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INTRODUCTION 

 

The nascence of the term ‘Artificial Intelligence’ (AI) originates from an ambitious 

research project led by a 20-strong team of Dartmouth College mathematicians in the 

1950s (1). 60-years later and the early aspirations of this group of optimistic pioneers 

has come to fruition with the development of thinking machines capable of human-like 

intelligence. Multiple definitions exist for the innovative computer science 

encompassed under the umbrella term of artificial intelligence (AI) but broadly 

speaking it describes the capability of a machine to mimic human cognition through 

perception of external stimulus and determination of an optimal strategy to achieve a 

desired outcome. Whilst this definition may sound far-fetched, AI is already well-

established in today’s society with commonplace applications such as smartphone 

speech recognition, targeted advertising, spam-filtering, search engines and fraud 

detection in the banking sector(1).  

 

The speed of progress to date has been staggering and such is the undeniable 

potential of AI that it is hardly surprising that the UK government has earmarked AI as 

a ‘Grand Challenge’ for its future industrial strategy(2). With the government pledge to 



put the UK at the ‘forefront of AI innovation’ medicine and surgery can take centre 

stage as a model of how sectors may benefit from adopting this new technology. 

Furthermore, The Royal College of Surgeon’s independent report on the Future of 

Surgery provides a glimpse into the future and highlights predictive analytics, 

radiology, pathology, genomics and robotic surgery as key areas where AI will benefit 

patients most (3). 

 

Urology as a forward-thinking surgical speciality with an exemplary track-record in 

early adoption of new technologies is uniquely placed to take full advantage of the 

benefits of embracing AI. This review provides an outline on the current and future 

applications of AI in the context of urological oncology. Accomplishing this task 

requires a broad appreciation of the key concepts and esoteric definitions underpinning 

AI and thus the first section of the review will concentrate on the fundamentals of AI. 

 

 

1. BASICS OF ARTIFICIAL INTELLIGENCE 

 

1A). Machine learning 

 

Machine learning (ML) combines computer science, mathematics and statistical 

analysis to generate algorithms assessing variables (referred to as ‘features’) to predict 

outcomes (referred to as ‘labels’). There are similarities with conventional statistical 

methods. However, ML focuses on outcome prediction over inference of relationships 

between variables, and whilst classical statistics tests hypotheses through probability 

(p-value), significance levels are rarely cited in ML research. A key feature of ML 

algorithms is the ability over time to autonomously adapt their own programming to 

improve performance towards pre-determined outcomes. This ‘learning’ process is 

dependent upon the quality and volume of data introduced to the algorithm. The ML 



methodology (figure 1) necessitates processing of raw data into ‘training’, ‘validation’ 

and ‘test’ data sets. Training data annotated by experts; for example, lesions on 

histopathological slides may be pre-designated as benign or malignant by pathologists 

in order for ML to create an algorithm capable of formulating this classification. The 

validation process provides feedback to optimise algorithm performance and the 

testing phase, ideally with external data, assesses final performance of the complete 

algorithm. Classically the explicit features or variables that a ML algorithm assesses 

are pre-determined based on expert knowledge, an example would include the number 

of glands per unit measured in prostate histopathological slides.  

 

 

1B). Deep learning  

 

Deep learning (DL) is a contemporary subsection of ML receiving increased attention 

due to its impressive performance made possible through recent improvements in 

computational power and expanding data sets. DL techniques include artificial neural 

networks (ANN), interesting models simulating the organisational structure of the 

human brain with separate computational units (artificial neurons) connected to each 

other through ‘synapses’. Multiple layers of increasingly complex interconnected units 

add ‘depth’ to the system. For example, images of animals may be inputted into an 

ANN, the first layer recognises image edges, the second layer colours and so on with 

increasing complexity until the system gives an output in the form of the classifying an 

animal species. Multiple DL models exist, one often described class is a convolutional 

neural network (CNN). By mirroring the architecture of the human visual cortex CNNs 

are proficient in image analysis and been applied to facial recognition in social media 

platforms. In contrast to traditional ML technique’s prerequisite for explicit feature 

identification by experts prior to training, a key component of DL techniques is the 

ability to autonomously identify pertinent features from raw data during the training 



phas. This is advantageous because DL techniques can identify novel features within 

medical images imperceptible to the human eye and such previously unidentified 

features may be strongly predictive of clinical outcomes, vastly improving the analytical 

power and clinical utility in medical diagnostics. Figure 2 provides a pictorial 

comparison of the described methods. 

 

 

 

 

1C). Big data 

 

Big data refers to increasingly complex data sets so large they exceed the processing 

and analytical capacity of conventional software. To put big data in context the 

International Data Corporation estimates that the volume of stored data globally will 

rise from 130 exabytes (EB) in 2005 to 40,000EB by 2020(4)(1 EB = 1 billion gigabytes 

- GB). A similar trend is noted in medicine with a predicted 48% annual increase in 

healthcare related data storage (5). Increasing volumes of unstructured data are 

generated from a variety of sources including electronic health records, clinical data 

e.g. vital signs , radiological imaging, ‘omics’ data, patient ‘wearables’ and technical 

data from surgical robotic systems(6). AI is the perfect tool to analyse large volumes 

of heterogenous data and proposed benefits including reduced healthcare costs, 

detection of novel disease patterns, earlier disease prediction, reduced healthcare 

fraud, increased clinician efficiency and novel drug design and delivery. Big Data 

projects are currently underway in the UK; for example the world-first ‘100,000 

Genomes Project’ launched in 2012 has sequenced the DNA of 100,000 NHS patients 

with rare diseases and cancers linking genomics with electronic health records(7) and 

enhancing our understanding of these conditions. The role of AI in harnessing the 



benefits of Big data will be vital in realising the goal of early disease detection and 

personalised medicine for all patients including those with urological malignancies. 

 

2. APPLICATIONS OF AI IN UROLOGICAL ONCOLOGY 

 

2A). AI IN PROSTATE CANCER 

 

Prostate cancer is an ideal candidate to benefit from AI implementation due to the 

already established data-rich diagnostic approaches including multi-parametric 

magnetic resonance imaging (mpMRI), extensive mapping prostate biopsies, analytics 

from robotic surgical systems and mature genomic sequencing. The next section of 

the review focuses on differing aspects of AI in prostate cancer diagnostics, 

management and prediction. Table 1 provides a summary of key AI prostate cancer 

studies. 

