
Synchronizing DDoS Defense at Network Edge
with P4, SDN, and Blockchain

Aldo Febro
Dept. of Computer Science
University of Hertfordshire
Hatfield, UK AL10 9AB
aldo.febro@iotseclab.com

Hannan Xiao
Dept. of Informatics

King’s College London
London, WC2B 4BG

hannan.xiao@kcl.ac.uk

Joseph Spring
Dept. of Computer Science
University of Hertfordshire
Hatfield, UK AL10 9AB

j.spring@herts.ac.uk

Bruce Christianson
Dept. of Computer Science
University of Hertfordshire
Hatfield, UK AL10 9AB

b.christianson@herts.ac.uk

Abstract—Botnet-originated DDoS attacks continue to plague
the internet and disrupt services for legitimate users. While
various proposals have been presented in the last two decades, the
botnet still has advantages over the defenders, because botnets
have orchestrated processes to launch disruptive attacks. On the
other hand, the defenders use manual methods, siloed tools,
and lack orchestration among different organizations. These
unorchestrated efforts slow down the attack response and extend
the lifespan of botnet attacks. This article presents shieldSDN
and shieldCHAIN, an inter-organization collaborative defense
framework using P4, SDN, and Blockchain, which extends our
earlier research on microVNF, a solution of Edge security for SIP-
enabled IoT devices with P4. Besides mitigating DDoS attacks,
microVNF also produces attack fingerprints called Indicator of
Compromise (IOC) records. ShieldSDN and shieldCHAIN dis-
tribute these IOCs to other organizations so that they can create
their own packet filters. Effectively, shieldSDN and shieldCHAIN
synchronize packet filters for different organizations to mitigate
against the same botnet strain. Four experiments were performed
successfully to validate the functionalities of shieldSDN and
shieldCHAIN. The scope for the first experiment was intra-
company, while the second, third, and fourth experiments were
inter-company. In the first experiment, shieldSDN extracted IOCs
from the source switch and installed these as packet filters
on other switches within the same organization (in the U.S.).
In the second experiment, the shieldCHAIN in the publishing
organization (in the U.S.) shared IOCs by posting them to the
Blockchain. In the third experiment, the shieldCHAIN in the
subscriber organizations (in Singapore & the U.K.) retrieved
these IOCs from Blockchain. Finally, in the last experiment,
the shieldCHAIN in the subscriber organizations installed the
retrieved IOCs as packet filters; that are identical to those in the
originating organization. To the best of our knowledge, this is
the first framework that uses the P4 switch, SDN controller, and
Blockchain together for this use case. As SDN and Blockchain
gain acceptance, this framework empowers community members
to collaborate and defend against botnet DDoS attacks.

Index Terms—SDN, P4, DDoS, Blockchain, DAO, NFT

I. INTRODUCTION

A. Background

GOVERNMENTS, industry, and academia are concerned
about threats from IoT botnets. They recognize the

threats and potential damage that IoT botnets can cause in
the wrong hands. Understanding that these threats impact
the whole Internet ecosystem, there are initiatives underway
which involve participants from different sectors in developing

recommendations, standards, and implementations that address
problems imposed by the IoT botnet.

From the Government perspective, in 2017, the U.S. Pres-
ident issued an executive order that called for increasing re-
silience against botnet and other automated, distributed threats
[1]. In response, the Secretary of Commerce and the Secretary
of Homeland Security published the “Botnet Report” to the
President [2], followed by a road map report toward resilience
against botnets [3]. The National Institute of Standards and
Technology (the science laboratory under the Department of
Commerce) published three documents: NISTIR 8228, 8259,
and 8267 that specifically address IoT cybersecurity. In June
2019, NIST published the NISTIR 8228 document to establish
the management of risks posed by IoT devices [4]. Since
consumer home IoT devices are part of the ecosystem, NIST
published 8267 in October 2019 to improve security on these
devices [5]. These documents were then followed by the
publication of NISTIR 8259 in January 2020 to define baseline
security capabilities for IoT device manufacturers [6].

From a joint government-industry perspective, the National
Cybersecurity centre of Excellence (NCCoE) published a Spe-
cial Publication (SP) 1800-15 [7] that mitigates network-based
attacks using the Manufacturer Usage Description (MUD). The
MUD that is introduced in RFC8520 [8] essentially allows
the manufacturer to publish the intended functions of the
IoT device (profile), which are then enforced by the router
using packet filters when the IoT device behaves outside the
profile. This MUD initiative also includes specification for
its data modeling [9], data interchange format [10], access
list [11], data serialization [12], and signature [13]. Other
supporting documents for identifying the network behavior
[14] and procedures for device on-boarding [15] have been
published. All of these are to ensure that the IoT device is not
hijacked to perform functions that are not originally intended
by the manufacturers, (e.g., being hijacked and recruited by a
botnet to launch a DDoS attack).

B. Related Work

In the industry, DDoS mitigation methods are typically per-
formed by using techniques such as Remote Triggered Black
Holing (RTBH) [16], BGP Flowspec [17], unicast Reverse
Path Forwarding (uRPF) [18], Enhanced Feasible-Path Uni-

cast Reverse Path Forwarding (EFP-uRPF) [19], DDoS Open
Threat Signaling (DOTS) [20], and using the scrubbing center
[21] to drop malicious packets and forward legitimate ones.
With RTBH, the victim is able to send a request to upstream
network providers to drop DDoS packets. BGP Flowspec
improves RTBH by offering more granular filtering criteria
and supported actions. The uRPF technique blocks traffic from
spoofed source IP addresses and EFP-uRPF further improves
on this by having more flexibility relating to directionality.
Some service providers offer a scrubbing service or mitigation-
as-a-service [21] where the DDoS traffic is redirected to a
network which performs deep packet inspection and forwards
legitimate packets to the destination via a separate path.

From an academic perspective, some investigations have
been carried out in Blackholing activities such as in-depth
statistical analysis [22], automatic blackhole detection [23],
and the application of the advanced mitigation strategy [24].
Some investigations take a different direction where they
explore the use of SDN and NFV to defend against botnet
attacks that are launched from hijacked IoT devices. Some
proposals [25], [26] combine SDN with MUD, or NFV with
MUD at home [27] or ISP level [28]. Bull et al., proposes
an SDN gateway to monitor traffic going to or from IoT
devices [29]. The gateway can block, forward, or modify QoS
as a response to anomalous behavior. Ozcelik, Chalabianloo,
and Gur proposed Edge-Centric Software-Defined IoT Defense
(ECESID) [30] that provides detection at the network edge
using SDN controller and Fog computing concepts. Bhunia
and Gurusamy proposed SoftThings, an SDN-based secure
IoT framework to detect anomalous behavior using a support
vector machine (SVM), machine learning classifier [31]. Zarca
et al., proposed a policy-based framework using SDN and NFV
concepts as security enablers for IoT devices and the environ-
ment [32]. Yan et al., proposed Multi-Level DDoS Mitigation
Framework (MLDMF) that includes edge/fog/cloud level using
SDN-based IoT gateways (SDNIGW) [33]. Yin, Zhang, and
Yang proposed a general framework called Software-Defined
IoT (SD-IoT) consisting of SD-IoT controllers, switches in-
tegrated with IoT gateway, and devices [34]. Shorman, Faris,
and Aljarah proposed a machine learning method that uses an
unsupervised evolutionary IoT botnet detection method using
the Grey Wolf Optimization algorithm (WGO) [35]. Afek,
et al., did a proof-of-concept for NFV-based IoT Security at
the ISP level, where it uses White List Monitoring (WLM)
and White List Enforcement (WLE) using MUD protocol
[36]. Andalibi et al., proposes a MUD-Visualizer to ease the
deployment of MUD [37].

