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Abstract Neural networks are favored by academia

and industry because of their diversity of dynamics.

However, it is difficult for ring neural networks to gen-

erate complex dynamical behaviors due to their spe-

cial structure. In this paper, we present a memristive

ring neural network (MRNN) with four neurons and one

non-ideal flux-controlled memristor. The memristor is

used to describe the effect of external electromagnetic

radiation on neurons. The chaotic dynamics of the M-

RNN is investigated in detail by employing phase por-

traits, bifurcation diagrams, Lyapunov exponents and

attraction basins. Research results show that the MRN-

N not only can generate abundant chaotic and hyper-

chaotic attractors but also exhibits complex multista-

bility dynamics. Meanwhile, an analog MRNN circuit

is experimentally implemented to verify the numerical
simulation results. Moreover, a medical image encryp-

tion scheme is constructed based on the MRNN from a
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perspective of practical engineering application. Perfor-

mance evaluations demonstrate that the proposed med-

ical image cryptosystem has several advantages in terms

of keyspace, information entropy, and key sensitivity,

compared with cryptosystems based on other chaotic

systems. Finally, hardware experiment using the field-

programmable gate array (FPGA) is carried out to ver-

ify the designed cryptosystem.
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Medical image encryption

1 Introduction

Since the birth of the famous Hopfield neural network

(HNN) in 1984, it has been widely investigated due

to its rich brain-like chaotic dynamics [1]. As is well

known, the brain has abundant chaotic behaviors asso-

ciated with brain information processing. The HNN is

regarded as a typical paradigm to study the dynamics

of brain activities [2]. Moreover, numerous researchers

have found that the HNN has many applications which

heavily depend on its dynamical behavior in differen-

t areas such as combinatorial optimization and secure

communication [3,4]. Undoubtedly, the study of chaot-

ic dynamics in HNNs is beneficial to better understand

neural activities of the human brain and is also poten-

tially useful for developing new neuromorphic systems.

Over the past two decades, many important chaot-

ic phenomena have been revealed from different HNNs.

For example, transient chaos [5], chaos [6–8] and hyper-

chaos [9] can be generated from some small HNNs by

adjusting their synaptic weights. In particular, many

researchers in recent years have focused on the memris-

tive HNNs because of their complex chaotic dynamics.
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As a kind of nonlinear circuit component, the memristor

is considered as an organic link between the magnetic

field and electric field, whose resistance can be altered

by regulating the voltage or current [10]. In view of this,

the memristor is usually used to emulate neural synaps-

es or to describe the effect of electromagnetic radiation

on the cell membrane of the neuron [11–14]. Due to the

special nonlinearity, the neural networks with memris-

tor, namely memristive neural networks have more com-

plex chaotic dynamics like hyperchaos [15], coexisting

behaviors [16], multistability [17], extreme multistabili-

ty [18], and so on [19–22]. In particular, Pham et al. [23]

found the hidden attractors in a memristive HNN with

three neurons. Bao et al. discovered coexisting asym-

metric attractors in a hyperbolic-type memristive HNN

with three neurons [24]. Chen et al. observed coexisting

multiple attractors, namely multistability in a mem-

ristive HNN with two neurons [25]. Lin et al. report-

ed a multi-stable memristive four-neuron-based HNN

which can generate coexisting infinite attractors [26].

Very recently, Zhang et al. proposed a memristive HN-

N with initial boosted coexisting multi-double-scroll at-

tractors [27]. However, these studies are mainly focused

on the neural network with mixed structures, and there

is little work on the neural network with other struc-

tures, especially ring structures. On the other hand, it

will be useful to investigate the chaotic dynamics of a

neural network from the structure and topology view-

point.

In fact, ring neural networks (RNNs) have limited

biological relevance and can be seen as building blocks

for networks with more realistic connection topologies.

The RNNs are also a kind of cyclic feedback system

whose stability has been studied extensively. For ex-

ample, the asymptotic stability and global stability of

the RNNs with time delays were studied in [28]. The

stability of the delayed RNNs was investigated in [29].

Furthermore, exponential stability was revealed in a de-

layed RNN with a small-world connection [30]. Special-

ly, the chaotic dynamics of the discrete-time-delayed

RNNs were explored in [31]. But as far as we know,

no previous study has researched the chaotic behavior

of the continuous-time RNNs. Therefore, modeling, re-

search, simulation, circuit realization and engineering

application of RNNs to further understand brain activ-

ities and develop new neuromorphic computing systems

are significant and valuable.

With the rapid growth of information technology

and medicine, there are more and more digital medical

images that need to use in several medical fields such

as telediagnosis, telesurgery, and so on [32]. The exten-

sive use and transfer of medical images have attract-

ed many researchers to develop various medical image

encryption schemes. Due to the feature of bulky data

size, stronger correlation and high redundancy, the tra-

ditional encryption algorithms like AES, DES and R-

SA are not suitable for encrypting medical images [33].

Consequently, in recent years, researchers have proposed

many new medical image encryption algorithms [34,35].

Among them, the chaos-based medical image encryp-

tion schemes have attracted wide attention due to the

outstanding characteristics of chaos such as stochastici-

ty, ergodicity, and sensitivity to initial states [36–39]. So

far, several researchers have presented a great number

of medical image encryption schemes based on various

chaotic systems such as edge maps [40], Lorenz sys-

tem [41], sine map [42] and logistic map [43]. Recently,

some medical image encryption schemes using chaotic

neural networks have attracted the extensive attention

of academic and industrial fields because of their neural

and chaotic characteristics. For instance, Njitacke et al.

proposed a biomedical image encryption scheme based

on a simple Hopfield neural network [44]. Due to the

complex multistability dynamics of the neural network,

the proposed cryptosystem achieved higher information

entropy and lower correlation. Furthermore, Doubla et

al. [45] designed a medical image encryption algorith-

m based on a tabu learning two-neuron network. The

test results demonstrated that the algorithm is highly

secure compared to other chaos-based encryption algo-

rithms. As we all know, compared with the tradition-

al neural networks, memristive neural networks have

more complex chaotic behaviors, especially hyperchaos,

which makes the encryption more secure in theory. To

our knowledge, memristive neural networks-based med-

ical image cryptosystems have not been reported until

now.

