + 4) corresponding to a point in analytic super-
space parametrized by a line in the momentuistiov space. Then the oelahedronis de ned

as a subset of the Grassmannian sgaget+ k,4+ n+ k) in the following way:

Gk ={Y G+ k,n+ 4+ k): YXX; > 0}, (3.55)

where the brackets are determinants oh(+ 4+ k) x (n+ 4+ k) matrices. It was conjec-
tured in p5 that the stress-tensor correlation functions can be extracted from the canonical
form of Gk .

One interesting connection with the amplituhedron we described in the previous section is
that the correlahedron geometry can be projected down to the amplituhedron space by taking
light-like limits, i.e. limits where consecutive space...time points become light-like separated.
Inthis case, the stress-tensor correlator reduces to the square of the light-like polygonal Wilson
loop, and hence the square of the scatteringlange. The light-like limits enforce the two-
planesX; to intersect in twistor space, which allows one to parametrize thethagZ;, Zi+ 1).
Moreover, thg>-point light-like limit is obtained by requiriny to simultaneously lie on multi-
ple boundariesY X Xi+1 = 0,i = 1,...,p, of the correlahedron. Then the maximapoint,
light-like limit reduces the correlahedron space frGfm+ k,4+ n+ k) to G(k, 4+ k) by
particular operations of partial freezing anejecting. Geometrically, the limit reduc€
to (Ank)*:

(Ank)?={Y G(k,4+ Kk): Yii+ 1jj+ 1 > 0}. (3.56)

Algebraically, the volume form of the correlahedr@f, becomes the volume form of the
square of the amplituhedro ( )?, which encodes the square of the tree-levEMHV
superamplitude, or rather of the Wilson loop expectation value:

K
(W)nk = W kWok sk (3.57)
k=0

Alternatively, if one takes a non-maximal light-like limit, i.e. the limit where fewer points are
light-like separatedp < n, the canonical form reduces to the canonical form of the square of
the loop amplituhedron. This has been showrb® for ve-point NMHYV, six-point N2MHYV,
seven-point RMHV tree-level amplitudes, and for four-point one- and two-loop, and ve-point
NMHYV one-loop amplitudes.
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3.4. Momentum amplituhedron

As we have already described, the amplituhedkﬁlﬁ is de ned in momentum twistor space,
which provides natural coordinates for Wilson loops. The fact that this space can be also used
for scattering amplitudes follows from the Wails loop/scattering amplitude duality which is

a property of planaN = 4 sYM. In particular, momentum twistors encode a xed order-

ing of particles, from which they cannot be separated. In order to go beyond the planar
limit, we need to use twistors or spinor helicity variables. In this section we describe a pos-
itive geometry de ned directly in the spinor helicity space,the momentum amplituhedron

M ﬁ?"k),,introduced in [ 3] for the physical casen= 4 and later generalized to any everin

[16].

Before we proceed to the momentum amplituhedron de nition, we emphasize one more
crucial difference compared to the amplituh@aconstruction. In order to be able to bosonize
spinor helicity variables we need to abandon the on-shell chiral supersgace{ #),a, a=
1,2, A= 1,...,4, and instead rewrite the amplitudestihe non-chiral superspace. This can
be accomplished by performing a Fourier tramsf@f two of the four Grassmann variables,
which leads to a space parametrized by variablés (| 2, "), r, r = 1, 2. In this way, the
SU(4) R-symmetry ofN = 4 sYM is broken. Then the neR-symmetry indicesr( r) can be
associated with the spinor indices &) and, by the replacement

a ga a ga (3.58)

one can write any function on the non-chiral superspace as a differential form on its bosonic
part. In particular, the tree-leveliRPMHV scattering amplitudes can be written as differential
forms of degree (2(S k), 2k) in (d ,d ), see p7].

3.4.1 Definition and topological description. The momentum amplituhedravi fﬂ? can be

de ned using similar steps we followed for the ordinary amplituhedron: after specifying pos-
itive external data, we de ne the momentum amplituhedron as the image of the positive
Grassmannian through a linear map depending on this external data.

We start by introducing a pair of matrices,( ), which provide a bosonisation of the spinor
helicity variables (, ):

(3.59)

We demand this external data to be positive which we de ne as: the maisia positive matrix
and is a twisted positive matrfx see b8 for de nition of the latter. Then, the momentum
amplituhedroM (7 is the image of the positive Grassmann@n(k, n) through the map

:G (k) G nSknS |<+r;1 x G |<,k+';1 , (3.60)

which to each element of the positivg Gra§smanﬁiam {ci} Gis (k n)associates a pair of
Grassmannian elementg,(Y) G(nS k,nS k+ 7) x G(k,k+ 7)in the following way

(

Yi=c; £, Yi=ci B (3.61)

9 This condition can also be rewritten as the requirement thas a positive matrix, where indicates the orthogonal
complement.
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whereC = {c ;} is the orthogonal complement Gf
One important non-trivial property of the m@ntum amplituhedron is the fact that it is
7. (nS 7)-dimensional. While the dimension G(n S k,nS k+ 7) x G(k, k+ T)is

. % = m . m _m_ < m _m
dm G nSknSk+ 9 +dim G kk+ 5 = 2(nSk)+ 2k— 5 n, (3.62)

the image of the positive Grassmannian(k, n) when mapped using( ) is lower dimen-

sional. Indeed, the momentum amplituhedron livesin a co-dimeﬂﬁi(smrface insid&(n S
knSk+ T)x Gk k+ T) satisfying:

n
p® = Yy vy . "=o (3.63)
i=1

In particular, form= 4, one can think about the conditioB.63 as being equivalent to the
four-dimensional momentum conservation written directly in the momentum amplituhedron
space. If we project and through a xedY andY, as we will see later, then we nd
y . * & vy .o (3.64)
i i i i '
and the condition3.63 reduces to the usual momentum conservation.

As for the amplituhedron, the de nition of the momentum amplituhedron implies partic-
ular sign patterns, which fan= 4 were postulated in3[7]. Indeed, one can show that for
(Y,Y) M QwehaveYii+1 > 0and[ii+ 1] > 0. Moreover, the number of sign ips in
the sequence

{ Y12, v13,..., Yin} (3.65)
equalsk S 2 and there ark sign ips in the sequence
{[Y12],[Y13],...,[Y1n]}. (3.66)

Here we introduced the bracketsand [] which are de ned as Pliicker variables of the matrices
Y1, .-, Yngk 1y---5, nyand (Yg,..., Yk, 1,..., n) respectively.

A similar sign pattern can also be found beyomd= 4. For example fom= 2, the
momentum amplituhedron de nition implies that the sign patterns are:

{Y1l, Y2,..., Yn} hask$S 1sign ips, (3.67)

{IY1],[Y2],...,[Y} hasksign ips. (3.68)

3.4.2. Definition in the kinematic space. The de nition (3.61) of the momentum amplituhe-

dron demands the introduction of auxiliary Gsmannian spaces. Here, we want to reproduce
the argument we used for the amplituhedron and provide a description of the momentum
amplituhedron without refererdo these auxiliary spaces, by de ning it directly in terms of
kinematic data in spinor helicity space. In order to do so, we restrict to the physicahcagke

and notice that each element,tY) G(nS k nS k+ 2)x G(k,k+ 2) de nes a pair of
two-dimensional subspacesrimimensions in the following way: l&f andY be orthogonal
complements of andY, respectively. Then we de ne

a=(y 38 A= (YR A (3.69)
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These formulae provide a map from the auxiliary space where the momentum amplituhedron
lives to the kinematic spade(n) = ( , ):

:G(nS k,nS k+ 2)x Gk, k+ 2) L (n). (3.70)

Composing this map with( ywe de ne the momentum amplituhedron directly in the spinor
helicity space as the image of the positive Grassman@iafk, n):

M) = () Gilkn) . (3.71)