However, while good progress and contributions have been
achieved on this front, the focus is on detecting whether or
not an IoT device deviates from the manufacturer’s predefined
behavior.

C. Research Gaps

As per National Institute of Standards and Technology’s
Cybersecurity Framework [38], the next phase after detection
is response. With botnet attacks as prevalent and disruptive as

they are today, it is arguable that efforts need to extend beyond
the detection phase, into the response phase (as depicted in
Fig. 1).

Fig. 1. NIST Cybersecurity Framework functions: Identify, Protect, Detect,
Respond, and Recover [38]

Currently substantial manual coordination efforts are re-
quired to disseminate intelligence about DDoS attacks. This
intelligence needs to be manually reviewed before it is ac-
tionable. With a shortage of qualified cybersecurity workers
and increasing frequency of attacks, this process is not sus-
tainable and scalable. Augmenting staff with automation is
often viewed as a sustainable method to scale and meet the
increasing workload.

The emergence of the programmable control plane (SDN)
[39], programmable data plane (P4) [40] [41]–[44], and pro-
grammable blockchain technologies (Ethereum smart contract)
present new capabilities which make it possible to build a
community-based, synchronized, and automated defense for
modern networks. These capabilities empower the network
operators [45] to secure their network against botnet DDoS
attacks.

D. Our Approach and Contributions
Some characteristics that make botnet-originated DDoS

attacks effective are their synchronized coordination and the
globally distributed nature of the attacks. To counter this
synchronized mode of attack, we propose an automated and
synchronized defense.

Dealing with the distributed nature of botnet, our proposed
approach likewise empowers the community to form a dis-
tributed defense. Software-Defined Networking (SDN) with
its programmable control and data plane features presents
a novel option to automate and scale these tasks within an
organization.

There are two synchronization tasks involved in the pro-
posed solution, intra and inter organization. The first task
is to facilitate intra-organization synchronization that lever-
ages SDN to synchronize packet filters on multiple switches
within an organization. The second task is to facilitate
inter-organization packet filter synchronization that leverages
Blockchain as a threat distribution platform in a community
(Fig. 2), allowing a packet filter that has been created by one
organization to be leveraged by another organizations in the
community.

In this article, we present shieldSDN and shieldCHAIN, a
novel framework to automate and synchronize defense posture
on multiple switches in multiple organizations. This frame-
work enables a distributed defense against distributed botnet
attacks. ShieldSDN is an SDN controller that controls a P4 ap-
plication running on an edge switch that has packet filtering ca-
pabilities. ShieldSDN is responsible for synchronizing packet
filters on all edge switches within an organization, i.e., intra-
organization synchronization. ShieldCHAIN is a blockchain

Fig. 2. Automated and synchronized defense: shieldSDN for intra-organization (1) & shieldCHAIN for inter-organization synchronization (2, 3 & 4)

distributed Application (dApp) that communicates with a smart
contract deployed at Ethereum blockchain. ShieldCHAIN is
responsible for publishing and subscribing IOC from other
organizations, i.e., inter-organization synchronization. When
a publisher-organization would like to share IOC with the
community, shieldCHAIN creates a new Blockchain transac-
tion. Similarly, when the subscriber-organizations would like
to retrieve the current state of IOC data, the shieldCHAIN will
retrieve it from Blockchain.

Four successful experiments were performed to validate the
hypothesis that the programmable data plane, control plane,
and blockchain can be orchestrated to scale DDoS defense
against botnet by synchronizing packet filters on the edge
networks. The first experiment was to validate that shieldSDN
can distribute the IOC from one switch to multiple switches
within the organization (number 1 in Fig. 2). The second
experiment was to validate that the shieldCHAIN-agent in the
publishing-organization can share IOC to Blockchain (number
2 in Fig. 2). The third experiment was to validate that
the shieldCHAIN-agent in the subscribing-organization can
receive IOC from Blockchain (number 3 in Fig. 2). The fourth
experiment was to validate that the shieldCHAIN-agent in the
subscribing-organization can install a packet filter on the edge
switch (number 4 in Fig. 2).

A novel contribution of this article is a synchronized and au-
tomated botnet DDoS defense framework at the network edge
using, P4, SDN, and Blockchain. This framework provides a
synchronized defense for the network edge within an organiza-
tion, as well as inter-organization. This framework empowers
network operators (customers and/or service providers) to
contribute their fair share of responsibilities towards defending
against botnet DDoS attacks. To the best of our knowledge,
this is the first framework that uses an SDN and Blockchain
for these functionalities and use-cases.

II. THE PROPOSED SOLUTION:
SHIELDSDN AND SHIELDCHAIN

A. Design and considerations

The proposed solution leverages the strengths of both SDN
and Blockchain technology to address the DDoS problem
described in the previous section.

SDN technology proposes separation of the control and
data plane, producing a network infrastructure with a pro-
grammable control and data plane. This new capability en-
ables new breed of SDN-based applications such as: traffic
engineering, optimization, tunneling, analytic, and network
security use cases. However, these use cases are typically
implemented within one organization or autonomous system.
DDoS is a distributed problem that needs distributed solution
and coordination between organizations. Additional elements
are required to apply SDN across multiple organizations.

Blockchain technology offers an immutable, programmable,
and distributed ledger. This capability enables a new breed of
Blockchain-based applications such as: Decentralized Finance
(DeFi), Non-Fungible Tokens (NFT), and Decentralized Au-
tonomous Organization (DAO). Even though the pioneer use
case for blockchains is cryptocurrency, the same technology
can be leveraged for other use cases, such as sharing infor-
mation across multiple organizations. This capability comple-
ments SDN allowing each organization to remain independent
of each other, whilst still sharing threat intelligence amongst
each other.

The proposed solution is designed as a collaboration
between SDN-applications (shieldSDN), facilitated by the
distributed application (shieldCHAIN). Together, shieldSDN
and shieldCHAIN enable an organization to share and process
threat intelligence with other organizations, which are then
installed as packet filters on their respective P4 switches. By

having the same threat intelligence and synchronizing their
packet filters, these organizations form a herd immunity as
they are capable of mitigating against the same strain of
botnet attack.

B. ShieldSDN roles & functions

ShieldSDN is an SDN controller/application that auto-
mates the task of synchronizing packet filters among multiple
switches in the organization. It inspects a switch for IOCs,
and when found, converts the IOC into packet filters that
can be installed on all switches. ShieldSDN is triggered by
a scheduled job that runs at regular intervals to perform four
tasks as depicted in Fig. 3:

1) Collect IOC from edge switches
2) Convert from IOC to packet filter
3) Install packet filter on other edge switches
4) Store packet filter in the database
The roles and functions that shieldSDN performed are

described in more detail below:

1) IOC inspector: ShieldSDN’s first task is to inspect
each switch under its control for IOCs generated by the
switch. The switch generates an IOC after it detects and
mitigates a DDoS attack. The switch stores the IOC in its
register along with two pieces of information: the attacker
IP address and port number. When shieldSDN is able to
find an IOC in the register, it retrieves the IOC for conversion.

There are three types of IOC that shieldSDN synchronizes
among all switches, i.e., known attacker, known command-
and-control (CNC) server, and known victim:

• Indicators about the known attacker. The receiving
switch will inspect the source IP address of each packet
that it receives. If the source IP matches, this packet is
coming from a known attacker and the microVNF will
drop the packet

• Indicators about the known CNC server. When the
destination IP address of the packet matches a known
CNC, the switch will drop the packet to prevent the
botnets from registering and receiving commands from
its CNC server.