Motivated by the above analysis, this paper first

presents a memristive ring neural network (MRNN)

based on the HNN and a flux-controlled memristor.

Then, the complex hyperchaos and multistability are

revealed by using several numerical analysis method-

s. To the best of our knowledge, this is the first time

that the chaotic dynamics of the ring neural network

is investigated. Afterward, we further design and im-

plement an analog circuit of the MRNN based on com-

mercially available electric elements. Finally, we give a

medical image encryption scheme and explore its appli-

cation feasibility by using a hyperchaotic sequence gen-

erated by the MRNN. Theoretical analysis and exper-

imental results show that the designed medical image

encryption scheme has larger keyspace, better informa-

tion entropy, higher key sensitivity, and higher NPCR

and UACI compared with the cryptosystems based on

other chaotic systems.
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The rest of this article is organized as follows. Sec-

tion 2 constructs an MRNN and discusses its equilib-

rium point stability. Section 3 analyzes the chaotic dy-

namics of the MRNN. Section 4 designs and implements

an analog MRNN circuit. Section 5 presents a medical

image encryption scheme based on the MRNN, and its

FPGA experiment is implemented. Section 6 concludes

the paper.

2 Memristive ring neural network

2.1 Model Description

Hopfield neural network with chaos is usually utilized to

mimic the chaotic behavior of the brain neural systems.

An Hopfield neural network consisting of n neurons can

be expressed as follows: [1]

Civ̇i = −vi/Ri +

n∑
j=1

wij tanh(vj) + Ii (i, j ∈ N∗), (1)

where Ci, Ri and vi are respectively capacitance, re-

sistance, and voltage of the cell membrane in neuron

i. wij is the synaptic weight coefficient describing the

connection strength from neuron j to neuron i. Besides,

tanh(.) represents the neuron activation function, and

Ii denotes an external input current. It should be noted

that the chaotic dynamics of the HNN highly depend

on its wij .

In this paper, we regard the neural network com-

posed of four neurons, and its topology structure is

shown in Fig.1. As can be seen, N1-N4 are four neu-

rons, and the four neurons are made up of a ring neural

network. Here, Ci=1, Ri=1, Ii=0 (i=1,2,3,4). Because

of magnetic flux characteristics, the memristor can be

used to describe the influence of electromagnetic radia-

tion on the neurons. When the neuron N1 is stimulated

by the external electromagnetic radiation [46], the M-

RNN can be modeled and written as follows:

ẋ1 = −x1 + 1.9 tanh(x1) + 0.1 tanh(x2)− 11 tanh(x4)

−ρϕ2x1
ẋ2 = −x2 − 0.1 tanh(x1) + 1.5 tanh(x2) + 7 tanh(x3)

ẋ3 = −x3 − 4 tanh(x2) + 1.8 tanh(x3) + 4 tanh(x4)

ẋ4 = −x4 + 0.81 tanh(x1) + 0.2 tanh(x3) + 2 tanh(x4)

ϕ̇ = x1 − µϕ

,

(2)

where xi stands for the membrane voltage of neuron

Ni, and ϕ shows the magnetic flux across the mem-

brane of neuron N1. The system parameters ρ and µ

represent the feedback coefficient of electromagnetic ra-

diation and the effect of magnetic flux on the generation
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Fig. 1: Topological connection of the MRNN.

of membrane voltage x1, respectively. Additionally, ϕ2

denotes memductance of a flux-controlled memristor.

Here, it is used to represent the coupling between ϕ and

x1. According to the function of flux-controlled mem-

ristor, the influence of external electromagnetic radia-

tion can be considered as an additional forcing current

IEMR=ρϕ2x1.

2.2 Equilibrium Point and Stability Analysis

The equilibrium points of the MRNN and their stabil-

ities are revealed by numerical analysis methods. Set-

ting (2) equal to zero, the equilibrium points of the

MRNN can be solved. Assuming E=(x, y,m, n, z)T is

an equilibrium point of the MRNN (2). According to

equilibrium equation of the MRNN, we can get

m = atan((y + 0.1 tanh(x)− 1.5 tanh(y))/7), (3)

n = atan((−ρx3/µ2−x+1.9 tanh(x)+0.1 tanh(y))/11),

(4)

z = x/µ. (5)

And x, y are the intersection points of the functions h1
and h2.{
h1(x, y) = −m− 4 tanh(y) + 1.8 tanh(m) + 4 tanh(n)
h2(x, y) = −n+ 0.81 tanh(x) + 0.2 tanh(m) + 2 tanh(n)

.

(6)

Extensive numerical simulation results show that

there is only one zero intersection point (x, y)=(0, 0).

That is to say, the MRNN has only one zero equilibri-

um point E0(0, 0, 0, 0, 0). The Jacobian matrix at the
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zero equilibria can be obtained by

J =


0.9 0.1 0 −11 0

−0.1 0.5 7 0 0

0 −4 0.8 4 0

0.81 0 0.2 1 0

1 0 0 0 −µ

 , (7)

For the zero equilibrium point E0(0, 0, 0, 0, 0), the

characteristic polynomial equation is reduced as

P (λ)=det |λE1 − J |
= (λ+ µ)(λ4 − 3.2λ3 + 3.77λ2 − 1.93λ− 250.2276)
=0

, (8)

where E1 is a fourth-order unit matrix. MATLAB nu-

merical calculations show that there are one real root

λ1=-µ and four complex roots λ2=0.6337±5.1863j and

λ3=0.9663±3.0345j. Therefore, the zero equilibrium point

is an unstable saddle-focus point, which is considered as

a necessary condition for the generation of chaos. That

is to say, the attractors generated by the MRNN are

self-excited attractors.