The canonical form on the spabt 51,12 ) can be found by using the push-forward

(= (3.72)
Thenletus x
~ éya
vz SV A , (3.73)
L3 kx (nSK) Tixk

and write an explicit form of the orthogonal complements
(Y )a= 1paly? (Y )a= Loxaly® . (3.74)

Moreover, we can decompose the matricemnd accordingly

a a
i i

-
1l
- >

(3.75)

i
Then @.69 can be directly written as

= ia+ya i ia: ia+ya i - (376)

a
i

This discussion leads us to an alternative de nition of the momentum amplituhatiigr?,
without any reference to auxiliary spaces. Let us de ne

Vae={( 7 D 7= %+y , 2= %+y , P 7=0, (377
where ( , ) are two xed two-planes im dimensions, is a xed k-plane and is an
(n'S k)-dimensional xed plane imdimensions. Moreover, we assume that when we assemble
these subspaces as Bi{9, is a positive matrix and is a twisted positive matrix. Notice

thatV,x is a co-dimension-four subspace of an af ne space of dimensioW2 also de ne a
winding spacéN,

Wn,k: (?! ?) "+1 >0![“+1]>OIS|+1|+’)>OI
thesequencg 12, 13,..., 1n} haskS 2sign ips,

the sequendd12],[13],.. ., [1n]} hasksign ips . (3.78)
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wheres;+ 1._j+ p are planar Mandelstam variables. Then the momentum amplituh&ﬁﬁg(rf
in the spinor helicity space is the intersection:

M (i) = Vak W ook

3.4.3. Boundaries, amplitude singularities and volume form.  Before nding the volume form,
i.e. the differential form with logathmic singularities on all boundaries bf g”f() letus classify
the boundaries. The boundaries of thomentum amplituhedron for= 4 have been recently
studied in p9] using theamplituhedronBoundaries Mathematicd“ package 0] and
identi ed with relevant singularities of scatteg amplitudes. In particular, the facets of the
momentum amplituhedrav fﬁz belong to one of the following classes:

Yii+1 =0, [Yi+1]=0, Sj+1.;=0. (3.79)

The rst two classes can be related to all possible collinear limits of the amplitude. The latter
boundaries are written in terms of

Si+1,.) = Yab[Yal, (3.80)

a<b=i

which are equivalent to the uplift of planar Mandelstam invariants to the momentum ampli-
tuhedron space. These correspond to all possibh-trivial factorisations of the amplitude.
The complete boundary strati cation was found B[ and each boundary element can be
obtained by intersections of multiple facets, which translates into a combination of collinear
limits and factorisations of amplitudes.

For m= 2, the momentum amplituhedrav ) has the same boundary strati cation as
the hypersimplex :+1n, See e.g. 0. In particular, the onf facets of the momentum
amplituhedron are of the form

Yi =0, [Yi=o. (3.81)

Moreover, the facets of the former typee combinatorially equivalent td E@Lk and the ones
of the latter type are equivalentld nzgl «s1- This allows one to nd the complete strati cation
of the momentum amplituhedrdn ; @ « recursively.

The differential form ﬁ,"f() with Iogarlthm|c singularitis on all boundaries of the momen-
tum amplituhedron can be found by triangulating the spAnfﬁ? with each triangle being an
image through the map, ofal - n S 7 -dimensional cell of the positive Grassmannian
G= (k, n). To this extent, the proper combmatlon of cells can be found usingdbiroid
Mathematicd" package38]. The logarithmic differential form oiv ¢ nk is the sum over such
cells of push-forwards of the canonical diféettial form for each cell. The explicit answer is
a sum of rational functions where the denomaratcan contain spurious singularities, corre-
sponding to spurious boundaries in a given triaatjah. These singularities disappear in the
complete sum and the only divergences (ﬁ‘i‘,‘() correspond to the external boundaries.
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3.4.4. Integralrepresentation. One can also introduce a representation of the volume function
) as an integral over a matrix space

S-S kg nSk

detgysk ™ Sk D(YSg-c - )

HGETE
=1
k
x kDySc: ), (3.82)
=1
where we additionally need to integrate over the magyizorresponding to &L(nS k)-

transformation encoding the ambiguity of de ning an orthogonal complement. The integration
measure n is the canonical measure on the spack af matricesC:

= dc (3.83)
T (12...K(23...k+ 1)...(n1...kS 1)’ '
where the brackets in the denominator are minors of the m@trix
(i1i2 - Ik) = 1 2. kK€ 111C gig + -+ C yiy- (3.84)

The contour can be found from e.g. BCFW recursion relations and it encircles a particular
combination of poles of the integrand.

3.4.5. Amplitudes from momentum amplituhedron. Finally, we want to describe how to
extract the amplitudd [¢¢ from the volume form ﬁﬁz The momentum amplituhedron

M nxis (2n S 4)-dimensional and therefore the degree @j is (2n S 4). Since the momen-

tum amplituhedron is a subset of the-@imensional spac&(n S k,n S k+ 2) x G(k, k+ 2),

then there are various ways one can writg depending on the parametrisation of this subset.
These different representations are reldtedach other by momentum conservation. In order

to make the expression for the volume form independent of this choice, we use the fact that
1= %P)d*P and de ne the volume function , in the following way:

nSk k
nk AP A4P) = Yi. .. Yaskd?Y [Yi...Yed?Y ] 4P) k. (3.85)
=1 =1

Indeed, the form ,x d*P is top-dimensional and therefore can be written in terms of the
measure oi6(nS k,nS k+ 2)x G(k, k+ 2) multiplied by a function. Then, the procedure
to extract the amplitude from the volume formy is similar to the ordinary amplituhedron,
i.e. we localizeY andY on reference subspacés

y = Z0S0 y o= FR (3.86)
(nSK)x (NS K) kx k

We also introduce 2(S k) auxiliary Grassmann-odd parametegs = 1,...,nS kand X
auxiliary Grassmann-odd parametets = 1,...,k, de ned as

A= "2, A=(a )=1,...,nSk+2 (3.87)

10This choice ofY ,Y is compatible with the embedding of in , asin 3.87), (3.89.
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- >

L A= )=1,....k+ 2 (3.88)

a’ i

The amplitude can be found from
Afte= 4p) di...d® di.dk oay,Y, ), (3.89)

where %(p) comes from the localisation of (P) onY ,Y .
Alternatively, if we interpret the amplitude aglifferential form on the spinor helicity space,

we can extract the amplitude from the volume forrm )in (3.72 via the replacement

Agie )= E\k) . . (3.90)

4. «Amplituhedras for bi-adjoint 3 theory

Positive geometries have been de ned also $oattering amplitudes in other theories,
beyondN = 4 sYM. In this section we will review the kinematic associahedréj, i.e.

the samplituhedrone for ® theory, and its close cousin, the worldsheet associahedron, which
appears for open strings. We also discuss how the two are related by the escattering equationse.

4.1 Scattering amplitudes in 3 theory

We start by discussing the scattering amplitudes in the bi-adjoint massigksory in D-
dimensions, i.e. a theory of scalars in the adjoint representation of the product of two different
colour groups. The bi-adjoint colour structure allows us to decompasg@aimt amplitude into
double-partial amplitudesy,( | ) labelled by two colour orderingsand , both given by a
permutation oh elements. From the point of view of geometry, most of the work has been done
inthe case when = . Moreover, using cyclic symmetry of amplitudes we can subsequently
focus onm, = my((12...n)[(12...n)), where (12..n) indicates the standard ordering rof
elements. This introduces a particular xed oridg between particles and restricts the class
of diagrams one needs to consider to planar diagrams with respect to this ordering.

The double-partial amplitudes are naturally written using Mandelstam variables

Spir = (Pt o)

with massless moment& = 0. Importantly, the Mandelstam variables are not linearly inde-
pendent since the momergasatisfy the momentum conservation condition. At tree level, the
amplitudesn®( | ) can be found by summing over all Feynman diagrams, which are color-
ordered trivalent planar graphs, eaamntributing the product of its propagatétsThey are
therefore rational functions of Mandelstam variables. The positive geometry which describes
them is the kinematic associahedron. At loop level, they become transcendental functions
obtained from Feynman integrals. However, as in the previous section, there exists a positive
geometry encoding the integrands of Feynman integrals, at least at one loop: the halohedron.