• Indicators about the known victim. When the destination
IP matches, this means that this packet is going to a DDoS
attack victim. In this case, the switch will drop the packet
to prevent the botnet from participating in the attack.

2) IOC converter: The second task for shieldSDN is to
convert the IOC into packet filter format that is compatible
and can be installed on other switches. This step is necessary
because the data retrieved from the source switch is not
directly actionable. The IOC data must be converted into
commands that are understood by the destination switch.

Fig. 3. ShieldSDN initiates a one-directional connection to the source switch
to collect Indicator of Compromise (IOC) (1), converts it to packet filter (2),
installs it as packet filtering rules on other switches (3), and stores it in the
database.

When shieldSDN sends these commands into the destination
switch, they will get installed as packet filtering rules.

3) Database feeder: In addition to installing packet filters
on edge switches, shieldSDN stores the IOCs in a centralized
database for long-term storage and analysis. When all the
switches have installed the same packet filters, they have
reached a synchronized state where each switch can take
action based on the same set of information.

4) Filter Optimizer (Delete & Reinstall): Considering the
finite amount of memory available on the switch’s data plane,
the SDN controller needs to perform memory management
[46] by optimizing the number of filters that exist on a switch
at a given time. The principle is to use the least amount of
memory footprint necessary. This translates to managing the
filters in such a way that the switch can continue to operate
in the midst of a dynamic attack with the limited amount of
memory available. Since the majority of attacks are short-lived,
one way to conserve a switch’s memory is by deleting filters
that have expired so that new filters can be installed. However,
when the same attackers reappear after the filter has been
deleted, the switch has no recollection of previous incidents.
The SDN controller has stored the previous incidents in the
database and will be able to find and reinstall the filters for
these repeat offenders, which are now considered as persistent
threats.

ShieldSDN conserves the switch’s memory by expiring old
rules and storing them in a centralized database. ShieldSDN
accomplished this task by initially assigning a random expiry
time between 5 to 10 minutes, so that the switch only keeps
rules associated with active attacks. The use of randomized
expiry time is intended to make it less predictable for the
attacker. The initial 5 to 10 minutes expiry time was chosen
for two reasons. First, in case that it affected legitimate uses,
they do not have to wait for too long before they can resume

Fig. 4. ShieldCHAIN retrieves Indicator of Compromise (IOC) from shieldSDN database (1), publishes IOC to Blockchain (2), retrieves IOC from Blockchain,
converts IOC to packet filter (4), and installs packet filter to edge switches (5).

their legitimate activities. Second, the assumption is that most
attacks are short-lived. Kaspersky DDoS report for Q2 2020
states that 81.96% of the attacks are less than four hours
[47]. Should the attackers keep attacking after the initial 5-
10 minutes, shieldSDN will keep assigning new expiry time
based on the attack frequency until it is longer than four hours.
In the current implementation, a switch can keep 1024 records
of each indicator (attacker, CNC, and victim). Since the switch
is running at the edge of the network, having a space for 1024
attackers seems reasonable and can be adjusted depending on
the underlying switch being used. Another reason for expiring
the rules is to prevent self-inflicted DoS when an attacker tries
to create entries that will drop legitimate packets.

Packet filters for Advanced Persistent Threats (APT) require
a different strategy that takes into account the attack frequency.
APT is often associated with well-organized attackers that are
being careful and strategic in the way they carry out their
attacks. APT is also persistent and may lie dormant for a long
time before re-emerging to launch their attacks. APT poses
an interesting challenge with the limited number of filters
that can be created on a switch. One way to deal with this
is for the SDN controller to create filters with longer expiry
times instead of using the default. This expiry time should
correspond with the frequency of attacks where it gets longer
as the frequency of attack increases.

Persistent threats that reappear after being deleted will get a
longer expiry time based on the frequency of the attack. There
may be occasions when shieldSDN has deleted a rule, but then
the same attacker reappears and launches the same attack. In
this case, shieldSDN compares the previous IOC records in
the database with the IOCs just retrieved. When a match is

found, shieldSDN recognizes that this is a repeat offender and
installs a new expiry time that is longer than the first time.
The calculation is similar to the first-time offender (a random
expiry time between 5 to 10 minutes). However, for the second
time offender, the expiry time will be the square of the random
expiry time. For example, suppose that the random time for
a first-time offender is 10 minutes, when the same attacker
re-offend for the second time, the new expiry time will be
100 minutes (10 to the power of 2). For the third-time, the
expiry time would be 1000 minutes (10 to the power of 3).
By doing it in this way, shieldSDN achieves two purposes:
the expiry time is still not easily predictable, and the limited
memory space is still being used efficiently. Making the expiry
time random and less predictable for the attacker is important
because it forces the attackers to spend more time and effort
if they chose to continue.

The resiliency against repeat attacks are dependent on the
amount of memory available and threat actor’s persistence.
The threat model considered is against an opportunistic threat
actor as opposed to state-sponsored ones. With each successive
mitigated attack on the same object, the filter will have longer
expiry time. An opportunistic threat actor is likely to move on
to easier targets to optimize their time and effort investment. In
contrast, a state-sponsored actor is likely to persist in attacking
the targeted object.

C. ShieldCHAIN roles & functions

ShieldCHAIN is a blockchain distributed application (dApp)
that facilitates inter-organization IOC sharing. ShieldCHAIN
provides a collaborative defence framework that is affordable,
automated, and practical. This is to address common chal-

lenges identified to defend against a botnet attack such as lack
of personnel, lack of standardized defense framework, and the
workload required to implement such a collaboration.

ShieldCHAIN is designed to address these concerns. In
terms of affordability, shieldCHAIN consists of components
which are cost effective for member organizations to own.
From labor requirement, shieldCHAIN automates sharing and
retrieving IOCs at regular time interval, so there are no manual
tasks involved. From an implementation perspective, shield-
CHAIN allows the organization to start small and have in-
cremental deployment. With low-cost hardware, an automated
framework, and flexible deployment, ShieldCHAIN presents
a solution for the community to collaborate against botnet
attacks.

Collaboration among loosely connected organizations re-
quires a distinctive approach to interaction. In an organization
with centralized decision-making structure, an authoritative
figure can prescribe and implement actions for all members
in the organization. Another decision-making structure is a
consortium of independent-organizations. With a consortium,
each member is making decisions independently from each
other. For example, Financial Services Information Sharing
and Analysis Center (FS-ISAC) is a consortium of financial
organizations. Health Information Sharing and Analysis Center
(H-ISAC) is a consortium of healthcare organizations. In
these structures, a member can share information with the
community, but it is up to the individual member to decide
whether to act on the information being shared. ShieldCHAIN
is designed to accommodate this model of interaction, where
a member can publish IOCs and the individual member can
subscribe to IOCs.

ShieldCHAIN uses public Blockchain technology due to
Blockchain’s intrinsic features that facilitate data sharing
between independent organizations. Blockchain is a public and
distributed ledger technology that keep records permanently.
Being a public ledger, anyone can verify the transactions that
took place and the content of those transactions. The records
are permanent and protected by cryptography functions
such that any alteration will be noticeable. Blockchain
distributes these records of transactions among Blockchain
nodes such that there is no single-point-of-failure. Another
important characteristic of Blockchain technology is that it
is peer-to-peer, and there is no central authority figure that
governs the interaction. Trust and integrity are established in
the community by a combination of three factors: the first is
by being transparent about the transactions and their content,
the second is by the absence of a central figure that could
potentially compromise the system, and the third is by using
secure cryptography functions.