3 Dynamical analysis of the MRNN

In this part, the complicated dynamics of the presented

MRNN is investigated by adopting basic dynamic anal-

ysis methods such as phase plots, bifurcation diagram-

s, Lyapunov exponents, and basins of attraction. The

MATLAB R2017a with the ODE45 algorithm is em-

ployed in numerical simulation. Besides, the start time

500, time step 0.01, and time length 2000 are adopted.

3.1 Hyperchaotic Dynamics

Firstly, fix the parameter ρ=0.4 and the initial states

are set to (0.1, 0.1, 0.1, 0.1, 0.1). When varying µ in

the region of [0, 1.4], the bifurcation diagram of the

state variable x1 and the corresponding first five Lya-

punov exponents are shown in Fig.2(a) and Fig.2(b),

respectively. It can be seen from Fig.2 that the MRN-

N can generate complex dynamical behaviors including

period, quasi-period, chaos and hyperchaos. For exam-

ple, with µ increasing from 0 to 1.4, the dynamical tra-

jectory of the MRNN starting from period enters into

chaos at µ=0.15 by the forward period-doubling bifur-

cation (FPDB) route, and then the chaotic behavior de-

grades into periodic behavior at µ=0.21 by the reverse

period-doubling bifurcation (RPDB) route. Afterward,

the periodic behavior changes to chaotic behavior a-

gain at µ=0.27. Interestingly, with µ increasing to 0.38,

the MRNN enters into hyperchaos with two positive

Lyapunov exponents from chaotic behaviors by a short
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Fig. 2: The µ-dependent dynamics with ρ=0.4 and ini-

tial states (0.1, 0.1, 0.1, 0.1, 0.1). (a) Bifurcation dia-

gram. (b) First five Lyapunov exponents.
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Fig. 3: Dynamical behaviors of the MRNN for differ-

ent values of µ. (a) Limit ring attractor with µ=0.05.

(b) Period-2 attractor with µ=0.1. (c) Quasiperiod-

ic attractor with µ=0.14. (d) Chaotic attractor with

µ=0.16. (e) Hyperchaotic attractor with µ=0.6. (f)

Chaotic attractor with µ=1.1.

FPDB route again. It can be seen that the MRNN ex-

hibits a wide range of hyperchaos until µ=1. Then hy-

perchaotic behavior again turns into chaotic behavior.

It is noted that this chaos has a different topology from

foregoing chaos. Finally, chaos settles into a period state

at µ=1.3. It can also be seen that the Lyapunov expo-

nents and the bifurcation diagram matches well with

each other. The phase portraits of the MRNN with d-

ifferent values of µ are given to illustrate its dynamical

evolution with the parameter µ, as shown in Fig.3. Re-

sults show that when the parameter µ are set to 0.05,

0.1, 0.14, 0.16, 0.6 and 1.1, we can get limit ring attrac-

tor, periodic attractor, quasiperiodic attractor, chaotic

attractor, hyperchaotic attractor and chaotic attractor

with different topologies, respectively.

Additionally, by calculating Lyapunov exponents, it

will be shown in this work that the MRNN has a hyper-

chaotic attractor for the value of parameters and initial

values as ρ=0.4 and µ=0.6 and (0.1, 0.1, 0.1, 0.1, 0.1).

The Lyapunov exponents for the MRNN are computed
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for t=1e5 seconds as fowwows:

LE1 = 0.1611, LE2 = 0.0512,

LE3 = 0, LE4 = −0.9991, LE5 = −1.223
(9)

The existence of two positive Lyapunov exponents in

(9) makes it clear that the MRNN is hyperchaotic. Fur-

thermore, the Kaplan-Yorke dimension of the hyper-

chaotic MRNN is calculated by following formula:

DKY = 3 +
LE1 + LE2 + LE3

|LE4|
= 3.2125 (10)

The MRNN has high complexity because it has a large

value of DKY .

3.2 Multistability Dynamics

Multistability is a complex dynamical phenomenon that

there are coexisting multiple different attractors in the

chaotic system under different initial states [47–50]. In

this subsection, the multistability with coexisting four

different attractors is discovered from the MRNN. Sim-

ilarly, fix the parameter ρ=4 and the initial states are

set to (0.1, 0.1, 0.1, 0.1, 0.1) colored in wathet blue,

(-0.1,-0.1,-0.1,-0.1,-0.1) colored in pink, (0.1, 0.1, 0.1,

1, 1) colored in blue green, and (-0.1, -0.1, -0.1, -1, -

1) colored yellow. When varying µ in the region of [0,

1], four bifurcation diagrams of the state variable x1
are shown in Fig. 4(a). As can be seen, in Fig.4(a), the

MRNN has different bifurcation diagrams under differ-

ent initial states. In other words, the MRNN generates

coexisting behaviors. For instance, for the wathet blue

bifurcation route, the dynamical state starting from pe-

riod enters into chaos at µ=0.12 by the FPDB route.

Thereafter, the chaotic behavior degrades into period-

ic behavior at µ=0.78 by the RPDB route. Note that

there are several periodic windows in the chaotic re-

gion. Similarly, the pink bifurcation route is the same

as the wathet blue bifurcation route. But their phase

positions are different. Furthermore, for the yellow b-

ifurcation route, the dynamical state exhibits a wide

range of period behavior in the region µ ∈(0, 0.55). Af-

ter that, the periodic behavior becomes chaotic behav-

ior until µ=0.78. Similarly, the blue green bifurcation

route is the same as the yellow bifurcation route ex-

cept for phase-amplitude. Evidently, when µ ∈(0, 0.55)

the MRNN has four different bifurcation routes under

four different initial states. That is to say, the MRNN

exhibits complex multistability. Fig.4(b) gives the cor-

responding first five Lyapunov exponents. To further

verify the multistability, we have given a set of phase

plots with different initial states, as shown in Fig.5. As

can be seen from Fig.5, the MRNN generates four at-

tractors including two symmetry period attractors and
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Fig. 4: The µ-dependent dynamics with ρ=4 . (a) Bi-

furcation diagram under initial states (0.1, 0.1, 0.1, 0.1,

0.1) colored in wathet blue, (-0.1, -0.1, -0.1, -0.1, -0.1)

colored in pink, (0.1, 0.1, 0.1, 1, 1) colored in blue green,

(-0.1, -0.1, -0.1, -1, -1) colored in yellow. (b) First five

Lyapunov exponents under initial state (0.1, 0.1, 0.1,

0.1, 0.1).
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two symmetry chaos attractors under four sets of dif-

ferent initial states. Consequently, the MRNN exhibits

a complex multi-stable phenomenon.