1When the two permutations are different, the answer is a subset of the terms appesiftig |n).
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4.2. Kinematic associahedron

As forN = 4 sYM, scattering amplitudes in the scalar bi-adjoifitheory can be written as
differential forms on the kinematic space. This suggests that one should look for a positive
geometry directly in the kinematic space, maut referring to any auxiliary construction, as an
intersection of some positive region with an af ne subspace. Such construction was proposedin
[4] and the positive geometry obtained in this way is a projective version of the associahedron.
The associahedron, also called Stasheff polytope, is a well-known convex polytope of dimen-
sionn S 3 which captures the combinatorics of subdivisions ofigon'% each codimension
d boundary of the associahedron corresponds to a partial triangulatiod didigonals inside
ann-gon, and its interior corresponds to the trivial subdivision with no diagonals. The associa-
hedron has a Catalan numligg, of vertices and they correspond to the full triangulations of
ann-gon. Alternatively, the vertices can be labelled by planar cubic tree graphs, dual to the tri-
angulations. The Arkani-Hamed...Bai...He...Yan (ABHY) construc#pgiire§ a particular
realisation of the associahedron, directly in the kinematic space of Mandelstam invariants.
The associahedron naturally lives in the kinematic spgctor n massless particles in the
bi-adjoint 3 theory. This space is linearly spanned by the Mandelstam varighleshich
satisfy n conditions of the form _ iSj = 0. Therefore, its dimension is diik, = ”(”253).
There exists a natural choice for a basistoétspace: given the standard ordering.(12),
one can de ne"">® planar variables

Xij= S+ 1,51, (4.1)

which are Mandelstam variables formed of momenta of consecutive particles, and which can
be visualized as the diagonals between vertieagl j of a convexn-gon.

To de ne the kinematic associahedron we need two ingredients: a positive region and an
af ne space. The positive region, is de ned by the requirement that all planar variab¥¢s
are positive

Xi'j 0, 1 i<j n (4.2)

This de nes a top-dimensional cone insidg. The af ne subspace is tha§ 3)-dimensional
subspacéd, K , de ned by requiring that

Gj=SSj= Xij+ Xie1j41S Xije1S Xis 1,j, (4.3)

are positive constants for all non-adjacent 1 < j < n. Notice that one does not restrict the
variablesci j whenj = n. Then the kinematic associahedip is de ned as the intersection
of the positive region , with the subspackl,:

Apn= 1 Hn (4.4)

This is an 6'S 3)-dimensional subset &, which can be naturally parametrized by eg,
withi= 2,...,nS 2. One can easily show that its boundary structure is identical tatSe (
3)-dimensional associahedron. For instance, for four- and ve-particle scattering we have:

Ag={s= Xi3> 0,t= Xp4> 0} {S u= Ss;3= const> 0}, (4.5)
12Equivalently, the associahedron can be de ned as a polytope with vertices given by all possible ways of parenthe-

sizing a word with a given number of letters, and whose sdgerespond to a single application of the associativity
rule.
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As={si2= X13> 0,...,%1= Xp5> 0} {S s13,S514,S54= const> 0}.
(4.6)

We refer the reader to4] for an extensive and nicely illustrated set of examples of these
associahedra.

The amplitudes can be now extracted from the unique canonical differential forn.on
Since the associahedron is a simple polytope, i.@.damensional polytope each of whose
vertices are adjacent to exactlyfacets, the canonical form can be written as a sum over its
verticesv of the expressions 2, d log F,, whereF, = 0 describe the facets adjacent to
v. For the kinematic associahea all facets are characterized by the vanishing of one of the
planar variables and therefore we can write:

Chs2 I!|S3
(Ap) = signvp) dlog X j.- 4.7)
p=1 a= 1

The signs sign(,) can be xed by direct calculation of the canonical form, or by demanding
that (Ay) is projective orK,. One can show that this canonical form computes the tree-level
scattering amplituden® for the bi-adjoint * theory:

(An) = mOd"S3X. (4.8)

For instance, fon = 4,5 we have:

o odXgz . Xy 101
(Ag) = Xos S Xou s+ ¢ ds, (4.9
1 1
(As): dX2’5 dX3’5. (410)

4o+
X1,3X1,4 X2,5X3,5

This reproduces the results from Feynmarcuakdtions, where each term in the expansion
comes from a planar trivalent graph.

We have already noticed that the canonical form of the kinematic associahedron can be
found using the fact that it is a simple polytope: this leads to the representatin@ther
representations of canonical forms are also possible to nd. For example, a new recursion rela-
tion using a one-parameter defation of kinematic variableX;;  zX;j has been provided
in [61]. By solving this recursion relation, one nds the bi-adjoint amplitudes in *®BCFW
representatione.

These results can also be generalized beyoadtandard ordering, to partial amplitudes
m©( | ). From the point of view of Feynman diagrams, only diagrams compatible with both
orderings will contribute to the answer. From the geometric point of view, it will push some of
the facets of the kinematic associahedron taity to obtain a different non-compact polyhe-
dron for the various pairs of orderingg8Z]. However, the canonical form of these polyhedra
can be computed using a prescription equivalenét8) @nd encodes the partial amplitudes
mO( | ).

The ABHY construction can also be generalized to all polytopes associated with nite-type
cluster algebrasg3], where the usual associahedron corresponds to cluster algebras of type
An. In particular, the canonical form of th#, associahedron gives the integrand for one-loop
bi-adjoint *-amplitudes, while the typeR, or C, are related to one-loop diagrams with tad-
pole emissions. For all these polytopes, this construction has a natural physical origin coming
from the (1+ 1)-dimensional causal structure in kinematic spa&®. [In this approach, the
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generalized associahedra become solutions to wave equations with positive source and their
properties follow from simple properties of causal diamonds in the space...time.

We also remark that there is a duality between differential forms on the kinematiclspace
and colour factors. More speci cally, the differential forms satisfy Jacobi relations similar to
the usual Jacobirelations for structure constants Ae€lis allows one to exchange kinematic
factors with colour factors, pointing towards a possible geometric motivation for the double-
copy constructiongb.

Finally, for recent progress ircalar theories different from?, and their relation to Stokes
polytopes and accordiohedra, sé6.[69].

4.3. The halohedron

The kinematic associahedron tages the tree-level color-ordered scattering processes for bi-
adjoint 2 theory for the standard ordering. A geometric construction can be also extended to
include the integrand of one-loappoint bi-adjoint 3 amplitudes and the positive geometry
encoding this integrand is the halohedr@0,[71]. The halohedroid , is the convex polytope
associated with the moduli space of an annulus with marked points on one boung]ar [
This generalizes the moduli space of a disc which is associated with the tree-level construc-
tion. For one-loop, the marked points represent the external particles, while non-intersecting
arcs, which generalize thegon diagonals we discussed for tree level, correspond to prop-
agators of one-loop planar diagrams. Then, the vertices of the halohedron are labelled by
the planar one-loop Feynman diagrams, wliile facets correspond to cuts of the one-loop
integrand.