In terms of its architecture, shieldCHAIN can be viewed
as a front-end and a back-end. The division of labor between
front-end and back-end is depicted in Fig. 4 and described
below:

1) ShieldCHAIN dApp (front-end). The decentralised

Applications (dApps) agent serves as the front-end
component of ShieldCHAIN. Each member that wants
to be part of this community and participate in sharing
threat intelligence will need to run an instance of the
dApp in their organization. The dApp interfaces with
a smart contract which has a variable that holds the
current state of IOC records. The smart contract also
provides functions such as create, delete, and retrieve
to update this variable. While the value of this variable
may change, the records of operations (add and delete)
to this variable are permanent. The dApp interfaces with
a SQL database to access the IOC records created by
ShieldSDN. Lastly, the dApp interfaces with microVNF
to install packet filtering rules.

2) ShieldCHAIN smart contract (back-end). The smart
contract serves as the back-end component of
ShieldCHAIN. A smart contract is code that gets
deployed on the Ethereum Blockchain and that provides
logic for accessing and storing the data. A smart
contract provides the logic necessary to maintain the
current state of threat intelligence. The smart contract
also provides the functions for the dApp to add, delete,
and retrieve data from variables that store IOC records
and accessed by dApp agents.

The smart contract maintains consensus of shared
variables using the underlying Proof-of-Work (PoW)
protocol for Ethereum nodes. There are two elements
involved in maintaining the consistency of shared
variables: consensus among the Ethereum nodes
and shieldCHAIN dApp (the front-end agents).
Among the Ethereum nodes, they use PoW as the
consensus protocol. From a cross-cutting perspective,
the shieldCHAIN smart contract is deployed on, or sits
above, the Ethereum nodes.

The consensus among shieldCHAIN dApp (the
front-end agents) is reached through accessing the
same variables on the smart contract. With dApp agents
sharing variables, there is a need for concurrency control
to avoid inconsistencies of the records. ShieldCHAIN
smart contract relies on the underlying Proof-of-Work
protocol as the arbiter among competing transactions
so that the dApp agent will retrieve the latest version
as per Ethereum transactions.

In addition to technical consensus described above,
there is also a consensus at the organizational level
that occurrs offline. For this consensus, multiple
independent organizations agree to create a consortium
for the purpose of sharing threat intelligence. Each
organization makes an independent decision to join this
consortium based on their industry and requirement
similarities. For example, financial institutions have
Financial Service Information Sharing and Analysis

Center (FS-ISAC) and healthcare institutions have
Health Information Sharing and Analysis Center
(H-ISAC).

The dApp agent is triggered by a scheduled job that runs at
a regular interval to perform five tasks as depicted in Fig. 4.

1) Retrieve IOC from shieldSDN Database
2) Publish IOC to Blockchain
3) Retrieve IOC from Blockchain
4) Convert IOC to packet filter
5) Install packet filter to edge switches

The dApp Agent could either play the role of publisher or
subscriber. The dApp-publisher performs the first and second
tasks; whereas the dApp-subscriber performs the third, fourth,
and fifth tasks. Each dApp Agent is capable of performing
both roles. Which role it takes depends on whether or not
it has an IOC to share. Below are the details for each function:

1) Database retriever (dApp-publisher): DApp-publisher
inspects shieldSDN database for IOC at regular intervals.
When IOC is found, dApp-publisher retrieves the IOC.

2) Blockchain publisher (dApp-publisher): The next task
for dApp-publisher is to share the IOC with the community
via Blockchain. The dApp-publisher does this by calling a
REST API with IOC as the payload to create a transaction
in Blockchain and append a new record. At this stage,
dApp-publisher has completed its task.

3) Blockchain subscriber (dApp-subscriber): The first task
for dApp-subscriber is to inspect the smart contract deployed
on Ethereum Blockchain. When a new IOC is found, it will
retrieve the new IOC from the Blockchain, and hand it off to
the next task.

4) IOC converter (dApp-subscriber): When the new IOC
is retrieved, it needs to be converted before it can be deployed
on the switch. The dApp-subscriber converts the IOC into
a packet-filter format understood by P4-enabled switches
deployed at the edges of the network. When this task is
complete, the next task can commence.

5) Filter installer (dApp-subscriber): The final task for
the dApp-subscriber is to install the packet filters on the
edge switches. Once the packet filter is installed, it is able to
defend against DDoS attacks coming from the same strain of
botnet.

III. IMPLEMENTATION

ShieldSDN implementation involves a controller, south-
bound interface, and a SQL database. The shieldSDN con-
troller provides the logic for IOC management, whereas the
southbound interface provides the shieldSDN with the means
to interact with microVNF. The database is used for long-term
storage of IOC and analytics. In the experiments, there were

four EC2 t2.micro instances used (one for shieldSDN and three
microVNF). The microVNF instances used Mininet [48] with
bmv2 selected as the switch type [49].

A. ShieldSDN

1) SDN Controller: The SDN controller is an application
that is written in node.js [50] that interfaces with microVNFs
and a database. ShieldSDN could use other programming
languages, but node.js offers portability and availability on
many platforms, from raspberry Pi to serverless function-as-
a-service from cloud providers [51] [52] [53]. This portability
ensures that the shieldSDN implementation is scalable from
lab-scale to cloud production.

In these experiments, the SDN controller script was
running on an AWS EC2 instance. The same instance hosts
the SQLite database [54]. The instance has direct access to
all microVNFs in the organization via IP. The SDN controller
runs every minute and is launched by a task scheduler (cron)
to communicate with the microVNFs. The SDN controller
uses a command-line interface tool that is provided by the
bmv2.

Collect IOC from edge switches (step 1). As depicted
in Fig. 3 step 1, the SDN controller uses a command line
tool (simple_microVNF _cli register_read) to
retrieve the IOCs from a microVNF’s registers. For example,
to retrieve IOC information about the attacker’s IP address,
the SDN controller would connect to the microVNF and issue
”register_read victimrIp_register command.”
MicroVNF would then return the complete content of
attackerIp register. For example, when the microVNF returns
an entry ”1226008369”, it becomes ”0100 1001 0001
0011 0110 0111 0011 0011” when converted to
binary, which is an IP address of ”73.19.103.49”.
Besides collecting the IP address of the victim, shieldSDN
also retrieves the victim’s port number that is under attack with
register_read victimPort_register command.

Convert from IOC to packet filter (step 2). The SDN
controller converts the IOC to a packet filter format
appropriate for microVNF. The native format of IOC is not
readily usable by microVNF as a packet filter. The SDN
controller needs to convert and identify the appropriate table
on microVNF so that it can function as a packet filter. For
example, the IP address of ”1226008369”, needs to be
converted to ”MyIngress.KnownVictim_table drop
73.19.103.49/32 5060”. In this case, we want to
add the IP address of ”73.19.103.49/32 5060” into
”MyIngress.KnownVictim” table.

Install packet filter on microVNF (step 3). The SDN
controller inserts a packet filter on the microVNF table by
using a command line tool (simple_microVNF_cli
table_add) to insert packet filtering rules on the
microVNF’s tables. MicroVNF inspects every packet
that it receives against KnownVictim_table, along

with KnownAttacker_table, KnownCNC_table, and
KnownVictim_table, and drops the packet when it finds
a match.

The shieldSDN that creates a packet filtering rule is also
responsible for deleting these entries. When a shieldSDN
interacts with multiple microVNFs, it is important for
the shieldSDN to keep track of the microVNF that it is
interacting with. For example, supposed that shieldSDN1
is responsible for installing a packet filtering rule on
microVNF1, microVNF2, and microVNF3. In this case,
shieldSDN1 is also responsible for deleting the expired IOC
from microVNF1, microVNF2, and microVNF3. ShieldSDN1
will also store these data in the SQLite database, which we
will review next.

