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Abstract
This review is a primer on recently established geometric methods for observ-
ables in quantum field theories. The main emphasis is on amplituhedra, i.e.
geometries encoding scattering amplitudes for a variety of theories. These per-
tain to a broader family of geometries called positive geometries, whose basics
we review. We also describe other members of this family that are associated
with different physical quantities and briefly consider the most recent develop-
ments related to positive geometries. Finally, we discuss the main open prob-
lems in the field. This is a Topical Review invited by Journal of Physics A:
Mathematical and Theoretical.

Keywords: scattering amplitudes in maximally supersymmetric Yang–Mills
theory, scattering amplitudes in scalar cubic theory, positive geometries for
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1. Introduction

Our understanding of quantum field theories is rapidly changing. In recent years we have wit-
nessed the birth of a new paradigm for studying certain physical quantities. This development
has been mainly driven by the investigation of scattering amplitudes, with the discovery of
new fascinating geometric constructions underlying them. In this geometric description, the
scattering amplitudes—and, more generally, the physical quantities—are encoded in partic-
ular bounded regions, with appropriate properties on their boundaries. Despite differing in
detail, these constructions rely on a common mathematical structure called positive geometry.
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Nowadays, positive geometries are appearing for a wide spectrum of theories and quantities.
These range from scattering amplitudes to correlation functions and cosmological observables.
A positive geometry is defined as a real, oriented, closed geometry with boundaries of all co-
dimension. Each boundary is again a positive geometry. The most important feature is that
every positive geometry has a unique differential form, called the canonical form, with log-
arithmic singularities along all boundaries. Moreover, the residue along a boundary is given
by the canonical form on the boundary, as will be defined precisely in the next section. For
physically relevant positive geometries, the canonical form is a physical quantity. Locality and
unitarity manifest themselves by the fact that, when we approach one of the boundaries, the
quantity which we study appropriately factorizes into smaller pieces. This is a recurring pat-
tern in high-energy physics, where it is common to use recursion relations to construct more
complicated objects from simpler ones.

What we now call ‘positive geometries’ have made their first appearance in supersymmetric
gauge theories, and were inspired by the work of Hodges [1], who first showed that a partic-
ular amplitude could be written as the volume of a polytope. This led to the definition of the
amplituhedron [2], which computes tree- and loop-level (integrands of) n-point amplitudes
of any helicity sector in maximally supersymmetric Yang–Mills theory in the planar limit in
momentum twistor space. Few years later, for the same theory, the momentum amplituhedron
was defined [3], which computes the tree-level amplitudes directly in spinor helicity space.
Nowadays, we have found examples of such structures for scattering amplitudes and other
observables in a variety of theories. For instance, the kinematic associahedron [4] computes
tree-level amplitudes for the bi-adjoint � 3 theory. On-going works have extended kinematic
and worldsheet associahedra to loop-level amplitudes in � 3 theory, generalized worldsheet
and string integrals, and uncovered deep connections with mathematics such as cluster alge-
bras, tropical geometry and convex geometry. These geometrical constructions have appeared
very recently also in cosmology [5]: the cosmological polytope gives a connection between
positive geometries and the individual Feynman diagrams contributing to the wave function
of the Universe, analogously to the one seen for scattering amplitudes. Positive geometries
are arising also in more general conformal field theories (CFT), beyond maximally super-
symmetric Yang–Mills theory. A novel geometric interpretation of the conformal bootstrap
equation has been discovered, which leads to new insights into the four-point functions in
CFT [6].

In this review, we present an extensive description of ‘amplituhedra’ and, more generally, of
positive geometries which underlie physical quantities. In section 2 we start by introducing the
mathematical notion of positive geometries, explaining how to determine the canonical form
and giving few simple examples. In particular, we define the positive Grassmannian, which
provides an auxiliary space used to define amplituhedra later on. Section 3 focuses on the pos-
itive geometries for (planar) N = 4 super Yang–Mills (sYM). In particular we will describe
the amplituhedron, the correlahedron and the momentum amplituhedron, which is relevant for
tree-level amplitudes directly in spinor helicity space. We follow in section 4 with amplituhedra
for bi-adjoint cubic scalar theory and in section 5 with positive geometries relevant for observ-
ables other than scattering amplitudes. Finally, in section 6 we summarize recent advances
related to positive geometries, including relations to string theory and tropical geometry. We
devote the appendix to introduce some relevant notation.

2. Positive geometries

We start our survey by providing the definition of positive geometries, somehow reversing
the chronological order of the developments described in this review. This has however the
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advantage of allowing us to discuss all objects in the following sections in a unified frame-
work. We provide here a simplified description of this class of geometries and we refer the
reader to the original paper where positive geometries were defined [7], for a precise definition.
Importantly, there are two main ingredients that we need to specify in order to define a posi-
tive geometry: a geometric space and a rational differential form. The space is given by a pair:
a complex variety X which provides an ambient space, inside which we define a subset X� 0

of its real slice. Then the differential form � (X, X� 0) needs to be meromorphic on X and to
behave logarithmically when approaching any boundary of X� 0. Moreover, when we restrict
the differential form � (X, X� 0) to any boundary of X� 0 by performing an appropriate residue
operation, we obtain the canonical differential form for this boundary.

2.1. Definition

Positive geometries [7] naturally live in complex projective spaces, which we denote as PN ,
and their real parts PN(R). We define X to be a complex projective algebraic variety of complex
dimension D and X(R) to be its real part, and we denote by X� 0 ⊂ X(R) an oriented set of real
dimension D. A D-dimensional positive geometry is a pair (X, X� 0) equipped with a unique
non-zero differential D-form � (X, X� 0) satisfying the following recursive axioms:

• For D = 0 we have that X = X� 0 is a single real point and � (X, X� 0) = ±1 depending on
the orientation of X� 0.

• For D > 0 we have that every boundary component (C, C� 0) of (X, X� 0) is a positive
geometry of dimension D − 1. Moreover, the form � (X, X� 0) is constrained by the residue
relation

ResC � (X, X� 0) = � (C, C� 0), (2.1)

along every boundary component C, and has no singularities elsewhere.

The residue operation ResC for a meromorphic form � on X is defined in the following
way: suppose C is a subvariety of X and z is a holomorphic coordinate whose zero set z = 0
parametrizes C. Denote as u the remaining holomorphic coordinates. Then a simple pole of �
at C is a singularity of the form

� (u, z) = � ′(u) ∧ dz
z

+ . . . , (2.2)

where the ellipsis denotes terms smooth in the small z limit, and � ′(u) is a non-zero
meromorphic form on the boundary component. One defines

ResC � := � ′. (2.3)

If there is no such simple pole then one defines the residue to be zero.

2.2. Positive geometries in physics

When exploring positive geometries from the point of view of physics, we are interested in
defining a region inside the kinematic space relevant for the problem at hand. Often this region
can be determined by studying the physical properties of the observables and, in particular, by
studying the structure of their singularities. For example, in the case of scattering amplitudes it
is known that they diverge when particular combinations of momenta vanish. This determines
the boundary structure of the sought-after region and gives strong indications to determine the
complete geometry and, afterwards, its canonical form.

3



J. Phys. A: Math. Theor. 54 (2021) 033001 Topical Review

Positive geometries provide a broad class of, yet unexplored, geometries. In the physics con-
text we will however restrict our attention to a narrower class of objects and we will distinguish
two types of positive geometries relevant for applications in high-energy physics:

• In the first class of geometries we will have X = PD and X� 0 will be defined as a collection
of linear inequalities and therefore will have properties of a convex polyhedron. Examples
include projective simplices, projective embeddings of associahedra relevant for the � 3

theory, cosmological polytopes, cyclic polytopes and positive geometries for CFT.
• The second class of objects is related to Grassmannian spaces3 and can be pictured as a

curvy version of convex polyhedra. It includes positive Grassmannians, the amplituhe-
dron, the momentum amplituhedron and the correlahedron. The only member in this
class which is proven to be a positive geometry is the positive Grassmannian; however,
there is substantial evidence that also amplituhedra satisfy the axioms of positive geome-
tries. In particular, using physics motivations, explicit expressions for the canonical forms
� (X, X� 0) of the amplituhedron and momentum amplituhedron can be found using the
Britto–Cachazo–Feng–Witten (BCFW) recursion relations [8, 9].

2.3. Canonical forms and how to find them

In order to check whether a given pair (X, X� 0) is a positive geometry we need to have an
efficient way to find rational differential forms � (X, X� 0) associated to them. There are various
different ways to determine such forms and we list below some of the most commonly used:

• Triangulations: in this approach the geometry is divided into smaller pieces for which
the canonical forms are known. There are two types of triangulations: triangulations intro-
ducing spurious boundaries, or the so-called local triangulations, for which we have only
physical singularities but need to introduce additional points. Each element of a triangula-
tion of the first type has non-physical singularities on spurious boundaries however, since
the canonical forms for each smaller geometry are logarithmic, then one gets cancella-
tions on each spurious boundary, leading to a differential form with singularities only on
the true boundaries of the positive geometry.

Finding triangulations of a given positive geometry is an interesting, and sometimes diffi-
cult, task on its own. For projective convex polytopes there is a range of known algorithms to
accomplish it. On the other hand, for positive geometries in Grassmannian spaces it is often
possible to exploit the structure of the positive Grassmannian and arguments from physics to
find their triangulations.

• Push-forwards: it is often possible to find a simpler positive geometry which can be
mapped bijectively to (subsets of) more complicated positive geometries. Then we can use
such a map to push-forward the known canonical form of the simpler positive geometry to
obtain the canonical form for the more complicated one. See appendix B for the definition
of push-forward.

• Integral representations„dual geometry: for projective convex polytopes it is possible
to find their dual polytopes using projective duality. The canonical differential form can
then be obtained from the volume of the dual geometry. This justifies the use of the notion
of volume form to indicate a canonical form. For positive geometries in Grassmannian

3 Since a projective space is also an example of a Grassmannian space, then some members of this family of geometries,
e.g. cyclic polytopes, will also belong to the first class.
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spaces, the notion of a ‘dual’ is yet to be understood, but some work in this direction was
done in [7, 10].

• Direct construction from poles and zeros:knowing that the singularities of the canonical
form are located solely at the boundaries of the space X� 0, it allows us to write � (X, X� 0)
as a rational function with known denominator factors and a polynomial function in the
numerator. In various cases this numerator can be completely fixed by imposing the residue
constraints from the definition of the positive geometries [11].

• Integral representations„contour integrals: we will recall in the following that it is
possible to write the canonical forms for the amplituhedron and the momentum amplituhe-
dron as contour integrals over a Grassmannian space, and for the cosmological polytope as
a contour integral over the projective space. In simple cases, the positivity completely fixes
the integration contour and allows one to write the volume form as a sum of appropriate
residues of this integral.

2.4. Basic examples of positive geometries

We start our exploration of positive geometries by giving few basic examples. In particular,
we introduce the general notion of projective polytopes, which include positive geometries
belonging to the first class we mentioned earlier. We also recall the definition of the pos-
itive Grassmannian and its properties, which will be relevant in our later explorations of
amplituhedra.

2.4.1. Projective polytopes. Positive geometries provide a class of spaces which are generi-
cally quite complicated; however, they also include simple and familiar objects. The simplest
examples of positive geometries are simplices, or rather their embedding into the projective
space. One defines a projective m-simplex (Pm, � ) as a positive geometry in Pm cut out by
exactly m + 1 linear inequalities. If we take Y ∈ Pm to be a point in projective space with homo-
geneous components YA indexed by A = 0, 1, . . . , m, then any linear inequality in projective
space is of the form Y · W := YAWA � 0, where W ∈ Rm+ 1 is a dual vector with components
WA. The projective simplex is therefore the set

� = {Y ∈ Pm(R) | Y · Wi � 0, for i = 1, . . . , m + 1}. (2.4)

Here the Wi’s are projective dual vectors corresponding to the facets of the simplex. Every
boundary of a projective simplex is again a projective simplex, it is therefore easy to see
that projective simplices satisfy the axioms of a positive geometry. Moreover, we can write
down an explicit form of the canonical differential form � (Pm, � ) in terms of the vertices
or, equivalently, in terms of the facets of � . Let Zi ∈ Rm+ 1\{0} denote the vertices of � for
i = 1, . . . , m + 1. Then the canonical form is

� (Pm, � ) =
〈Z1Z2 . . . Zm+ 1〉m〈Y dmY〉

m! 〈YZ1 . . . Zm〉 〈YZ2 . . . Zm+ 1〉 . . . 〈YZm+ 1 . . . Zm−1〉
, (2.5)

where we denoted

1
m!

〈Y dmY〉 =
m+ 1�

A= 1

(−1)AYA dY1 ∧ . . . ∧ �dYA ∧ . . . ∧ dYm+ 1, (2.6)

where hatted differentials are omitted, and we introduced the brackets 〈〉 which are maximal
minors of the matrix (Y, Z1, Z2, . . . , Zn). One interesting way of obtaining formula (2.5) is
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to use projective duality and derive it as the volume of the dual m-simplex, for more details
see for example [12]. To illustrate how the canonical form of a projective m-simplex satisfies
the conditions from the definition of positive geometries, let us choose (Zi) j = � j

i and let us
parametrize Y in a particular patch of the projective space Pm as Y = (y1, y2, . . . , ym, 1). Then
(2.5) reduces to

� (Pm, � ) =
dy1 ∧ dy2 ∧ · · · ∧ dym

y1 · y2 · . . . · ym
. (2.7)

Each boundary of this m-simplex corresponds to yi = 0 and calculating the residue of (2.7)
at any of these boundaries yields the canonical form of an (m − 1)-simplex, as expected. By
continuing this procedure recursively, we end up with 0-simplices, for which the canonical
forms are ±1, confirming that the m-simplex is a positive geometry. A similar calculation can
be done for generic Zi.

More generally, we can define convex projective polytopes with vertices Z1, Z2, . . . , Zn ∈
Rm+ 1\{0}. We denote by Z the n × (m + 1) matrix whose rows are given by the Zi and
assume that Z is a positive matrix, i.e. a matrix with all maximal minors positive. We define
A := A(Z) := A(Z1, Z2, . . . , Zn) ⊂ Pm(R) to be the convex hull of points Z1, . . . , Zn

A = Conv(Z) = Conv(Z1, . . . , Zn) :=

�
n�

i= 1

ciZi ∈ Pm(R) | ci � 0, i = 1, . . . , n

�

.

(2.8)

We usually restrict to the case where the points Z1, . . . , Zn are all vertices4 of A. The polytope A
is called a convex projective polytope and it is easy to check that it defines a positive geometry.
This follows from the fact that every polytope A can be triangulated by projective simplices.
The canonical form � (Pm, A) of a projective polytope can then be found as the sum of canonical
forms for the projective simplices triangulating it.

Finally, we observe that every convex polytope in Rm can be uplifted to a projective polytope
in the following way: a convex polytope A can be described as the convex span of some number
of vertices z1, . . . , zn, where zi ∈ Rm. Then we can embed it into a projective space Pm by
constructing the points

Zi =

�
1

zi

�

, (2.9)

up to a rescaling. The projective polytope associated to A is then A(Z1, . . . , Zn).

2.4.2. Positive Grassmannian. A more involved example of positive geometry is given by
the positive Grassmannian—a generalisation of a projective simplex. This positive geometry
plays also a crucial role in the definition of amplituhedra later on, which in turn can be viewed
as generalisations of projective polytopes.