Further, the basin stability analysis reveals the mul-

tistability dynamics of the MRNN. Here, when µ=0.2,

ρ=4 and x10=x20=x30=0.1 are kept, the local attrac-

tion basin in the x40-ϕ0 plane is drawn as shown in

Fig.6. As can be observed, the local attraction basin

displays interesting manifold structures and clear basin

boundaries, and the specified initial value regions are

made up of different colored zones labeled by r0-r4,

among which the colored zones are labeled by r1-r4
correspond to the attractors with different positions

in Fig.6. Furthermore, the blue green region represents

stable point attractors. The numerical results in Fig.5

and Fig.6 show that the dynamic behaviors in the M-

RNN strongly depend on its initial states. That is to

say, the MRNN exhibits sensitive multistability.
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the x40-ϕ0 plane, and the colorbar shows the coexis-

tence of two chaotic attractors and two periodic attrac-

tors.

4 Validation by Hardware experiments

In fact, the physical realization of neural network mod-

els is significant to exploit neuromorphic hardware sys-

tems. Generally speaking, nonlinear systems can be phys-

ically implemented by using FPGA [51] or analog cir-

cuits [52]. It is well known that an analog neural net-

work circuit is able to get real-time calculation and can

copy the behavior of a real neural system. Consequently,

the proposed MRNN is successful implemented through

take advantage of basic electronic circuit elements such

as transistors, resistors, capacitors, operational ampli-

fiers, and analog multipliers.

4.1 Design of the MRNN circuit

Before realizing the MRNN circuit, we firstly introduce

two circuit units: memristor circuit [12] and hyperbol-

ic tangent function circuit [8], as shown in Fig.7. In

Fig.7(a), the circuit equation can be written as

{
i = g2vϕ

2vi/RL

Cdvϕ/dt = vi/Ra − vϕ/Rb
, (11)

where g=1 expresses the gain of the multiplierM . More-

over, for the hyperbolic tangent function circuit in Fig.7(b),

the resistance of resistors are set asRA=1.5 kΩ,RB=0.5

kΩ, RC=1 kΩ, and RD=1.5 kΩ. According to (2), the

circuit structure of MRNN can be designed in Fig.8.

In the circuit, four out voltages v1, v2, v3, v4 represen-

t four membrane voltages x1, x2, x3, x4, respectively.

The synaptic weight coefficients in MRNN are replaced

by the resistors R1-R12. Based on the circuit in Fig.8,

vφ
C

U

Ra
RL

U
U

vi

vo

RD

RC

RB

RA

(a)

(b)

D1

D2

vi
iU

RR

M M

W(vφ)

vi i

tanhvi vo

Rb

Fig. 7: Circuit units. (a) Memristor circuit (b) Hyper-

bolic tangent function circuit.

the circuit state equations can be written by

RC dv1

dt
= −v1 + R

R1
tanh(v1) + R

R2
tanh(v2)− R

R3
tanh(v4)

− R
RL

g2vϕ2v1

RC dv2

dt
= −v2 − R

R4
tanh(v1) + R

R5
tanh(v2) + R

R6
tanh(v3)

RC dv3

dt
= −v3 − R

R7
tanh(v2) + R

R8
tanh(v3) + R

R9
tanh(v4)

RC dv4

dt
= −v4 + R

R10
tanh(v1) + R

R11
tanh(v3) + R

R12
tanh(v4)

RC
dvϕ

dt
= Rv1

Ra
− Rvϕ

Rb

,

(12)

Assuming that C1=C2=C3=C4=C, RC=10 us, and

R=10 kΩ, then C can be chosen as 1 nF. Regarding

the constant synaptic weight coefficients, resistors can

be calculated as Ra=10 kΩ, R1=5.263 kΩ, R2=100 kΩ,

R3=0.909 kΩ, R4= 100 kΩ, R5=6.667 kΩ, R6=1.428

kΩ, R7=2.5 kΩ, R8= 5.556 kΩ, R9=2.5 kΩ, R10=12.346

kΩ,R11=50 kΩ,R12=5 kΩ. Besides,Rb=R/µ andRL=R/ρ

are adjustable resistors.

4.2 Measurement of the MRNN Circuit

The designed MRNN circuit is physically construct-

ed on the experimental breadboard via adopting com-

mercially available circuit elements including R/metal

resistors and precision potentiometers, C/ceramic ca-

pacitors, D/1N4007, M/AD633JN, U/TL082CP, and
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Fig. 8: Memristive ring neural network circuit.

±15V DC voltage supplies. Numerous experiments indi-

cate that the designed MRNN circuit can realize results

agree with the numerical simulation results in section 3.

For example, when ρ=0.4 and with different µ, name-

ly RL=25 kΩ and different Rb varies, the experimental

results are given in Fig.9(a)-(f), respectively. The ex-

perimental results in Fig.9 verify the numerical results

in Fig.3. It is remarked that because there are parasitic

parameters in the practical neural network circuit, the

values of resistors have some difference, which can be

remedied by fine-tuning the adjustable resistors.