Store packet filter in database (step 4). The last task for
the SDN controller is to store packet filters in the database.
The SDN controller uses the mysql command line tool to
insert packet filters in the appropriate table.

2) IOC Database: ShieldSDN stores the data in a SQL
database using three tables: KnownAttacker, KnownCNC,
and KnownTarget. As the name suggests, these tables are
for storing information about attackers, CNCs and targets that
microVNF have dealt with previously. This database stores
both active and expired IOCs.

B. ShieldCHAIN

1) Smart Contract: A smart contract is code that is de-
ployed to Blockchain and that processes, how the data is re-
ceived, stored, and shared. The data is dynamically added and
deleted by the members so that they reflect the current state
of IOCs. When there are no activities, the smart contract will
contain an empty string. However, when there is an outbreak
with many known attackers, the data may contain a long list
of IP addresses and ports. When a member first submits the
data, ShieldCHAIN ensures that there is no duplicate data
submitted previously by other members. This step ensures that
the list only contains valid and unique IOCs. The design of the
smart contract keeps the programmable logic at a minimum,
following a minimalist contract design pattern.

TABLE I
SMART CONTRACT AND ITS ADDRESS AT KOVAN NETWORK

Smart Contract Address at Kovan Network

Attacker 0x9FACE6372e53B5Cc61
848340AA194E709773CEa4

CNC 0x53D721ebA7Db1c8e8
0x53D721ebA7Db1c8e8

Victim 0x31C39540518B1a337
0x31C39540518B1a337

A minimalist contract design pattern leverages the strengths
of Blockchain technology to perform the critical tasks while
leaving other tasks outside of the Blockchain. The critical tasks
in this case are for establishing trust among members and

achieving synchronised state management of IOC. The trust
is built based on the features that are offered by Blockchain,
for example transaction transparency, peer-to-peer, and the use
of cryptography to secure storage and confirm identity. Since
shieldCHAIN is using a public Blockchain, the synchronised
state is achieved by having the data accessible by all members
in the community. This minimalist design is influenced partly
by the speed and cost of operations. The cost factor is
influenced by the availability of miners for the computing
and storage requirement for the operations. The speed factor
influences how fast the transaction is completed where high-
reward transactions will get completed first by the miners.
With these considerations in mind, the use of Blockchain is
kept to a minimum and reserved for those tasks that only
the Blockchain can do. Other tasks such as the logic to
access, refresh, and sort the data are delegated to the dApp
that are not bound by those constraints. With the minimalist
contract design, there is a dynamic string array and five
functions for data operations. Each element in the array stores
an IP address and port, e.g., ”43.13.34.32:5060” which
indicates that a member has seen an incident that involved
the IP address 43.13.34.32 at port 5060. The func-
tions consist of: addIp(), delIp(), getLength(),
deleteAll(), and getAll(). ShieldSDN calls for func-
tion addIp() to insert a new IOC, while delIp() is for
deleting an IOC when it has expired. In order to retrieve all
IOC in the smart contract, ShieldSDN will call the getAll()
function.

ShieldCHAIN deploys three smart contracts to hold
different information: KnownAttacker, KnownCNC, and
KnownVictim. Table I lists the addresses of the smart
contracts that are deployed on the Ethereum Blockchain. The
separation of contracts allows the community to subscribe
to get information that is relevant and important for their
environment. They could subscribe to just one or all three
smart contracts at the same time. As the name implies,
KnownAttacker smart contract holds information about
the source IP address and port number for attackers that
have launched either SIP scanning, SIP enumeration, or a
SIP brute force attack. This information is useful for the
community so that they can proactively drop packets coming
from these source IP addresses. The KnownVictim smart
contract holds information about the IP address and port
number that are known to be the target of the SIP DoS attack.
The community wants to learn this information to verify
that their IP address is not on the list as a target. Besides
confirming that they are not the target, the list also prevents
the organization from participating in the SIP DoS attack if
they have infected IoT devices. The last smart contract is
about blocking communication with a known CNC server so
that even though they have infected IoT devices, these bots
are not functioning as intended because the CNC channel is
blocked. These smart contracts are deployed to Ethereum,
ready for accepting calls from the dApp, which is the topic
of the next discussion.

TABLE II
SHIELDCHAIN SMART CONTRACT FUNCTIONS

Smart Contract Function Description
addIp(IOC) Adds new IOC to smart contract
delIp(IOC) Deletes current IOC in smart contract
getLength() Returns the number of entries
getAll() Returns all entries

2) dApp: A dApp is a node.js script that interfaces with
the smart contract, SQL database, and microVNF. Every
organization that wants to participate in this collaborative
defence framework needs to run a copy of dApp. This dApp
allows the organization to contribute to the community by
creating new IOCs that they discover in their network. The
dApp also allows the members to retrieve IOCs that were
generated and observed by other member organizations. Each
organization is responsible for the IOC that they originated.
When the IOC has expired, the original dApp that shared the
IOC is also responsible for removing the expired IOC from
the Blockchain. In this way, the IOC stored in the Blockchain
reflects the current state of observed threats. The way the
dApps interact with the Blockchain is by calling the functions
that the smart contract provides.

The dApp uses these functions to access the data that
is stored in the smart contract. The smart contract provides
functions to facilitate access and operation for the information
stored in the data structure. These functions are listed in Table
II. The data structure is a dynamic array of strings that store
one IOC in each element.

The dApp interacts with the SQL database to retrieve and
insert IOC records that it receives from the smart contract
on the Ethereum Blockchain. The dApp accomplishes this
by using the command-line tool sqlite3 that allows the dApp
to query the database. There are two use cases that require
interaction between dApp and the SQL Database. The first is
when the dApp wants to share with the community the IOC
that is stored in the database. The second is when the dApp
retrieves an IOC from the community and wants to store it in
the SQL Database.

The dApp interfaces with the microVNF to install packet
filtering rules so that the switch can drop malicious packets.
The other critical function that the dApp performs involves
interfacing with the microVNF that is running on the ether-
net switch. Once the dApp learns about the IOC from the
community, the dApp will convert these IOCs into packet
filtering rules that are understood by microVNF. The dApp will
install packet filtering rules by using the command line tool
simple_switch_cli that comes with the bmv2 switch.
With this tool, the dApp can install packet filtering rules so that
the switch can drop the malicious packets when it encounters
packets that match with the rules. The dApp also uses the
same command line tool to remove expired packet filtering
rules from the switch.

3) Infura: REST API for Ethereum: Instead of calling the
smart contract on Ethereum Blockchain directly, the dApp

TABLE III
END-POINTS FOR ACCESSING SHIELDCHAIN SMART CONTRACTS

URL Description
https://kovan.infura.io/
v3/89517c9511fe4e0
29578d2d4c30bffb6

End-point for Known Attackers

https://kovan.infura.io/
v3/9d000f3595c4468
f9148254e920fbbd8

End-point for Known CNCs

https://kovan.infura.io/
v3/37dcc5503a9c461
cbcafd9df98b8ac03

End-point for Known Victim

interacts with the smart contract through Infura [55]. Infura is
an online service that provides REST API access to the smart
contract deployed on the Ethereum Blockchain. This method
greatly simplifies the operation on the client-side. Instead of
having to build and maintain an Ethereum Virtual Machine
(EVM) node for writing and reading operation, the dApp will
make a REST API call to Infura. Building and maintaining
an EVM node is not a trivial task and may not be practical
for most field implementations due to the skill set, systems,
and networking requirements. On the other hand, calling the
REST API is much more accessible as it does not take a lot of
system resources. The objective of this approach is to lower the
technical and logistical barriers for accessing the Blockchain
so that we can maximise participation.