We start by defining the (real) Grassmannian G(k, n) (for 0 � k � n) which is the space
of all k-dimensional subspaces of Rn. An element of G(k, n) can be viewed as a k × n matrix
of rank k modulo invertible row operations, whose rows give a basis for the k-dimensional
subspace. We define [n] = {1, . . . , n}, and denote by

� [n]
k

	
the set of all k-element subsets of

4 If some Zi is not a vertex of A then it lies in the convex hull of the remaining Z’s and therefore can be removed
without altering the shape of A.
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[n]. Given a Grassmannian element V ∈ G(k, n) represented by a k × n matrix A, for I ∈
� [n]

k

	
,

we denote by pI(V) the k × k minor of A constructed using the columns in I. The pI(V) do not
depend on our choice of the matrix A (up to simultaneous rescaling by a nonzero constant),
and are called the Plücker coordinates of V .

We say that V ∈ G(k, n) is totally nonnegative if all Plücker coordinates pI(V) � 0 are non-
negative for all I ∈

� [n]
k

	
. The set of all totally nonnegative V ∈ Gr(k, n) is the totally nonneg-

ative Grassmannian G+ (k, n), which we will often refer to as the positive Grassmannian. For
M ⊆

� [n]
k

	
, we take SM to be the set of V ∈ G+ (k, n) with the prescribed collection of Plücker

coordinates strictly positive, i.e. pI(V) > 0 for all I ∈ M, and the remaining Plücker coordi-
nates equal to zero. We call SM a positroid cell of G+ (k, n). As shown in [13], the positroid
cells of G+ (k, n) are in bijection with various combinatorial objects, including decorated per-
mutations � on [n] with k anti-excedances, L-diagrams D of type (k, n), and equivalence
classes of reduced plabic graphs G of type (k, n). The positive Grassmannian G+ (k, n) is a
k × (n − k) dimensional space, with an interesting and well-understood boundary structure
including positroid cells of all dimensions, which is known to be homeomorphic to a ball [14].
One can show, see e.g. [15], that for the positive Grassmannian G+ (k, n) there exists a set of
coordinates � i, called canonical coordinates, such that its top-dimensional differential form �
can be written as � =



i d log � i. The boundaries of the positive Grassmannian correspond

to taking one of these � i to zero and therefore the residue is obtained by removing one of the
d log’s from � . The resulting form is the canonical form of the boundary and this procedure
can be continued recursively until one arrives to zero-dimensional boundaries for which the
form is trivially ±1. This shows that the positive Grassmannian is a positive geometry.

The positive Grassmannian has started to play a prominent role in the development for
scattering amplitudes after it was realized that the plabic graphs classified by Postnikov [13]
correspond to on-shell diagrams obtained by solving the BCFW recursion relations in pla-
nar N = 4 sYM theory. The latter allow one to find the amplitude integrand as a sum of
(on-shell) graphs with trivalent vertices of two types, corresponding to two three-particle scat-
tering amplitudes A3,1 and A3,2. Using this relation, the tree-level amplitude Atree

n,k , where n
is the total number of particles and k refers to the helicity sector, corresponds to a partic-
ular collection of positroid cells in the positive Grassmannian G+ (k, n). A comprehensive
study of the relation between positive Grassmannians and scattering amplitudes can be found
in [15].

3. Amplituhedra for N = 4 sYM theory

After having presented simple examples of positive geometries and their properties, we are
now ready to study the first example of such geometries relevant to physics. The focus of this
section is on N = 4 sYM and we describe three geometries relevant for single-trace scattering
amplitudes in this theory: the amplituhedron A(4)

n,k and the loop amplituhedron A� -loop
n,k , which

are defined on the momentum twistor space, and the momentum amplituhedron M(4)
n,k which

is defined on the spinor helicity space. Moreover, we recall the definition of the correlahe-
dron which is the geometry encoding the stress–energy correlators in planar N = 4 sYM.
The definition of amplituhedra has been also extended beyond the cases relevant to physics: a
general definition for the amplituhedron A(m)

n,k was introduced in [2], while for the momentum

amplituhedron M(m)
n,k , for even m, in [16]. These are positive geometries which often serve as a

playground for testing the ideas for the physical case m = 4. In particular, much is known for
m = 1, 2 as we summarize in the following sections.
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For each positive geometry we will follow a common template in describing its properties.
We start by providing a definition, or in many cases few equivalent definitions which highlight
different properties of the same geometry. Using these definitions we explain the structure of
their boundaries which is necessary to determine whether they are positive geometries. Next,
we describe known methods for finding the canonical forms and, if available, provide explicit
expressions for them. In many cases no such explicit expressions are known and one needs to
refer to a case-by-case study. Finally, we explain how a relevant physical observable is encoded
by each positive geometry.

Before we delve into the world of amplituhedra, we remind the reader of a few basic
facts about scattering amplitudes for N = 4 sYM, which will set the stage and allow us to
compare the results which we obtain from positive geometries with known results for ampli-
tudes obtained using standard methods. We also comment on the symmetries of scattering
amplitudes.

3.1. Scattering amplitudes in N = 4 sYM

Scattering superamplitudes in N = 4 sYM are defined for on-shell chiral superfields, which
collect the on-shell multiplet into a single object by means of the Grassmann-odd variables � A

with A = 1, . . . , 4:

� = G+ + � A� A +
1
2!

� A� BSAB +
1
3!

� A� B� C	 ABCD �̄ D +
1
4!

� A� B� C� D	 ABCD G−,

(3.1)

with positive (resp. negative) helicity gluons G+ (resp. G−), fermions � , �̄ and scalars S. A
generic n-particle color-ordered superamplitude An = An(� 1, � 2, . . . , � n) can be expanded in
terms of helicity sectors

An = An,2 + An,3 + · · · + An,n−2, (n � 4), (3.2)

where An,2 is called the maximally-helicity-violating (MHV) amplitude, An,3 is the next-to-
MHV (NMHV) amplitude and so on. More generally, An,k is the superamplitude for the
Nk−2MHV sector and has Grassmann degree 4k, i.e. it is proportional to � 4k. In the planar
limit, each amplitude An,k can be further expanded in the coupling constant

An,k = Atree
n,k +

�

�> 0


 � A� -loop
n,k , (3.3)

where 
 is the t’Hooft coupling. The positive geometries which encode the tree amplitudes Atree
n,k

are A(4)
n,k−2 and M(4)

n,k, while the loop amplituhedron A� -loop
n,k encodes the integrands for A� -loop

n,k−2.
Importantly, the amplitudes are functions of kinematic variables and over the years various

kinematic spaces have been used to encode them. The most popular ones are momenta and
polarisation vectors, spinor helicity variables, twistor or momentum twistor variables, and their
appropriate supersymmetric extensions, see appendix A for a detailed descriptions of these
variables.

3.1.1. Grassmannian formulae. One of the early signs of positive geometries in the realm
of scattering amplitudes came from the realisation that momentum conservation, which is

8
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a quadratic constraint in the spinor helicity space5, can be linearized by introducing auxil-
iary spaces. More explicitly, the condition

� n
i= 1 
 a

i
�
 �a

i = 0 can be linearized by introducing an
auxiliary k-plane in n-dimensions, C = (ca

i ), such that

C⊥ · 
 = 0 C · �
 = 0, (3.4)

where C⊥ is the orthogonal complement of C.
This led to a remarkable development proposed in [17], where the leading singularities of

the N = 4 sYM Nk−2MHV n-point amplitudes written in twistor space were described by an
integral over the space of k-planes in n dimensions, the Grassmannian G(k, n), along suitable
closed contours. Therefore the tree-level amplitudes can be written as

Atree
n,k =



�

�
a,i dca

i

GL(k)(1 . . . k)(2 . . . k + 1) . . . (n . . . n + k − 1)

k�

a= 1

� 4|4

�
n�

i= 1

ca
i Wi

�

,

(3.5)

where WA
i are the super-twistor variables, see appendix A, and � is a closed contour. The

denominator consists of the cyclic product of the minors Mi = (i i + 1 . . . i + k − 1), i.e. the
determinants of (k × k) submatrices of the matrix C. The contour � can be determined by
using e.g. the BCFW recursion relations, and performing the integral (3.5) reduces to eval-
uating a sum of residues, with each residue corresponding to a positroid cell in the positive
Grassmannian.

A very similar formula was proposed in [18] in terms of momentum supertwistors ZA
i : one

can rewrite the amplitude as

Atree
n,k = Atree

n,2 Wn,k′ , (3.6)

where Wn,k′ is the tree-level expectation value of the polygonal light-like Wilson loop dual to
the amplitude, see [19–22] and references therein, and we introduced k′ = k − 2. Then Wn,k′

can be evaluated from

Wn,k′ =
 �

a,i dtai
GL(k′)(1 . . . k′)(2 . . . k′ + 1) . . . (n . . . n + k′ − 1)

×
k′�

a= 1

� 4|4

�
n�

i= 1

tai Zi

�

. (3.7)

The residues of the Grassmannian integral are in one-to-one correspondence with individual
terms in the BCFW recursion relations. Moreover, the BCFW recursion relations can be solved
in various independent ways and the identity between results can be understood as a conse-
quence of the residue theorem for these integrals. The different ways of solving the recursion
relations had also led Hodges [1] to argue that the NMHV tree-level amplitude could be thought
of as the volume of a particular polytope in momentum twistor space, for which the different
BCFW solutions represent different triangulations. These ideas motivated the search for a geo-
metric representation of amplitudes and culminated with the formulation of the amplituhedron
[2], which we will describe in the next section.

5 Spinor helicity variables are introduced in appendix A.
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3.1.2. Symmetries of scattering amplitudes. An important property of N = 4 sYM in the pla-
nar limit is the fact that it possesses a Yangian symmetry, which is an algebraic manifestation of
its quantum integrability. Indeed, the Lagrangian of N = 4 sYM is invariant under the super-
conformal group PSU(2, 2|4). Moreover, in the planar limit a hidden symmetry not visible at
the Lagrangian level appears: the dual superconformal symmetry [23]. This is a second, distinct
copy of PSU(2, 2|4). The combination of the two superconformal symmetry algebras forms a
Yangian structure, whose definition we recall briefly in the following. For details see e.g. the
reviews [24, 25] and references therein. Let us call g the simple Lie algebra generated by the
generators J(0)

a :

[J(0)
a , J(0)

b ] = f c
ab J(0)

c , (3.8)

where f c
ab are the structure constants of g and a = 1, . . . , dim g. The J(0)

a ’s form the so-
called level-zero Yangian generators. The Yangian Y(g) of a Lie algebra g is the Hopf algebra
generated by the set of J(0)

a ’s together with another set J(1)
a , the level one, which obeys

[J(0)
a , J(1)

b ] = f c
ab J(1)

c , (3.9)

and therefore transforms in the adjoint representation of g.
Since N = 4 sYM is a superconformal field theory, one expects this to be reflected in the

structure of its scattering amplitudes. This turns out to be true for tree-level amplitudes but not
at loop level, where the presence of infrared divergences breaks the symmetry. If we denote
with ja any generator of the superconformal algebra psu(2, 2|4) we can write6

jaAtree
n = 0. (3.10)

At loop level, the infrared effects can be taken into account by deforming the superconformal
generators: as for example in [26–28] where it was shown how to redefine them to restore
the symmetry at one loop. The dual superconformal symmetry is generated by a set of Ja’s
being the dual copy of psu(2, 2|4). Through a suitable modification of (some of) the dual
superconformal generators, one can show the invariance of An at tree level

j′aAtree
n = 0. (3.11)

In [29] it was shown that the generators ja (3.10) together with one j′a generate the Yangian
of the superconformal algebra, Y(psu(2, 2|4)). If instead we consider the amplitude with the
MHV-part factorized out, i.e. Wn,k in (3.6), the dual superconformal generators are the level
zero, and one (suitable modified) superconformal generator forms the level-one.

While proving the Yangian invariance in the spinor helicity and dual spaces is rather diffi-
cult, and was explicitly verified only on a limited number of cases, using formulae (3.5) and
(3.7) allows one to beautifully check it for any n and k [30]. These formulae are invariant under
the Yangian Y

�
psl(4|4)

	
, which in momentum twistor space is generated by

(J(0))A
B =

n�

i= 1

ZA
i

�
� ZB

i

, (J(1))A
B =

�

i< j

�

ZA
i

�
� ZC

i

ZC
j

�
� ZB

j

− (i ↔ j)

�

.

(3.12)

A similar set of generators can be written in the twistor space.

6 In fact (3.10) is not completely exact, because of the so-called holomorphic anomaly.
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3.2. Amplituhedron

We start our journey through positive geometries relevant for physics with two prime examples,
the tree amplituhedron and the loop amplituhedron. The tree amplituhedronA (m)

n,k� is a positive
geometry encoding the tree-level scattering amplitudes7 in the momentum super-twistor space8

and we can think of it as the generalisation of projective polytopes into the Grassmannian space,
in the same way as the positive Grassmannian is the generalisation of a projective simplex.
Originally, the tree amplituhedron was de�ned in [2] using an auxiliary Grassmannian space;
it can be however translated directly to momentum twistor space by performing a particular
projection. In both spaces the points inside the tree amplituhedron satisfy particular positivity
conditions [31], which uniquely determine them. Finally, using these positivity conditions, the
tree amplituhedron can be de�ned directly in the momentum twistor space as the intersection
of a subset of points satisfying particular sign patterns with an af�ne subspace, without any
reference to an auxiliary space. The majority of known results for tree amplituhedra has been
found form = 1, m = 2 and for the physical casem = 4, and we will mostly focus on these
cases. In particular, the complete boundary structure of these spaces is known form = 1, 2 and
an explicit form of canonical forms can be found in all three cases (although there is no closed
formula form = 4).

The loop amplituhedronA � -loop
n,k� has been de�ned in [2] and provides a positive geometry for

integrands of loop amplitudes inN = 4 sYM. It is de�ned as the image of a space, generalizing
the positive Grassmannian, through a linear map. This construction is available only for the
case relevant for physicsm = 4. The loop amplituhedron also satis�es particular sign patterns
[31]. While for one-loop amplitudes and for the four-point MHV amplitude at any loop various
results are available, at the moment not much is known beyond these cases.

3.2.1. Tree amplituhedron. Original de�nition . Let us denote byM+ (p, q) the set ofp× q
matrices with all maximal ordered minors positive. We consider a positive matrixZ � M+ (m+
k�, n) with entriesZA

i for A = 1,. . . m+ k�, i = 1 . . . , n. These will be later reinterpreted as the
bosonisation of the momentum twistors (A.3). The tree amplituhedronA (m)

n,k� is de�ned as the
image of the map

� Z : G+ (k�, n) � G(k�, m+ k�), (3.13)

which to each elementC � G+ (k�, n), whereC = (c i
� ), associatesY = � Z(C) = c · Z, or in

components

YA
� =

n�

i= 1

c i
� ZA

i . (3.14)

On A (m)
n,k� � G(k�, m+ k�) one can de�ne a (k� · m)-dimensional canonical differential form

� (m)
n,k� , thevolume form, with logarithmic singularities on all boundaries of the space:

� (m)
n,k� (Y, Z) =

k��

� = 1

�Y1 . . . Yk� dmY� � � (m)
n,k� (Y, Z), (3.15)

7 Recall the relation betweenk� and the helicity sectork: k� = k Š 2, see section3.1.1.
8 For this reason the amplituhedron describes the dual polygon Wilson loop, which suggests that it should rather be
called Wilsonahedron.
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where� (m)
n,k� is thevolume functionand

� k�

� = 1 �Y1 . . . Yk� dmY� � the standard measure on the
GrassmannianG(k�, m+ k�), which is a straightforward generalization of theG(1,m+ 1) mea-
sure (2.6). We will describe more extensively the volume form later on. The geometric space
A (m)

n,k� together with the form� (m)
n,k� is (conjecturally) a positive geometry for alln, k� andm.