(a) (b) (c)

(d) (e) (f)

Fig. 9: Hardware experiment results. (a) Limit ring at-

tractor with Rb=200 kΩ. (b) Period-2 attractor with

Rb=100 kΩ. (c) Quasiperiodic attractor with Rb=70

kΩ. (d) Chaotic attractor with Rb=62 kΩ. (e) Hyper-

chaotic attractor with Rb=16.5 kΩ. (f) Chaotic attrac-

tor Rb=9 kΩ.

5 Application in Medical Image Encryption

In recent years, chaos-based image encryption schemes

have attracted wide attention [53, 54]. Generally, hy-

perchaos with at least two positive Lyapunov expo-

nents has more complicated dynamics than the ordi-

nary chaos with only one positive Lyapunov exponent

and it is more applicable for a lot of chaos-based se-

curity applications [55]. In addition, chaotic system-

s with multistability dynamics have become potential

candidates for chaos-based image encryption applica-

tions compared to normal chaotic systems due to their

high initial sensitivity [56]. In this section, a medical

image encryption scheme based on the MRNN with hy-

perchaos and multistability is designed.

5.1 Design of Medical Image Encryption Scheme

As shown in Fig.10, the entire structure of the MRNN-

based medical image encryption scheme is mainly com-

posed of four parts: chaotic sequence generator, secret

key generator, image encryption module and decryp-

tion module. Assuming that a gray-scale plain image P

is used as the encryption object, those modules can be

briefly described as follows.

 Key Generator

Decryption 

Module 

Chaotic Sequence 

Generator 

Encryption

 Module Plain image

Secret key

Memristive ring 

neural network

Encrypted imageK(i)

P(i)

C(i)

Decrypted image

P(i)

Fig. 10: The structure of the medical image encryption

scheme based on the MRNN.

(1) Chaotic sequence generator: Install system parame-

ters and initial states, then iterate the memristive ring

neural network (2) with the fourth-order Runge-Kutta

algorithm from initial states (x10, x20, x30, x40, ϕ0).

The MRNN is iterated continuously. We can get five

chaotic sequences (x1i, x2i, x3i, x4i, ϕi) kept the same

length as the plain image.

(2) Key generator: These sequences are reprocessed as

follows:

K1(i) = |x1i|+ |x2i|+ |x3i|+ |x4i|+ |ϕi| , (13)

K2(i) =mod(floor((|x1i|+ |x2i|+ |x3i|+ |x4i|
+ |ϕi|) ∗ 1015), 256)

, (14)
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Table 1: NIST statistical test results of the proposed MRNN
No. Test index Prop. P-value
01 Frequency 0.992 0.699313
02 Block Frequency 0.990 0.494392

Cum. Sums (F) 0.992 0.249284
03

Cum. Sums (R) 0.98 0.494392
04 Runs 0.985 0.657933
05 Longest Runs 0.992 0.574903
06 Rank 0.991 0.739918
07 FFT 0.987 0.383827
08 NOT* 0.992 0.816537
09 OT 0.990 0.534146
10 Universal 0.990 0.474986
11 Approx. Entropy 0.992 0.455937
12 Random Exc.* 0.989 0.867692
13 Random Exc. Var.* 0.985 0.834308

Serial (1st sub-test) 0.987 0.474986
14

Serial (2nd sub-test) 0.992 0.911413
15 Linear complexity 0.990 0.834308

where the floor(x) means the values of x to the nearest

integers less than or equal to x.

(3) Encryption module: This module contains two part-

s, namely, permutation and substitution. First, the se-

cret key K1 is used to permutate original image. The

plain image is permutated as

P1(i) = P (index(K1(i))) (15)

Then the permutation image P1 is further encrypted as

C(i) = P1(i)⊕K2(i), (16)

where the symbol ⊕ exprees the special XOR operation

bit-by-bit. The MRNN is operated until all the elements

are encrypted. Then each element in the encrypted set

is turned into decimal numbers. Finally, the cipher im-

age can be generated.

(4) Decryption module: The cipher image is decrypted

by a reverse process.

In our experiemnts, setting the secret key (ρ, µ, x10,

x20, x30, x40, ϕ0)=(0.4, 0.6, 0.1, 0.1, 0.1, 0.1, 0.1), a

hyperchaotic pseudorandom sequence (Lyapunov expo-

nents: L1, L2, L3, L4, L5)=(0.1611, 0.0512, 0, -0.9991,

-1.223) generated by (13) is used for image encryption.

In experiment, the pre-iterate number N0 of the chaot-

ic system is set as 500, and the time step is chosen

as 0.005. Before image encryption, the hyperchaotic se-

quence is tested by using the NIST SP800-22 test suite.

Table 1 gives the test results of the hyperchaotic se-

quence generated by the MRNN. From the results, it

is clear that they can successfully pass all the sub-tests

of the test suite. This suggests that the MRNN enjoys

complicated chaotic dynamics and can generate random

numbers with high randomness.
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Fig. 11: Simulation results of the proposed medical im-

age encryption scheme: (a1) Original medical image.

(b1) Histogram of the original medical image. (a2) En-

crypted medical image. (b2) Histogram of the encrypt-

ed medical image. (a3) Decrypted medical image. (b3)

Histogram of the decrypted medical image.

5.2 Experimental Results and Analysis

In this subsection, the efficiency of the presented medi-

cal image cryptosystem is evaluated. Some classic met-

rics like keyspace, histogram, correlation coefficient, en-

tropy, secret key sensitivity, NPCR, UACI, noise at-

tacks and SSIM are measured [44,54]. In whole experi-

ments, one medical image Lung of size 256×256 is em-

ployed as the test image, as shown in Fig.11(a1).

(1) Keyspace compute: A large keyspace show that

the image encryption algorithm possess ability to op-

pose the exhaustive attack. The presented encryption

scheme adopts two parameters and five initial values as

its key, which can ensure that unauthorized decryption

becomes difficult. In our experiments, all bites adopt

double-precision data, so the keyspace of the encryp-

tion scheme is (1016)7=10112 ≈ 2336. It is obvious that

the encryption scheme has more than 2100 keyspace and

can resist all types of violent attacks. The keyspace is

much larger than the latest similar medical image en-

cryption schemes, such as [44, 45]. From this, we can

conclude that the new encryption scheme has a greater

keyspace.