With three smart contracts deployed to Blockchain, each
smart contract has its endpoint URL. Infura generates a
unique URL for the dApp to access each smart contract. The
URLs that are accessible by the dApp are listed in Table III.
Besides providing the convenience of accessing Blockchain
via REST API, Infura also provides a dashboard for analytics
and additional security functions, e.g., API secret key, filter
for contract address, user agents, and origins.

IV. EXPERIMENT DESIGN

The main objective of synchronized DDoS Defense is for a
community to have a synchronized defense posture. In this
state, all switches have the same packet filtering rules to
contain DDoS attacks. Success criteria is defined as having
an identical number of packet filters on all switches. The
challenge is for these switches to reach this state while they
are owned and operated by independent organizations.

The experiments are designed to share IOC from one
organization to other organizations in the community through
blockchain. As Fig. 5 shows, there are four experiments
involved:

1) Experiment 1: Intra-organization synchronization.
The first experiment is for shieldSDN to collect IOC
from the microVNF1 and install it to microVNF2
and microVNF3. Besides installing packet filters
on switches, shieldSDN also stores IOC in a SQL
database. In this experiment, we can quantitatively
measure the number of IOCs from the source
microVNF (microVNF1) with the destination

Fig. 5. Synchronized defense: ShieldSDN synchronized packet filters from microVNF1 to microVNF2 & microVNF3 in Organization1 (Experiment1:
intra-organization synchronization). ShieldCHAIN synchronized packet filters from Organization1(US) to Organization2(SG) and Organization3(UK) as inter-
organization synchronization (Experiment 2, 3, & 4). Together, these switches formed a synchronized edge network defense against DDoS attacks.

microVNF (microVNF2 and microVNF3) to validate
that shieldSDN has correctly performed its function. A
positive result is achieved when we have a synchronized
state where microVNF1, microVNF2, and microVNF3
have the same number of packet filtering rules.

2) Experiment 2: Publish (inter-organization
synchronization). The second experiment is about
one organization sharing IOC with the community via
Blockchain. In this experiment, the process starts with
ShieldCHAIN in organization1 making the SQL query to
the database for the IOCs. Once the IOCs are retrieved,
the ShieldCHAIN creates a Blockchain transaction for
each record in the appropriate smart contract that is
deployed on the Blockchain. There are three smart
contracts deployed on the Blockchain (attacker, CNC,
and victim) that the member organizations can retrieve.

3) Experiment 3: Subscribe (inter-organization
synchronization). The third experiment is about
community members retrieving IOC from Blockchain.
In this experiment, the process starts with ShieldCHAIN
in organization2 and organization3 calling a function in
a smart contract to retrieve all IOCs. Once the IOCs are
retrieved, ShieldCHAIN inserts the IOC into the SQL
database for further processing in the next experiment.

4) Experiment 4: Packet filter installation.The fourth
experiment is about installing packet filters on the edge
switches. In this experiment, the process starts with
ShieldCHAIN in organization2 and organization3 re-
trieving IOC from the SQL database. Once the IOCs
are retrieved, ShieldCHAIN inserts the IOC into the
appropriate table as packet filters on the edge switch
(microVNF).

The purpose for the experiment is to establish the viability

of the approach rather than to generate accurate benchmarks
for specific scenarios. With this objective in mind, the time
required to perform these experiments will be based on the
time it takes to establish a pattern. When we observe that
three transactions showing a similar pattern at the time of
the experiment and the variables involved are not changed,
we expect that it would give similar result when we perform
more transactions over a longer period of time. We consider
this approach to be viable when the time taken to perform
these experiments were reasonable and not excessively long
to achieve the purpose.

These experiments were designed to validate the hypothesis
that the proposed solution, shieldSDN and shieldCHAIN, can
scale DDoS defense against botnet by synchronizing packet fil-
ters on the edge networks. The packet filters are synchronized
within one organization (intra-organization synchronization) or
to other organizations (inter-organization synchronization).

V. EXPERIMENTS

The experiments begin by preparing the environment using
a python script, this is followed by the four experiments. The
python script created 100 IOC records each in 3 registers
(attacker, CNC, and victim) on microVNF1. The presence
of IOC records in microVNF simulates previously detected
and mitigated attacks, which, the microVNF produced IOC
records about the parties involved, either as the attacker,
botnet CNC, or target. Our previous paper describes [56] how
microVNF developed this capability of detecting, mitigating,
and creating these records. This preparation step sets the stage
for shieldSDN to collect these IOCs and install them as packet
filtering rules on other switches within Organization1 (intra-
organization) or in other organizations (inter-organization,
with Organization2 and Organization3).

The script generates these IOC entries randomly at run time.
To ensure that shieldSDN will work with any IPv4 addresses,
the script assigns these IOCs to a random group (attacker
vs. CNC vs. victim). This random assignment method also

removes bias so as to explore causality. This method achieves a
double-blind effect where neither the participant nor researcher
knows ahead of time of group assignment. The infrastructure
(microVNF, SQL database, and Blockchain) is able to handle
more than 100 IOC records, but we chose 100 for ease of
statistical analysis.

At the end of this stage, the registers at microVNF2 and
microVNF3 are empty because they have not encountered the
attack yet.

A. Experiment 1: Intra-organization synchronization

The first experiment is in answer to the first research
question, i.e., What approaches can be used to collect an IOC
from one switch and install it as packet filtering rules on other
switches? If shieldSDN is working as designed, then it will
create new packet filtering rules (on microVNF1, microVNF2,
and microVNF3) and new records in the SQL Database.

1) Procedures: The process starts with shieldSDN re-
trieving the contents of microVNF1 registers for known at-
tackers, known CNC, and known victims. Upon receiving
this information, shieldSDN is supposed to install packet
filtering rules in KnownVictim table, KnownCNC table and
KnownAttacker table on microVNF1, microVNF2, and mi-
croVNF3. In addition, shieldSDN was also supposed to create
entries in the database for long-term storage. Fig. 6 shows the
sequence of this experiment.

Positive outcome is demonstrated when packet filtering
rules are successfully created in the KnownVictim table,
KnownCNC table and KnownAttacker table at microVNF1,
microVNF2, and microVNF3. Negative outcome is demon-
strated when these tables are empty.

2) Result: The result of this experiment is captured in Table
IV below. After the experiment, the tables in microVNF1, mi-
croVNF2, and microVNF3 are populated with packet filtering
rules. Out of 100 IOCs, 100 packet filtering rules were created.

Chronologically, the result is marked on Fig. 6 as point ”A”
and ”B”. Point A, as depicted in Fig. 7, shows identical number
of records on three edge switches. Point B, as depicted in Fig.
8, shows the number of IOC stored for each type.

The experiment took 64 seconds to run. Fig. 9 shows the
CPU utilization. On average, CPU utilization on shieldSDN is
59.58% during this experiment.

3) Statistical Analysis: We have a process with a probabil-
ity p of failing on each attempt. We assume that failures on
successive attempts are independent. We have made 100 at-
tempts with zero failures. From this we conclude that p < 3%
at the 0.05 level of significance, and that p < 4.6% at the 0.01
level of significance.

This follows from the binomial theorem: the probability of
zero failures is P = (1 − p)100 and if we hypothesize that
p ≥ 0.03 then

1− p ≤ 0.97, ln(1− p) < −0.03,

lnP = 100 ln(1− p) < −3.0, P < e−3.0 < 0.05

TABLE IV
EXPERIMENT 1: SHIELDSDN COLLECTS IOCS FROM MICROVNF1,

INSTALLED THESE IOCS AS PACKET FILTERING RULES AT MICROVNF1,
MICROVNF2 AND MICROVNF3, AND STORED THESE IN THE SQL

DATABASE (B=BEFORE EXPERIMENT; A=AFTER EXPERIMENT).