 

2A1). AI in prostate cancer imaging 

 

The benefits of combining AI techniques with radiological imaging in cancer patients 

has received significant media attention recently due to publication of a landmark study 

in breast mammography claiming AI ‘outperformed’ radiologists in identifying 

malignant lesions (8). Similar AI techniques are being applied to prostate imaging such 

as mpMRI with remarkable results.  mpMRI of the prostate has become a central 

component in the diagnostic pathway of prostate cancer and its use is now widespread 

in the western world. The process of mpMRI acquisition generates large volumes of 

quantitative data reconstructed into 2D images for subjective interpretation by 

radiologists. As a consequence, there is a surplus of latent quantitative data stored 

within MRI datasets imperceptible to the human eye. The study of this data extracted 

from medical images has spawned an entirely new field of radiology entitled 



‘radiomics’(9). ML algorithms can rapidly process millions of radiomic features, wheras 

radiological reporting system such as the Prostate Imaging-Reporting and Data 

System (PI-RADS) are constrained by human cognition in the number of assessable 

features. Such limitations leads to the poor reproducibility and wide inter-user 

variability in sensitivity, specificity and prostate cancer detection rates demonstrated 

in current reporting prostate mpMRI(10). These criticisms make mpMRI ideal for 

analysis and interpretation by AI algorithms. 

 

2A2). AI prostate cancer detection 

 

Early application of ML focused on low-level registration and segmentation of prostate 

anatomy from radiological imaging (1).  Recently, more sophisticated DL algorithms 

focus on clinically useful identification of index lesions or prediction of Gleason 

grade/tumour aggressiveness from regions of interest; Hambrock et al.(11) developed 

an in-house computer assisted diagnostic (CAD) tool for prostate mpMRI capable of 

overlaying likelihood of malignancy graphic representations on to MRI to assist 

radiologists in reporting. The study noted significant improvements in the identification 

of prostate cancer on mpMRI by less experienced radiologists, with pre-CAD area 

under the curve (AUC)=0.81 improving to AUC=0.91 following implementation of the 

CAD tool. The performance of CAD-augmented novice radiologists was similar to that 

of more experienced radiologists; AUC=0.93. Karimi et al.(12) combined a CNN with 

other forms of machine learning to classify MRI lesions into benign or malignant. The 

training dataset included 232 lesions and the testing dataset 98 lesions. By combining 

ML techniques, the AUC achieved was 0.87, higher than when either ML technique 

was used in isolation. Wang et al(13) adopted a similar combined approach but 

merged ML analysis of MRI radiomic data with radiologist review using PI-RADS 

version 2. The combined ML approach performed better than PI-RADS alone with a 

significant improvement in detection of prostate cancer from AUC=0.88 to 0.98 in the 



peripheral zone and AUC=0.94 to 0.97 in the transitional zone. A multi-institute study 

by Gaur et al.(14) noted not only an improvement in specificity when combining CAD 

with radiologist reporting of mpMRI but also an increase in efficiency with mean time 

of mpMRI reporting reducing from 4.6 minutes to 3.4 minutes (p<0.001). 

 

2A3). AI prostate cancer grading 

 

The biological behaviour of prostate cancer is heterogeneous and a significant 

proportion of prostate cancer patients die with the disease rather than because of it. 

Thus, the ability to accurately identify clinically significant prostate cancer from 

insignificant disease is vitally important for risk-stratification and decision-making. 

Increasingly advanced ML algorithms have the capability to assess aggressiveness of 

prostate cancer lesions based on mpMRI radiomic features. A 2019 study by Zhong et 

al.(15) employed a DL algorithm to predict Gleason grade ≥ 7 from the mpMRIs of 140 

patients undergoing robotic prostatectomy. The study noted an AUC=0.73 comparable 

to radiologists using PI-RADS (AUC=0.71). Varghese et al.(16) compared 7 ML 

techniques’ ability to predict the National Comprehensive Cancer Network (NCCN) 

prostate cancer risk-group of 68 patients undergoing mpMRI followed by transrectal 

ultrasound-MRI fusion biopsy. The optimal ML technique was a support vector 

machine (SVM), which assessed 110 radiomic features and reached comparable AUC 

(0.71) to PI-RADS (0.73). Similarly, Cao et al.(17) reported the results of ‘FocalNet’ a 

CNN used for identifying clinically significant PCa from the mpMRI of an impressive 

cohort of 417 prostatectomy patients. Comparison was made with expert radiologists 

with over 10-years’ experience and reading of over 1000 prostate mpMRIs. There was 

no statistical difference in the sensitivity of FocalNet in identifying clinically significant 

lesions (Gleason score ≥ 7) compared to expert radiologists, 79.2% and 80.7% 

respectively. 

 



The majority of ML studies in prostate mpMRI aim to identify lesions or Gleason grade. 

However, other applications have been described including local staging, prediction of 

extraprostatic extension at robotic prostatectomy, radiotherapy planning and prediction 

of biochemical recurrence after radical treatment(18). Furthermore, whilst ML research 

primarily focuses on mpMRI, other imaging modalities such as transrectal ultrasound 

(TRUS) have been investigated, notably in MRI/US fusion technology for biopsy(19). 

 

2A4).  PROSTATEx Challenge 

 

One obstacle to widespread adoption of AI in prostate cancer imaging is the lack of 

high-quality annotated training data. The PROSTATEx challenge is worthy of mention 

because it represents an interesting solution to this issue by providing a publicly 

available training database of mpMRI images.  AI research groups are pitted against 

each other to enable head to head comparison of ML techniques using validated 

performance metrics in the form of ‘challenges’. The PROSTATEx training data set 

contains over 300,000 images from mpMRIs with 412 lesions for ML lesion 

identification in the first challenge and prediction of Gleason grade group in the second 

challenge. Armato et al.(20) provide a thorough analysis of the challenges 

methodology and results demonstrating the importance of high-quality large training 

data sets in enabling translation of AI prostate imaging methods from the laboratory to 

clinical practice. 