The halohedron is de ned in amdimensional spack with coordinatesXy, ..., X,). One
can think of the spacX as the abstract kinematic space of all planar variables where the
momentum conservation is not enforced. One starts by de ning a set of linear fungiions
which are in one-to-one correspondence with pgatars of one-loop planar diagrams. Then
the halohedron is de ned as the region where all these variables are positive. This can be
done by iterated truncations of ardimensional cube, as summarized7d] As for the asso-
ciahedron, the halohedron is a simple polytope and its logarithmic differential form can be
found as
|
(Ho=  sign@) X L (4.11)
X X

¢] Ig glyg

where the sum runs over all connected one-loop planar diagrams, including tadpoles and bub-
bles, and runs over all the propagators of a diagrgnAgain, the signs sigigj can be xed
by asking (H,) to be projective. The one-loop integrand for the bi-adjoint theory is obtained
by killing the tadpole and bubble contriltions by sending the ctesponding variableX; to
in nity, and going back to the physical kinematic space by substitukngith the physical
propagatos . In this way momentum conservation is restored and the logarithmic differential
form (H,) computes the integrand? of the one-loop amplitude

(Hp) = mPdX. (4.12)

13Note that this annulus is not associated to a cluster adgddut the halohedron has a combinatorial structure very
similar toD,,, i.e. a polytope obtained by cutting tbg associahedron in hal6f].
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4.4. Worldsheet associahedron and scattering equations

The associahedron plays a fundamental role also for open strings. Indeed, the moduli space
for the open-string worldsheet provides a different realisation of the associahedron. The open
string moduli space is given by the real pllrty ,(R) of the moduli space of genus zévbg,

which is the space of con gurations ofpunctures on the Riemann sphere modsil{?, C).

It is equivalent to the moduli space pfordered points ; on the boundary of a disc. We also

de ne the positive moduli space as the region associated with the standard ordering

M3, ={ 1< < o}/SL2,R). (4.13)

The Deligne...Mumford compacti cation bf on [73], i.e. the blow-up of the open-string
worldsheet which makes manifest all the boundaries, has the same boundary structure as the
assomahedron and it is called the worldshesbaiahedron. We wilhdicate the compacti ed

space aM ;. SinceM , has the same boundary structure as the kinematic associahedron,
its canonlcal form should be similar td.{). Indeed, it can be shown that the canonical form

onM g, i

r!SS 5
n(M gp) = sign@) dlog ;S js1 . (4.14)

planarg a=1

where the sum runs over all trivalent planar graphs, giggne signs Whigh can be xed by ask-
ing (M g,n) to be projective, and for evegthe (a, j,) fora= 1,...,nS 3 are the diagonals

of the corresponding triangulation. This can betier recast as a sworldsheet Parke... Taylore
form

1" d,

M= iz o8

(4.15)

Finally, let us discuss the relation betweea Kinematic and worldsfet associahedra. The
scattering equation§ §l], originally introduced in the context of dual resonance modek [
and high-energy behaviour of string theog], relate points in the moduli spadé ¢, to
points in kinematic spad€ in the following way:

n
. =0, fori=...,n (4.16)
j: ]_’j:i i J

As itis natural to expect, they also relate the two associahedra: on the sublgpthescattering
equations act as a diffeomorphism from the worldsheet associahwggrto the kinematic
associahedroA,. A diffeomorphism between two positive geometries implies the pushfor-
ward between the canonical formg|,[ see sectior2.3. Therefore, the scattering equation
map pushes the canonical form of the worldsheet associahedron to that of the kinematic
associahedron by summing over timeS( 3)! solutions of the scattering equations:

puskforward

n(M g,) (An). (4.17)

scatt.eqs

Then, using4.8) and @.15), this implies that the tree-level amplitudé” can be obtained by
pushforward of the Parke... Taylor form via the scattering equations. This also provides a novel,
geometric derivation of the CHY formul&4] for bi-adjoint scalars.

30



J. Phys. A: Math. Theor. 54 (2021) 033001 Topical Review

5. Other positive geometries

In this section we will brie y review other pasve geometries which have been found in recent
years for other observables in physics. In particular, we describe the notions of the cosmolog-
ical polytope b, 77, 78] and the geometrical structure underlying the conformal bootstrap
programme].

5.1 Cosmological polytopes

Positive geometries have made their appearance also in cosmology: the cosmological polytope
gives a connection between the wavefunction of the Universe and polyhedral geometry, anal-
ogous to the one seen for scattering amplitu&eg7..79]. As with scattering amplitudes, the
canonical form with logarithmic singularitiesall the boundaries of this polytope computes
the cosmological wavefunction or equivalently, the late-time spatial correlation functions it
generates.

In the following, we will work under the assumptions spelled ouginfFocussing on scalar
elds, the momentum space correlators are

n n

() = D CmI (5.1)

=1 =1

where [ ]is the wavefunction of the Universe and it has a representation in terms of path
integrals. Let us consider a class of toy models of massless scalar elds-ii) dimensions
with time-dependent polynomial interactions

" $

_ 0 ° A # Ll 2& k() ko
S1= _d axE (RS h T (5.2)
S k3

where () is the time-dependent coupling constant. The class of thedi€s i(icludes

as a special case conformally-coupled scalars with non-conformal polynomial interaction in

Friedmann...Robertson... Walker (FRW) cosmologies. The wavefunction can be computed per-

turbatively via Feynman diagrams. In these simple models, the result is a rational function of

thesumx; = |, Ecofthe energies of external statés= |p¢ at each vertex; of the graph

and on the internal energigg associated with the edges between the vertigemdv;. To

a given Feynman grapB we can associate its contribution to the perturbative wavefunction
c(Xv, Ye)

O .
c(Xv, Ye) = 3 dye™v G(v, v,Ye), (5.3)

S vv eE

whereG( , ,Ye) is the bulk-to-bulk propagator, whiM is the set of vertices ar is the

set of edges of the grapgh For these models it has been shown that the contribution of each
Feynman diagrarn to the perturbative wavefunction at all orderg(xy, Ye) is related to the
canonical form of a polytope, the cosmological polytépewhich has an intrinsic de nition
without any reference to space...time. In particular, to any didgwantan associate vectots

with all the vertices ang, with all the edges. These vectors give a basis for the projective space
Prer vS1 wheren, andn, are respectively the number of edges and vertices of the graph. To any
graph we can associate a collection of intetisgatriangles in the following way. To each edge

y; with its two vertices; andx; we associate a triangle whose midpoints are identi ed by the
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vectors ki, X, y;).the vertices of the triangle are thereforgx; + x; S y;, x; S x; + y;, Sx; +

X; + y;}. The vertices;, x; of the graph represent the two sides on which the triangle can
intersect other triangles. On the third edge of the triangle, with midggim intersection is
allowed. The cosmological polytofeis the convex hull of the 8, vertices ofn intersected
triangles. Let us write any point iR as

Y = Xy Xy + YeYe (Xv,Ye) RMTe, (5.4)

\ e

with (Xy, Y, ) identifying the independent midpointsindy of the triangles generatirig. The
coef cientsx, andy, will label the vertices and the edges of the gr&pfand are not vertices
of the cosmological polytope. Then, for a graplone can associate a cosmological polytope
Pc with a logarithmic differential form associated to the wavefunctiefxy, Ye):

(Y,P)= dxy dye G(Xv, Ye)- (5.5)

vV eE

The boundaries of this geometry are lower-dimensional polytopes encoding the residues of the
wavefunction poles. The triangulations are different representations\&k refer the reader
to [5] for various illustrated examples of cosmological polytopes.

Remarkably, the physics of the at-spaBamatrix is naturally contained in this object: a
particular co-dimension one boundary related to the total energy ple E 0, the so-
called scattering facet, encodes the information of at-space scattering ampladtieShe
scattering-facet structure encodes unitarityhie way its boundaries factorize into products of
lower-dimensional polytopes, and Lorentz invariance, from the contour integral representation
of its canonical form. Furthermore, for these toy models, it is possible to reconstruct the per-
turbative wavefunction from the knowledge of the at-space amplitudes and the requirement
of the absence of unphysical singularitiés]|

Recently, this construction has been extended to a class of toy models of light massive
scalars with time-dependent masses and polynaoigplings, which contains general massive
scalars in FRW cosmologie89]. The wavefunction of the Universe is a degenerate limit of the
canonical form of a particular generalisation of the cosmological polytopes described above.

At the moment the cosmological polytopes ddése each Feynman diagram separately
while one would rather prefer a single geometry, providing compact expressions for the wave-
function. Nevertheless, these objects are a rst step towards de ning geometries analogous to
amplituhedra and associahedra.