Experiment 3:
APT Round#

micro
VNF1

micro
VNF2

micro
VNF3 SQL

B A B A B A B A
of IOC in
attackerIp

register
100

of IOC in
attackerPort

register
100

of IOC in
victimIp

register
100

of IOC in
victimPort

register
100

of IOC in
cncIp

register
100

of IOC in
cncPort

register
100

of Filters in
KnownAttacker

table
100 100 100 100

of Filters in
KnownCNC

table
100 100 100 100

of Filters in
KnownVictim

table
100 100 100 100

TABLE V
EXPERIMENT 1: RECORD IN SQL DATABASE FOR AN ATTACKER

Field Value
attacker_id 1
time 2020-7-4 11:45
switchNo 1
expirytime 2020-7-4 11:50
frequency 1
attacker 167.118.98.95:5060
tablehandle 0
registerindex 20
VNFdeleted 0
BCNdeleted 0

so we reject the hypothesis at the 0.05 level of significance.
A similar argument leads us to reject the hypothesis that p ≥
4.6% at the 0.01 level of significance on the basis of 100 trials.

4) Discussion: This experiment demonstrated that
shieldSDN was able to collect IOC records from one switch
and install them as packet filtering rules on other switches.
For IOC collection, shieldSDN used the command line tool
simple_switch_cli to connect to microVNF1. For
installing packet filtering rules on microVNF1, microVNF2
and microVNF3, shieldSDN used the same tool, but with
different commands and parameters. Fig. 7 shows the number
of entries in the KnownAttacker table and KnownVictim table
on microVNF1, microVNF2, and microVNF3.

ShieldSDN also successfully created records for these IOCs

Fig. 6. Experiment 1: Sequence diagram for experiment 1. Snapshot of result at point ”A” is depicted in Figure 7. Snapshot of result at point ”B” is depicted
in Figure 8.

Fig. 7. Experiment 1: At the end of experiment 1, microVNF1, microVNF2, and microVNF3 have identical number of filters installed for known attackers,
CNC, and victim.

Fig. 8. Experiment 1: At the end of experiment 1, the IOC(s) are stored in
the database.

Fig. 9. Experiment 1: CPU utilization by shieldSDN.

in the SQL database tables. Table V shows one entry in the
database table. In this particular record, it shows that this
is a new attacker (167.118.98.95:5060), shieldSDN sets the
frequency field to one, and the expirytime field to 5
minutes (11:45 - 11:50). The frequency and expirytime
are two important fields for dealing with a persistent threats,
which we shall look at shortly.

These screenshots show that the IOCs that originated from
microVNF1 have been successfully installed as packet filtering
rules at microVNF1, microVNF2, and microVNF3. With these
rules installed, these switches will be able to drop malicious
packets without having to do attack detection tasks again.
Having packet filtering rules on microVNF2 and microVNF3
is significant because it proves that shieldSDN was able to
replicate the success from one switch (microVNF1) to multiple
switches in the organization (microVNF2 and microVNF3).
Out of 100 IOCs in the registers, 100 packet filtering rules
were created in the tables. This is statistically significant and
demonstrates a positive outcome for this experiment.

B. Experiment 2: Inter-organization synchronization (pub-
lisher)

The second experiment is in answer to the question, What
strategy could be adopted to share threat intelligence with the
community? If the ShieldCHAIN in organization1 is working
as designed, then it will create IOC records on the Blockchain
that are accessible by the whole community.

1) Procedures: The process starts with ShieldCHAIN in
organization1 making the SQL query to the database for the
IOCs. Once the IOCs are retrieved, the ShieldCHAIN creates
a Blockchain transaction for each record in the appropriate
smart contract deployed on the Blockchain. There are three
smart contracts deployed on the Blockchain (attacker, CNC,
and target) that the member organizations can retrieve.

2) Result: The result of this experiment is captured in Table
VI below. Before the experiment, there were 0 records in
the Blockchain. After the experiment, there were 100 records
present.

The experiment took 1552 seconds (25.86 minutes) to run.
Fig. 10 shows the CPU utilization and Fig. 11 shows the
memory utilization of ShieldCHAIN during the experiment.

Fig. 10. Experiment 2: CPU utilization of ShieldCHAIN and the time it
took to complete the process.

Fig. 11. Experiment 2: Memory utilization of ShieldCHAIN

TABLE VI
EXPERIMENT 2: SHIELDCHAIN QUERIES IOCS FROM THE DATABASE

AND ADDS IT TO ETHEREUM BLOCKCHAIN.
(B=BEFORE; A=AFTER)

Dependent
Variables

Blockchain
VNF4

@
Org2

SDN4
@

Org2

VNF5
@

Org3

SDN5
@

Org3
B A B˜ A B A B A B A

#IOC in
register
#Filters in
table
#IOC in
SQL
#IOC in
Blockchain 0 100

Fig. 12. Experiment 2: ShieldCHAIN has created 100 IOC records of victims
at Blockchain.

3) Discussion: ShieldCHAIN in organization1 retrieved
IOC records from the database and created 100 IOCs for
each smart contract in the Blockchain. Fig. 12 shows the
IOC records that were created on Victim smart contracts. The
public can use an online blockchain explorer (Etherscan.io) to
visually verify that these IOC records were created. Fig. 13
shows a screenshot of Etherscan.io that lists the transactions
created to store the Attacker records. In Fig. 14 we see
a similar screenshot that shows the IOC records for CNC,
whereas in Fig. 15 we have the IOC records for Target. As an

Fig. 13. Experiment 2: Attacker smart contract shows the transactions that
were created for IOC records.

Fig. 14. Experiment 2: CNC smart contract shows the transactions that were
created for IOC records.

Fig. 15. Experiment 2: Target smart contract shows the transactions that
were created for IOC records.

example, the content of this transaction is shown in Fig. 16
where it shows the IOC (172.135.65.110:5060) in the
input data field.

Blockchain took about 5 seconds on average to create
a transaction on Kovan Network. In this experiment, there
were 300 transactions created (100 KnownAttacker, 100
KnownCNC, and 100 KnownTarget) and this corresponds with
the time it took to complete the experiment (25.86 minutes).
The time taken is attributed to the tasks involved for the miners
to create a new transaction and append it to a block. We expect
that each Ethereum network would have its own variables that
affect transaction speed. The speed is considerably slower than
what one might expect from a regular SQL database. As such,
it may not be suitable for use cases that require instantaneous
response. For storing IOCs however, the speed is acceptable
and the benefits of using Blockchain outweigh the risks.

These screenshots show that the IOC records that originated
from ShieldSDN in organization1 have been successfully
created in the Blockchain smart contracts. Out of 100 IOC
records in the SQL Database tables, 100 transactions were
created on Blockchain. This result demonstrates a positive
outcome for this experiment and ShieldCHAIN has provided
a solution to share threat intelligence from one organization
to other organizations in the community.

Fig. 16. Experiment 2: Verifying new record that just created by Shield-
CHAIN. This record shows the IOC (IP address: Port) that was created by
ShieldCHAIN.

C. Experiment 3: Inter-organization synchronization (sub-
scribers)

The third experiment is in answer to the question, What
strategy could be adopted to retrieve threat intelligence shared
by the community on Blockchain? If shieldCHAIN in orga-
nization2 and organization3 are working as designed, then
they will retrieve IOC records from Blockchain (100 IOCs
in each smart contract: attacker, CNC, and target) and create
the corresponding IOC records in the SQL database tables.