 

 

2A5). AI in prostate histopathology 

 

Gleason grading has been a vital tool in prognosticating risk in PCa patients since its 

inception in the 1960’s. As our understanding of the molecular and genetic basis of 

prostate cancer has advanced the Gleason grading system has been refined. The 



current iteration based on the 2014 International Society for Urological Pathology 

(ISUP) grading system recommends classification into 5 grade groups(21). Similar to 

criticisms of mpMRI interpretation there is comparable inter-observer variability in 

Gleason grading(22). This issue is compounded by a nationwide pathologist workforce 

crisis and increased amounts prostate pathology specimens due to adoption of 

template prostate biopsies and a move away from 12-core transrectal ultrasound 

guided biopsy (TRUS). Technological advancements may hold the key to reproducible 

standardised grading. For example, increasing digitisation of pathology slides and 

recent FDA approval for whole-slide imaging (WSI) technology has transferred 

pathologist review from the microscope to the computer monitor enabling 

telepathology, increased collaboration, expedient second-reading and facilitation of 

automatic grading with AI techniques(23). Specifically, the role of AI in prostate cancer 

histopathology will be discussed further. 

 

Nagpal et al.(24) describe the largest study incorporating a DL CNN algorithm to 

identify Gleason grade from WSIs of prostatectomy specimens and provide 

quantitation of grade groups. The algorithm was trained on an impressive 112 million 

images from 912 annotated slides and validated on a reference set of 331 slides. The 

concordance of the DL algorithm with the reference set, provided by 3 specialist 

genitourinary pathologists, was compared to concordance from a cohort of 29 general 

pathologists. The DL algorithm outperformed general pathologist review with an 

accuracy of 0.7 (95% confidence interval (CI) 0.65–0.75) compared to 0.61 (95% CI: 

0.56–0.66) from the pathologist cohort (p=0.002). Furthermore, the DL approach had 

a 4-6% lower mean absolute error for quantitation of patterns 3 and 4 compared to the 

pathologist cohort. Perhaps one of the most striking features of the paper is the 

requirement for 900 pathologist hours for annotation of the training data set. Similar 

work by Nir et al(25) evaluated an automatic grading DL CAD tool trained on 331 tissue 

microarray cores from 231 radical prostatectomies. The validation set included 230 



whole mount slides from 56 patients. The CAD tool achieved an overall grading 

agreement of unweighted kappa 0.51, in line with the agreement between individual 

pathologists; 0.45 – 0.62. The study employed a novel technique to circumnavigate 

the issue of arduous training data set labelling by developing an android app 

(Pathmarker) for expedient tablet and stylus annotation of digital slides by expert 

pathologists. Lucas et al.(26) also adopted a CNN but instead automatically graded 

prostate needle biopsy specimens (n=34) and prostatectomy WSI. The CNN produced 

probability maps and was able to differentiate between benign and malignant tissue 

(Gleason grade ≥3) with an impressive accuracy of 92%. Further differentiation 

between GS≥4 and GS≤3 demonstrated an accuracy of 90% and there was substantial 

agreement with expert pathologist reporting (Kappa=0.7). This study was limited by 

small patient numbers and limited expert pathologist review of the training data set. 

Multiple other published studies have reported on CAD tools for automatic grading of 

prostate histopathological specimens with comparable results (27–29).  

 

Besides automatic Gleason grading novel uses of AI in histopathology have been 

described; Chen et al.(30) demonstrate the fusion of AI with an optical microscope with 

a real-time DL cancer detection graphic superimposed onto an augmented microscope 

visual display. The results are preliminary but the concept may gain traction as 

pathology labs are not required to purchase expensive whole slide digital scanners, 

currently a prerequisite for implementation of AI enhanced pathology. 

 

 

2A6). AI in prostate cancer genomics 

 

Currently prostate cancer decision-making relies on risk stratification from clinico-

pathological features such as PSA, Gleason grade and clinical staging. Deeper 



understanding of prostate cancer at a molecular/genetic level enabled by novel high-

throughput genome sequencing technologies has led to increased interest in prostate 

cancer genomics. AI can analyse large volumes of genomic data to identify genes 

responsible for disease characteristics such as metastatic potential or castrate 

resistance. Furthermore, these novel biomarkers can be incorporated into ML 

predictive algorithms for superior risk-stratification models.  

 

Decipher® is a commercially available 22-RNA feature genomic ML algorithm which 

predicts early prostate metastasis. The initial validation study(31) included 256 

prostatectomy patients and noted an AUC of 0.79 for prediction of 5-year metastasis, 

significantly outperforming clinico-pathological based prediction techniques. 

Decipher® is also validated for use with biopsy specimens to predict metastasis and 

prostate cancer specific mortality following radical treatment(32). Meta-analysis 

including 5 studies further confirmed the benefit of Decipher® and concluded the tool 

adds prognostic benefit and should be incorporated into the decision-making process 

in addition to conventional risk stratification(33). Other clinically available genomic 

tests utilising machine learning include the 31-gene Prolaris® and the 17-gene 

Oncotype DX® panels, both capable of predicting recurrence from biopsy diagnosis or 

post prostatectomy(34). Due to the intra-tumour and inter-patient heterogeneity of 

prostate cancer traditional methods of risk stratification utilising clinico-pathological 

features may be blunt instruments. The addition of genomic biomarkers enables 

personalised precision medicine to accurately predict tumour behaviour and response 

to treatment. AI is a vital tool in both the identification of novel genomic biomarkers 

and the process of risk modelling. 