Interestingly, the tree amplituhedronA (m)
n,k� recovers familiar objects for special values of

its labels: if Z is a square matrix, i.e.m+ k� = n, then A (nŠk�)
n,k� is isomorphic to the posi-

tive GrassmannianG+ (k�, n). If k� = 1, thenA (m)
n,1 is a projective cyclic polytope [32]. Finally,

whenm = 1, A (1)
n,k� can be identi�ed with the complex of bounded faces of a cyclic hyperplane

arrangement [33]. Most importantly, the canonical form� (4)
n,k� encodes the tree-level amplitude

Atree
n,k�+ 2.

Topological description. The amplituhedron de�nition implies that the points inside the
amplituhedron satisfy certain sign patterns [31]. In particular, abbreviatingZi � i for con-
venience, it is straightforward to show that ifY � A (m)

n,k� then the following determinants of
(m+ k) × (m+ k) matrices are positive

�Yi1i1 + 1 . . . i m
2
i m

2
+ 1� > 0, (3.16)

whenm is even and

(Š1)k�Y 1i1i1 + 1 . . . i mŠ1
2

i mŠ1
2

+ 1� > 0, �Y i1i1 + 1 . . . i mŠ1
2

i mŠ1
2

+ 1n� > 0,

(3.17)

whenm is odd. Moreover, the following sequence of brackets

{� Y12. . . (mŠ 1)m� , . . . , �Y12. . . (mŠ 1)n�} (3.18)

has exactlyk� sign �ips. It was argued in [31] that also the converse is true and we can de�ne
the amplituhedron by demanding these sign patterns. This will allow us in the following to
introduce a de�nition of the amplituhedron which does not refer to any auxiliary space.
De�nition in the kinematic space. From the point of view of scattering amplitudes, the natural
space is the physical kinematic space ofz•s, see (A.3), while theY-space on which the ampli-
tuhedron is de�ned plays the role of an auxiliary space. In order to de�ne the amplituhedron
directly on the kinematic space, let us �rst notice that each elementY � G(k�, m+ k�) de�nes
an m-dimensional subspace inn dimensions in the following way: letY
 be an orthogonal
complement ofY and let us de�ne

za
i = (Y
 )a

A ZA
i . (3.19)

Formula (3.19) provides a map� : G(k�, m+ k�) � Z (n) from the auxiliary spaceG(k�, m+
k�), where the amplituhedron lives, to the kinematic spaceZ (n) whose elements are the bosonic
components of momentum supertwistors, namelyZ (n) = (z). By composing this map with� Z

we can de�ne the amplituhedronA (m),z
n,k� directly in the momentum twistor space as the image

of the positive GrassmannianG+ (k�, n):

A (m),z
n,k� = �

�
� Z

�
G+ (k�, n)

		
. (3.20)
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The canonical form on this spaceA (m),z
n,k� depending on thez•s variables can be found by using

the push-forward� � from A (m)
n,k� :

� (m),z
n,k� = � � � (m)

n,k� . (3.21)

This opens up the possibility of a description of the amplituhedronA (m)
n,k� without the need of

introducing auxiliary variablesY. To show this, let us start by writingY in a particular patch
of the Grassmannian space as

YA
� =

�
Šya

�

1k�× k�

�

� (Y
 )a
A =

�
1m× m| ya

�

	
. (3.22)

Then, by decomposing the matrixZ in the following way

ZA
i =

�
z� a

i

� �
i

�

, (3.23)

where (z� ) is a �xed m-plane inn dimensions and� is a �xed k�-plane inn dimensions, we
have that (3.19) can be directly written as

za
i = z� a

i + ya
� � �

i . (3.24)

This allows us to de�ne the following (k� · m)-dimensional subspace of the kinematic space

V(m)
n,k� = { za

i : za
i = z� a

i + ya
� � �

i } , (3.25)

where we assume that when we assemblez� and� as in (3.23) thenZ is a positive matrix.
We also de�ne a winding spaceW (m)

n,k� as the subset of kinematic space consisting of points
satisfying conditions (3.16)…(3.18) after we project them down to the kinematic space (which
results in removingY from the brackets). For example, form = 2 this winding space takes the
following form:

W (2)
n,k� = {� ii + 1� z > 0 and the sequence{� 12� z, � 13� z, . . . , � 1n� z} hask� sign �ips} ,

(3.26)

where we have de�ned the brackets� i j � z := z1
i z2

j Š z2
i z1

j . The amplituhedronA (m),z
n,k� can then be

alternatively de�ned directly in kinematic space as the intersection:

A (m),z
n,k� = V(m)

n,k�  W (m)
n,k� .

3.2.2. Boundaries and volume form. The amplituhedronA (m)
n,k� is (conjecturally) a positive

geometry: its canonical form� (m)
n,k� has logarithmic singularities on all its boundaries. The �rst

step to rigorously check this statement is to �nd the boundary strati�cation ofA (m)
n,k� . The general

structure of the amplituhedron boundaries is however unknown form > 2. Despite this fact, it
is often enough to know the facets of the amplituhedron, i.e. the co-dimension one boundaries,
to �nd a candidate logarithmic form. The facets of the amplituhedron are known for the �rst
few values ofm:

13



J. Phys. A: Math. Theor. 54 (2021) 033001 Topical Review

€ m = 1: �Yi� = 0, for i = 1,. . . , n,
€ m = 2: �Yii + 1� = 0, for i = 1,. . . , n,
€ m = 4: �Yii + 1j j + 1� = 0, for i < j = 1,. . . , n.

Beyond facets, we know the complete boundary strati�cation only form = 1, 2: form = 1
[33] the amplituhedronA (1)

n,k� can be identi�ed with the well-known complex of bounded faces
of a cyclic hyperplane arrangement, while form = 2 the complete boundary strati�cation
of A (2)

n,k� has been studied in [34]. At the moment, the boundary strati�cation for the most
interesting, physical casem = 4 is not known.

Knowing the boundaries of the amplituhedron weare now looking for a differential form
with logarithmic singularities on these boundaries. As we have already advertised there are
various different methods to �nd such canonical form, as we describe below.
Triangulations. The dimension of the positive GrassmannianG+ (k�, n) is larger than the
dimension of the amplituhedronA (m)

n,k� provided thatn > m+ k�. This means that the map� Z

is not injective and the image is covered in�nitely many times. One way to �nd the canoni-
cal form is to �nd a triangulation of the amplituhedron, namely a collection of positroid cells
S = { S } in G+ (k�, n) with each mapping injectively to itsimage and their images being dis-
joint and dense in the amplituhedron. Since we know canonical forms�  for each cell inS,
then the volume form� (m)

n,k� can be found by evaluating the push-forward of the canonical forms
�  via the function� Z and then summing over all positroid cells in the triangulationS

� (m)
n,k� =

�

S �S

(� Z)� �  . (3.27)

The result of the push-forward is a logarithmic differential form onG(k�, m+ k�) which can be
written as

� (m)
n,k� =

�

S �S

dY log� 
1(Y, Z) � dY log � 

2(Y, Z) � · · · � dY log � 
km(Y, Z), (3.28)

where� 
i (Y, Z) are the canonical positive coordinates parametrizing the cellS .

Triangulations of amplituhedra have been studied for various values ofm. For m = 4 a
large class of triangulations can be found from BCFW recursion relations. Form = 2 they
were studied in [35], where the number of triangles ineach triangulation was conjectured to
be a Narajama number, while in [36] it was rigorously proved thatA (2)

n,k� admits a triangulation
and in [16] its triangulations were related to positroidal triangulations of the hypersimplex
� k�+ 1,n. For m = 1 examples of BCFW-like triangulations have been studied in [33]. In the
following we summarize the known results for the canonical forms of amplituhedra coming
from triangulations:

€ m = 1 case [7]: for evenk� we have

� (1)
n,k� =

k��

� = 1

�Y1 . . . Yk� dY� �
�

2� j1Š1< j1< ···< j k�
2

Š1< n

[1, j1 Š 1, j1, . . . , j k�
2

Š 1, j k�
2
], (3.29)

while for oddk�

� (1)
n,k� =

k��

� = 1

�Y1 . . . Yk� dY� �
�

2� j1Š1< j1< ···< j k�Š1
2

Š1< nŠ1

�
1, j1 Š 1, j1, . . . , j k�Š1

2
Š 1, j k�Š1

2

�
,

(3.30)
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where

[ j0, j1, . . . , jk� ] :=
� j0 . . . jk� �

�Y j0� . . . �Y jk� �
, (3.31)

€ m = 2 case: see [7] or [37]:

� (2)
n,k� =

k��

� = 1

�Y1 . . . Yk� d2Y� �
�

2� i1<... ik� � nŠ1

[1, i1, i1 + 1; . . . ; 1, ik� , ik� + 1],

(3.32)

where

[p1, q1, r1; . . . ; pk� , qk� , rk� ]

=
[� (Yk�Š1)s1 p1q1r1� . . . � (Yk�Š1)sk� pk� qk� rk� � 	 s1...sk� ]

k�

2k� �Y p1q1�� Yq1r1�� Y p1r1� . . . �Y pk� qk� �� Yqk� rk� �� Y pk� rk� �
, (3.33)

for any indicesps, qs, rs with s = 1,. . . , k� and

�
Yk�Š1

� s
:= Ys1 � · · · � Ysk�Š1

	 s s1 ... sk�Š1, (3.34)

€ m = 4 case: the explicit answer for alln is known only for k� = 1 for which the
amplituhedron is a cyclic polytope, see e.g. [7],

� (4)
n,1 = �Y1 d4Y1�

�

i< j

[1ii + 1j j + 1], (3.35)

where

[i1i2i3i4i5] =
� i1i2i3i4i5� 4

�Yi1i2i3i4�� Yi2i3i4i5�� Yi3i4i5i1�� Yi4i5i1i2�� Yi5i1i2i3�
(3.36)

is a bosonized version ofR-invariants. Beyondk� = 1, the BCFW triangulation as a sum
over positroid cells can easily be found, and is for example implemented in the Mathe-
matica packagepositroid [38], however there is no known explicit general answer in
this case.

An interesting problem is to classify all possible triangulations, which produce a large set
of possible representations ofcanonical forms and therefore of amplitudes. This problem has
been studied form = 2 in [16], where a subclass of triangulations, called regular triangulations,
has been identi�ed with the �nest cones in the positive tropical Grassmannian [39]. Knowing
all regular triangulations onecan de�ne a secondary polytope, eachvertex of which is a regular
triangulation. For convexn-gons, which are the amplituhedraA (2)

n,1, the secondary polytope is
the associahedron. Form = 2 and generalk� the secondary polytope is given by the dual of the
positive tropical fan [16]. Form = 4 a construction of the secondary geometry is still unknown.
One possible approach to �nd this geometry is to generalize the Jeffrey…Kirwan construction
of amplituhedron volume forms [40] beyondk� = 1.
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Contour integrals. An alternative way to compute the volume function is given by evaluating
the following integral

� (m)
n,k� =



�

dk� ·nc� i

(12. . . k�)(23. . . k� + 1) . . . (n1 . . . k� Š 1)

k��

� = 1

� m+ k�
(YA

� Š
�

i

c� iZA
i ),

(3.37)

taken over a suitable closed contour� , in analogy with the Grassmannian integral (3.7). The
contour� can be determined for example by using the BCFW recursion relations: the BCFW
terms are residues of the integral (3.37) and the relations select a particular combination of
them; see [41] for a Mathematica© package implementing this. Then� is de�ned as the contour
encircling the poles of the integrand evaluating to these residues. Each residue corresponds to
the volume function on a •triangle• in the tree amplituhedron. Then the volume function� (m)

n,k�

is calculated as a particular sum of such residues. There have been few attempts to �x the
contour of integration without making reference to e.g. BCFW recursion relations. One can
use the •Feynman prescription• and modify the denominators of (3.37) by adding a positivei	
to each factor in the denominator [7, 10]. Then, after solving the delta function in (3.37), one
ends up with ak� × (n Š mŠ k�)-dimensional integral which can be performedover the product
of real lines. Using the positivity of external data one can show that this contour produces the
correct answer fork� = 1 and evenm. A generalisation to anyk� is not known at the moment.
Alternatively, fork� = 1 ork� = n Š mŠ 1, the contour can be �xed using the Jeffrey…Kirwan
prescription [40].
Poles and zeros. An alternative approach was suggested in [11], where canonical forms were
found by demanding their regularity everywhere outside ofA (m)

n,k� . This was based on the
observation that only a small subset of intersections of the co-dimension one boundaries are
themselves the amplituhedron boundaries. The majority of intersections is located outside the
amplituhedron and the canonical form must be regular when approaching them.

Let us present an example form = 2. The facets ofA (2)
n,k� are characterized by�Yii + 1� = 0

and positivity implies�Yii + 1� > 0 for all pointsY inside the amplituhedron.Thereforea factor
of �Yii + 1� for anyi has to appear in the denominator of� (2)

n,k� :

� (2)
n,k� =

k��

j= 1

�Y d2Yj�
N (Y)

�Y12�� Y23� . . . �Yn1�
. (3.38)

By taking residues of� (2)
n,k� we can access the lower-dimensional boundaries ofA (2)

n,k� . The
residues are found by setting�Y . . .� = �Y . . .� = · · · = 0 and only a small subset of them will
correspond to amplituhedron boundaries„the remaining are spurious poles and the numera-
tor N (Y) has to vanish whenY approaches them. This requirement is suf�cient to determine
the numerator uniquely. Moreover, the numeratorN (Y) is always positive for all points inside
the amplituhedron, which implies that the differential form is always positive. This positivity
is conjectured to hold true for alln, k� (at all loop orders). This approach allows one to �nd
new formulas for amplitudes, not involving triangulations, coming directly from the global
geometry of the amplituhedron.
Dual geometry. Finally, we want to mention that for projective polytopes the canonical func-
tion can be found by computing the volume of the dual polytope. In the casek� = 1 and anym,
the amplituhedronA (m)

n,1 is a cyclic polytope inPm and we can rewrite its canonical form� (m)
n,1
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as

� (m)
n,1 = �Y dmY�



�A

�W dmW�
(W · Y)m+ 1 , (3.39)

where the dual polytope is de�ned as

�A (m)
n,1 =

�
W � Pm : W · Y � 0 for allY � A (m)

n,1

�
, (3.40)

and the integral computes its projective volume. Fork� > 1 there is no known generalisation
of the corresponding dual geometry yet.

3.2.3. Amplitudes from amplituhedron. We have already mentioned that tree-level scattering
amplitudesAtree

n,k in N = 4 sYM can be extracted from canonical forms of the amplituhedron
A (4)

n,kŠ2. There are two ways in which we can calculate them:

€ Taking the original de�nition of the amplituhedron in the Grassmannian space, we start
from the volume function� (4)

n,k� and localizeY on the reference pointY� = (04·k� | � k�)T.
Furthermore, we parametrize the matrixZ as

ZA
i =

�

�
�
�
�

za
i

� A
1 � iA
...

