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Abstract: We experimentally demonstrate a system-agnostic and training-data-free nonlinearity
compensator, using affinity propagation (AP) clustering in single- and multi-channel coherent
optical OFDM (CO-OFDM) for up to 3200 km transmission. We show that AP outperforms
benchmark deterministic and clustering algorithms by effectively tackling stochastic nonlinear
distortions and inter-channel nonlinearities. AP offers up to almost 4 dB power margin extension
over linear equalization in single-channel 16-quadrature amplitude-modulated CO-OFDM and a
1.4 dB increase in Q-factor over digital back-propagation in multi-channel quaternary phase-shift
keying CO-OFDM. Simulated results indicate transparency to higher modulation format orders
and better efficiency when a multi-carrier structure is considered.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Increasing transmission speed in optical fiber communications is of utmost importance for many
applications such as access, metropolitan networks, and long-haul networks due to the rise of the
network traffic demand [1]. To increase data rates, one of the core difficulties is the optical Kerr
effect, causing a variation in index of refraction which is proportional to the local irradiance of
the light and is responsible for nonlinear optical effects such as cross-phase modulation (XPM)
and four-wave mixing (FWM) that generates a 4th idler photon [1]. The optical Kerr effect is
attributed to the so-called nonlinear Shannon capacity limit which sets an upper bound on the
achievable data rate in optical fiber communications when using traditional linear transmission
techniques [2]. On the other hand, there have been extensive efforts in attempting to approach the
nonlinear Shannon limit through several fiber nonlinearity compensation techniques [1–6] that
compensate exclusively deterministic Kerr-induced nonlinear effects. Albeit the Kerr-mediate
nonlinear process is deterministic, it has been shown in [1] that the frequency uncertainty of many
independent wavelength channels is transformed into time uncertainty through fiber transmission
by chromatic dispersion (CD), making the nonlinear interaction appear random. This problem
has been partially tackled by a combination of optical frequency combs (OFCs) [2] and digital
back-propagation (DBP) [3]. Nevertheless, OFCs are impractical for flexible routed networks,
while DBP is energy-ineffective and very complex for real-time signal processing [2,3].
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On the other hand, recent popular coherent schemes introduce multiple carriers in a single
frequency band to enhance spectral efficiency and flexibility such as coherent optical orthogonal
frequency division multiplexing (CO-OFDM) [6] and Nyquist-wavelength division multiplexing
(Nyquist-WDM). In these schemes, the resulting nonlinear interaction between subcarriers
becomes quite complex making it appear more random rather than deterministic [7]. Recently,
unsupervised and supervised machine learning such as K-means clustering [7] and artificial
neural network regression [8] have been introduced to combat stochastic nonlinearities and
transmitter imperfections (e.g., nonlinearity observed from a Mach-Zehnder modulator, MZM),
performing blind soft-decision decoding (or in other terms nonlinear mapping) and non-blind
nonlinear equalization (NLE), respectively. However, their performance benefit for multi-carrier
schemes has been limited due to their inability to effectively compensate the strong nonlinear
phase noise when using higher-order signal modulation formats on subcarriers.

In this work, we experimentally demonstrate the first system-agnostic (training-data-free)
overlapping clustering algorithm using affinity propagation (AP) in single-channel 16-quadrature-
amplitude-modulation (16-QAM) and WDM quaternary phase-shift keying (QPSK) CO-OFDM
for long-haul transmission. The current work is a significant extension of the short-length
conference paper presented in [9]. Results indicate that AP outperforms benchmark machine
learning clustering algorithms in terms of signal quality (Q)-factor such as fuzzy-logic c-means
(FL) and K-means. We also show that AP outperforms widely-adopted deterministic approaches,
namely the full-step DBP (FS-DBP) and Volterra-based NLE [6], due to nonlinear inter-subcarrier
mixing reduction induced from transmission and transmitter nonlinearities. Extensive numerical
simulations indicate that AP is transparent to higher-order signal modulation formats and
more efficient in a digital multi-carrier structure like OFDM when compared to single-carrier
modulation.