 

 

2A7). Critical analysis of AI in prostate cancer 

 



Prostate cancer, as the most prevalent urological malignancy, receives considerable 

attention from AI researchers. While meaningful advances have been made in the 

application of AI to automatically detect malignancy, predict Gleason grade, reduce 

inter-observer variability in pathological grading and identify genomic biomarkers, 

significant barriers to widespread implementation of AI in prostate cancer need to be 

overcome. For example, key concerns in ML prostate imaging include heterogeneity 

in research methodology and a lack of robust training data sets making comparison of 

ML-approaches very difficult. To illustrate the point a recent review by Wildeboer et 

al.(35) provide an exhaustive list of 83 separate ML/CAD tools for prostate imaging 

published over a 10-year period. In order for a ML algorithm to ‘learn’ an annotated 

training data set is required, this process is a hugely laborious task requiring significant 

resources from pathologist and radiologist for accurate high-quality labelling. Whilst 

annotated whole-mount prostatectomy specimens provide excellent training maps for 

ML algorithms, study populations are inherently biased with a lack of benign conditions 

and subsequent algorithms are not validated for conditions such as prostatitis or 

benign prostatic hyperplasia. Furthermore, those algorithms trained on biopsy 

specimens alone will be contaminated by the sampling error inherent in prostate biopsy 

techniques, leading to as much as 30% under-diagnosis(36). Additionally, it has been 

suggested that ML algorithms requires 1000 – 10,000 data pieces for reliable 

training(37), few of the published studies have sample sizes anywhere near these 

figures.  

 

One major barrier to realising fully automated AI prostate histopathology is the 

prerequisite for digital pathology with its associated costly scanning and reporting 

equipment. A national UK pathologist survey(38) noted only 31% of respondents used 

digital pathology services for primary diagnosis highlighting the need for greater 

uptake. A common limitation of pathological studies described is the relative lack of 

highest-grade disease in the training sets due to its inherent rareness leading to the 



introduction of classification bias into the AI algorithms. To overcome this shortcoming 

augmentation of data sets through artificial synthesis of highest Gleason grade has 

been described(1) but the technique requires further validation. Once these obstacles 

are overcome AI will become commonplace because the potential is undeniable and 

AI will soon be augmenting pathologists to streamline services, adapt to pathologist 

shortages, improve consensus in grading, facilitate expedient second opinion and 

support smaller resource-scarce institutions. 

 

 

3). AI IN RENAL CANCER 

 

Over the last few decades there’s been a continual rise in the detection of renal masses 

owing to increased utilisation of cross-sectional imaging. Commonly those lesions 

identified are asymptomatic small renal masses (SRMs), up to 30% are found to be 

benign(39) on histopathology. Renal cancer exhibits heterogeneous histological 

subtypes affecting prognosis and there are a number of benign lesions such as 

oncocytomas and fat poor-AMLs that radiologically mimic malignant tumours posing a 

diagnostic challenge for radiologists. Renal biopsy increases the diagnostic yield in 

indeterminate lesions but requires an invasive procedure with associated 

complications that may not be suitable for the obese or co-morbid patient. Combining 

radiomics with novel AI algorithms has shown promise in improving the diagnostic and 

prognostic accuracy of cross-sectional renal imaging and is described further. Table 2 

outlines the latest AI studies in renal cancer. 

 

3A1). AI in renal cancer imaging 

 



One of the earliest descriptions of AI in renal cancer imaging was the 2015 Yan et 

al(40). study describing an ANN classifier discriminating fat poor angiomyolipoma 

(AML), clear cell renal cell cancer (ccRCC), and papillary renal cell cancer (pRCC) 

with triple phase computed topography (CT). The study reported a classification 

accuracy of 90.7-100% and adopted a novel radiomics technique, texture analysis, 

for mathematical exploration of pixel level spatial and temporal heterogeneity 

within imaged tumours. Numerous further studies(41–43) have applied ML 

algorithms and texture analysis for classification of renal tumours to differentiate 

RCC subtypes and discriminate benign from malignant tumours, reporting AUCs 

approaching 0.90-0.99(44). A large contemporaneous study(45) included 179 

patients and differentiated ccRCC from oncoctyoma with an accuracy of 74.4%, 

sensitivity of 85.8%, and positive predictive value of 80.1%. Perhaps the most striking 

feature of this study is the relatively small patient number, despite being one of the 

larger studies, calling in to question the reliability of the training data set.  

 

Beyond subtype classification multiple groups have adopted ML approaches to predict 

the grade of renal cancer using radiomic features. Higher Fuhrman grades (III-IV) carry 

a substantially greater metastatic potential than lower grades (I-II)(46). Equipped with 

such knowledge clinicians can accurately risk assess patients enabling informed 

shared decision-making in regards of treatment strategies such as nephrectomy, 

nephron-sparing surgery, focal therapies and surveillance. A small retrospective study 

by Bektas et al.(47) including 53 patients adopted ML-based enhanced CT texture 

analysis for classification of high grade versus low grade ccRCC. The group compared 

different ML strategies for classification, the best performing algorithm used a SVM 

and achieved an AUC of 0.86 comparable to concordance of renal biopsy grade 



prediction with final specimen grade. Kocak et al.(48) elaborated further on this work 

by comparing the prediction of high/low-grade ccRCC by an ANN compared to 

conventional binary logistic regression. They took the novel approach of including only 

unenhanced CT images for texture analysis hypothesising that nuclear grade is not 

directly associated with tumour vasculature, furthermore their image database 

included multi-institute CT images with heterogeneous contrast administration 

protocols. The ANN outperformed multivariate logistic regression achieving diagnostic 

accuracy of 81.5% and AUC of 0.71 compared to 75.3% and AUC 0.66. Conversely, 

Lin et al.(49) applied ML texture analysis to contrast enhanced triple-phase CT 

comparing analysis across the three phases (pre-contrast, corticomedullary and 

nephrogenic phase). The three-phase combined analysis produced superior 

performance to single-phase analysis with accuracy of 74%, positive predictive value 

of 91% and AUC of 0.87. Recently, several studies(50,51) have adopted the 

international society of pathologist (ISUP) grading system for RCC, replacing the 

potentially unreliable Fuhrman grading system, and achieving comparable diagnostic 

accuracy with ML-grade prediction. Understandably, the vast majority of research to 

date focuses on CT imaging reflecting the widespread use of this modality in renal 

cancer diagnostics. To the authors knowledge there is currently only one study(52) 

assessing MRI in grade prediction and this notes comparable diagnostic accuracy 

between multi-phase CT and mpMRI. The study is noteworthy because unlike many 

of those previously described, the trained ML algorithm was validated on external data 

sets providing robust performance data and more accurately reflecting real life 

practice. 