(2) Histogram test: The histogram denotes the fre-

quency distribution of pixel values in the image. Usual-

ly, a well-designed image encryption scheme can ensure

the histogram of the encrypted image has a even distri-

bution to withstand any statistical attacks. Fig.11 (a1)-

(a3) and Fig.11 (b1)-(b3) shows the original medical im-

age, encrypted medical image, and decrypted medical

image, as well as their histograms, respectively. Clearly,

the encrypted medical image has a uniform histogram.

Fig.11 visually illustrates that the designed medical im-

age encryption scheme is able to overcome statistical

attacks well.
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Fig. 12: Distribution of correlation for original medical

image and encrypted medical image. (c1, d1) Horizon-

tal. (c2, d2) Vertical. (c3, d3) Diagonal.

(3) Correlation analysis: As we all know, the original

image own a large correlation coefficient in the horizon-

tal, vertical, and diagonal directions. However, from the

view of security, the correlation coefficients of the en-

crypted image are wish to be close to zero in the each

directions. The correlation coefficients of each pair of

pixels in image can be derived as [44]

ρxy =

N∑
i=1

(xi − E(x))(yi − E(y))√
N∑
i=1

(xi − E(x))
2

√
N∑
i=1

(yi − E(y))
2

, (17)

where
E(x)= 1

N

N∑
i=1

xi

E(y)= 1
N

N∑
i=1

yi

, (18)

where the values of two adjacent pixels can be repre-

sented by x and y. The total number of pixels can be

denoted by N . Therefore, to calculate the correlation

coefficient in every directions, 10000 pairs of adjacent

pixels are randomly chosen from the original and en-

crypted image. Fig.12 shows the results of correlation

coefficients of the original and encrypted images. The

results manifest that the original image has a higher

correlation value, nevertheless the encrypted image has

a lower correlation value. From the outcomes stated

about correlation coefficient, the proposed image en-

cryption scheme can efficiently improve the correlation

between adjacent pixels of the original image.

(4) Entropy analysis: The information entropy is an

crucial index to evalute the randomness of encrypted

(a) (b) (c)

Fig. 13: Key sensitivity analysis. (a) The decrypted

image with the correct secret key. (b) The decrypt-

ed image with the wrong secret key ρ = 0.4 + 10−14.

(c) The decrypted image with the wrong secret key

x40 = 0.1 + 10−14.

images. Generally, the information entropy can be ex-

pressed mathmatically by following equations [44]

H(P ) =

2N−1∑
i=0

P (xi)log2

1

P (xi)
, (19)

where P (xi) indicates the probability of the existence

of the symbol xi, and N represents the bit depth of

the image P . The ideal value for a greyscale image is 8.

Here, the derived entropy value of the encrypted image

is 7.9978, which is close to the ideal value of 8. In oth-

er words, the designed image encryption scheme has a

good information entropy.

(5) Sensitivity discussion:The key sensitivity is a

vital indicator for evaluating the accuracy of a cryp-

tosystem. A good image encryption algorithm should

be sensitive to the security keys. In this image encryp-

tion algorithm, the system parameters and initial values

(ρ, µ, x10, x20, x30, x40, ϕ0) are regared as secret keys.

We use the correct secret key to decrypt the encrypt-

ed medical image shown in Fig.11(a2) and to produce

the corresponding decrypted medical image shown in

Fig.13(a). A minor modification is carried out in the

correct secret key to check the sensitiveness of the keys.

For instance, the decrypted image with the wrong secret

key ρ = 0.4 + 10−14, and the decrypted image with the

wrong secret key x40 = 0.1+10−14 are demonstrated in

Fig.13(b) and Fig.13(c), respectively. The results show

that the designed medical image encryption method has

good key sensitivity to small key changes.

(6) NPCR and UACI analysis: The number of pixel

change rates (NPCR) and unified average change in-

tensity (UACI) are used to evaluate the change in the

encrypted images after changing a single-pixel value of

the plain image. Usually, NPCR and UACI can be ex-

pressed by [44]

NPCR(C1, C2) =

M∑
i=1

N∑
j=1

D(i, j)

M.N
× 100%, (20)
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D(i, j) =

{
0, ifC1(i, j) = C2(i, j)

1, ifC1(i, j) 6= C2(i, j)
, (21)

UACI(C1, C2) =

1
M.N

M∑
i=1

N∑
j=1

|C1(i,j)−C2(i,j)|
255 × 100%

, (22)

where C1 and C2 are two different encrypted images

with both sizes equal toMN , whose corresponding orig-

inal images only have a single-pixel difference. C1(i, j)

and C2(i, j) represent the gray values of the pixels in

position (i, j). The outcomes of NPCR and UACI for

the experimented images are given in Table 3. As we

all know, for a robust encryption scheme, the ideal val-

ues of NPCR and UACI are 99.6094% and 33.4635%,

respectively. The presented encryption scheme can gen-

erate the values of NPCR and UACI above the ideal

values. Therefore, the proposed encryption scheme has

a high sensitivity to tiny pixel changes in the original

image.

(7) Data loss and noise attacks: Generally, the im-

ages are easy to suffer from noise and partial data loss in

the encryption system. Thus, the data loss attack and

the noise attack can be used to evaluate the robustness

of the proposed image encryption scheme. First, we cut

off some parts of the encrypted image and then decrypt

it. The results of data loss attacks for the different lost

areas are given in Fig.14(a1-a3) and Fig.14(b1)-(b3). In-

terestingly, the main information in the original image

can be recovered with the decryption. Then, we added

Gaussian noise to the encrypted image with different

proportions. Fig.14(c1-c3) and Fig.14(d1)-(d3) show the
outcomes of the noise attacks. Although some data in

decrypted images are changed, the original information

still can be displayed. This means that the encrypted

scheme has strong robustness.