5.2. Positive geometry for conformal bootstrap

Positive geometries are also arising in more general CFTs, bé&yondt sYM. In particular, it

is possible to translate the conformal bootstrap equation using geometric ideas we explored in

previous sections, leading to new insights into the four-point functions in general 6FTrs |

this geometric picture, unitarity demands that the partial-wave expansion coef cients of a four-

point function lie inside a famous polytope called the cyclic polytope, and crossing symmetry

restricts them to lie on a plane. Then the spectrum of CFTs can be studied by investigating the

rich geometric and combinatorial structures of the intersection of the plane with the polytope.
As an example of these ideas, we consider a unitary one-dimensional CFT and study a four-

point function of identical, real conformal primary operatorsvith scaling dimension

TheSL(2,R) covariance of the four-point function implies that it can be written as

(X1) (%) (X3) (xq) = F(2, (5.6)
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whereF(2) is a function of the cross-ratio= §12"34. Taking the operator product expansion
13X

(OPE) of the operators(x;) and (x), the functf(‘)nF(z) can be written in terms of partial
waves as

F@= pG (@ p>0, (5.7)

where the coef cientsges are positive due to unitarity. Here, the functidds(z) are the
SL(2,R) conformal blocks

G @@=z F(, ,2,2. (5.8)

Comparing 5.7) with the expression found by computing the OPE of the operatp«g and
(x3), one nds the crossing equation:

2

F(2) = 1;,2 F(1S 2). (5.9)

The conformal bootstrap programme aims to study the space of solutionanéip by nding

a solution to the unitarity and crossing equatiois?)(and 6.9 respectively. This in nite-
dimensional problem can be approached by discretizing the four-point function: instead of
considering the complete functidt{z), one takes a truncation of its Taylor expansion around
z= jtothe rst2N + 1 derivatives:

=
Fl
F= . p2N+ 1 (5.10)

F2N+ 1

with F' 1 IF(D)|,. y,for1=1,2,..,2N+ 1. The same can be done for the conformal

block G (2): its Taylor expansion arourzi= ; gives a (A + 2)-dimensional block vector
G

GO
Gl
G = _ pAN*L (5.11)

G2N+ 1

The unitarity condition%.7) demands that the Taylor coef cients of the four-point function
F(2) expanded arourm= % have to lie in the positive span of the block vectGrs, i.e. inside
a polytope spanned by the block vectors:

F= pG, p >0 (5.12)
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This polytope is called the unitarity polytop#{ i}]. Since one can show thatthe determinant

G ,G,...G , for 1< ,<-..-< ,ispositivé one ndsthatU[{ }]is a cyclic
polytope. On the other hand, the crossing equatd® (estricts the Taylor coef cients d¥(2)
to lie on anN-dimensional plane, called the crossing plXife ], whichis xed by the dimen-
sion  of the scalar operator. A four-point function is consistent with unitarity and crossing

if the coef cientsp lie in the region de ned by the intersection of the xédtdimensional
crossing plan&[ ]and the (A + 1)-dimensional unitarity polytopdg[{ i}]which varies
with the spectrum. One immediate implication of this construction is that a consistent CFT
must contain an in nite number of operators in its spectrum.

The above construction implies that nding alstion to the conformal bootstrap equation
corresponds geometrically to demanding that the intersectiod[pf i}] X[ ] is not
empty. This provides bounds on the four-point function and allows the identi cation of the
space of consistent CFTs geometrically. Since the face structure of cyclic polytopes is com-
pletely understood, one can fully characterize the intersection combinatorially. This allows
one to nd new exact statements about the spectrum and four-point function in any CFT. For
instance, one can show that when the spectrum is continuously varied the shape of the inter-
section changes, which may lead to various discrete jumps in the geometry, akin to ephase
transitionse.

In [6], this geometry has been investigated in details for one-dimensional CFTs in the cases
whenN = 1, 2. This allowed for rigorous study of how the space of consistestis carved
out by the bootstrap at this resolution. Going to highewhich means keeping more terms in
the Taylor expansion, the resolution on CFT data increases, providing a further re nement of
the space of allowed operator dimensions.sTleads to an ef cient procedure increasing the
resolution and allows one to build up the space of allowesd recursively.

6. Recent advances

In this section, we wish to brie y review #hmost recent progress made related to positive
geometries and their extensions. In particular, we will rst discuss the deformation of logarith-
mic differential forms of polytopes which give rise to the stringy canonical forms. Afterwards,
we comment on various relations of positive geometries to tropical geometry.

In the previous sections we described positive geometries and rational forms which can
be naturally assigned to them. Many answers in high-energy physics are however given by
transcendental functions rather than ratiamas, for example when studying loop scattering
amplitudes, or string theory amplitudes. docommodate for them one needs to expand the
geometric description and allow algebraic structures beyond logarithmic differential forms.
One possible extension was given 8] where forms with higher-order poles have been con-
sidered. Another direction was presented8id]] where an -extension of canonical forms
for polytopes has been introduced, withreminiscent of the string theory parameter. These
so-called estringy integralse share various properties with string amplitudes and are de ned as
integrals of logarithmic forms regulated by polynomials with exponents. They have the nat-
ural property that when 0 they reduce to the usual canonical form of a polytope given
by the Minkowski sum of the Newton polytopes of the regulating polynomials, to be de ned
shortly. From the string theory point of view this would be called the eld-theory limit. More-
over, when one considers the limit, the saddle-point equations for the stringy integrals

14 There is a caveat that for suf ciently smallss and largen, the minors can be negative. This is irrelevant from a
practical point of view, due to the fact that the negative minors are always extremely small.
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give the scattering equations. These provide a diffeomorphism from the integration domain to
the polytope, and therefore a pushforward formula for its canonical form. Finally, at nite
the stringy integrals have simple poles cepending to facets of theolytope and the residue
evaluated at the pole is given by the stringpeaical form of the facet. Thiprovides a natural
generalisation of the property in the de nition of positive geometries.

The stringy integrals can be de ned for any polytope and therefore provide extensions of the
logarithmic differential forms for positive geometries in the second class of the classi cation
described in sectioB.2 One starts by considering the integral oRSr = {0< x; < } of

the canonical form of a simplex idz 1 dxfi . Such integral is divergentwheqn 0 andx;

and to regulate these divergences one introduces the paraXetesi = 1,...,dandc> 0
and considers the following integral:

d

dx’_(‘ x XS ©. (6.1)

I p(X,0)=( )
0 =1

HereX = (X1,...,Xq), X = (X1, ..., Xq) andp(x) is a polynomial with positive coef cients:

px)= p x", (6.2)

wherep > 0 andx™ = x;*...x3. The integrall , converges if and only if the Newton
polytope of the polynomiab(x), i.e. the convex hull of the exponent vectors Z¢:

N[p| = n : 0, =1, (6.3)

is d-dimensional an is inside the polytopeN[p].
Importantly, the 0 limit of stringy integrals gives the canonical form of the (rescaled)
Newton polytope:

IimOI o(X, Q)X = (cN[p)). (6.4)
On the other hand, if we consider the limit then the saddle-point equations obtained
from the integral §.1):
c px
Xi = X 6.5
N x (6.5)
provide a diffeomorphism fromR¢ to the interior of the polytopeN[p]:
:RY  cN[pl. (6.6)

We can use this diffeomorphism to perform a pushforward of the simplex canonical form and
obtain the canonical form of the Newton polytope

= (cN[p]). (6.7)

These provide two alternative methods to nd canonical forms for polytopes which can be real-
ized as Newton polytopes. This can be interpreted as the statement that, for any polytope, the
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low-energy limit of the stringy canonical form agrees with the pushforward using the scattering
equations from the saddle points in the high-energy limit.

This construction can be generalized to ttese with multiple subtraction-free Laurent
ponr}scL)miaIsp(x) and regulating parametecs. Such integrals converge whefis inside
P:= & N(P),the Minkowski sum of Newton polytopes for each polynomial. As before,
the leading order 0O of these integrals is the canonical form on the Minkowski sufR).
Moreover, the saddle point equations as provide a diffeomorphism from the simplex
to P. This allows for an alternative way to nd the canonical form@musing the pushforward
of the simplex canonical form.