 

 

3A2). AI in renal cell cancer histopathology 

 



The merits of digitised histopathology have been well described in the prostate section 

of this review. Histopathological Fuhrman grading of RCC, similar to prostate cancer 

Gleason grading, is plagued by inter-observer heterogeneity and poor reproducibility. 

Inter-pathologist concordance rates have been reported as low as 24%(53). Despite 

these shortcomings there is a paucity of research in AI RCC histopathological analysis; 

4 studies in total(54–57). The earliest work dates back as far as 2014(57) and 

describes a simple SVM classifier automatically differentiating high from low grade 

ccRCC based solely on one feature, nucleus size. An impressive AUC of 0.97 was 

described, albeit, in a small study (n=39) and no impact on patient survival was noted. 

The largest and most recent study(54) included 277 ccRCC WSIs from the publicly 

available Cancer Genomic Atlas (TGCA) database. The study assessed 26 histiomic 

features reporting an AUC of 0.84 for high versus low-grade classification with a 

LASSO ML predictive model. The studies described have several limitations including 

the use of Fuhrman grading soon to be replaced with ISUP grading, small sample size, 

inclusion of ccRCC only and, specifically in relation to the last study described, the 

need for manual identification by pathologists of regions of interest within the digital 

slides. 

 

 

3A3). AI in renal cancer genomics 

 

A number of clinico-pathological risk-stratification prediction models are described for 

renal cancer in the current iteration of the EAU guidelines. Unfortunately, some early-

stage tumours exhibit aggressive pathophysiology underappreciated by current risk 

modelling. Multiple RCC genetic biomarkers(58) have been identified from publicly 

available databases such as TGCA. RCC genomic studies may further improve 

accuracy of risk-stratification, providing individualised medicine and informed decision-

making. Li et al.(59) describe a ML centred 15-gene expression risk score model 



stratifying ccRCC into high or low-risk categories and noting a significant association 

with overall and recurrence-free survival. Similar work by Park et al.(60) concentrated 

solely on T1 tumours and aimed to identify early-stage tumours associated with a poor 

outcome. Utilising an ANN prediction model assessing expression of FOXC2, PBRM, 

and BAP1 genes the group predicted synchronous metastasis, recurrence and cancer-

specific death. The DNN model outperformed conventional logistic regression 

observing superior accuracy and AUC 0.85 and 0.80 versus 0.76 and 0.76, 

respectively. A South Korean prospective-trial by the same study group is currently 

underway to assess genomic biomarkers of aggressiveness in T1 stage ccRCC 

(ClinicalTrials.gov Identifier: NCT03694912).  

 

Several studies have investigated the role of radiomic features as surrogates for genomic 

biomarkers by demonstrating the radiomic association with gene expression related to 

poor outcomes including BAP1(61), PBMR1(62) and expression of VEGF(63). 

 

3A4). Critical analysis of AI in renal cancer 

 

Early results are promising for the application of non-invasive radiomic features to 

differentiate RCC subtypes, identify malignant lesions and predict pathological grade. 

Importantly, some of the most recent research highlights that radiomic biomarkers may 

be comparable to percutaneous biopsy and thus may represent a viable alternative. 

Automatic AI Fuhrman grading reduces inter-observer variability and genomic risk 

modelling may provide an improvement on current clinico-pathological risk-

stratification methods. Nevertheless, there are significant limitations to clinical 

applicability of AI in renal cancer diagnosis and management. Many of the general 



limitations have been described in the prostate cancer section. However, specific to 

renal cancer AI research is almost all studies are retrospective in nature. Additionally, 

even the largest study has a relatively small sample size, particularly in respect of AI in 

radiomics, and this limits the quality of ML algorithm training and validity of 

conclusions drawn. Furthermore, research into non-clear cell RCC is rare and there is 

scant research on renal cancer histopathology, with those studies conducted often 

assessing Fuhrman grade, which may soon be replaced by ISUP pathological grading. 

Large multi-institute prospective studies validated on external data will enable AI to 

play a major role in the future landscape of renal cancer diagnosis and may identify 

those patients with aggressive SRMs better suited to radical treatments without the 

need for biopsy. 

 

 

4). AI IN BLADDER CANCER 

 

Management of bladder cancer is unique compared to the other already described 

urological malignancies due to the reliance on endoscopic diagnosis, propensity for 

recurrence and the widespread practice of intra-vesical therapy and neo-adjuvant 

chemotherapy. These idiosyncrasies require inventive applications of AI, current 

research is described in the follow section of the review and detailed further in table 3. 

 

4A1). AI in bladder cancer cystoscopy  

 

Numerous techniques have been developed to improve the efficiency and accuracy of 

cystoscopy including photo-dynamic diagnosis, narrow-band imaging and optical 

coherence tomography(64). The application of AI to cystoscopy is a relatively new 



concept and early studies focus on assessment of still images taken during 

cystoscopy. Hashemi et al.(65) developed a multilayer perceptron ML algorithm to 

detect malignancy from 540 cystoscopic images. The group reported a relatively low 

accuracy in classification of only 49.3%. Similar work by Lorencin et al.(66), also 

utilising a multilayer perceptron algorithm, reporting an improved AUC of 0.99 when 

categorising benign versus malignant lesions from 2983 cystoscopic images. Likewise, 

Ikeda et al.(67) describes a CNN achieving sensitivity and specificity of 89.7% and 

94% in the identification of bladder malignancy from a cohort of 2102 cystoscopy 

images. These aforementioned preliminary studies demonstrate the strength of ANNs 

in image recognition but the clinical applicability is limited because cystoscopic 

diagnosis is a dynamic process not formulated on still images alone. ML systems 

operating in real-time or used to asses endoscopy videos are well described in other 

endoscopic procedures such as colonoscopy(68). To date there is only one small study 

in urology assessing augmentation of cystoscopy using real time ML technology; 

Shkolyar et al.(69) describe ‘CystoNet’ a deep learning algorithm trained on 95 

cystoscopy videos achieving a malignancy detection sensitivity and specificity of 91% 

and 99%, respectively, albeit the testing cohort was relatively small with just 54 

patients. As this technology advances further, it will facilitate improved training, 

standardisation in detection rates and democratise high-quality diagnostics to 

resource-poor countries. 