� A
k � iA

�

�
�
�
�

,

i = 1,. . . , n,

A = 1,. . . , 4+ k�,

a, A = 1,. . . , 4,

(3.41)

which corresponds to the bosonization of the momentum twistors mentioned earlier, and
integrate the volume function over the Grassmann-odd parameters� :

Atree
n,k� (Z ) =


d4·k�

� � (4)
n,k� (Y� , Z), (3.42)

whereZ A
i = (za

i |� A
i ) � (
 �

i , �µ ��
i |� A

i ) are momentum supertwistors [1], see appendixA.
€ Alternatively, one can �nd the amplitude from the canonical form� (m),z

n,k� de�ned on the

kinematic space. Recall that� (m),z
n,k� is a rankm· k� differential form. We can �nd the ampli-

tude by replacing the differentials dzwith the Grassmann-odd variables parametrizing the
on-shell superspace� :

Atree
n,k� (Z ) = � (m),z

n,k�

�
�
�
dza

i � � a
i

. (3.43)

3.2.4. Yangian invariance. We have already commented that tree-level scattering amplitudes
are Yangian invariant. The bosonized amplitude encoded in the volume function is however
not invariant under a straightforward bosonisation of the Yangian generators. Nevertheless,
it was showed in [42] that Yangian invariance is still present, even though in a non-standard
way. Using the quantum inverse scattering method, it was shown that there exists a matrix of
functions closely related to the volume function� (m)

n,k� which is invariant under the Yangian of
gl(m+ k�). In particular, if we de�ne

(JY)A
B =

k��

� = 1

YA
�

�
� YB

�
+ k� � A

B, (3.44)
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then the matrix of functions

� A
B(Y, Z) := (JY)A

B � (m)
n,k� (Y, Z), (3.45)

is annihilated by the Yangian generators ofY(gl(m+ k�)).

3.2.5. Loop level. Until now we have discussed the tree amplituhedronA (m)
n,k� which encodes

tree-level scattering amplitudesAtree
n,k�+ 2 when we setm = 4. The natural next step would be

to also �nd a positive geometry which captures further terms in the perturbative expansion
(3.3)„this is not known at the moment. There exists however a geometric construction which
computes integrands of amplitudes at loop level [2]: the loop amplituhedronA � -loop

n,k� . As for the
tree amplituhedron, it depends on the number of particlesn and the helicity sectork�, but has
been de�ned so far only form = 4, allowing us to omit this label. It is conjectured thatA � -loop

n,k� is
a positive geometry calculating the� -loop integrands contributing to the scattering amplitude
An,k�+ 2.

Similarly to the tree amplituhedron, the loop amplituhedron is de�ned as the image of a
particular space, generalizing the positive Grassmannian, through a linear map. For a given
n, k� and� , we denote byG(k�, n; � ) the space which consists ofk�-planesC in n dimensions
together with� two-planesD(� ), living in the (n Š k�)-dimensional complement ofC. A point
in G(k�, n; � ) is represented via a (k� + 2� ) × n matrixC:

C =

�

�
�
�
�
�
�
�
�
�
�

D(l1)

- … … … -
...

- … … … -
D(l� )

- … … … -
C

�

�
�
�
�
�
�
�
�
�
�

. (3.46)

We denote byG+ (k�, n; � ) the positive part ofG(k�, n; � ) which is de�ned by demanding that all
the ordered maximal minors of the matrices

�
C

	
,

�

�
D(l1)

- … … … -
C

�

� ,

�

�
�
�
�
�

D(l1)

- … … … -
D(l2)

- … … … -
C

�

�
�
�
�
�

, . . .

�

�
�
�
�
�
�
�
�
�
�

D(l1)

- … … … -
...

- … … … -
D(l� )

- … … … -
C

�

�
�
�
�
�
�
�
�
�
�

, (3.47)

are positive for alll1, l2, . . . , l� = 1,. . . , � andli �= l j. These positivity constraints can be seen as
the •echo• of the standard positivity of a bigger (k� + 2� ) × (n + 2� ) matrix, of which� pairs of
adjacent columns have been removed. The loop amplituhedron is then the image ofG+ (k�, n; � )
through the linear map speci�ed by the external data

A � Šloop
n,k� = {Y � G(k�, 4+ k�; � ); Y = C ·Z, C � G+ (k�, n; � ), Z � M+ (4 + k�, n)} ,

(3.48)
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whereY is a k�-planeY in (4 + k�) dimensions, together with� two-planesL (l) living in the
four-dimensional orthogonal complement ofY:

Y =

�

�
�
�
�
�
�
�
�
�
�

L (1)

- … … … -
...

- … … … -
L (� )

- … … … -
Y

�

�
�
�
�
�
�
�
�
�
�

, L (l),A
� =

�

i

D(l),i
� ZA

i . (3.49)

One observes thatA 1-loop
n,0 andA (2)

n,2 are formally identical spaces and hence the one-loop MHV
integrands are related to the canonical forms of them = 2 tree amplituhedron.

The de�nition of A � -loop
n,k� implies that any point inside the loop amplituhedron satis�es par-

ticular sign patterns [31]: in addition to (3.16)…(3.18) we have the following conditions for
each loopL (l)

�YL (l)ii + 1� > 0, (3.50)

{� YL (l)12� , . . . , �YL (l)1n�} hask� + 2 sign �ips, (3.51)

and for any pair of loops (L (l1), L (l2)) we have

�YL (l1)L (l2)� > 0. (3.52)

The sign-�ip characterisation of the loop amplituhedron is particularly useful when showing
that locality and unitarity follow from positivity at loop level [43] and to �nd new represen-
tations of canonical forms [44]. It is also useful for determining the branch points of general
amplitudes from the loop amplituhedron using the Landau equations, see [45…47].

As for other positive geometries, the next step after de�ning the space is to understand its
boundaries and �nd the canonical forms with logarithmic singularities on all of them. However,
not much is known for the general loop amplituhedron. A comprehensive study of the one-loop
case was presented in [48], where a Grassmannian integral formula generalizing (3.37) was
postulated. As for tree level, a suitable sum of residues of this new integral allows one to �nd
canonical forms forA 1-loop

n,k� . A two-loop study for MHV amplitudes can be found in [49]. More-
over, the study of a particular class of boundaries for the loop amplituhedron, corresponding
to particular cuts of loop integrands, has been initiated in [50] and expanded to all loop orders
in [51, 52]. Beyond that, the main focus has been on understanding the simplest possible case:
the integrands for the four-point MHV amplitude.

The loop amplituhedron de�nition simpli�es signi�cantly for MHV amplitudes. Indeed in
this casek� = 0 andC is composed only of matricesD(l): therefore, the only positivity condi-
tions one needs to consider are between these matrices. The situation simpli�es even further
when consideringn = 4, where the matricesD(l) � G+ (2, 4) can be parametrized as

D(l) =
�

1 xl 0 Šwl

0 yl 1 zl

�
, (3.53)

and we only need to impose det
�

D(l1)

D(l2)

�
> 0, for all pairs (l1, l2). This reduces to the following

inequalities
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xl , yl, wl , zl > 0, (xl1 Š xl2)(zl1 Š zl2) + (yl1 Š yl2)(wl1 Š wl2) < 0. (3.54)

The canonical form for this geometry, i.e. the four-point MHV integrand, has been found up
to three loops in [50]. The boundary strati�cation of the loop amplituhedronA � -loop

4,0 has been
described in [53, 54] up to three loops.

3.3. Correlahedron

As an intermission, we mention another geometry underlying observables inN = 4 sYM
which also naturally lives in the momentum twistor space: the correlahedron [55]. The corre-
lahedronCn,k� is the geometry encoding then-point stress-tensor correlation function, wherek�

is associated with the fermionic degree of the correlator•s expansion in the analytic superspace
[56]. As in the amplituhedron story, one bosonizes the Grassmann-odd variables parametrizing
the analytic superspace. This leads to a purelybosonic space: the external data is encoded in
a collection ofn two-planesXi � G(2,n + k� + 4) corresponding to a point in analytic super-
space parametrized by a line in the momentum twistor space. Then the correlahedron is de�ned
as a subset of the Grassmannian spaceG(n + k�, 4+ n + k�) in the following way:

Cn,k� = { Y � G(n + k�, n + 4 + k�) : �YXiXj� > 0} , (3.55)

where the brackets�� are determinants of (n + 4 + k�) × (n + 4 + k�) matrices. It was conjec-
tured in [55] that the stress-tensor correlation functions can be extracted from the canonical
form of Cn,k� .

One interesting connection with the amplituhedron we described in the previous section is
that the correlahedron geometry can be projected down to the amplituhedron space by taking
light-like limits, i.e. limits where consecutive space…time points become light-like separated.
In this case, the stress-tensor correlator reduces to the square of the light-like polygonal Wilson
loop, and hence the square of the scattering amplitude. The light-like limits enforce the two-
planesXi to intersect in twistor space, which allows one to parametrize them asXi = (Zi , Zi+ 1).
Moreover, thep-point light-like limit is obtained by requiringY to simultaneously lie on multi-
ple boundaries�YXiXi+ 1� = 0,i = 1,. . . , p, of the correlahedron. Then the maximal,n-point,
light-like limit reduces the correlahedron space fromG(n + k�, 4+ n + k�) to G(k�, 4+ k�) by
particular operations of partial freezing and projecting. Geometrically, the limit reducesCn,k�

to (A n,k� )2:

(A n,k� )2 = { Y � G(k�, 4+ k�) : �Yii + 1j j + 1� > 0} . (3.56)

Algebraically, the volume form of the correlahedronCn,k� becomes the volume form of the
square of the amplituhedron (A n,k� )2, which encodes the square of the tree-level Nk�

MHV
superamplitude, or rather of the Wilson loop expectation value:

(W2)n,k� =
k��

�k= 0

Wn,�kWn,k�Š�k. (3.57)

Alternatively, if one takes a non-maximal light-like limit, i.e. the limit where fewer points are
light-like separated,p < n, the canonical form reduces to the canonical form of the square of
the loop amplituhedron. This has been shown in [55] for �ve-point NMHV, six-point N2MHV,
seven-pointN3MHV tree-level amplitudes, and for four-pointone- and two-loop, and �ve-point
NMHV one-loop amplitudes.
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3.4. Momentum amplituhedron

As we have already described, the amplituhedronA (m)
n,k� is de�ned in momentum twistor space,

which provides natural coordinates for Wilson loops. The fact that this space can be also used
for scattering amplitudes follows from the Wilson loop/scattering amplitude duality which is
a property of planarN = 4 sYM. In particular, momentum twistors encode a �xed order-
ing of particles, from which they cannot be separated. In order to go beyond the planar
limit, we need to use twistors or spinor helicity variables. In this section we describe a pos-
itive geometry de�ned directly in the spinor helicity space„the momentum amplituhedron
M (m)

n,k „introduced in [ 3] for the physical casem = 4 and later generalized to any evenm in
[16].

Before we proceed to the momentum amplituhedron de�nition, we emphasize one more
crucial difference compared to the amplituhedron construction. In order to be able to bosonize
spinor helicity variables we need to abandon the on-shell chiral superspace (
 a, �
 �a|� A), a, �a =
1, 2, A = 1,. . . , 4, and instead rewrite the amplitudes in the non-chiral superspace. This can
be accomplished by performing a Fourier transform of two of the four Grassmann variables,
which leads to a space parametrized by variables (
 a, � r | �
 �a, �� �r ), r, �r = 1, 2. In this way, the
SU(4) R-symmetry ofN = 4 sYM is broken. Then the newR-symmetry indices (r, �r) can be
associated with the spinor indices (a, �a) and, by the replacement

� a � d
 a, �� �a � d�
 �a, (3.58)

one can write any function on the non-chiral superspace as a differential form on its bosonic
part. In particular, the tree-level NkŠ2MHV scattering amplitudes can be written as differential
forms of degree (2(n Š k), 2k) in (d
 , d�
 ), see [57].

3.4.1. Definition and topological description. The momentum amplituhedronM (m)
n,k can be

de�ned using similar steps we followed for the ordinary amplituhedron: after specifying pos-
itive external data, we de�ne the momentum amplituhedron as the image of the positive
Grassmannian through a linear map depending on this external data.

We start by introducing a pair of matrices (� , �� ), which provide a bosonisation of the spinor
helicity variables (
 , �
 ):

� =
�

� 1� 2 . . . � n
	

� M
�

n Š k +
m
2

, n
�

, �� =
�

�� 1
�� 2 . . . �� n

�
� M

�
k +

m
2

, n
�

.

(3.59)

We demand this external data to be positive which we de�ne as: the matrix�� is a positive matrix
and� is a twisted positive matrix9, see [58] for de�nition of the latter. Then, the momentum
amplituhedronM (m)

n,k is the image of the positive GrassmannianG+ (k, n) through the map

� (� ,�� ) : G+ (k, n) � G
�

n Š k, n Š k +
m
2

�
× G

�
k, k +

m
2

�
, (3.60)

which to each element of the positive GrassmannianC = { c�� i } � G+ (k, n) associates a pair of
Grassmannian elements (Y, �Y) � G(n Š k, n Š k + m

2 ) × G(k, k + m
2 ) in the following way

YA
� = c


� i �
A
i , �Y

�A
�� = c�� i ��

�A
i , (3.61)

9 This condition can also be rewritten as the requirement that� 
 is a positive matrix, where
 indicates the orthogonal
complement.
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whereC
 = { c

� i} is the orthogonal complement ofC.

One important non-trivial property of the momentum amplituhedron is the fact that it is
m
2 · (n Š m

2 )-dimensional. While the dimension ofG(n Š k, n Š k + m
2 ) × G(k, k + m

2 ) is

dim
�

G
�

n Š k, n Š k +
m
2

��
+ dim

�
G

�
k, k +

m
2

��
=

m
2

(n Š k) +
m
2

k =
m
2

· n, (3.62)

the image of the positive GrassmannianG+ (k, n) when mapped using� (� ,�� ) is lower dimen-

sional. Indeed, the momentum amplituhedron lives in a co-dimensionm2

4 -surface insideG(n Š
k, n Š k + m

2 ) × G(k, k + m
2 ) satisfying:

Pa�a =
n�

i= 1

�
Y
 · �

	 a

i

�
�Y
 · ��

� �a

i
= 0. (3.63)

In particular, form = 4, one can think about the condition (3.63) as being equivalent to the
four-dimensional momentum conservation written directly in the momentum amplituhedron
space. If we project� and �� through a �xedY and�Y, as we will see later, then we �nd

�
Y
 · �

	 a

i � 
 a
i ,

�
�Y
 · ��

� �a

i
� �
 �a

i , (3.64)

and the condition (3.63) reduces to the usual momentum conservation.
As for the amplituhedron, the de�nition of the momentum amplituhedron implies partic-

ular sign patterns, which form = 4 were postulated in [57]. Indeed, one can show that for
(Y, �Y) � M (4)

n,k we have�Yii + 1� > 0 and [�Yii + 1] > 0. Moreover, the number of sign �ips in
the sequence

{� Y12� , �Y13� , . . . , �Y1n�} (3.65)

equalsk Š 2 and there arek sign �ips in the sequence

{ [ �Y12], [�Y13],. . . , [�Y1n]} . (3.66)

Here we introduced the brackets�� and [] which are de�ned as Plücker variables of the matrices
(Y1, . . . , YnŠk, � 1, . . . , � n) and (�Y1, . . . , �Yk, �� 1, . . . , �� n), respectively.