2. Proposed algorithm and proof-of-concept by simulation

In machine learning clustering, defined data learn a set of centers such that the sum of squared
errors between data points and their nearest centers is small [10]. When the centers are selected
from actual data points, they are called “exemplars”. The well-known K-means clustering
algorithm begins with an initial set of randomly selected exemplars and iteratively refines this
set to decrease the sum of squared errors [7]. In AP, however, every symbol is a potential
exemplar by viewing each symbol as a node that recursively transmits real-valued messages
(separately for amplitude and phase) until a good set of exemplars and corresponding clusters
emerge. “Messages” are updated by simple formulas that search for minima of an appropriately
chosen energy function [10]. At any symbol in time, the magnitude of each message reflects the
current affinity that one symbol has for selecting another symbol as its exemplar. Let for instance
x1 through xn be a set of complex data (symbols), with no assumptions made about their internal
structure, and let S be a function that quantifies the similarity between any two symbols, such that
S(xi, xJ) > S(xi, xk); and considering xi is more similar to xJ than to xk. For this example, the
negative squared Eucledian distance of 2 symbols is used i.e., for xi and xk. The diagonal of S
(i.e. S(i, i)) is particularly important, as it represents the input preference, meaning how likely an
input is to become an exemplar. When this is set to the same value for all inputs, it controls how
many classes the algorithm can produce. An A value close to the minimum possible similarity
produces fewer classes, however, a value close or larger to the maximum possible similarity
produces many classes (initialized to the median similarity of all pairs of inputs). AP proceeds
on how “appropriate” it would be for xi to pick xk as its exemplar, taking into account other
points’ preferences. Responsibility R and availability A are initialized to zero and are viewed as
log-probability tables, and afterward, AP is iteratively updated for R and A using the following
expressions:

R(i, k) = s(i, k) − maxk′≠k{a(i, k′) + s(i, k′)} (1)
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A(i, k) = min
(︂
0, r(k, k) +

∑︂
i′≠{i,k}

max(0, r(i′, k)
)︂

for i≠k
. (2)

The a(i, k′) in Eq. (1), is referred to the so-called “availability” matrix A, which contains the
values i, k′ that represent how “appropriate” it would be for xi to pick xk′ as its exemplar as
mentioned above (taking into account other points’ preference for xk′ as an exemplar). r(i′,k) is
referred to the so-called “responsibility” matrix R with values i′, k that quantify how well-suited
xi′ is to serve as the exemplar for xi relative to other candidate exemplars. Note that for the
availability matrix, a separate equation is used for updating the elements on its diagonal. The
two matrices (R and A) essentially represent a graph where every data point is connected with
all other points. Worth noting that the exemplars are extracted from the final updated matrices
where ‘responsibility+ availability’ is positive [10,11]. In the implementation process of the
algorithm, note there is also a damping factor for numerical stabilization and can be regarded as
a slowly converging learning rate with a value between 0.5 to 1. In Fig. 1, the steps of the AP
algorithm are presented, while Fig. 2(a) shows the aforementioned AP iterative result of R and
A for a simulated 20 Gb/s 4-QAM CO-OFDM single-channel with procedures identical to [7]
(128 subcarriers) and over 3200 km of standard single-mode fiber (SSMF) transmission at the
optimum launched optical power (LOP) of 1 dBm. At the digital receiver, after linear equalization
to compensate phenomena such as CD, the AP clustering algorithm was added for processing
separately I and Q to perform soft nonlinear decision boundaries on the linear equalized symbols.
From Fig. 2(a), it is evident that 13 iterations are required for this signal to converge.

Initial Responsibility Availability Exemplars
Update

Halt

Continue if exemplars do not agree else Halt

State

Fig. 1. Affinity propagation (AP) algorithm.