As an example, one can apply the stringtegrals to the ABHY associahedrdn, which
we described in sectiod.2 In particular, the associahedron can naturally be represented
as a Minkowski sum of simpler polytopes. This decomposition provides a particular choice
of regulating polynomials. Using these polynomials, the stringy integral associated to the
associahedron reproduces the usual openeggtintegral with the Koba...Nielsen factor as
regulator:

| r(ljisk = ( )nSS ) M g,n) |z2 S Zp| o. (6.8)

M on a<b

This provides a direct path from kinematic space to string amplitudes without any reference
to the string worldsheet or space...time. As before, the eld-theory limit 0 of | 9k is the
canonical function of the associahedrofA ), which encodes the bi-adjoint tree-leveln-

particle amplitude. The latter can also be computed by performing the pushforwamdin)

using the CHY scattering equations, which are the saddle-points of the Koba... Nielsen factor
from the Gross...Mende limit

Similar integrals can also be constructed starting from the generalized cluster associahe-
dra [63] to obtain general cluster string integrals. These are reminiscent of the ordinary string
theory scattering amplitudes, which correspond to cluster algebras of\typath properties
relevant for scattering of generalized particles and strings. Stringy canonical forms have also
been studied for generalized permutohe8&.[In both cases of generalized associahedra and
permutohedra, the combinatorics of these polytopes can be explored using the idea of binary
geometries83]. Moreover, the stringy canonical forms can further be extended beyond poly-
topes to Grassmannian string integrals, i.e. integrals over the positive Grassmannian modulo
torus actiorG. (k,n)/ T [84, 85].

As described above, the stringy canonical forms are convergent if the exponents satisfy par-
ticular positivity conditions. It is however possible to extend the notion of stringy forms to
include all exponents by using the methods of tropical geometry. Tropical geometries, and in
particular the tropical Grassmanniansy@aecently made multiple appearances in the con-
text of scattering amplitudes. They are related to extensions of the bi-adjoint scalar theories
described in sectiod. In this context, the associahedrs related to a con guration space
of n points on the projective spa&@P?. It is captured by the positive tropical Grassmannian
Trop. Gr(2,n),the space of phylogenetic trees which can be associated to Feynman diagrams
for the 2 theory. A more general class of theories proposed#) flescribe con guration
spaces of points 068P*>1 and are governed by its generalisation: Tr@v(k, n) [39]. Tropi-
cal Grassmannians also play a prominent role in the discussions on symbol alphabets for loop
amplitudesin planaX = 4 sYM [84, 87..89] and their relation to cluster algebras. Finally, the
positive tropical Grassmannian Tro@r(k + 1,n) governs positroid dissections of the hyper-
simplex [L6, 90, 91], and therefore are related to a particular class of triangulations of the
amplituhedrorAff,Z through theT-duality map [L6].
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7. Conclusions and open problems

In this review we summarized recent developitseén geometric descriptions of observables

in physics, with a special emphasis on positive geometries relevant for scattering ampli-
tudes: amplituhedra. Positive geometries provide a completely new framework for computing
and understanding physical qudies, and a plethora of,some of which previously hid-
den, properties can be extracted by studying the structure of these geometrical objects.

We are only at the beginning of our journey towards a complete understanding of positive
geometries, and there is a large number of open questions which will keep both physicists and
mathematicians busy in the years to come. In the following, we compile a (non-comprehensive)
list of the most signi cant open problems and challenges.

Understanding known geometriesDespite the great progress which has been achieved in the
understanding of known geometries, even far thdest example, the amplituhedron, much of

our knowledge comes from a case-by-case study and we lack general statements. Among the
various interesting questions which are still open, the following are in our opinion the most
pressing:

€ Can we produce compact, closed expressions for the canonical forms of known
geometries?

€ Can we classify all the triangulations of pogdigeometries to get access to all possible
representations of a given observable?

€ Can we provide a combinatorial description of all boundaries of the geometries to
understand and classify all possible pleg$singularities of a given observable?

Some of these questions, as we described énntlain text, have been already (partially)
answered for some of the positive geometries we know, but for many others little is known in
these respects.

Finding new geometries The process of nding new positive geometries relevant for physics
is still on its way. Some of these we expect to exist but we do not have a direct construction
yet. In particular, the geometries which are sought-after at the moment are:

€ Loop momentum amplituhedron: a geometry encoding the integranil for4 sYM
scattering amplitudes directly in the spinor helicity space. One immediate problem with
nding this geometry is the ambiguity in de ning the loop momentum using spinor helicity
variables.

€ Positive geometries for non-planar theoriége amplituhedron has an ordering built-in
into its de nition as it is formulated in momentum twistor space. One needs therefore to
use spinor helicity (or twistor) variables to discuss an extension of geometries beyond the
planar sector. This makes the momentum amplituhedron a good starting point for such
extensions.

€ Geometries for scattering amplitudes in more realistic theories, including quantum
chromodynamics.

€ Loop associahedron: a geometry encoding all-loop integrands of biadjbiheory.

€ A single geometry underlying the wavefunction of Universe: such geometry would allow
us to nd the wavefunction of the Universe in a single step, without referring to many
cosmological polytopes contributing to it.

Beyond the integrand Since positive geometries are natily associated with rational func-

tions, they provide us with integrands rather than integrals for scattering amplitudes at loop
level. One immediate question is how to integrate these integrands to provide nal answers
for loop amplitudes. Since the integrands are logarithmic at the boundaries of the integration
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region, one needs to provide a (geometric) method to regularize them. Standard methods, like
dimensional regularization, are not suitable in this case as positive geometries are intrinsic
to integer dimensions. In general, a reguation method coming from geometry is not yet
available. Alternatively, as we explained in sect@ra different approach has been proposed
recently, with new methods available to assaetahnscendental functions to positive geome-
tries. The main question is then whether we can extract the integrated amplitudes directly from
the underlying geometry.

Mathematical precision. Many results available for positive geometries are until now based on
case-hby-case studies and are often strongly raatptlysics intuition. This is not satisfactory
from a mathematical point of view. Some of the basic questions for which we lack a rigorous
mathematical proof include:

€ Are the amplituhedron and the momentum amplituhedron positive geometries?
€ Do amplituhedra admit triangulations and is the BCFW triangulation one of them?
€ Are the amplituhedron and the momentum amplituhedron homeomorphic to a ball?

More generally, positive geometries provide a novel framework for quantum eld the-
ory where locality and unitarity are emergent concepts, and positivity replaces them as the
main axiom. One of the main questions is then whether we can completely avoid introduc-
ing Lagrangians and gauge dependent methodsresderive all known results, as well as
not known ones, using only well-de ned, geetric, not redundant methods without ever
mentioning Feynman integrals.
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Appendix A. Kinematic spaces for N = 4sYM

In this appendix we collect some infortian on the coordinate spaces which are used
throughout the review.

Spinor helicity space and twistor variables In a massless theory in four dimensions with
p? = 0 for all particles, one can write each momentum as

naa: ? ?, aa=1,2 (Al)

in terms of two spinor variables and . In N = 4 SYM, we consider an extension of the
spinor helicity space: there are two sugerses on which the theory can be de ned

€ Chiral superspace ¢, 23| #): parametrized by Grassmann-odd variablés transform-
ing as a fundamental representation of 844) R-symmetry. This superspace is relevant
for the amplituhedron.

€ Non-chiral superspace{, "| 2 "): parametrized by two sets of Grassmann-odd vari-
ables, ", ', which both are transforming as fundamental representatio8&)&). One
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can think of " as Fourier conjugate variables t&*. This superspace is relevant for the
momentum amplituhedron.

From the on-shell chiral superspacejpertwistor variables are de ned a@/* =
(M3, 8 A),wheregudis the Fourier conjugate tdf. They linearize the action of superconformal
symmetry.