 

  

4A2). AI in bladder cancer imaging 

 

Research into AI and bladder cancer imaging is limited compared to prostate and renal 

cancer explained somewhat by the predominant role of endoscopy in initial diagnosis. 

Several researchers have combined radiomic features and AI to make the all-important 

distinction between muscle and non-muscle invasive disease, recognising that the 



current reliance on biopsy can lead up to as much as 50% under-staging(70). Garapati 

et al.(71) developed a ML classifier utilising morphological and textural radiomic 

features from contrast enhanced CT to categorise bladder tumours into muscle 

invasive or non-muscle invasive. The data set was small (76 CT scans) and utilised a 

number of classifiers noting a reasonable AUC of 0.77 – 0.95. MRI provides enhanced 

soft-tissue contrast and more accurately differentiates muscle invasion compared to 

CT (72). Zheng et al.(73) describe a ML normogram assessing 23 radiomic features 

from pre-operative bladder mpMRI able to predict muscle invasion with an AUC of 0.88 

on the validation set. Interestingly, the group separately assessed different areas of 

interest within the tumour itself noting improved performance when assessing just the 

basal section of the tumour compared analysis of the whole tumour. Furthermore, in 

this study of 31 patients under-staged on initial TURBT, 28 (90.3%) were correctly 

staged by the MRI ML normogram. This highlights a potential role of non-invasive ML 

for pre-operative staging in identifying patients requiring expedient re-resection to 

avoid under-staging and residual tumour. 

 

Grading of bladder cancer traditionally relies on tumour resection and has important 

ramifications for risk stratification and future management. Zhang et al.(74) found 

textural features extracted from bladder mpMRI could accurately differentiate high 

versus low-grade bladder cancer with an AUC of 0.86, although this was a single-

centre retrospective study limiting generalisability.  More recently, in a larger study, 

Wang et al.(75) utilised a LASSO algorithm with bladder mpMRI and observed an AUC 

of 0.93 for classification of high versus low-grade bladder tumours. Beyond local 

staging and grading of the bladder tumours, knowledge of lymph node status is vitally 

important as the presence of lymph node metastasis is a poor prognostic sign. Current 

staging relies exclusively on CT/MRI size criteria and normally sized metastatic nodes 

may be overlooked, hence the poor sensitivity of CT and MRI for lymph nodes 

metastasis described (31-45%)(76). Wu et al.(76) assessed 103 post cystectomy + 



extended pelvic lymph node dissection (PLND) patients adopting a LASSO ML 

algorithm to identify and validate radiomic features associated with lymph node 

metastasis and achieved an AUC of 0.84 for prediction of lymph node metastasis. 

Armed with such knowledge pelvic oncologists will be able to better identify patients 

suitable for extended dissection templates and those more likely to benefit from neo-

adjuvant systemic therapy. 

 

Neoadjuvant cisplatin-based chemotherapy leads to an 8% absolute improvement in 

in 5-year survival(77). However, not all patients respond to chemotherapy and thus 

may progress during systemic treatment whilst also being exposed to potential toxic 

side-effects. Several researchers have applied AI methods to non-invasively predict 

and assess therapeutic response; Wu et al.(78) compared a number of ANNs to 

assess pre-and post-treatment CT scans for tumour chemotherapy response. The best 

performing ML algorithm achieved similar performance outcomes to 2 trained 

radiologists. Similar work by Cha et al.(79) combining radiomic features with ML 

algorithms noting equivalent performance in assessing tumour response and 

concluded that such CAD tools can augment radiologists by providing an expedient 

second review. Assessment of response during treatment through non-invasive 

imaging will enable clinicians to alter chemotherapy or offer early cystectomy in non-

responders reducing morbidity and mortality.  

 

 

4A3). AI in bladder cancer histopathology 

 

Similar to prostate and renal cancer AI has been applied to histopathological analysis 

of bladder cancer to automate the process, improving reproducibility and efficiency, 

and to discover novel prognostic biomarkers. An excellent study by Zhang et al.(80) 

applied a ML CAD tool to automate analysis of 913 bladder cancer WSIs and 



compared the tool to review by 17 expert pathologists. The system outperformed or at 

least matched individual pathologists on the reporting of high and low-grade cancer 

with an AUC of 0.97. There was inter-pathologist disagreement of 23.8% highlighting 

the strength of the automated system in improving reproducibility. The group adopted 

a novel approach by utilising natural language descriptions of microscopic findings 

(tumour appearance, cell morphology etc.) and visual annotations of analysed slides 

allowing easy and interpretable second review by human pathologists. Beyond WSI 

interpretation researchers have utilised AI to analyse novel pathological features. For 

example, tumour budding (TB), is a new concept describing the clustering of cancer 

cells with infiltrative growth patterns. Increased density of these cells is a bad 

prognostic factor in non-urological cancers and may represent an early step towards 

metastasis(81,82). Automated ML quantification of TB in bladder WSIs reveals that 

increased TB is associated with worse disease-specific survival and the prognostic 

accuracy outperforms standard clinico-pathological risk-stratification(83). A unique 

application of AI to histopathology is described by Glaser et al.(84), who recognised 

that up to 20% of pathology reports on transurethral resection do not adequately 

provide sufficient information on bladder cancer stage, largely owing to their 

descriptive free-text nature of reports. The group applied a natural language 

processing algorithm to scrutinise the written text of 1638 resection pathology reports 

identifying and collating information such as muscle inclusion, stage and grade. This 

allowed individual surgeons to monitor the quality of their resection through 

assessment of detrusor muscle inclusion and acted as quality control for pathologist 

reporting. This study highlights the capability of AI to automatically extract categorical 

data from free-text, such as medical notes or reports. This application will no doubt 

become commonplace in a variety of contexts as paper medical notes are increasingly 

superseded by electronic health records. 