It is worth highlighting that while K-means and AP represent deterministic types of clustering,
a “probabilistic type” also exists such as FL [7], permitting the symbols to fluctuate the data
membership degree. In this work, we compare AP with FL and K-means clustering, which
perform overlapping/soft and exclusive/hard clustering, respectively. Nevertheless, since AP
also executes overlapping clustering, it is also considered as an overlapping deterministic
clustering approach. The overlapping clustering ability of AP is demonstrated in Fig. 2(b),
in which AP is compared with the exclusive (hard) clustering of K-means. For the sake of
simplicity, we show the received 4-QAM constellation diagrams for the same simulated system
demonstrated in Fig. 2(a). A Matlab/VPItransmissionMaker Optical Systems environment was
used, in which digital modulation was implemented in Matlab and electro-optical components
in VPItransmissionMaker Optical Systems. The number of symbols was chosen to be 2ˆ21
(random and unrepeated sequence). Results indicate that AP outperforms linear equalization
(LE) (i.e., without using NLE) at optimum −3 dBm of LOP by 0.6 and 1 dB in Q-factor for 64-
and 128-QAM, respectively.

It is worth noting that the benchmark K-means clustering is based on Lloyd’s algorithm [7],
and is an iterative, data-partitioning algorithm that assigns n observations to exactly one of the
K clusters defined by centroids. FL on the other hand, is a probabilistic clustering algorithm,
permitting the symbols to fluctuate the data membership degree while being allocated into many
clusters by minimizing an objective function. K-means and FL algorithms are detailed in [7].
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(a)

                      
                                (b)                                          (c)

Fig. 2. (a) Example of AP algorithm steps. AP is tested for 4-QAM CO-OFDM. (b)
Example of received constellation diagrams for AP overlapping clustering (left) and K-means
exclusive clustering (right) for a simulated QPSK CO-OFDM system at 3200 km of SSMF.
(c) AP simulated performance for 64- and 128-QAM CO-OFDM at 2000 km.

3. Experimental setup

Figure 3 depicts the experimental setup for single- and multi-channel CO-OFDM, where external
cavity lasers of 100 kHz linewidth emitting at 193.4 THz were modulated using a dual-parallel
MZM fed with ‘offline’ OFDM IQ components. The transmission link was established by a
recirculating loop consisting of 20×100 km (single-channel) and 32×100 km spans (multi-channel)
of OH-LITE fiber (attenuation of 18.9–19.5 dB/100 km) being switched by an acousto-optic
modulator. The loop switch was located before the 1st Erbium-doped fiber amplifier (EDFA) and
a gain-flattening filter was placed after the 3rd EDFA for both configurations to flatten the gain
across the wavelengths of interest. For WDM-CO-OFDM, the transmitter was constituted of five
distributed feedback lasers on a 100 GHz grid located between 193.5–193.9 THz, connected
wi a polarization-maintaining multiplexer. Using an amplified spontaneous emission (ASE)
source, another 20 ‘dummy’ channels of 10 GHz bandwidth were generated with a channel
spacing of ∼100 GHz. These channels covered 2.5 THz of bandwidth as depicted in the inset
of Fig. 3. The optimum LOP was swept by controlling the output power of the EDFAs. At
the receiver, the incoming signal was combined with a 100 kHz linewidth local oscillator for
both single- and multi-channel configurations. After down-conversion, the signal was sampled
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using a real-time oscilloscope operating at 80 GS/s and processed offline in Matlab. 400 OFDM
symbols were generated using a 512-point inverse fast Fourier transform (IFFT), 210 middle
subcarriers were modulated using 16-QAM while the rest were set to zero. A cyclic prefix of
2% was included to eliminate inter-symbol interference. The OFDM demodulator for non-blind
LE/Volterra-based NLE (V-NLE) included timing synchronization, IQ imbalance, CD, and
frequency offset compensation [7] resulting in a net bit rate of ∼20 and ∼40-Gb/s for QPSK and
16-QAM CO-OFDM, respectively. All NLEs were assessed by Q-factor measurements (related
to bit-error-rate, BER, using Q = 20log10[

√
2erf c−1(2BER]) averaging over 10 recorded traces

(2ˆ28 bits), which was estimated from the BER obtained by error counting after hard-decision
decoding.