Dual superspace and momentum twistor variablesStarting from the on-shell chiral super-
space, one can de ne another, dual superspace with coordinatgsfgr i = 1,...,n with

x2S xg = 7 AS = A (A.2)
This is the space where timesided null polygon Wilson loop dual to thepoint amplitude is

naturally formulated. The (super) momentum twistors are in the fundamental representation of
the superconformal group of this dual space; explicitly

Zi=@ D= Ciall D Ciax® al W), (A.3)

wherea = 1,...,4, and spinor indices are raised and lowered by the Levi-Civita tensor. The
momentum twistors are unconstrained and they determineia,

IS L (M Jieat T+ 2SI )i+ i+ 10 st

(1= iS1i ii+1 o (A4

whereij = ! 2S 2 1. They linearize the action of dual superconformal symmetry.

Appendix B. Push-forwards of canonical forms

In this appendix we de ne what we mean by push-forward of a differential form, following
closely the de nition given originally inT]. We consider a surjective meromorphic map

A Bof nite degreep, whereA andB are complex manifolds of the same dimension. For a
givenpointb  Bwe can nd its pre-image, namely a collection of poiatsn A,i = 1,...,p,
satisfying (&) = b. Taking a neighbourhodd; of each point; and a neighbourhood of b,

we can de ne the inverse maps; = |Si1 :V  Uj. Thenthe push-forward of a meromorphic
top form onAthrough is a differential form onB given by the sum over all solutions of

the pull-backs through the inverse maps
- = - (B.1)

where the pull-back of a differential form is a standard notion in differential geometry. In
practice, one solves the equatipr  (x) and for each solutior = ;(y) one substitutes the
explicit expression fok into the differential form , and then sums the resulting forms.

ORCID iDs

Livia Ferro® https://orcid.org/0000-0001-9933-0584
Tomasz sukowski® https://orcid.org/0000-0002-4159-3573

39



J. Phys. A: Math. Theor. 54 (2021) 033001 Topical Review

References

[1] Hodges A 2013 Eliminating spurious @d from gauge-theoretic amplitud&sHigh Energy Phys.
JHEP05(2013)135
[2] Arkani-Hamed N and Trnka J 2014 The amplituheddoiligh Energy PhysIHEP10(2014)030
[3] Damgaard D, Ferro L, sukowski T and Parisi M 2019 The momentum amplituhedlrdigh Energy
Phys.JHEP08(2019)042
[4] Arkani-Hamed N, Bai Y, He S and Yan G 2018 Scattering forms and the positive geometry of
kinematics, color and the worldshektHigh Energy PhysIHEP05(2018)096
[5] Arkani-Hamed N, Benincasa P and Postnikov A 2017 Cosmological polytopes and the wavefunction
of the universe (arXit709.02813
[6] Arkani-Hamed N, Huang Y-T and Shao S-H 2019 On the positive geometry of conformal eld
theoryd. High Energy PhysIHEP06(2019)124
[7] Arkani-Hamed N, Bai Y and Lam T 2017 Positive geometries and canonical férigh Energy
Phys.JHEP11(2017)039
[8] Britto R, Cachazo F and Feng B 2005 New re@omsrelations for tree amplitudes of gluohkicl.
Phys.B 715499
[9] Britto R, Cachazo F, Feng B and Witten E 2005 &t proof of tree-level recursion relation in
Yang... Mills theorfPhys. Rev. LetB4 181602
[10] Ferro L, sukowski T, Orta A and Parisvl 2016 Towards the amplituhedron volureHigh Energy
Phys.JHEP03(2016)014
[11] Arkani-Hamed N, Hodges And Trnka J 2015 Positive amplitudes in the amplituhedradigh
Energy PhysJHEP08(2015)030
[12] Elvang H and Huang Y-t 2015cattering Amplitudes in Gauge Theory and Grayi®ambridge:
Cambridge University Press)
[13] Postnikov A 2006 Total positivity, Grassmannians, and networks (amxith/060976)
[14] Galashin P, Karp S N and Lam T 2017 The totally nonnegative Grassmannian is a ball
(arXiv:1707.0201D
[15] Arkani-Hamed N, Bourjaily J L, Cachazo F, Goncharov A B, Postnikov A and Trnka J 2016
Grassmannian Geometry 8tattering Amplitude@Cambridge: Cambridge University Press)
[16] eukowski T, ParisiM and Wiliams L K 2020 The positive tropical Gissmannian, the hypersimplex,
and them = 2 amplituhedron (arXi2002.06163
[17] Arkani-Hamed N, Cachazo F, Cheung @daKaplan J 2010 A duality for the S matrix High
Energy PhysJHEP03(2010)020
[18] Mason L and Skinner D 2009 Dual superconformal invariance, momentum twistors and Grassman-
niansJ. High Energy PhysIHEP11(2009)045
[19] Alday L F and Maldacena J 2007 Gluon #eaing amplitudes at strong couplidg High Energy
Phys.JHEP06(2007)064
[20] Drummond J M, Korchemsky G P and Sokatchev E 2008 Conformal properties of four-gluon planar
amplitudes and Wilson loogsucl. PhysB 795385
[21] Caron-Huot S 2011 Notes on theadtering amplitude/Wilson loop duality. High Energy Phys.
JHEPO07(2011)058
[22] Adamo T, Bullimore M, Masork. and Skinner D 2011 A proof of the supersymmetric correlation
function/Wilson loop correspondendeHigh Energy PhysIHEP08(2011)076
[23] Drummond J M, Henn J, Korchemsky G P and Sokatchev E 2010 Dual superconformal symmetry
of scattering amplitudes in super-Yang... Mills thédugl. PhysB 828317
[24] Loebbert F 2016 Lectures on Yangian symmekri?hys. A: Math. Theod49 323002
[25] Ferro L, Plefka J and Staudacher M 2018 Yangian symmetry in maximally supersymmetric Yang-
Mills theory Space...Time...Matter: Analytic and Geometric StruedrdsBriining and M
Staudacher (Berlin: De Gruyter) pp 288...323
[26] Bargheer T, Beisert N, Galleas W, Loebbert F and McLoughlin T 2009 Exabting4 supercon-
formal symmetryd. High Energy PhysIHEP11(2009)056
[27] Sever A and Vieira P 2009 Symmetries of e 4 SYM S-matrix (arXiv0908.2437
[28] BeisertN, Henn J, McLoughlin T and Plefka J 2010 One-loop superconformal and Yangian symme-
tries of scattering amplitudes kh= 4 super Yang... Mills High Energy PhysIHEP04(2010)085
[29] Drummond J, Henn J and Plefka J 200y&n symmetry of scattering amplitudesNn= 4 super
Yang...Mills theory. High Energy PhysIHEP05(2009)046

40



J. Phys. A: Math. Theor. 54 (2021) 033001 Topical Review

[30] Drummond J and Ferro L 2010 Yargis, Grassmannians and T-dualityHigh Energy Phys.
JHEPO07(2010)027

[31] Arkani-Hamed N, Thomas H and Trnka2018 Unwinding the anijiuhedron in binaryd. High
Energy PhysJHEP01(2018)016

[32] Sturmfels B 1988 Totally positive matrices and cyclic polytoperear Algebr. Appl107275

[33] Karp S N and Wliams L K 2019 Them = 1 amplituhedron and cyclic hyperplane arrangements
Int. Math. Res. No20191401

[34] eukowski T 2019 On the boundaries of tte= 2 amplituhedron (arXivt908.0038%

[35] Karp S N, Williams L K and hang Y X 2017 Decompositiorsf amplituhedra (arXivt708.0952%

[36] Bao H and He X 2019 Them= 2 amplituhedron (arXit909.0601%

[37] eukowski T, Parisi M, Spradlin M and Volovich A 2019 Cluster adjacency for= 2 Yangian
invariantsJ. High Energy PhysIHEP10(20190158

[38] Bourjaily J L 2012 Positroids plabic graphs, and scattering amplitudes in Mathematica
(arXiv:1212.697%

[39] Speyer D and \Wliams L 2005 The tropical totally positive Grassmannialgebr. Comb22 189