 

 



4A4). AI in bladder cancer genomics  

 

The European Organisation for Research and Treatment of Cancer (EORTC) Genito-

urinary cancer group provide a risk of recurrence and progression prediction model(85) 

based on 6 clinico-pathological features; number of tumours, tumour diameter, prior 

recurrence rate, stage, grade and presence of carcinoma-in-situ (CIS). Further models 

have been created to assess risk in those patients receiving intravesival therapies such 

as mitomycin-C and Bacillus Calmette-Guerin(86,87). A number of oncogenic genes 

are associated with pathogenesis in bladder cancer and combining AI with genomic 

analysis will enable more accurate cancer risk-stratification. 

 

Bartsch et al.(88) developed a ML classifier identifying 21 genes predictive of 5-year 

recurrence from 112 frozen initial TURBT pathology specimens. The study included 

non-muscle invasive specimens only and was able to accurately predict 5-year 

recurrence with a sensitivity and specificity of 71% and 67% respectively. The study is 

noteworthy due to the long follow-up period, particularly when considering AI prediction 

is a relatively new phenomenon. Furthermore, the group identified novel genomic 

biomarkers associated with recurrence not previously investigated. However, due to 

the low progression rate (17%) no genomic markers of progression could be reported, 

it is also important to note the classifier was not tested on external data and thus its 

reproducibility is questionable.  

 

As previously described, pre-operative assessment of lymph node metastasis is 

important when deciding on neo-adjuvant chemotherapy and the extent of PLND. 

Radiomic features associated with prediction have been detailed earlier in this review. 

Wu et al.(89) adopted an alternate approach identifying 5 lymph node status related 

genes from 424 patients undergoing cystectomy and PLND. The group incorporated 

clinico-pathological metrics with a ML genomic classifier to produce a lymph node 



status predictive normogram. Notably, the combined normogram was validated on two 

external data sets and in terms of predictive ability achieved an AUC of 0.89 

outperforming either the individual genomic classifier (AUC=0.73) or the clinico-

pathological model (AUC=0.82). The study improves upon previously reported lymph-

node status genomic classifiers(90,91) in two respects; first the combination of clinical 

and genomic features for AI predictive purposes is a unique approach rarely seen 

elsewhere in urological AI literature(88) and second, the normogram is validated on 

external data, verifying its real-world clinical utility. 

 

 

 

4A5). Critical analysis of AI in bladder cancer 

 

The combination of AI with cystoscopy is an interesting concept and whilst full 

automation of the process is unlikely to transpire anytime soon, augmentation in a 

hybrid approach could add diagnostic value. Current research in this area is limited to 

3 studies only and all, except 1, involve static cystoscopic images, limiting the clinical 

applicability. However, progress in other endoscopy procedures such as colonoscopy 

and oesophago-gastro-duodenoscopy is encouraging and proves that accurate 

automatic real-time detection of malignancy is currently achievable. Given the current 

paradigm expects an often novice cystoscopist to operate, detect, analyse and 

instigate treatment independently, AI is well placed to offer tangible benefits.  

 

AI in bladder cancer imaging shows promise in providing more accurate staging when 

compared to traditional biopsy methods alone, the importance of which cannot be 

understated given the rapidity of progression in high-grade disease. Furthermore, 

accurate non-surgical diagnostic methods are vitally important in an often highly co-

morbid elderly patient population. Assessing chemotherapy response during treatment 



itself will aid in identifying those patients better suited to early surgery and prediction 

of lymph node metastasis will further guide the treatment decision-making process. 

Advantages of automated pathological reporting have already been well described 

earlier and genomics in bladder cancer will improve upon current risk stratification 

models. However, AI bladder cancer research has not reached sufficient maturity to 

provide real clinical benefit, studies are small, retrospective and often lack external 

validation. Once these shortcomings are overcome AI in bladder cancer will make 

great strides in promoting bladder cancer from it’s often quoted ‘Cinderella cancer’ 

status providing substantial benefits to clinicians and patients. 

 

 

5). AI IN ROBOTIC SURGERY 

 

Current robotic systems operate a master-slave relationship; the surgeon inputs 

operative instructions through a control interface enacted by a robotic system through 

end-effectors such as laparoscopic instruments. The benefits of robotic surgery are 

well established and include improved dexterity, tremor removal, optical magnification 

and fatigue-free surgery(92). Combining these advantages with AI’s ability to analyse 

realms of robotic kinematic data will enable rapid dissemination and standardisation of 

surgical technique though shared ‘cloud’ ML. A complete paradigm shift towards 

cognisant autonomous surgical robots may seem implausible but nevertheless, with 

the advances in AI diagnostics already nearing clinical applicability, the opportunity in 

the operating theatre is exciting. Table 4 outlines the latest AI research in robotic 

surgery. 

 

5A1). Robotic automation 

 



Attempts have been made to automate certain steps of surgical procedures; 

Shademan et al.(93) demonstrated a Smart Tissue Autonomous Robot (STAR) that 

outperformed expert surgeons in relation to suture spacing and leak testing in an ex-

vivo porcine intestinal anastomosis model. The STAR robot has since been applied to 

a squamous cell carcinoma resection model achieving an oncologically safe resection 

margin(94). Remarkably, the only foray of automated robotics in urology harks back to 

the 1980s with John Wickam’s automated transurethral resection of prostate robot 

entitled the PROBOT(95). This system never reached mass production but proved 

automation was feasible with acceptable outcomes. 

 

 

 

5A2). Robotic skill assessment 

 

An area where AI shows early promise is in the assessment of surgical proficiency. ML 

algorithms have been used to asses a range of robotic kinematic metrics such as 

speed, smoothness, dexterity and camera manipulation to ascertain the expertise of 

robotic surgeons within only a few seconds of task initiation and with accuracy 

approaching 90%(96,97). Ershad et al.(98) describe the novel approach of attaching 

movement tracking devices to the shoulders, elbows and wrists of 14 surgeons 

undertaking robotic simulation exercises. This approach augmented the kinematic 

data provided from the robotic system with skill level classification improving by 69%. 