A similar sign pattern can also be found beyondm = 4. For example form = 2, the
momentum amplituhedron de�nition implies that the sign patterns are:

{� Y1� , �Y2� , . . . , �Yn�} hask Š 1 sign �ips, (3.67)

{ [ �Y1], [�Y2], . . . , [�Yn]} hasksign �ips. (3.68)

3.4.2. Definition in the kinematic space. The de�nition (3.61) of the momentum amplituhe-
dron demands the introduction of auxiliary Grassmannian spaces. Here, we want to reproduce
the argument we used for the amplituhedron and provide a description of the momentum
amplituhedron without reference to these auxiliary spaces, by de�ning it directly in terms of
kinematic data in spinor helicity space. In order to do so, we restrict to the physical casem = 4
and notice that each element (Y, �Y) � G(n Š k, n Š k + 2) × G(k, k + 2) de�nes a pair of
two-dimensional subspaces inn dimensions in the following way: letY
 and�Y
 be orthogonal
complements ofY and�Y, respectively. Then we de�ne


 a
i = (Y
 )a

A � A
i

�
 �a
i = (�Y
 )�a

�A
��

�A
i . (3.69)
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These formulae provide a map from the auxiliary space where the momentum amplituhedron
lives to the kinematic spaceL(n) = (
 , �
 ):

� : G(n Š k, n Š k + 2) × G(k, k + 2) � L (n). (3.70)

Composing this map with� (� ,�� ) we de�ne the momentum amplituhedron directly in the spinor
helicity space as the image of the positive GrassmannianG+ (k, n):

M (
 ,�
 )
n,k = �

�
� (� ,�� )

�
G+ (k, n)

	 �
. (3.71)

The canonical form on the spaceM (
 ,�
 )
n,k can be found by using the push-forward� � :

� (
 ,�
 )
n,k = � � � n,k. (3.72)

Then let us �x

YA
� =

�
Šya

�
1(nŠk)× (nŠk)

�
, �Y

�A
�� =

�
Š�y�a

��

1k× k

�

, (3.73)

and write an explicit form of the orthogonal complements

(Y
 )a
A =

�
12× 2|ya

�

	
, (�Y
 )�a

�A =
�
12× 2|�y�a

��

	
. (3.74)

Moreover, we can decompose the matrices� and�� accordingly

� A
i =

�

 a�

i

� �
i

�

, ��
�A
i =

�

�
�
 �a�

i

�� ��
i

�

� . (3.75)

Then (3.69) can be directly written as


 a
i = 
 � a

i + ya
� � �

i , �
 �a
i = �
 � �a

i + �y�a
��
�� ��

i . (3.76)

This discussion leads us to an alternative de�nition of the momentum amplituhedronM (
 ,�
 )
n,k ,

without any reference to auxiliary spaces. Let us de�ne

Vn,k = { (
 a
i , �
 �a

i ) : 
 a
i = 
 � a

i + ya
� � �

i , �
 �a
i = �
 � �a

i + �y�a
��

�� ��
i , 
 a

i
�
 �a

i = 0} , (3.77)

where (
 � , �
 � ) are two �xed two-planes inn dimensions,�� is a �xed k-plane and� is an
(n Š k)-dimensional �xed plane inndimensions. Moreover, we assume that when we assemble
these subspaces as in (3.75), �� is a positive matrix and� is a twisted positive matrix. Notice
thatVn,k is a co-dimension-four subspace of an af�ne space of dimension 2n. We also de�ne a
winding spaceWn,k

Wn,k =
�

(
 a
i , �
 �a

i ) : � ii + 1� > 0 , [ii + 1] > 0 ,sii+ 1...i+ p > 0,

the sequence{� 12� , � 13� , . . . , � 1n�} hask Š 2 sign �ips,

the sequence{ [12], [13], . . . , [1n]} hasksign �ips
 

. (3.78)
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wheresii+ 1...i+ p are planar Mandelstam variables. Then the momentum amplituhedronM (
 ,�
 )
n,k

in the spinor helicity space is the intersection:

M (
 ,�
 )
n,k = Vn,k  W n,k.

3.4.3. Boundaries,amplitude singularities and volume form. Before �nding the volume form,
i.e. the differential form with logarithmic singularities on all boundaries ofM (m)

n,k , let us classify
the boundaries. The boundaries of the momentum amplituhedron form = 4 have been recently
studied in [59] using theamplituhedronBoundaries MathematicaTM package [60] and
identi�ed with relevant singularities of scattering amplitudes. In particular, the facets of the
momentum amplituhedronM (4)

n,k belong to one of the following classes:

�Yii + 1� = 0, [�Yii + 1] = 0, Si,i+ 1,..., j = 0. (3.79)

The �rst two classes can be related to all possible collinear limits of the amplitude. The latter
boundaries are written in terms of

Si,i+ 1,... j =
j�

a< b= i

�Yab� [ �Yab], (3.80)

which are equivalent to the uplift of planar Mandelstam invariants to the momentum ampli-
tuhedron space. These correspond to all possible non-trivial factorisations of the amplitude.
The complete boundary strati�cation was found in [59] and each boundary element can be
obtained by intersections of multiple facets, which translates into a combination of collinear
limits and factorisations of amplitudes.

For m = 2, the momentum amplituhedronM (2)
n,k has the same boundary strati�cation as

the hypersimplex� k+ 1,n, see e.g. [60]. In particular, the only facets of the momentum
amplituhedron are of the form

�Yi� = 0, [�Yi] = 0. (3.81)

Moreover, the facets of the former typeare combinatorially equivalent toM (2)
nŠ1,k and the ones

of the latter type are equivalent toM (2)
nŠ1,kŠ1. This allows one to �nd the complete strati�cation

of the momentum amplituhedronM (2)
n,k recursively.

The differential form� (m)
n,k with logarithmic singularities on all boundaries of the momen-

tum amplituhedron can be found by triangulating the spaceM (m)
n,k , with each triangle being an

image through the map� (� ,�� ) of a m
2 ·

�
n Š m

2

	
-dimensional cell of the positive Grassmannian

G+ (k, n). To this extent, the proper combination of cells can be found using thepositroid
MathematicaTM package [38]. The logarithmic differential form onM (m)

n,k is the sum over such
cells of push-forwards of the canonical differential form for each cell. The explicit answer is
a sum of rational functions where the denominators can contain spurious singularities, corre-
sponding to spurious boundaries in a given triangulation. These singularities disappear in the
complete sum and the only divergences of� (m)

n,k correspond to the external boundaries.
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3.4.4. Integral representation. One can also introduce a representation of the volume function
� (m)

n,k as an integral over a matrix space

�
m2
4 (P) � n,k =


d(nŠk)·(nŠk)g
(det g)nŠk



�
� n,k

nŠk�

� = 1

� (nŠk+ m
2 )(Y Š g · c
 · � )

×
k�

�� = 1

� (k+ m
2 )(�Y Š c · �� ), (3.82)

where we additionally need to integrate over the matrixg corresponding to aGL(n Š k)-
transformation encoding the ambiguity of de�ning an orthogonal complement. The integration
measure� n,k is the canonical measure on the space ofk · n matricesC:

� n,k =
dk·nc�� i

(12. . . k)(23. . . k + 1) . . . (n1 . . . k Š 1)
, (3.83)

where the brackets in the denominator are minors of the matrixC

(i1i2 . . . ik) = 	 �� 1 �� 2... �� kc�� 1i1c�� 2i2 . . . c�� kik . (3.84)

The contour� can be found from e.g. BCFW recursion relations and it encircles a particular
combination of poles of the integrand.

3.4.5. Amplitudes from momentum amplituhedron. Finally, we want to describe how to
extract the amplitudeA tree

n,k from the volume form� n,k � � (4)
n,k. The momentum amplituhedron

M n,k is (2n Š 4)-dimensional and therefore the degree of� n,k is (2n Š 4). Since the momen-
tum amplituhedron is a subset of the 2n-dimensional spaceG(n Š k, n Š k + 2) × G(k, k + 2),
then there are various ways one can write� n,k depending on the parametrisation of this subset.
These different representations are relatedto each other by momentum conservation. In order
to make the expression for the volume form independent of this choice, we use the fact that
1 = � 4(P)d4P and de�ne the volume function� n,k in the following way:

� n,k � d4P� 4(P) =
nŠk�

� = 1

�Y1 . . . YnŠk d2Y� �
k�

�� = 1

[ �Y1 . . . �Yk d2�Y�� ]� 4(P) � n,k. (3.85)

Indeed, the form� n,k � d4P is top-dimensional and therefore can be written in terms of the
measure onG(n Š k, n Š k + 2) × G(k, k + 2) multiplied by a function. Then, the procedure
to extract the amplitude from the volume form� n,k is similar to the ordinary amplituhedron,
i.e. we localizeY and�Y on reference subspaces10

Y� =
�

� 2× (nŠk)

� (nŠk)× (nŠk)

�
, �Y� =

�
� 2× k

� k× k

�
. (3.86)

We also introduce 2(n Š k) auxiliary Grassmann-odd parameters� �
a , � = 1,. . . , n Š k and 2k

auxiliary Grassmann-odd parameters�� ��
�a , �� = 1,. . . , k, de�ned as

� A
i =

�

 a

i
� �

a · � a
i

�
, A = (a, � ) = 1,. . . , n Š k + 2, (3.87)

10This choice ofY� , �Y� is compatible with the embedding of
 , �
 in � , �� as in (3.87), (3.88).
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��
�A
i =

�
�
 �a

i
�� ��

�a · �� �a
i

�

, �A = ( �a, �� ) = 1,. . . , k + 2. (3.88)

The amplitude can be found from

A tree
n,k = � 4(p)


d� 1

a . . . d� nŠk
a


d�� 1

�a . . . d�� k
�a � n,k(Y� , �Y� , � , �� ), (3.89)

where� 4(p) comes from the localisation of� 4(P) onY� , �Y� .
Alternatively, if we interpret the amplitude asa differential form on the spinor helicity space,

we can extract the amplitude from the volume form� (
 ,�
 )
n,k in (3.72) via the replacement

A tree
n,k (
 , �
 ) = � (
 ,�
 )

n,k

�
�
�
d
 a

i � � a
i , d�
 �a

i � �� �a
i

. (3.90)

4. •Amplituhedra• for bi-adjoint � 3 theory

Positive geometries have been de�ned also for scattering amplitudes in other theories,
beyondN = 4 sYM. In this section we will review the kinematic associahedron [4], i.e.
the •amplituhedron• for� 3 theory, and its close cousin, the worldsheet associahedron, which
appears for open strings. We also discuss how the two are related by the •scattering equations•.

4.1. Scattering amplitudes in � 3 theory

We start by discussing the scattering amplitudes in the bi-adjoint massless� 3 theory inD-
dimensions, i.e. a theory of scalars in the adjoint representation of the product of two different
colour groups. The bi-adjoint colour structure allows us to decompose ann-point amplitude into
double-partial amplitudesmn(� |� ) labelled by two colour orderings� and� , both given by a
permutation ofnelements. From the point of view of geometry, most of the work has been done
in the case when� = � . Moreover, using cyclic symmetry of amplitudes we can subsequently
focus onmn = mn((12. . . n)|(12. . . n)), where (12. . . n) indicates the standard ordering ofn
elements. This introduces a particular �xed ordering between particles and restricts the class
of diagrams one needs to consider to planar diagrams with respect to this ordering.

The double-partial amplitudes are naturally written using Mandelstam variables

si1...ir = (pi1 + · · · pir )
2,

with massless momentap2
i = 0. Importantly, the Mandelstam variables are not linearly inde-

pendent since the momentapi satisfy the momentum conservation condition. At tree level, the
amplitudesm(0)

n (� |� ) can be found by summing over all Feynman diagrams, which are color-
ordered trivalent planar graphs, each contributing the product of its propagators11. They are
therefore rational functions of Mandelstam variables. The positive geometry which describes
them is the kinematic associahedron. At loop level, they become transcendental functions
obtained from Feynman integrals. However, as in the previous section, there exists a positive
geometry encoding the integrands of Feynman integrals, at least at one loop: the halohedron.

11When the two permutations are different, the answer is a subset of the terms appearing inm(0)
n (� |� ).
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4.2. Kinematic associahedron

As for N = 4 sYM, scattering amplitudes in the scalar bi-adjoint� 3 theory can be written as
differential forms on the kinematic space. This suggests that one should look for a positive
geometry directly in the kinematic space, without referring to any auxiliary construction, as an
intersection of some positive region with an af�ne subspace. Such construction was proposed in
[4] and the positive geometry obtained in this way is a projective version of the associahedron.
The associahedron, also called Stasheff polytope, is a well-known convex polytope of dimen-
sionn Š 3 which captures the combinatorics of subdivisions of ann-gon12: each codimension
d boundary of the associahedron corresponds to a partial triangulation withd diagonals inside
ann-gon, and its interior corresponds to the trivial subdivision with no diagonals. The associa-
hedron has a Catalan numberCnŠ2 of vertices and they correspond to the full triangulations of
ann-gon. Alternatively, the vertices can be labelled by planar cubic tree graphs, dual to the tri-
angulations. The Arkani-Hamed…Bai…He…Yan (ABHY) construction in [4] gives a particular
realisation of the associahedron, directly in the kinematic space of Mandelstam invariants.

The associahedron naturally lives in the kinematic spaceKn for n massless particles in the
bi-adjoint � 3 theory. This space is linearly spanned by the Mandelstam variablessi j , which
satisfyn conditions of the form

�
i�= j si j = 0. Therefore, its dimension is dimKn = n(nŠ3)

2 .
There exists a natural choice for a basis of this space: given the standard ordering (12. . . n),
one can de�nen(nŠ3)

2 planar variables

Xi, j := si,i+ 1,..., jŠ1, (4.1)

which are Mandelstam variables formed of momenta of consecutive particles, and which can
be visualized as the diagonals between verticesi and j of a convexn-gon.

To de�ne the kinematic associahedron we need two ingredients: a positive region and an
af�ne space. The positive region� n is de�ned by the requirement that all planar variablesXi, j

are positive

Xi, j � 0, 1 � i < j � n. (4.2)

This de�nes a top-dimensional cone insideKn. The af�ne subspace is the (n Š 3)-dimensional
subspaceHn � K n de�ned by requiring that

ci, j = Šsi j = Xi, j + Xi+ 1,j+ 1 Š Xi, j+ 1 Š Xi+ 1,j, (4.3)

are positive constants for all non-adjacent 1� i < j < n. Notice that one does not restrict the
variablesci, j when j = n. Then the kinematic associahedronA n is de�ned as the intersection
of the positive region� n with the subspaceHn:

A n := � n  Hn. (4.4)

This is an (n Š 3)-dimensional subset ofKn which can be naturally parametrized by e.g.Xi,n

with i = 2,. . . , n Š 2. One can easily show that its boundary structure is identical to the (n Š
3)-dimensional associahedron. For instance, for four- and �ve-particle scattering we have:

A 4 = { s = X1,3 > 0,t = X2,4 > 0}  {Š u = Šs13 = const> 0} , (4.5)

12Equivalently, the associahedron can be de�ned as a polytope with vertices given by all possible ways of parenthe-
sizing a word with a given number of letters, and whose edges correspond to a single application of the associativity
rule.
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A 5 = { s12 = X1,3 > 0,. . . , s51 = X2,5 > 0}  {Š s13, Šs14, Šs24 = const> 0} .

(4.6)

We refer the reader to [4] for an extensive and nicely illustrated set of examples of these
associahedra.

The amplitudes can be now extracted from the unique canonical differential form onA n.
Since the associahedron is a simple polytope, i.e. ad-dimensional polytope each of whose
vertices are adjacent to exactlyd facets, the canonical form can be written as a sum over its
verticesv of the expressions±


 d
a= 1 d log Fa, whereFa = 0 describe the facets adjacent to

v. For the kinematic associahedron all facets are characterized by the vanishing of one of the
planar variables and therefore we can write:

� (A n) =
CnŠ2�

p= 1

sign(vp)
nŠ3!

a= 1

d log Xia, ja. (4.7)

The signs sign(vp) can be �xed by direct calculation of the canonical form, or by demanding
that� (A n) is projective onKn. One can show that this canonical form computes the tree-level
scattering amplitudem(0)

n for the bi-adjoint� 3 theory:

� (A n) = m(0)
n dnŠ3X. (4.8)

For instance, forn = 4, 5 we have:

� (A 4) =
�

dX1,3

X1,3
Š

dX2,4

X2,4

�
=

�
1
s

+
1
t

�
ds, (4.9)

� (A 5) =
�

1
X1,3X1,4

+ · · · +
1

X2,5X3,5

�
dX2,5 � dX3,5. (4.10)

This reproduces the results from Feynman calculations, where each term in the expansion
comes from a planar trivalent graph.