Fig. 3. Experimental setup for single- and multi-channel CO-OFDM configuration. Inset:
Received spectrum for the multi-channel system. QPSK: quaternary phase-shift keying;
WDM: wavelength division multiplexing; OFDM: orthogonal frequency division multiplex-
ing; CO-OFDM: coherent optical OFDM; QAM: quadrature amplitude modulation; DFB:
distributed feedback laser; DSP: digital signal processing; ASE: amplified spontaneous
emission; PMM: polarization maintaining multiplexer; WSS: wavelength selective switch;
AWG: arbitrary waveform generator; BPF: band-pass filter (optical); AOM: acousto-optic
modulator; EDFA: Erbium-doped fiber amplifier; GFF: gain-flattening filter, OSA: opti-
cal spectrum analyzer; LO: local oscillator; V-NLE: Volterra-based nonlinear equalizer;
FS-DBP: full-step digital back-propagation.

4. Experimental results

As shown in Fig. 4(a) for single-channel 16-QAM, AP offers a remarkable power margin
extension of 4 dB compared to LE. Compared to all algorithms under test (i.e., FL, K-means,
FS-DBP [40 steps/span], and V-NLE), the proposed algorithm outperforms over the entire range
of LOPs. At optimum LOP, AP provides a 1 dB Q-factor enhancement over FS-DBP. This
can be explained as follows: (1) The high peak-to-average power ratio (PAPR) increases the
inter-subcarrier XPM among 16-QAM subcarriers that is transformed into time uncertainty
through fiber transmission by CD, making the nonlinear interaction appear random. Hence,
it is harder for FS-DBP to fully compensate for such a stochastic nonlinear phenomenon. (2)
Residual transmitter MZM-based nonlinearity influences the constellation diagram, in which
DBP cannot offer any benefit. (3) It is worth noting that parametric noise amplification which
affects the system performance in long-haul transmission [2,7], can result in additional stochastic
nonlinear distortions. However, there is no evidence that AP clustering can partially tackle this
effect. To gain a vibrant representation on the performance benefit of AP regarding point (1),
Fig. 4(c) is plotted to show the Q-factor distribution for AP, FL, FS-DBP, and V-NLE against
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the middle OFDM subcarriers, which suffer the most from inter-subcarrier nonlinearities. It is
evident that AP can further improve the tolerance to inter-subcarrier nonlinearities in the center
of the frequency CO-OFDM band compared to other schemes. For instance, for subcarrier#110,
AP improves the Q-factor by 2.1 dB over FS-DBP/FL and 3.2 dB in comparison to V-NLE. This
confirms the fact that FS-DBP is ineffective in fully compensating inter-subcarrier nonlinearities.
On the other hand, AP also outperforms all benchmark algorithms thus improving symbol
detection at low powers by simply combating more successfully transceiver imperfections such
as residual IQ time-skews and power-imbalances. In WDM-QPSK, AP tackles more effectively
inter-channel nonlinearities and has a clear benefit over the entire range of LOPs as shown in
Figs. 4(b), (d). At the optimum LOP per channel of −5 dBm, AP increases the Q-factor by
1.4 dB compared to FS-DBP, since the latter algorithm is only valuable for compensation of
intra-channel nonlinearities. This is also evident from the illustrated received QPSK constellation
diagrams in Fig. 5, for the WDM system at optimum LOP per channel of −5 dBm for cases:
(a) w/o NLE, (b) AP clustering, and (c) FS-DBP. The corresponding Q-factors are directly
related to Fig. 4(b) at 6.92, 10, and 8.6 dB, respectively. Note that Fig. 5(b) has been plotted
with a different colour per cluster to illustrate the nonlinear decision mapping. It is evident that
FS-DBP equalizes the signal in terms of intra-channel nonlinearities reduction. However, when
AP is applied on the received constellation diagram w/o NLE, its overlapping clustering ability
results in better decision de-mapping, thus improving the Q-factor even when compared to an
equalized signal from FS-DBP. It is worth noting that for each LOP, the number of iterations
for AP to convergence deviates. For high powers, up to ∼18 iterations are required, while at