The clinical implication of these skill classification studies beyond merely grading 

individual surgeons is the recognition that skill and experience can be broken down 

into data allowing future automated systems to acquire and rapidly disseminate 

technical skills.  

 

5A3). AI Robotic outcome prediction 



 

The logical progression of AI robotic skill evaluation is prediction of post-operative 

clinical outcome; the DL algorithm developed by Hung et al.(99) predicted 3- and 6-

month urinary incontinence rates following robotic assisted laparoscopic 

prostatectomy (RALP) based on surgeon performance features including operative 

time, instrument kinematics, camera movement, system event and Endo-wrist 

articulation metrics. The features having the greatest impact on incontinence rates 

were those assessed during apical dissection and vesico-urethral anastomosis. 

Prediction accuracy was greater when combining the DL assessment of performance 

metrics with clinico-pathological features compared to either used in isolation 

(Concordance index 59.9% vs 56.2%, respectively). The same group have 

demonstrated ML prediction of other surgical outcomes based on kinematic data 

including length of stay, duration of catheter post RALP and operative time(100). This 

data is useful for optimisation of theatre and efficiencies here may offset some of the 

often-criticised increased cost of robotic surgery. Research in this area is preliminary 

but provides interesting insight into truly objective assessment of surgical performance 

beyond the current paradigm of peer-assessment and prior case load numbers. 

Interestingly, Hung et al’s study group aim to apply the described principles to recovery 

of erectile function and risk of biochemical recurrence, representing a complete AI 

trifecta assessment of RALP. 

 

 

6). AI UROLOGICAL ONCOLOGY CHALLENGES 

 

Whilst AI in urological oncology has rightfully received much attention for its 

unparalleled potential, it is prudent to remain wary of such panaceas and consider the 

significant challenges to widespread implementation in clinical practice. Several 

cancer-specific limitations have been outlined earlier in the relevant sections. 



However, there are general shortcomings of AI research worthy of mention; First, there 

is considerable heterogeneity in research methodology, AI algorithm design and 

definition of measured outcomes. This multiplicity makes meaningful comparison and 

quantitative analysis difficult. Second, significant concerns exist over the 

generalisability and robustness of results because the majority AI algorithms described 

are trained, validated and tested on the same dataset leading to a statistical 

phenomenon known as ‘overfitting’, whereby models perform favourably on their own 

data but poorly when applied to novel data. This point is compounded by a scarcity of 

multi-institute prospective studies, an inevitable skew towards large training datasets 

and small validation/testing sets and a process of data annotation so laborious that 

many study sample sizes are too small to draw meaningful conclusions. Third, the 

methods used to asses model/algorithm’s predictive performance can be misleading. 

Those papers quoting accuracy only (correct predictions / total number of predictions) 

may be subject to the “accuracy paradox”. For example, if the dataset is skewed 

towards high-grade tumours, a high accuracy displayed by the AI to detect high-grade 

tumours may just be reflective of the underlying skew in distribution within the dataset. 

AUC analysis provides a more useful analysis of performance, particularly with 

imbalanced data sets. Fourth, unsurprisingly there is a research bias towards the most 

common urological cancers with penile and testicular cancer largely overlooked. The 

provided review is guilty of such an omission and further research focus is required on 

the less common malignancies as well as benign urological conditions. Fifth, the inner-

workings of many ML algorithms, particularly ANNs, are so complex they become un-

interpretable leading to the often-cited ‘black box’ criticism of AI. The proprietary nature 

of most AI algorithms produces an extra barrier to rigorous testing of the most 

promising AI algorithms by other researchers on external datasets. Medicine as a 

scientific discipline founded in rationalisation will inevitably distrust such a lack of 

transparency and rightfully so as inherent unforeseen biases within ML processes 

could lead to disastrous consequences in patient care, particularly when considering 



the example of AI automation in robotic surgery. Finally, there are logistical and ethical 

issues requiring consideration prior to implementation such as limitations on 

computational power, storage issues associated with huge data sets, concerns over 

access to patient sensitive data and culpability dilemmas in relation to decision-making 

and automation in surgery. 

 

 

7). FUTURE DIRECTIONS 

 

A main strength of AI in urological cancer is the ability to interrogate large volumes of 

data for powerful predictive modelling. Future research will need to focus on the 

establishment of multi-institute open access databases to allow improved ML training 

and validation. Furthermore, the unchecked proliferation of unstructured data due to 

increased electronic health record utilisation, wide spread multi-parametric imaging, 

advanced genomic profiling and increase in ‘omics’ fields requires integration and 

organisation in order for AI to maximise its potential and achieve clinical applicability. 

Fused analysis of the various data streams is currently an under-researched area and 

will likely hold the key to powerful prognostication, early prediction of disease such as 

urological cancer and truly personalised healthcare. Further research into integration 

of robotics and AI is an intriguing field and may lead to automation of certain basic 

repetitive surgical processes freeing up the surgeon for more complex steps in surgical 

procedures. Furthermore, the deconstruction of surgical skill into transferrable data is 

an exciting concept and will lead to global democratisation of surgery through rapid 

skill dissemination, especially in the context of anticipated low-latency 5G networks. 

Improvements in ML automatic radiological and histopathological interpretation is an 

obvious extension of AI and current research has already reached expert level 

diagnostic accuracy. Clinical application will enable more efficient reproducible results 

easing the workload on radiologists and pathologists alike. As with all surgical research 



there is a requirement for high quality prospective randomised multi-institute studies 

to ensure the benefits of AI in urological oncology are confirmed with proper scientific 

rigour. 

 

 

CONCLUSION 

 

This review provides a foundation in basic AI principles, critically appraises the impact 

of AI in urological oncology and delivers a wider commentary on the future direction 

and challenges facing AI implementation in healthcare. In order to overcome such 

challenges computer scientists, pathologists, radiologists, surgeons and policy makers 

will need to collaborate and appreciate that human expertise will always be necessary 

in the training and development of AI systems. Furthermore, human qualities such as 

intuition, compassion, reasoning and experience will never be replaced by AI but rather 

augmented and in the near future this combination will deliver an immeasurably 

superior healthcare service for all patients, not just those with urological malignancies. 
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