We have already noticed that the canonical form of the kinematic associahedron can be
found using the fact that it is a simple polytope: this leads to the representation (4.7). Other
representations of canonical forms are also possible to �nd. For example, a new recursion rela-
tion using a one-parameter deformation of kinematic variablesXi j � zXi j has been provided
in [61]. By solving this recursion relation, one �nds the bi-adjoint� 3 amplitudes in •BCFW
representation•.

These results can also be generalized beyond the standard ordering, to partial amplitudes
m(0)

n (� |� ). From the point of view of Feynman diagrams, only diagrams compatible with both
orderings will contribute to the answer. From the geometric point of view, it will push some of
the facets of the kinematic associahedron to in�nity to obtain a different non-compact polyhe-
dron for the various pairs of orderings [62]. However, the canonical form of these polyhedra
can be computed using a prescription equivalent to (4.8) and encodes the partial amplitudes
m(0)

n (� |� ).
The ABHY construction can also be generalized to all polytopes associated with �nite-type

cluster algebras [63], where the usual associahedron corresponds to cluster algebras of type
An. In particular, the canonical form of theDn associahedron gives the integrand for one-loop
bi-adjoint� 3-amplitudes, while the typesBn or Cn are related to one-loop diagrams with tad-
pole emissions. For all these polytopes, this construction has a natural physical origin coming
from the (1+ 1)-dimensional causal structure in kinematic space [64]. In this approach, the
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generalized associahedra become solutions to wave equations with positive source and their
properties follow from simple properties of causal diamonds in the space…time.

We also remark that there is a duality between differential forms on the kinematic spaceKn

and colour factors. More speci�cally, the differential forms satisfy Jacobi relations similar to
the usual Jacobi relations for structure constants, see [4]. This allows one to exchangekinematic
factors with colour factors, pointing towards a possible geometric motivation for the double-
copy construction [65].

Finally, for recent progress in scalar theories different from� 3, and their relation to Stokes
polytopes and accordiohedra, see [66…69].

4.3. The halohedron

The kinematic associahedron captures the tree-level color-ordered scattering processes for bi-
adjoint� 3 theory for the standard ordering. A geometric construction can be also extended to
include the integrand of one-loopn-point bi-adjoint� 3 amplitudes and the positive geometry
encoding this integrand is the halohedron [70, 71]. The halohedronH n is the convex polytope
associated with the moduli space of an annulus with marked points on one boundary [72].13

This generalizes the moduli space of a disc which is associated with the tree-level construc-
tion. For one-loop, the marked points represent the external particles, while non-intersecting
arcs, which generalize then-gon diagonals we discussed for tree level, correspond to prop-
agators of one-loop planar diagrams. Then, the vertices of the halohedron are labelled by
the planar one-loop Feynman diagrams, whilethe facets correspond to cuts of the one-loop
integrand.

The halohedron is de�ned in ann-dimensional spaceX with coordinates (X1, . . . , Xn). One
can think of the spaceX as the abstract kinematic space of all planar variables where the
momentum conservation is not enforced. One starts by de�ning a set of linear functionsXI

which are in one-to-one correspondence with propagators of one-loop planar diagrams. Then
the halohedron is de�ned as the region where all these variables are positive. This can be
done by iterated truncations of ann-dimensional cube, as summarized in [71]. As for the asso-
ciahedron, the halohedron is a simple polytope and its logarithmic differential form can be
found as

� (H n) =
�

g

sign(g)
!

I � g

dXI

XI
= dnX

�

g

�

I � g

1
XI

, (4.11)

where the sum runs over all connected one-loop planar diagrams, including tadpoles and bub-
bles, andI runs over all the propagators of a diagramg. Again, the signs sign(g) can be �xed
by asking� (H n) to be projective. The one-loop integrand for the bi-adjoint theory is obtained
by killing the tadpole and bubble contributions by sending the corresponding variablesXI to
in�nity, and going back to the physical kinematic space by substitutingXI with the physical
propagatorsI . In this way momentum conservation is restored and the logarithmic differential
form � (H n) computes the integrandm(1)

n of the one-loop amplitude

� (H n) = m(1)
n dnX. (4.12)

13Note that this annulus is not associated to a cluster algebra, but the halohedron has a combinatorial structure very
similar toDn, i.e. a polytope obtained by cutting theDn associahedron in half [64].
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4.4. Worldsheet associahedron and scattering equations

The associahedron plays a fundamental role also for open strings. Indeed, the moduli space
for the open-string worldsheet provides a different realisation of the associahedron. The open
string moduli space is given by the real partM 0,n(R) of the moduli space of genus zeroM 0,n,
which is the space of con�gurations ofn punctures on the Riemann sphere moduloSL(2,C).
It is equivalent to the moduli space ofn ordered points i on the boundary of a disc. We also
de�ne the positive moduli space as the region associated with the standard ordering

M +
0,n := {  1 < · · · <  n} / SL(2,R). (4.13)

The Deligne…Mumford compacti�cation ofM +
0,n [73], i.e. the blow-up of the open-string

worldsheet which makes manifest all the boundaries, has the same boundary structure as the
associahedron and it is called the worldsheet associahedron. We will indicate the compacti�ed
space asM +

0,n. SinceM +
0,n has the same boundary structure as the kinematic associahedron,

its canonical form should be similar to (4.7). Indeed, it can be shown that the canonical form
onM +

0,n is

� n(M +
0,n) =

�

planarg

sign(g)
nŠ3!

a= 1

d log
�
 ia Š  jaŠ1

	
, (4.14)

where the sum runs over all trivalent planar graphs, sign(g) are signs which can be �xed by ask-
ing � n(M

+
0,n) to be projective, and for everyg the (ia, ja) for a = 1,. . . , n Š 3 are the diagonals

of the corresponding triangulation. This can be further recast as a •worldsheet Parke…Taylor•
form

� n(M +
0,n) =

1
vol(SL(2))

n�

a= 1

d a

 a Š  a+ 1
. (4.15)

Finally, let us discuss the relation between the kinematic and worldsheet associahedra. The
scattering equations [74], originally introduced in the context of dual resonance models [75]
and high-energy behaviour of string theory [76], relate points in the moduli spaceM 0,n to
points in kinematic spaceKn in the following way:

n�

j= 1,j�= i

si, j

 i Š  j
= 0, for i = . . . , n. (4.16)

As it is natural to expect, they also relate the two associahedra: on the subspaceHn the scattering
equations act as a diffeomorphism from the worldsheet associahedronM +

0,n to the kinematic
associahedronA n. A diffeomorphism between two positive geometries implies the pushfor-
ward between the canonical forms [7], see section2.3. Therefore, the scattering equation
map pushes the canonical form of the worldsheet associahedron to that of the kinematic
associahedron by summing over the (n Š 3)! solutions of the scattering equations:

� n(M +
0,n)

pushforward
Š�

scatt.eqs
� (A n). (4.17)

Then, using (4.8) and (4.15), this implies that the tree-level amplitudem(0)
n can be obtained by

pushforward of the Parke…Taylor form via the scattering equations. This also provides a novel,
geometric derivation of the CHY formula [74] for bi-adjoint scalars.

30



J. Phys. A: Math. Theor. 54 (2021) 033001 Topical Review

5. Other positive geometries

In this section we will brie�y review other positive geometries which have been found in recent
years for other observables in physics. In particular, we describe the notions of the cosmolog-
ical polytope [5, 77, 78] and the geometrical structure underlying the conformal bootstrap
programme [6].

5.1. Cosmological polytopes

Positive geometries have made their appearance also in cosmology: the cosmological polytope
gives a connection between the wavefunction of the Universe and polyhedral geometry, anal-
ogous to the one seen for scattering amplitudes [5, 77…79]. As with scattering amplitudes, the
canonical form with logarithmic singularities on all the boundaries of this polytope computes
the cosmological wavefunction or equivalently, the late-time spatial correlation functions it
generates.

In the following, we will work under the assumptions spelled out in [5]. Focussing on scalar
�elds, the momentum space correlators are

�
n�

j= 1

� (
�
pj)� =


D�

n�

j= 1

� (
�
pj)|� [� ]|2, (5.1)

where� [� ] is the wavefunction of the Universe and it has a representation in terms of path
integrals. Let us consider a class of toy models of massless scalar �elds in (d + 1) dimensions
with time-dependent polynomial interactions

S[� ] =
 0

Š�
d�


ddx

"

# 1
2

(�� )2 Š
�

k� 3


 k(� )
k!

� k

$

%, (5.2)

where
 k(� ) is the time-dependent coupling constant. The class of theories (5.2) includes
as a special case conformally-coupled scalars with non-conformal polynomial interaction in
Friedmann…Robertson…Walker (FRW) cosmologies. The wavefunction can be computed per-
turbatively via Feynman diagrams. In these simple models, the result is a rational function of
the sumxi =

�
k� vi

Ek of the energies of external statesEk = |�pk| at each vertexvi of the graph
and on the internal energiesyi j associated with the edges between the verticesvi andv j. To
a given Feynman graphG we can associate its contribution to the perturbative wavefunction
� G(xv, ye)

� G(xv, ye) =
 0

Š�

�

v�V

d� v eixv� v
�

e�E

G(� v, � v� , ye), (5.3)

whereG(� v, � v� , ye) is the bulk-to-bulk propagator, whileV is the set of vertices andE is the
set of edges of the graphG. For these models it has been shown that the contribution of each
Feynman diagramG to the perturbative wavefunction at all orders� G(xv, ye) is related to the
canonical form of a polytope, the cosmological polytopeP, which has an intrinsic de�nition
without any reference to space…time. In particular, to any diagramGwe can associate vectorsxv

with all the vertices andye with all the edges. These vectors give a basis for the projective space
Pne+ nvŠ1, wherene andnv are respectively the number of edges and vertices of the graph. To any
graph we can associate a collection of intersecting triangles in the following way. To each edge
yi with its two verticesxi andx�

i we associate a triangle whose midpoints are identi�ed by the
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vectors (xi , x�
i , yi)„the vertices of the triangle are therefore{ xi + x�

i Š yi, xi Š x�
i + yi , Šxi +

x�
i + yi } . The verticesxi, x�

i of the graph represent the two sides on which the triangle can
intersect other triangles. On the third edge of the triangle, with midpointyi , no intersection is
allowed. The cosmological polytopeP is the convex hull of the 3ne vertices ofne intersected
triangles. Let us write any point inP as

Y =
�

v

xvXv +
�

e

yeYe (Xv, Ye, ) � Rnv+ ne, (5.4)

with (Xv, Ye, ) identifying the independent midpointsx andy of the triangles generatingP. The
coef�cientsxv andye will label the vertices and the edges of the graphG, and are not vertices
of the cosmological polytope. Then, for a graphGone can associate a cosmological polytope
PG with a logarithmic differential form associated to the wavefunction� G(xv, ye):

� (Y, P) =
�

v�V

�

e�E

dxv dye� G(xv, ye). (5.5)

The boundaries of this geometry are lower-dimensional polytopes encoding the residues of the
wavefunction poles. The triangulations are different representations of� . We refer the reader
to [5] for various illustrated examples of cosmological polytopes.

Remarkably, the physics of the �at-spaceS-matrix is naturally contained in this object: a
particular co-dimension one boundary related to the total energy pole

� n
i= 1 Ei � 0, the so-

called scattering facet, encodes the information of �at-space scattering amplitudesA�at . The
scattering-facet structure encodes unitarity, in the way its boundaries factorize into products of
lower-dimensional polytopes, and Lorentz invariance, from the contour integral representation
of its canonical form. Furthermore, for these toy models, it is possible to reconstruct the per-
turbative wavefunction from the knowledge of the �at-space amplitudes and the requirement
of the absence of unphysical singularities [78].

Recently, this construction has been extended to a class of toy models of light massive
scalars with time-dependentmasses and polynomial couplings, which contains general massive
scalars in FRW cosmologies [79]. The wavefunction of the Universe is a degenerate limit of the
canonical form of a particular generalisation of the cosmological polytopes described above.

At the moment the cosmological polytopes describe each Feynman diagram separately
while one would rather prefer a single geometry, providing compact expressions for the wave-
function. Nevertheless, these objects are a �rst step towards de�ning geometries analogous to
amplituhedra and associahedra.

5.2. Positive geometry for conformal bootstrap

Positive geometries are also arising in more general CFTs, beyondN = 4 sYM. In particular, it
is possible to translate the conformal bootstrap equation using geometric ideas we explored in
previous sections, leading to new insights into the four-point functions in general CFTs [6]. In
this geometric picture, unitarity demands that the partial-wave expansion coef�cients of a four-
point function lie inside a famous polytope called the cyclic polytope, and crossing symmetry
restricts them to lie on a plane. Then the spectrum of CFTs can be studied by investigating the
rich geometric and combinatorial structures of the intersection of the plane with the polytope.

As an example of these ideas, we consider a unitary one-dimensional CFT and study a four-
point function of identical, real conformal primary operators� with scaling dimension� � .
TheSL(2,R) covariance of the four-point function implies that it can be written as

� � (x1) � (x2) � (x3) � (x4)� =
1

|x12|2� � |x34|2� �
F(z), (5.6)
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whereF(z) is a function of the cross-ratioz = x12x34
x13x24

. Taking the operator product expansion
(OPE) of the operators� (x1) and� (x2), the functionF(z) can be written in terms of partial
waves as

F(z) =
�

i

piG� i (z), pi > 0, (5.7)

where the coef�cientspi•s are positive due to unitarity. Here, the functionsG� (z) are the
SL(2,R) conformal blocks

G� (z) = z�
2F1(� , � , 2� , z). (5.8)

Comparing (5.7) with the expression found by computing the OPE of the operators� (x2) and
� (x3), one �nds the crossing equation:

F(z) =
�

z
1 Š z

� 2� �

F(1 Š z). (5.9)

The conformalbootstrap programmeaims to study the space of solutions of� i andpi by �nding
a solution to the unitarity and crossing equations, (5.7) and (5.9) respectively. This in�nite-
dimensional problem can be approached by discretizing the four-point function: instead of
considering the complete functionF(z), one takes a truncation of its Taylor expansion around
z = 1

2 to the �rst 2N + 1 derivatives:

F =

�

�
�
�
�
�
�

F0
�

F1
�

...

F2N+ 1
�

�

�
�
�
�
�
�

� P2N+ 1, (5.10)

with FI � 1
I ! �

I
zF(z)|z= 1

2
, for I = 1, 2,. . . , 2N + 1. The same can be done for the conformal

block G� (z): its Taylor expansion aroundz = 1
2 gives a (2N + 2)-dimensional block vector

G�

G� =

�

�
�
�
�
�
�

G0
�

G1
�

...