          
    (a)                                                                                     (b)

               
                                  (c)                                                                                      (d)

Fig. 4. Q-factor vs. launched optical power (LOP) for CO-OFDM (a) single-channel
16-QAM (2000 km) and (b) WDM-QPSK (3200 km) using different algorithms. The middle
subcarriers’ performance at optimum LOP is depicted for (c) 16-QAM and (d) WDM-QPSK.
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optimum only 10 are needed. This is typically less to state-of-the-art linear adaptive filters
used in single-carrier systems requiring >21 taps for long-haul transmission (dual-polarization,
DP-QPSK, and 16-QAM standards). In AP, however, the number of operations is O(i×k×n×2),
where i, k, and n are the number of iterations, clusters, and elements, respectively [12]. In terms
of complexity, the number of clusters and elements are trivial, while i is hard to predict for
different systems and signal modulation format levels due to its interplay with the dispersion
structure of the data [12]. A full computational complexity analysis will be provided in future
research work.

  
              (a) w/o NLE                                           (b) AP                                             (c) FS-DBP

Fig. 5. Received constellation diagrams for WDM-QPSK (3200 km) at optimum LOP per
channel of −5 dBm (related to Fig. 4(b)) for: (a) w/o NLE [Q-factor= 6.92 dB], (b) AP
clustering [Q-factor= 10 dB], and (c) FS-DBP [Q-factor= 8.6 dB].

5. Simulated comparison between coherent optical OFDM and single-carrier
modulation in dual-polarization

In the Section, we compare the performance of the adopted machine learning clustering algorithms
between single-carrier and OFDM QPSK/16-QAM modulation in DP. This section essentially
addresses the effectiveness of machine learning algorithms on modulated signals with PAPR (i.e.,
the OFDM case) vs. zero-PAPR signals (i.e., single-carrier case). In particular, we investigate
the performance of machine learning for 100 Gb/s QPSK and 200 Gb/s 16-QAM using a DP
configuration for both single-carrier and OFDM modulation. For the OFDM case, the transceiver
parameters were similar to Section II, but a DP configuration was simulated identical to [13]
using two OFDM transmitters for the X- and Y- orthogonal polarizations. The developed OFDM
transceivers, as well as the optical transmission, were conducted using VPItransmissionMaker
Optical Systems with Matlab co-simulation (electrical domain in Matlab and optical components
with SSMF in VPI). The transmitter extinction ratio was kept high (at 35 dB) in order to isolate
transmitter imperfections and nonlinearities. To ensure this, we also implemented a pre-distortion
of the driving signals for MZM linearization using the well-known arcsin(Is, Qs)×Vπ /π, where Is
and Qs are the in-phase and quadrature components of the complex signal, and Vπ is the peak radio
frequency voltage required for π phase change. In the digital CO-OFDM receiver, a zero-forcing
2×2 multiple-input multiple-output (MIMO) equalizer was used that was trained over a sequence
of 60 symbols. The DP single-carrier signals were solely simulated in VPItransmissionMaker
Optical Systems. The implemented CD compensation algorithm, estimating the reversed linear
channel transfer function, was based on the overlap frequency domain equalization [14]. A
2× 2 MIMO time-domain equalizer (TDE) was applied in the digital single-carrier coherent
receiver using the constant modulus algorithm [15,16] and multi-modulus algorithm [17] for
DP-QPSK and DP 16-QAM formats, respectively. The TDE-MIMO comprised a butterfly
structure, that enables de-multiplexing of the X and Y polarization tributaries and performed
rotation to compensate for the misalignment between the signal and receiver state of polarization.
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(a)

(b)

Fig. 6. Q-factor vs. distance for (a) simulated 100 Gb/s CO-OFDM QPSK, and for (b)
simulated 100 Gb/s single-carrier QPSK.