(8) SSIM analysis: The structural similarity (SSIM)

is a measure of similarity between two images. For two

images x and y, SSIM can be calculated as follows [57]:

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µx
2 + µy

2 + c1)(σx2 + σy2 + c2)
, (23)

where µx and µy are average values of x and y, respec-

tively. σx
2 and σy

2 are a variance of x and y, respective-

ly. σxy is the covariance between x and y. c1=(k1L)2

and c2 = (k2L)2 are two constants, where k1=0.01,

k2=0.03, and L is the dynamic range of pixel values.

Table 2 gives the calculation results of SSIM for all the

decrypted images compared with the original image.

It can be seen from Table 2 that the encrypted image

Fig.11(a2) and the correct decrypted image Fig.11(a3)

(b1) (b2) (b3)

(a1) (a2) (a3)

(d1) (d2) (d3)

(c1) (c2) (c3)

1/32 1/16 1/4

0.01 0.03 0.05

Fig. 14: The robustness of the proposed encryption

scheme to partial data loss and noise attacks. (a1-a3)

The encrypted image with 1/32, 1/16, and 1/4 loss,

respectively. (b1-b3) Corresponding decryption images.

(c1-c3) The encrypted image with 0.01, 0.03, and 0.05

Gaussian noise, respectively. (d1-d3) Corresponding de-

cryption images.

have ideal SSIM values of 0 and 1, respectively. Fur-

thermore, the incorrect decrypted images Fig.13(b) and
Fig.13(c) exhibit very low values of SSIM, which means

that the encryption scheme has a high key sensitivity.

On the contrary, the decrypted images Fig.14(b1-b3)

and Fig.14(d1-d3) exhibit high values of SSIM, which

means that the main image information can be well

recovered when the original images suffered from data

loss and noise attacks.

Table 2: The values of SSIM between different decrypted
images and the original image.

Images SSIM
Fig.11(a2) -0.0013
Fig.11(a3) 1
Fig.13(b) 0.0062
Fig.13(c) 0.0044

Fig.14(b1) 0.9837
Fig.14(b2) 0.9388
Fig.14(b3) 0.7594
Fig.14(d1) 0.7611
Fig.14(d2) 0.6293
Fig.14(d3) 0.5536
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Table 3: Performance comparision of various encryption scheme

Refs Image type
System
type

Dynamical
property

Keyspace
Entropy
Original
Encrypted

Key
sensitivity

NPCR(%)
UACI(%)

Hardware
verification

2019[53]
Lena
(256×256)

3D Chaotic
system

Chaotic
Multi-scroll

2144 7.3740
7.9898

– – No

2020[54]
Lena
(256×256)

3D Chaotic
system

Chaotic
Multi-wing

2288 7.3740
7.9976

10−9 – Yes

2021[56]
Lena
(256×256)

4D Chaotic
system

Chaotic
multistability

–
7.4699
7.9979

10−12 – No

2020[44]
Chest
(256×256)

3D HNN
Chaotic
multistability

2288 7.3110
7.9992

–
99.6175
–

No

2021[45]
Cell
(256×256)

4D tabu
learning
two-neuron

Chaotic
multistability

–
7.9059
7.9989

10−10 99.6200
33.6512

No

This work
Lung
(256×256)

5D MRNN
Hyperchaotic
multistability

2336 6.8961
7.9978

10−14 99.6299
33.6548

Yes

Meanwhile, based on different chaotic systems, Ta-

ble 3 provides the performance comparison of encryp-

tion results between different image encryption schemes.

Apparently, compared with the recent results of [44,

45, 53, 54, 56], it shows that the proposed medical im-

age encryption scheme has a larger keyspace and more

sensitive secret keys. Consequently, these results sug-

gest that the designed medical image encryption scheme

can effectively resist statistical attacks. Meanwhile, the

proposed encryption scheme has a larger information

entropy difference, which means that it can more effec-

tively resist entropy attacks. Furthermore, the designed

medical image encryption scheme has higher NPCR and

UACI and good experimental results, which indicates

that it can be applied to protect medical image data in

practical information communication.

5.3 FPGA Demonstration

The field-programmable gate array (FPGA) is wide-

ly used in industrial electronics because of its features

such as ultra-low power, programmable reusability, and

strong controllability [58]. Here an FPGA-based hard-

ware test platform is implemented to test the proposed

MRNN-based medical image encryption scheme. The

hardware devices contain one Xilinx Virtex-6 FPGA de-

velopment board and one monitor. The hardware struc-

ture of the cryptosystem consists of five parts: medi-

cal image RAM (random access memory), chaotic se-

quence controller, medical image encryption module,

medical image decryption module, and VGA display

controller. It can be seen in Fig.15 that the image R-

MA is used to store and output the original medical

image from medical image acquisition devices. And the

generation and buffering of chaotic sequences generat-

ed by the memristive ring neural network can be re-

alized in chaotic sequence controller. In the process of

Public 

Channel

Monitor

Image Encryption 

Module 

 VGA Display 

Controller

Image

RMA

Image Decryption 

Module 

Chaotic Sequence 

Controller 

Medical Image 

Secret Key

Memristive ring neural network

Fig. 15: Block diagram of FPGA-based image encryp-

tion and decryption.

medical image encryption, the image encryption mod-

ule synchronously receive the chaos sequences and orig-

inal medical images. The image encryption module is

used to complete image encryption. Hereafter, the V-

GA display controller receive the encrypted image. In

the end, the original and encrypted medical images can

be displayed on the monitor. On the other hand, for

the process of image decryption, the decryption module

synchronously receive the chaos sequences and the en-

crypted image. Meanwhile, the image decryption mod-

ule completes the function of decryption. Eventually,

the decrypted image can be output on the computer

via using the VGA display controller.