G2N+ 1
�

�

�
�
�
�
�
�

� P2N+ 1. (5.11)

The unitarity condition (5.7) demands that the Taylor coef�cients of the four-point function
F(z) expanded aroundz = 1

2 have to lie in the positive span of the block vectorsG� , i.e. inside
a polytope spanned by the block vectors:

F =
�

�

p� G� , p� > 0. (5.12)
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This polytope is called the unitarity polytopeU[{ � i } ]. Since one can show that the determinant
�G� 1G� 2 . . . G� n� for � 1 < � 2 < · · · < � n is positive14, one �nds thatU[{ � i } ] is a cyclic
polytope. On the other hand, the crossing equation (5.9) restricts the Taylor coef�cients ofF(z)
to lie on anN-dimensional plane, called the crossing planeX[� � ], which is �xed by the dimen-
sion� � of the scalar operator� . A four-point function is consistent with unitarity and crossing
if the coef�cients p� lie in the region de�ned by the intersection of the �xedN-dimensional
crossing planeX[� � ] and the (2N + 1)-dimensional unitarity polytopeU[{ � i } ] which varies
with the spectrum. One immediate implication of this construction is that a consistent CFT
must contain an in�nite number of operators in its spectrum.

The above construction implies that �nding a solution to the conformal bootstrap equation
corresponds geometrically to demanding that the intersection ofU[{ � i } ]  X[� � ] is not
empty. This provides bounds on the four-point function and allows the identi�cation of the
space of consistent CFTs geometrically. Since the face structure of cyclic polytopes is com-
pletely understood, one can fully characterize the intersection combinatorially. This allows
one to �nd new exact statements about the spectrum and four-point function in any CFT. For
instance, one can show that when the spectrum is continuously varied the shape of the inter-
section changes, which may lead to various discrete jumps in the geometry, akin to •phase
transitions•.

In [6], this geometry has been investigated in details for one-dimensional CFTs in the cases
whenN = 1, 2. This allowed for rigorous study of how the space of consistent� •s is carved
out by the bootstrap at this resolution. Going to higherN, which means keeping more terms in
the Taylor expansion, the resolution on CFT data increases, providing a further re�nement of
the space of allowed operator dimensions. This leads to an ef�cient procedure increasing the
resolution and allows one to build up the space of allowed� •s recursively.

6. Recent advances

In this section, we wish to brie�y review the most recent progress made related to positive
geometries and their extensions. In particular, we will �rst discuss the deformation of logarith-
mic differential forms of polytopes which give rise to the stringy canonical forms. Afterwards,
we comment on various relations of positive geometries to tropical geometry.

In the previous sections we described positive geometries and rational forms which can
be naturally assigned to them. Many answers in high-energy physics are however given by
transcendental functions rather than rationalones, for example when studying loop scattering
amplitudes, or string theory amplitudes. Toaccommodate for them one needs to expand the
geometric description and allow algebraic structures beyond logarithmic differential forms.
One possible extension was given in [80] where forms with higher-order poles have been con-
sidered. Another direction was presented in [81], where an� �-extension of canonical forms
for polytopes has been introduced, with� � reminiscent of the string theory parameter. These
so-called •stringy integrals• share various properties with string amplitudes and are de�ned as
integrals of logarithmic forms regulated by polynomials with exponents. They have the nat-
ural property that when� � � 0 they reduce to the usual canonical form of a polytope given
by the Minkowski sum of the Newton polytopes of the regulating polynomials, to be de�ned
shortly. From the string theory point of view this would be called the �eld-theory limit. More-
over, when one considers the� � � � limit, the saddle-point equations for the stringy integrals

14There is a caveat that for suf�ciently small� •s and largen, the minors can be negative. This is irrelevant from a
practical point of view, due to the fact that the negative minors are always extremely small.
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give the scattering equations. These provide a diffeomorphism from the integration domain to
the polytope, and therefore a pushforward formula for its canonical form. Finally, at �nite� �

the stringy integrals have simple poles corresponding to facets of thepolytope and the residue
evaluated at the pole is given by the stringy canonical form of the facet. This provides a natural
generalisation of the property in the de�nition of positive geometries.

The stringy integrals can be de�ned for any polytope and therefore provide extensions of the
logarithmic differential forms for positive geometries in the second class of the classi�cation
described in section2.2. One starts by considering the integral overRd

+ = { 0 < xi < �} of
the canonical form of a simplex

� d
i= 1

dxi
xi

. Such integral is divergent whenxi � 0 andxi � �
and to regulate these divergences one introduces the parametersXi > 0, i = 1,. . . , d andc > 0
and considers the following integral:

I p(X, c) := (� �)d
 �

0

d�

i= 1

dxi

xi
x� �Xi

i p(x)Š� �c. (6.1)

HereX = (X1, . . . , Xd), x = (x1, . . . , xd) andp(x) is a polynomial with positive coef�cients:

p(x) :=
�

�

p� xni , (6.2)

where p� > 0 andxni := x
ni,1
1 . . . x

ni,d
d . The integralI p converges if and only if the Newton

polytope of the polynomialp(x), i.e. the convex hull of the exponent vectorsni � Zd:

N[p] =

�
�

�


 � n� : 
 � � 0 ,
�

�


 � = 1

�

, (6.3)

is d-dimensional andX is inside the polytopecN[p].
Importantly, the� � � 0 limit of stringy integrals gives the canonical form of the (rescaled)

Newton polytope:

lim
� �� 0

I p(X, c)ddX = � (cN[p]). (6.4)

On the other hand, if we consider the limit� � � � then the saddle-point equations obtained
from the integral (6.1):

Xi = xi
c

p(x)
� p(x)
� xi

(6.5)

provide a diffeomorphism� from Rd
+ to the interior of the polytopecN[p]:

� : Rd
+ � cN[p]. (6.6)

We can use this diffeomorphism to perform a pushforward of the simplex canonical form and
obtain the canonical form of the Newton polytope

� �

�
d�

i= 1

dxi

xi

�

= � (cN[p]). (6.7)

These provide two alternative methods to �nd canonical forms for polytopes which can be real-
ized as Newton polytopes. This can be interpreted as the statement that, for any polytope, the
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low-energy limit of the stringy canonical form agrees with the pushforward using the scattering
equations from the saddle points in the high-energy limit.

This construction can be generalized to thecase with multiple subtraction-free Laurent
polynomialspI (x) and regulating parameterscI . Such integrals converge whenX is inside
P :=

&
I cI N(PI )„the Minkowski sum of Newton polytopes for each polynomial. As before,

the leading order� � � 0 of these integrals is the canonical form on the Minkowski sum� (P).
Moreover, the saddle point equations as� � � � provide a diffeomorphism from the simplex
to P. This allows for an alternative way to �nd the canonical form onP using the pushforward
of the simplex canonical form.

As an example, one can apply the stringy integrals to the ABHY associahedronA n which
we described in section4.2. In particular, the associahedron can naturally be represented
as a Minkowski sum of simpler polytopes. This decomposition provides a particular choice
of regulating polynomials. Using these polynomials, the stringy integral associated to the
associahedron reproduces the usual open-string integral with the Koba…Nielsen factor as
regulator:

I disk
n := (� �)nŠ3



M +
0,n

� (M +
0,n)

�

a< b

|za Š zb|�
�sab. (6.8)

This provides a direct path from kinematic space to string amplitudes without any reference
to the string worldsheet or space…time. As before, the �eld-theory limit� � � 0 of I disk

n is the
canonical function of the associahedron� (A n), which encodes the bi-adjoint� 3 tree-leveln-
particle amplitude. The latter can also be computed by performing the pushforward of� (M +

0,n)
using the CHY scattering equations, which are the saddle-points of the Koba…Nielsen factor
from the Gross…Mende limit� � � � .

Similar integrals can also be constructed starting from the generalized cluster associahe-
dra [63] to obtain general cluster string integrals. These are reminiscent of the ordinary string
theory scattering amplitudes, which correspond to cluster algebras of typeAn, with properties
relevant for scattering of generalized particles and strings. Stringy canonical forms have also
been studied for generalized permutohedra [82]. In both cases of generalized associahedra and
permutohedra, the combinatorics of these polytopes can be explored using the idea of binary
geometries [83]. Moreover, the stringy canonical forms can further be extended beyond poly-
topes to Grassmannian string integrals, i.e. integrals over the positive Grassmannian modulo
torus actionG+ (k, n)/ T [84, 85].

As described above, the stringy canonical forms are convergent if the exponents satisfy par-
ticular positivity conditions. It is however possible to extend the notion of stringy forms to
include all exponents by using the methods of tropical geometry. Tropical geometries, and in
particular the tropical Grassmannians, have recently made multiple appearances in the con-
text of scattering amplitudes. They are related to extensions of the bi-adjoint scalar theories
described in section4. In this context, the associahedron is related to a con�guration space
of n points on the projective spaceCP1. It is captured by the positive tropical Grassmannian
Trop+ Gr(2,n)„the space of phylogenetic trees which can be associated to Feynman diagrams
for the � 3 theory. A more general class of theories proposed in [86] describe con�guration
spaces of points onCPkŠ1 and are governed by its generalisation: Trop+ Gr(k, n) [39]. Tropi-
cal Grassmannians also play a prominent role in the discussions on symbol alphabets for loop
amplitudes in planarN = 4 sYM [84, 87…89] and their relation to cluster algebras. Finally, the
positive tropical Grassmannian Trop+ Gr(k + 1,n) governs positroid dissections of the hyper-
simplex [16, 90, 91], and therefore are related to a particular class of triangulations of the
amplituhedronA (2)

n,k through theT-duality map [16].
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7. Conclusions and open problems

In this review we summarized recent developments in geometric descriptions of observables
in physics, with a special emphasis on positive geometries relevant for scattering ampli-
tudes: amplituhedra. Positive geometries provide a completely new framework for computing
and understanding physical quantities, and a plethora of„some of which previously hid-
den„properties can be extracted by studying the structure of these geometrical objects.

We are only at the beginning of our journey towards a complete understanding of positive
geometries, and there is a large number of open questions which will keep both physicists and
mathematicians busy in the years to come. In the following, we compile a (non-comprehensive)
list of the most signi�cant open problems and challenges.
Understanding known geometries. Despite the great progress which has been achieved in the
understanding of known geometries, even for the oldest example, the amplituhedron, much of
our knowledge comes from a case-by-case study and we lack general statements. Among the
various interesting questions which are still open, the following are in our opinion the most
pressing:

€ Can we produce compact, closed expressions for the canonical forms of known
geometries?

€ Can we classify all the triangulations of positive geometries to get access to all possible
representations of a given observable?

€ Can we provide a combinatorial description of all boundaries of the geometries to
understand and classify all possible physical singularities of a given observable?

Some of these questions, as we described in the main text, have been already (partially)
answered for some of the positive geometries we know, but for many others little is known in
these respects.
Finding new geometries. The process of �nding new positive geometries relevant for physics
is still on its way. Some of these we expect to exist but we do not have a direct construction
yet. In particular, the geometries which are sought-after at the moment are:

€ Loop momentum amplituhedron: a geometry encoding the integrand forN = 4 sYM
scattering amplitudes directly in the spinor helicity space. One immediate problem with
�nding this geometry is the ambiguity in de�ning the loop momentumusing spinor helicity
variables.

€ Positive geometries for non-planar theories. The amplituhedron has an ordering built-in
into its de�nition as it is formulated in momentum twistor space. One needs therefore to
use spinor helicity (or twistor) variables to discuss an extension of geometries beyond the
planar sector. This makes the momentum amplituhedron a good starting point for such
extensions.

€ Geometries for scattering amplitudes in more realistic theories, including quantum
chromodynamics.

€ Loop associahedron: a geometry encoding all-loop integrands of biadjoint� 3 theory.
€ A single geometry underlying the wavefunction of Universe: such geometry would allow

us to �nd the wavefunction of the Universe in a single step, without referring to many
cosmological polytopes contributing to it.

Beyond the integrand. Since positive geometries are naturally associated with rational func-
tions, they provide us with integrands rather than integrals for scattering amplitudes at loop
level. One immediate question is how to integrate these integrands to provide �nal answers
for loop amplitudes. Since the integrands are logarithmic at the boundaries of the integration
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region, one needs to provide a (geometric) method to regularize them. Standard methods, like
dimensional regularization, are not suitable in this case as positive geometries are intrinsic
to integer dimensions. In general, a regularization method coming from geometry is not yet
available. Alternatively, as we explained in section6, a different approach has been proposed
recently, with new methods available to associate transcendental functions to positive geome-
tries. The main question is then whether we can extract the integrated amplitudes directly from
the underlying geometry.
Mathematical precision. Many results available for positive geometries are until now based on
case-by-case studies and are often strongly rootedin physics intuition. This is not satisfactory
from a mathematical point of view. Some of the basic questions for which we lack a rigorous
mathematical proof include:

€ Are the amplituhedron and the momentum amplituhedron positive geometries?
€ Do amplituhedra admit triangulations and is the BCFW triangulation one of them?
€ Are the amplituhedron and the momentum amplituhedron homeomorphic to a ball?

More generally, positive geometries provide a novel framework for quantum �eld the-
ory where locality and unitarity are emergent concepts, and positivity replaces them as the
main axiom. One of the main questions is then whether we can completely avoid introduc-
ing Lagrangians and gauge dependent methods and re-derive all known results, as well as
not known ones, using only well-de�ned, geometric, not redundant methods without ever
mentioning Feynman integrals.
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Appendix A. Kinematic spaces for N = 4 sYM

In this appendix we collect some information on the coordinate spaces which are used
throughout the review.
Spinor helicity space and twistor variables. In a massless theory in four dimensions with
p2

i = 0 for all particles, one can write each momentum as

pa�a
i = 
 a

i
�
 �a

i , a, �a = 1, 2 (A.1)

in terms of two spinor variables
 and �
 . In N = 4 SYM, we consider an extension of the
spinor helicity space: there are two superspaces on which the theory can be de�ned

€ Chiral superspace (
 a, �
 �a|� A): parametrized by Grassmann-odd variables,� A, transform-
ing as a fundamental representation of theSU(4) R-symmetry. This superspace is relevant
for the amplituhedron.

€ Non-chiral superspace (
 a, � r |�
 �a, �� �r ): parametrized by two sets of Grassmann-odd vari-
ables,� r , �� �r , which both are transforming as fundamental representations ofSU(2). One
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can think of�� �r as Fourier conjugate variables to� 3,4. This superspace is relevant for the
momentum amplituhedron.

From the on-shell chiral superspace, supertwistor variables are de�ned asW A
i =

(�µa
i , �
 �a

i |� A
i ), where�µa

i is the Fourier conjugate to
 a
i . They linearize the action of superconformal

symmetry.
Dual superspace and momentum twistor variables. Starting from the on-shell chiral super-
space, one can de�ne another, dual superspace with coordinates (x, � ) for i = 1,. . . , n with

xa�a
i Š xa�a

iŠ1 = 
 a
i
�
 �a

i � aA
i Š � aA

iŠ1 = 
 a
i � A

i . (A.2)

This is the space where then-sided null polygon Wilson loop dual to then-point amplitude is
naturally formulated. The (super) momentum twistors are in the fundamental representation of
the superconformal group of this dual space; explicitly

Z i = (zā
i |� A

i ) = (
 i a, µ �a
i |�

A
i ) � (
 i a, xa�a
 ia|� aA

i 
 ia), (A.3)

whereā = 1,. . . , 4, and spinor indices are raised and lowered by the Levi-Civita tensor. The
momentum twistors are unconstrained and they determine�
 , � via,

(�
 |� )i =
� i Š 1i� (µ|� )i+ 1 + � i + 1 i Š 1� (µ|� )i + � i i + 1� (µ|� )iŠ1

� i Š 1 i�� i i + 1�
, (A.4)

where� i j � := 
 1
i 
 2

j Š 
 2
i 
 1

j . They linearize the action of dual superconformal symmetry.