Carrier frequency recovery was executed via the 4th power algorithm that was processed in
two steps: i) Detection of the maximum peak in the periodogram carried out by an Ns-FFT
transform block, with Ns being the number of processed samples when estimating the frequency
offset. ii) Compensation by applying a linear phase shift in the time domain. For carrier phase
recovery, the sliding window implementation of Viterbi & Viterbi was used when considering
DP-QPSK signals [15]. A rectangular windowing filter was applied with the phase error estimated
over 2×NPreSymbols+1 symbols [18]. The NPreSymbols parameter defined the number of pre-
symbols used for phase estimation. The phase estimator for 16-QAM signals was based on [17].
Similar to the simulations in Section II, 2ˆ21 symbols (from an unrepeated pseudo-random binary
sequence, PRBS) were used and hard-decision decoding was considered using the Monte-Carlo
method. It is worth noting that identical electro-optical noise levels were assumed as in Section
II, as well between the single-carrier and OFDM setups in order to provide a fair comparison.
Regarding the transmission link simulated in this section, 100 km spans were considered to cover
a total distance of up to 2100 km.

In Fig. 6(a), the Q-factor against SSMF transmission distance is plotted for AP, K-means, FL,
and LE (i.e., w/o using NLE) for averaged X- and Y-pol. of the 100 Gb/s DP CO-OFDM system,
modulated with QPSK across all subcarriers. Results are shown for optimum LOP per distance
point. It is evident that over the entire range of transmission distances of interest, all adopted
clustering algorithms outperform LE. AP, in particular, shows a significant performance benefit
above 800 km of transmission, reaching over 2 dB in Q-factor enhancement observed at 1500 km,
while significantly outperforming both K-means and FL. This is because in CO-OFDM we
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have higher accumulated inter-subcarrier FWM and XPM at longer distances, leading to higher
nonlinear phase noise and more distorted constellation diagrams. AP advanced overlapping
clustering ability is much more powerful in this scenario than FL and K-means. In Fig. 6(b),
results are shown for averaged X- and Y-pol of the 100 Gb/s single-carrier DP-QPSK system.
In contrast to the CO-OFDM system, all clustering algorithms have marginal performance
benefits, with the best still being the adopted AP clustering algorithm. Results designate that AP
works better under highly unpredicted accumulated deterministic and stochastic inter-subcarrier
nonlinear crosstalk effects that are enhanced by the high PAPR. This is due to the fact that
AP overlapping clustering leads to incoherent de-mapping, essentially resulting to a form of
overestimation. It is also worth noting that the OFDM results in Fig. 6(a) are slightly degraded
compared to the single-carrier ones observed in Fig. 6(b). This is because the impact of self-phase
modulation on the latter system is always smaller compared to inter-subcarrier nonlinearities.

In Fig. 7, we repeat the simulation process for double signal capacity, using DP-16QAM for
both OFDM and single-carrier modulation. Similar to Fig. 6, AP shows a significant Q-factor
enhancement only for the OFDM case for distances higher than 1500 km. The highest Q-factor
difference compared to LE is observed at 2100 km reaching up to 1.9 dB. This means that
compared to Fig. 6 for QPSK when adopting a higher signal modulation format order, the
soft-decision boundaries provided by AP are not similarly effective. This also explains the
non-smooth performance curves in Fig. 7.

(a)

(b)

Fig. 7. Q-factor vs. distance for (a) simulated 200 Gb/s CO-OFDM 16-QAM, and for (b)
simulated 200 Gb/s single-carrier 16-QAM.
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6. Conclusion

AP clustering was experimentally demonstrated in 16-QAM single- and QPSK multi-channel
CO-OFDM at 2000 and 3200 km, respectively. We reported significant performance benefits over
benchmark deterministic algorithms and machine learning clustering approaches, reaching up to
about 4 dB gain in LOP margin. AP effectively tackled nonlinear phase noise induced from both
inter-subcarrier/channel FWM/XPM and transmitter nonlinearities. Simulated results indicate
transparency of AP for higher-order signal modulation formats and confirmed that it is more
effective in a multi-carrier modulation structure. In that sense, AP could benefit state-of-the-art
multicarrier schemes such as Nyquist-WDM, while we demonstrated that seamless transferring
to DP modulation is feasible.
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