Based on FPGA technology, hardware experiments

is carried out on the medical image cryptography sys-

tem with a fixed-point number. Using Xilinx ZYNQ-

7000 series XC7Z020 FPGA chip, the hardware struc-

ture of the biomedical image cryptosystem in Fig.15

is implemented. The functions of the five modules are

completed through adopting Verilog HDL programming,

and the realization process of the chaos sequences can

refer to work in [54]. In the hardware experiment, medi-
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(a) (b) (c)

Fig. 16: FPGA-based implementation results of the

MRNN-based image cryptosystem. (a) Original and en-

crypted image. (b) Encrypted and correctly decrypted

image. (d) Encrypted and incorrectly decrypted image.

cal images are stored in the RAM of the ZYNQ-XC7Z020

chip. The experimental results are shown in Fig.16,

where the original image and the encrypted image are

shown in Fig.16(a) with the secret key (ρ, µ, x10, x20,

x30, x40, ϕ0)=(0.4, 0.6, 0.1, 0.1, 0.1, 0.1, 0.1). Fig.16(b)

shows the encrypted image and correct decrypted image

with the correct secret key. And the encrypted image

and the wrong decrypted image are shown in Fig.16(c)

under incorrect secret key (0.4+10−14, 0.6, 0.1, 0.1,

0.1, 0.1, 0.1). Evidently, the experimental results based

on FPGA are consistent with the simulation results

based on MATLAB. Besides, the time for image en-

cryption and image decryption on the FPGA platfor-

m are 0.214238 s and 0.209756 s, respectively. These

times are much lower than the corresponding times of

0.689214 s and 0.657105 s in the MATLAB numerical

simulations. In other words, based on the FPGA, the

medical image cryptosystem can greatly promote the

speed of data treating and the time of algorithm op-

eration. Undoubtedly, the hardware experiment results

verify the effectiveness and availability of the present-

ed medical image scheme based on the memristive ring

neural network.

6 Conclusion

In this paper, a MRNN with four neurons has been

proposed. Research results show that the MRNN can

generate abundant chaotic dynamics including FPDB,

RPDB, chaotic attractors, hyperchaotic attractors, co-

existing attractors and multistability. All numerical re-

sults were experimentally verified by an analog MRNN

circuit. Moreover, a medical image encryption scheme

based on the proposed MRNN is designed. Simulation

results including keyspace analysis, histogram analy-

sis, correlation analysis, entropy analysis, key sensitiv-

ity analysis, NPCR and UACI analysis, data loss and

noise attacks analysis, and SSIM analysis demonstrate

that the designed medical image encryption scheme has

good security. The effectiveness of the medical image

cryptosystem was testified by the FPGA hardware plat-

form. The obtained results have demonstrated that the

presented MRNN-based medical image encryption can

be useful in several practical medical applications such

as mobile health care services and wireless medical net-

working for protecting medical images.

Acknowledgment

This work is supported by the Major Research Project

of the National Natural Science Foundation of China

(91964108), the National Natural Science Foundation

of China (61971185, 62101182), The Natural Science

Foundation of Hunan Province (2020JJ4218), the China

Postdoctoral Science Foundation (2020M682552), the

Scientific Research Project of Hunan Provincial Depart-

ment of Education (21C0200).

Data Availability Statements

All data generated or analysed during this study are in-

cluded in this published article (and its supplementary

information files).

Compliance with ethical standards

Conflict of interest The authors declare that they

have no conflicts of interest.

References

1. Hopfield, J. J.: Neural network and physical system with
emergent collective computational abilities. Proc. Nat. A-
cad. Sc. 79, 2554-2558 (1982)

2. Ma, J., Tang, J.: A review for dynamics in neuron and
neuronal network. Nonlinear Dyn. 89(3), 1569-1578 (2017)

3. Yang, H., Wang, B., Yao, Q., et al.: Efficient hybrid multi-
faults location based on hopfield neural network in 5G co-
existing radio and optical wireless networks, IEEE Trans.
Cogn. Commun. Netw. 5(4), 1218-1228 (2019)

4. Wang, X., Li, Z.: A color image encryption algorithm
based on Hopfield chaotic neural network. Opt. Lasers En-
g. 115, 107-118 (2019)

5. Yang, X., Yuan. Q.: Chaos and transient chaos in simple
Hopfield neural networks. Neurocomputing. 69(1-3), 232-
241 (2005)

6. Rech, P.: Chaos and hyperchaos in a Hopfield neural net-
work. Neurocomputing. 74(17), 3361-3364 (2011)

7. Bao, B., Chen, C., Bao, H., et al.: Dynamical effects of
neuron activation gradient on Hopfield neural network: nu-
merical analyses and hardware experiments. International
Journal of Bifurcation and Chaos. 29(4), 1930010 (2019)

8. Lin. H., Wang. C., Chen. C., et al. Neural bursting and
synchronization emulated by neural networks and circuits.
IEEE Trans. Circuits Syst. I-Regul. Pap. 68(08), 3397-
3410 (2021)



Hyperchaotic memristive ring neural network and application in medical image encryption 13

9. Njitacke, Z., Isaac, S., Kengne, J., et al.: Extremely rich
dynamics from hyperchaotic Hopfield neural network: hys-
teretic dynamics, parallel bifurcation branches, coexis-
tence of multiple stable states and its analog circuit imple-
mentation. The European Physical Journal Special Topics.
229(6), 1133-1154 (2020)

10. Strukov, D., Snider, G., Stewart, D., et al.: The missing
memristor found. Nature. 453(7191), 80-83 (2008)

11. Wu, J., Ma, S.: Coherence resonance of the spiking reg-
ularity in a neuron under electromagnetic radiation. Non-
linear Dyn. 96(3), 1895-1908 (2019)

12. Lin, H., Wang, C., Yao, W., et al.: Chaotic dynamics in
a neural network with different types of external stimuli.
Commun Nonlinear Sci Numer Simul. 90, 105390 (2020)
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