Appendix B. Push-forwards of canonical forms

In this appendix we de�ne what we mean by push-forward of a differential form, following
closely the de�nition given originally in [7]. We consider a surjective meromorphic map� :
A � B of �nite degreep, whereA andB are complex manifolds of the same dimension. For a
given pointb � B we can �nd its pre-image, namely a collection of pointsai in A, i = 1,. . . , p,
satisfying� (ai) = b. Taking a neighbourhoodUi of each pointai and a neighbourhoodV of b,
we can de�ne the inverse maps:� i = � |Š1

Ui
: V � Ui. Then the push-forward of a meromorphic

top form� onA through� is a differential form� onB given by the sum over all solutions of
the pull-backs through the inverse maps� i :

� = � � � =
p�

i= 1

� �
i � , (B.1)

where the pull-back of a differential form is a standard notion in differential geometry. In
practice, one solves the equationy = � (x) and for each solutionx = � i(y) one substitutes the
explicit expression forx into the differential form� , and then sums the resulting forms.

ORCID iDs

Livia Ferro https://orcid.org/0000-0001-9933-0584
Tomasz •ukowski https://orcid.org/0000-0002-4159-3573

39



J. Phys. A: Math. Theor. 54 (2021) 033001 Topical Review

References

[1] Hodges A 2013 Eliminating spurious poles from gauge-theoretic amplitudesJ. High Energy Phys.
JHEP05(2013)135

[2] Arkani-Hamed N and Trnka J 2014 The amplituhedronJ. High Energy Phys.JHEP10(2014)030
[3] Damgaard D, Ferro L, •ukowski T and Parisi M 2019 The momentum amplituhedronJ. High Energy

Phys.JHEP08(2019)042
[4] Arkani-Hamed N, Bai Y, He S and Yan G 2018 Scattering forms and the positive geometry of

kinematics, color and the worldsheetJ. High Energy Phys.JHEP05(2018)096
[5] Arkani-Hamed N, Benincasa P and Postnikov A 2017 Cosmological polytopes and the wavefunction

of the universe (arXiv:1709.02813)
[6] Arkani-Hamed N, Huang Y-T and Shao S-H 2019 On the positive geometry of conformal �eld

theoryJ. High Energy Phys.JHEP06(2019)124
[7] Arkani-Hamed N, Bai Y and Lam T 2017 Positive geometries and canonical formsJ. High Energy

Phys.JHEP11(2017)039
[8] Britto R, Cachazo F and Feng B 2005 New recursion relations for tree amplitudes of gluonsNucl.

Phys.B 715499
[9] Britto R, Cachazo F, Feng B and Witten E 2005 Direct proof of tree-level recursion relation in

Yang…Mills theoryPhys. Rev. Lett.94181602
[10] Ferro L, •ukowski T, Orta A and ParisiM 2016 Towards the amplituhedron volumeJ. High Energy

Phys.JHEP03(2016)014
[11] Arkani-Hamed N, Hodges Aand Trnka J 2015 Positive amplitudes in the amplituhedronJ. High

Energy Phys.JHEP08(2015)030
[12] Elvang H and Huang Y-t 2015Scattering Amplitudes in Gauge Theory and Gravity(Cambridge:

Cambridge University Press)
[13] Postnikov A 2006 Total positivity, Grassmannians, and networks (arXiv:math/0609764)
[14] Galashin P, Karp S N and Lam T 2017 The totally nonnegative Grassmannian is a ball

(arXiv:1707.02010)
[15] Arkani-Hamed N, Bourjaily J L, Cachazo F, Goncharov A B, Postnikov A and Trnka J 2016

Grassmannian Geometry ofScattering Amplitudes(Cambridge: Cambridge University Press)
[16] •ukowski T, Parisi M and Williams L K 2020 The positive tropical Grassmannian, the hypersimplex,

and them = 2 amplituhedron (arXiv:2002.06164)
[17] Arkani-Hamed N, Cachazo F, Cheung C and Kaplan J 2010 A duality for the S matrixJ. High

Energy Phys.JHEP03(2010)020
[18] Mason L and Skinner D 2009 Dual superconformal invariance, momentum twistors and Grassman-

niansJ. High Energy Phys.JHEP11(2009)045
[19] Alday L F and Maldacena J 2007 Gluon scattering amplitudes at strong couplingJ. High Energy

Phys.JHEP06(2007)064
[20] Drummond J M, Korchemsky G P and Sokatchev E 2008 Conformal properties of four-gluon planar

amplitudes and Wilson loopsNucl. Phys.B 795385
[21] Caron-Huot S 2011 Notes on the scattering amplitude/Wilson loop dualityJ. High Energy Phys.

JHEP07(2011)058
[22] Adamo T, Bullimore M, MasonL and Skinner D 2011 A proof of the supersymmetric correlation

function/Wilson loop correspondenceJ. High Energy Phys.JHEP08(2011)076
[23] Drummond J M, Henn J, Korchemsky G P and Sokatchev E 2010 Dual superconformal symmetry

of scattering amplitudes in super-Yang…Mills theoryNucl. Phys.B 828317
[24] Loebbert F 2016 Lectures on Yangian symmetryJ. Phys. A: Math. Theor.49323002
[25] Ferro L, Plefka J and Staudacher M 2018 Yangian symmetry in maximally supersymmetric Yang-

Mills theory Space…Time…Matter: Analytic and Geometric Structuresed J Brüning and M
Staudacher (Berlin: De Gruyter) pp 288…323

[26] Bargheer T, Beisert N, Galleas W, Loebbert F and McLoughlin T 2009 ExactingN = 4 supercon-
formal symmetryJ. High Energy Phys.JHEP11(2009)056

[27] Sever A and Vieira P 2009 Symmetries of theN = 4 SYM S-matrix (arXiv:0908.2437)
[28] Beisert N, Henn J, McLoughlin T and Plefka J 2010 One-loop superconformal and Yangian symme-

tries of scattering amplitudes inN = 4 super Yang…MillsJ. High Energy Phys.JHEP04(2010)085
[29] Drummond J, Henn J and Plefka J 2009 Yangian symmetry of scattering amplitudes inN = 4 super

Yang…Mills theoryJ. High Energy Phys.JHEP05(2009)046

40



J. Phys. A: Math. Theor. 54 (2021) 033001 Topical Review

[30] Drummond J and Ferro L 2010 Yangians, Grassmannians and T-dualityJ. High Energy Phys.
JHEP07(2010)027

[31] Arkani-Hamed N, Thomas H and Trnka J2018 Unwinding the amplituhedron in binaryJ. High
Energy Phys.JHEP01(2018)016

[32] Sturmfels B 1988 Totally positive matrices and cyclic polytopesLinear Algebr. Appl.107275
[33] Karp S N and Williams L K 2019 Them = 1 amplituhedron and cyclic hyperplane arrangements

Int. Math. Res. Not.20191401
[34] •ukowski T 2019 On the boundaries of them = 2 amplituhedron (arXiv:1908.00386)
[35] Karp S N, Williams L K and Zhang Y X 2017 Decompositionsof amplituhedra (arXiv:1708.09525)
[36] Bao H and He X 2019 Them = 2 amplituhedron (arXiv:1909.06015)
[37] •ukowski T, Parisi M, Spradlin M and Volovich A 2019 Cluster adjacency form = 2 Yangian

invariantsJ. High Energy Phys.JHEP10(20190158
[38] Bourjaily J L 2012 Positroids, plabic graphs, and scattering amplitudes in Mathematica

(arXiv:1212.6974)
[39] Speyer D and Williams L 2005 The tropical totally positive GrassmannianJ. Algebr. Comb.22189
[40] Ferro L, •ukowski T and Parisi M 2019 Amplituhedron meets Jeffrey…Kirwan residueJ. Phys. A:

Math. Theor.52 045201
[41] Bourjaily J L 2010 Ef�cient tree-amplitudes inN = 4: automatic BCFW recursion in Mathematica

(arXiv:1011.2447)
[42] Ferro L, •ukowski T, Orta A and Parisi M2017 Yangian symmetry for the tree amplituhedronJ.

Phys. A: Math. Theor.50 294005
[43] Yelleshpur Srikant A 2020 Emergent unitarity from the amplituhedronJ. High Energy Phys.

JHEP01(2020)069
[44] Kojima R and Langer C 2020 Sign �ip triangulations ofthe amplituhedronJ. High Energy Phys.

JHEP05(2020)121
[45] Dennen T, Prlina I, Spradlin M, StanojevicS and Volovich A 2017 Landau singularities from the

amplituhedronJ. High Energy Phys.JHEP06(2017)152
[46] Prlina I, Spradlin M, Stankowicz J, Stanojevic S and Volovich A 2018 All-helicity symbol alphabets

from unwound amplituhedraJ. High Energy Phys.JHEP05(2018)159
[47] Prlina I, Spradlin M, Stankowicz J and Stanojevic S 2018 Boundaries ofamplituhedra and NMHV

symbol alphabets at two loopsJ. High Energy Phys.JHEP04(2018)049
[48] Bai Y, He S and Lam T 2016 The amplituhedron and the one-loop grassmannian measureJ. High

Energy Phys.JHEP01(2016)112
[49] Kojima R 2019 Triangulation of 2-loop MHV amplituhedron from sign �ipsJ. High Energy Phys.

JHEP04(2019)085
[50] Arkani-Hamed N and TrnkaJ 2014 Into the amplituhedronJ. High Energy Phys.JHEP12(2014)182
[51] Arkani-Hamed N, Langer C, Yelleshpur Srikant A and Trnka J 2019 Deep into the amplituhedron:

amplitude singularities at all loops and legsPhys. Rev. Lett.122051601
[52] Langer C and Yelleshpur Srikant A 2019All-loop cuts from the amplituhedronJ. High Energy Phys.

JHEP04(2019)105
[53] Franco S, Galloni D, Mariotti A andTrnka J 2015 Anatomy of the amplituhedronJ. High Energy

Phys.JHEP03(2015)128
[54] Galloni D 2016 Positivity sectors and the amplituhedron (arXiv:1601.02639)
[55] Eden B, Heslop P and Mason L 2017 The correlahedronJ. High Energy Phys.JHEP09(20170156
[56] Howe P S and Hartwell G G 1995 A superspace surveyClass. Quantum Grav.121823
[57] He S and Zhang C 2018 Notes on scattering amplitudes as differential formsJ. High Energy Phys.

JHEP10(2018)054
[58] Galashin P and Lam T 2018 Parity duality for the amplituhedron (arXiv:1805.00600)
[59] Ferro L, •ukowski T and Moerman R 2020From momentum amplituhedron boundaries to

amplitude singularities and back (arXiv:2003.13704)
[60] •ukowski T and Moerman R2020 Boundaries of the amplituhedron with amplituhedronBoundaries

(arXiv:2002.07146)
[61] He S and Yang Q 2019 An etude on recursion relations and triangulationsJ. High Energy Phys.

JHEP0592019)040
[62] Herderschee A, He S, Teng F and Zhang Y 2020 On positive geometry and scattering forms for

matter particlesJ. High Energy Phys.JHEP06(2020)030
[63] Bazier-Matte V, Douville G, Mousavand K, Thomas H and Yildirim E 2018 ABHY associahedra

and Newton polytopes of F-polynomials for �nite type cluster algebras (arXiv:1808.09986)

41



J. Phys. A: Math. Theor. 54 (2021) 033001 Topical Review

[64] Arkani-Hamed N, He S, Salvatori G and Thomas H 2019 Causal diamonds, cluster polytopes and
scattering amplitudes (arXiv:1912.12948)

[65] Bern Z, Carrasco J and Johansson H 2008 New relations for gauge-theory amplitudesPhys. Rev.D
78085011

[66] Banerjee P, Laddha A and Raman P 2019 Stokes polytopes: the positive geometry for� 4 interactions
J. High Energy Phys.JHEP08(2019)067

[67] Raman P 2019 The positive geometry for� p interactionsJ. High Energy Phys.JHEP10(2019)271
[68] Aneesh P, Jagadale M and Kalyanapuram N 2019 Accordiohedra as positive geometries for generic

scalar �eld theoriesPhys. Rev.D 100106013
[69] Aneesh P, Banerjee P, Jagadale M, Rajan R, Laddha A and Mahato S 2020 On positive geometries

of quartic interactions: Stokes polytopes, lower forms on associahedra and world-sheet formsJ.
High Energy Phys.JHEP04(2020)149

[70] Salvatori G and Cacciatori S L 2018 Hyperbolic geometry and amplituhedra in 1+ 2 dimensions
J. High Energy Phys.JHEP08(2018)167

[71] Salvatori G 2019 One-loop amplitudesfrom the halohedronJ. High Energy Phys.JHEP12(2019)074
[72] Devadoss S L, Heath T and Vipismakul C 2011 Deformations of bordered Riemann surfaces and

associahedral polytopesNot. AMS58530
[73] Deligne P and Mumford D 1969 The irreducibility of the spaceof curves of given genusPubl. Math.

Inst. Hautes Sci.3675
[74] Cachazo F, He S and Yuan E Y 2014 Scattering of massless particles in arbitrary dimensionsPhys.

Rev. Lett.113171601
[75] Fairlie D B 2009 A coding of real null four-momenta into world-sheet coordinatesAdv. Math. Phys.

2009284689
[76] Gross D J and Mende P F 1988 String theory beyond the planck scaleNucl. Phys.B 303407
[77] Arkani-Hamed N and Benincasa P 2018 On the emergence of Lorentz invariance and unitarity from

the scattering facet of cosmological polytopes (arXiv:1811.01125)
[78] Benincasa P 2018 From the �at-spaceS-matrix to the wavefunction of the universe

(arXiv:1811.02515)
[79] Benincasa P 2019 Cosmological polytopes and the wavefuncton of the universe for light states

(arXiv:1909.02517)
[80] Benincasa P and Parisi M 2020 Positive geometries and differential forms with non-logarithmic

singularities I (arXiv:2005.03612)
[81] Arkani-Hamed N, He S and Lam T 2019 Stringy canonical forms (arXiv:1912.08707)
[82] He S, Li Z, Raman P and Zhang C 2020 Stringy canonical forms and binary geometries from

associahedra, cyclohedra and generalized permutohedra (arXiv:2005.07395)
[83] Arkani-Hamed N, He S, Lam T and Thomas H 2019 Binary geometries, generalized particles and

strings, and cluster algebras (arXiv:1912.11764)
[84] Arkani-Hamed N, Lam T and Spradlin M 2019 Non-perturbative geometries for planarN = 4 SYM

amplitudes (arXiv:1912.08222)
[85] He S, Ren L and Zhang Y 2020 Notes on polytopes, amplitudes and boundary con�gurations for

Grassmannian string integralsJ. High Energy Phys.JHEP04(2020)140
[86] Cachazo F, Early N, Guevara A and Mizera S 2019 Scattering equations: from projective spaces to

tropical GrassmanniansJ. High Energy Phys.JHEP06(2019)039
[87] Drummond J, Foster J, Gürdogan Ö and Kalousios C 2019 Algebraic singularities of scattering

amplitudes from tropical geometry (arXiv:1912.08217)
[88] Drummond J, Foster J, Gürdogan Ö and Kalousios C 2020 Tropical fans, scattering equations and

amplitudes (arXiv:2002.04624)
[89] Henke N and PapathanasiouG 2019 How tropical are seven- and eight-particle amplitudes?

(arXiv:1912.08254)
[90] Early N 2019 Planar kinematic invariants, matroid subdivisions and generalized Feynman diagrams

(arXiv:1912.13513)
[91] Arkani-Hamed N, Lam T and Spradlin M 2020 Positive con�guration space (arXiv:2003.03904)

42


	Amplituhedra, and beyond
	1.  Introduction
	2.  Positive geometries