[40] Ferro L, sukowski T and Parisi M 2019 Aplituhedron meets Jeffrey...Kirwan residuBhys. A:
Math. Theor52 045201

[41] Bourjaily J L 2010 Ef cient tree-amplitudes iN = 4: automatic BCFW recursion in Mathematica
(arXiv:1011.244y

[42] Ferro L, sukowski T, Orta A and Parisi M2017 Yangian symmetry for the tree amplituheddon
Phys. A: Math. Theo50 294005

[43] Yelleshpur Srikant A 2020 Emergent unitarity from the amplituheddorHigh Energy Phys.
JHEP01(2020)069

[44] Kojima R and Langer C 2020 Sign ipriangulations otthe amplituhedrord. High Energy Phys.
JHEP05(2020)121

[45] Dennen T, Prlina I, Spradlin M, Stanojev&and Volovich A 2017 Landau singularities from the
amplituhedrond. High Energy PhysIHEP06(2017)152

[46] Prlinal, Spradlin M, Stankowicz J, Stanojevic S and Volovich A 2018 All-helicity symbol alphabets
from unwound amplituhedrd. High Energy PhysIHEP05(2018)159

[47] Prlinal, Spradlin M, Stankowicz J and @tgevic S 2018 Boundaries amplituhedra and NMHV
symbol alphabets at two loodsHigh Energy PhysIHEP04(2018)049

[48] Bai Y, He S and Lam T 2016 The amplituhedrand the one-loop gsamannian measude High
Energy PhysJHEP01(2016)112

[49] Kojima R 2019 Triangulation of 2elop MHV amplituhedron from sign ipd. High Energy Phys.
JHEPO04(2019)085

[50] Arkani-Hamed N and Trnkd 2014 Into the amplituhedrah High Energy PhysIHEP12(2014)182

[51] Arkani-Hamed N, Langer C, Yelleshpur Saikt A and Trnka J 2019 Deep into the amplituhedron:
amplitude singularities at all loops and le@gBys. Rev. Letl22051601

[52] Langer C and Yelleshpur Srikant A 202d-loop cuts from the amplituhedroh High Energy Phys.
JHEPO04(2019)105

[53] Franco S, Galloni D, Mariotti A andrnka J 2015 Anatomy of the amplituhedrdnHigh Energy
Phys.JHEP03(2015)128

[54] Galloni D 2016 Positivity secrrs and the amplituhedron (arXi601.02639

[55] Eden B, Heslop P and Mason L 2017 The correlahedrdtigh Energy PhysIHEP09(20170156

[56] Howe P S and Hartwell G G 1995 A superspace suass. Quantum Grawl.2 1823

[57] He S and Zhang C 2018 Notes on scattgramplitudes as differential fornds High Energy Phys.
JHEP10(2018)054

[58] Galashin P and Lam T 2018 Parity duality for the amplituhedron (a805.0060D

[59] Ferro L, sukowski T and Moerman R 202@rom momentum anlipuhedron boundaries to
amplitude singularities and back (arxa003.1370%

[60] eukowski T and Moerman R2020 Boundaries of the amplituhedrwith amplituhedronBoundaries
(arXiv:2002.0714%

[61] He S and Yang Q 2019 An etude on recursion relations and triangulatidtigh Energy Phys.
JHEP0592019)040

[62] Herderschee A, He S, Teng F and Zhang Y 2020 On positive geometry and scattering forms for
matter particles. High Energy PhysIHEP06(2020)030

[63] Bazier-Matte V, Douville G, Mousavand K,ibmas H and Yildirim E 2018 ABHY associahedra
and Newton polytopes of F-polynomials for nite type cluster algebras (at8©8.0998%

41



J. Phys. A: Math. Theor. 54 (2021) 033001 Topical Review

[64] Arkani-Hamed N, He S, Salvatori G and Thomas H 2019 Causal diamonds, cluster polytopes and
scattering amplitudes (arXi¥912.12948

[65] Bern Z, Carrasco J and Johansson H 200& Neations for gauge¢heory amplitude®hys. RevD
78085011

[66] Banerjee P, Laddha A and Raman P 2019 Stokes polytopes: the positive geometipferactions
J. High Energy PhysIHEP08(2019)067

[67] Raman P 2019 The positive geometry fdrinteractions]. High Energy PhysIHEP10(2019)271

[68] Aneesh P, Jagadale M and Kalyanapuram N 2019 Accordiohedra as positive geometries for generic
scalar eld theoriedhys. RevD 100106013

[69] Aneesh P, Banerjee P, Jagadale M, Rajan R, Laddha A and Mahato S 2020 On positive geometries
of quartic interactions: Stokes polytopes, lower forms on associahedra and world-sheet.forms
High Energy PhysJHEP04(2020)149

[70] Salvatori G and Cacciati S L 2018 Hyperbolic geostry and amplituhedra in £ 2 dimensions
J. High Energy PhysIHEP08(2018)167

[71] Salvatori G 2019 Oerloop amplitudefrom the halohedrod. High Energy PhysIHEP12(2019)074

[72] Devadoss S L, Heath T and Vipismakul C 2011 Deformations of bordered Riemann surfaces and
associahedral polytopésot. AMS58530

[73] Deligne P and Mumford D 1969 The irredutity of the spaceof curves of given genudubl. Math.
Inst. Hautes Sci36 75

[74] Cachazo F, He S and Yuan E Y 2014 Scattering of massless particles in arbitrary dimétsisns
Rev. Lett113171601

[75] Fairlie D B 2009 A coding of real null four-momenta into world-sheet coordinaths Math. Phys.
2009284689

[76] Gross D J and Mende P F 1988 String theory beyond the planckNoalePhysB 303407

[77] Arkani-Hamed N and Benincasa P 2018 On the emergence of Lorentz invariance and unitarity from
the scattering facet of cosmological polytopes (ark841.0112%

[78] Benincasa P 2018 From the at-spac&matrix to the wavefunction of the universe
(arXiv:1811.0251p

[79] Benincasa P 2019 Cosmological polytopes and the wavefuncton of the universe for light states
(arXiv:1909.0251Yy

[80] Benincasa P and Parisi M 2020 Positive geometries and differential forms with non-logarithmic
singularities | (arXiv2005.03612

[81] Arkani-Hamed N, He S and Lam T 2019 Stringy canonical forms (af$2.0870y

[82] He S, Li Z, Raman P and Zhang C 2020 Stringy canonical forms and binary geometries from
associahedra, cyclohedra and generalized permutohedra @08%5:0739%

[83] Arkani-Hamed N, He S, Lam T and Thomas H 2019 Binary geometries, generalized particles and
strings, and cluster algebras (arXi912.1176%

[84] Arkani-Hamed N, Lam T and Spradlin M 2019 Non-perturbative geometries for pharad SYM
amplitudes (arXivi912.0822p

[85] He S, Ren L and Zhang Y 2020 Notes on pofyes, amplitudes and boundary con gurations for
Grassmannian string integralsHigh Energy PhysIHEP04(2020)140

[86] Cachazo F, Early N, Guevara A and Mizera S 2019 Scattering equations: from projective spaces to
tropical Grassmanniark High Energy PhysIHEP06(2019)039

[87] Drummond J, Foster J, Gimgan O and Kalousios C 2019 Algelr singularities of scattering
amplitudes from tropical geometry (arXi812.0821y

[88] Drummond J, Foster J, Giirdogan O and Kalousios C 2020 Tropical fans, scattering equations and
amplitudes (arXiv2002.0462)%

[89] Henke N and Papathanasids 2019 How tropical are sevenna eight-particle amplitudes?
(arXiv:1912.0825%

[90] Early N 2019 Planar kinematic invariants, matroid subdivisions and generalized Feynman diagrams
(arXiv:1912.13513

[91] Arkani-Hamed N, Lam T and Spradlin M 2020 Positive con guration space (a28R3.0390%

42



	Amplituhedra, and beyond
	1.  Introduction
	2.  Positive geometries