1) Procedures: The process starts with ShieldCHAIN in
organization2 and organization3 calling a function in a smart
contract to retrieve all IOCs. Once the IOCs are retrieved,
ShieldCHAIN inserts the IOC into the appropriate table in
their ShieldSDN’s database tables.

2) Result: The result of this experiment is captured in Table
VII below. The experiment took 18 seconds to run. Fig. 18
shows the CPU utilization and Fig. 19 shows the memory
utilization of ShieldCHAIN during the experiment.

3) Discussion: The shieldCHAINs running in organiza-
tion2 and organization3 were able to retrieve all 100 IOC
records that were produced by organization1, a member of this
community. After retrieving IOC records from the Blockchain,
ShieldCHAIN then inserted these IOCs in the ShieldSDN
database tables (attacker, CNC, and target). Before the ex-
periment, there were 0 records in these three tables. After the
experiment, there were 100 records in each.

Fig. 17. Experiment 3: Identical IOC records in SQL database in organiza-
tion1(USA), organization2(Singapore), and organization3(UK).

Fig. 18. Experiment 3: CPU utilization of ShieldCHAIN

Read operations in the Blockchain occurred much faster
than write. Compared to the previous experiment where it
took around 5 seconds on average for write operations, read
operations took about 1 second on average. Consequently the
experiment ran much faster than the previous one. Even though
the speed for the read operation is still slower than a regular
SQL database, the Blockchain offers unique features that are
appropriate for exchanging IOCs between organizations.

This screenshot from the SQL perspective (Fig. 22) shows
that the IOC records that were reported by one post of the

Fig. 19. Experiment 3: Memory utilization of ShieldCHAIN

TABLE VII
EXPERIMENT 3: SHIELDCHAIN2 AND SHIELDCHAIN3 RETRIEVES

IOCS FROM BLOCKCHAIN AND INSERTS IT TO THEIR SHIELDSDN
DATABASE.

(B=BEFORE; A=AFTER)

Dependent
Variables

VNF4
@

Org2

SDN4
@

Org2

VNF5
@

Org3

SDN5
@

Org3
B A B A B A B A

#IOC in
register
#Filters in
table
#IOC in
SQL 0 100 0 100

#IOC in
Blockchain

community (Organization 1 in the USA) have been suc-
cessfully retrieved and inserted into the database of other
members (Organization 2 in Singpoare and Organization 3 in
the UK). Out of 100 IOC records on Blockchain, 100 records
were created in the SQL database. This result demonstrates a
positive outcome for this experiment and ShieldCHAIN has
provided a solution to retrieve threat intelligence from the
community.

The fact that organization2 and organization3 are able to
get these IOCs is significant because they are now prepared
to mitigate attacks that match the IOCs. In essence, organi-
zation2 and organization3 are able to leverage the detection
effort performed by organization1 for attack prevention in
their respective organizations. This approach alleviates the
need for organization2 and organization3 to repeat detection
efforts again for the same attacks. This is how the community
collaborates to defend against IoT botnet attacks.

D. Experiment 4: Packet filter installation at microVNF
The fourth experiment is in answer to the question, In

what way could a switch leverage the community-sourced
intelligence as packet filtering rules? If ShieldCHAIN in
organization2 and organization3 is working as designed, then
it will be able to retrieve IOC records from the SQL Database
and install these as packet filtering rules on microVNF.

1) Procedures: The process starts with ShieldCHAIN
queries to the ShieldSDN database for IOCs records with

query parameter set as ”switchNo = blockchain”. This
search criterion retrieves only those IOCs that originate
from the Blockchain. Next, ShieldCHAIN converts these IOC
records and installs these as packet filtering rules on mi-
croVNF tables.

2) Result: The result of this experiment is captured in
Table VIII below. On the microVNF in organization2 and
organization3, there were 0 packet filtering rules before the
experiment and 100 rules after the experiment.

The experiment took 80 seconds to run. Fig. 20 shows the
CPU utilization and Fig. 21 shows the memory utilization of
ShieldCHAIN during the experiment.

Figure 22 shows the content of packet filtering rules on the
microVNF in organization1 (USA), organization2 (Singapore),
and organization3 (UK). The packet filtering rules installed on
all switches are identical.

Fig. 20. Experiment 4: CPU utilization of ShieldCHAIN

Fig. 21. Experiment 4: Memory utilization of ShieldCHAIN

3) Discussion: The ShieldCHAIN that was running in
organization2 and organization3 was able to retrieve all 100
IOC records from the SQL database and install them as
packet filtering rules on microVNF. The experiment showed
that ShieldCHAIN was able to utilize threat intelligence that
was generated from within the community and create packet
filtering rules from this intelligence. ShieldCHAIN then in-
stalled these packet filtering rules on microVNF tables. Out
of 100 records of threat intelligence in the database (which
were sourced from the community), ShieldCHAIN was able
to install 100 packet filtering rules on microVNF. This is

TABLE VIII
EXPERIMENT 4: SHIELDCHAIN QUERIES SHIELDSDN DATABASE TO

RETRIEVE IOCS THAT ORIGINATES FROM BLOCKCHAIN, CONVERTS, AND
INSERTS IT TO MICROVNF AS PACKET FILTERING RULES. (B=BEFORE;

A=AFTER)

Dependent
Variables

VNF4
@

Org2

SDN4
@

Org2

VNF5
@

Org3

SDN5
@

Org3
B˜ A B A B A B A

#IOC in
register
#Filters in
table 0 100 0 100

#IOC in
SQL
#IOC in
Blockchain

statistically significant and demonstrates a positive outcome
for this experiment.

In terms of performance, shieldCHAIN performed as ex-
pected with high CPU utilization during packet filter insertions
into three different tables as depicted in Fig. 10. For memory
utilization, shieldCHAIN showing a different pattern where it
is steady during the operation, as depicted in Fig. 11.

MicroVNF from organization1 (in the USA), organization2
(in Singapore), and organization3 (in the UK) have identical
packet filtering rules. As shown in Figure 22, identical packet
filtering rules means that these three switches are synchronised
in their defence posture even though they are owned by three
different organizations. The process was automated and did
not involve manual process that tend to delay mitigation effort.
This capability means that they will be able to mitigate against
the attack should the same botnet outbreak occur in both
organizations.

VI. DISCUSSION

Botnet-originated DDoS attacks are a distributed problem
that requires a distributed solution. The original contribution
of this paper is shieldSDN and shieldCHAIN, a framework
that allows a community to synchronize their collaboration
on addressing Botnet attacks using non-proprietary technology
and infrastructure.

Previous siloed mitigation efforts have not effectively
addressed Botnet attacks. A community-based approach is
needed where independent organizations each contribute their
fair share of responsibilities towards this distributed problem.
This approach requires community-wide orchestration that is
built on mutual trust. The emergence of new technologies such
as P4, SDN, and Blockchain introduces new capabilities for
the community to use.

In this paper, we have designed, implemented and tested a
distributed framework that combined a programmable control
plane (SDN), data plane (P4), and smart contract (Blockchain)
enabling different organizations to collaborate. Together, they
formed herd immunity against the same strain of botnet DDoS
attack by having a synchronized defense at their respective
network edge. This synchronized network edge defense ap-

Fig. 22. Experiment 4: ShieldCHAIN created identical packet filtering rules
on VNF in organization2 (Singapore) and organization3 (UK).

proach is aligned with edge computing concepts where the
intelligence is distributed and located at the network edges. It
protected the smart edge infrastructure and does not allow the
attacks to progress deeper into the network.

Scaling synchronized defense among independent organiza-
tions requires automation and trust. Automation is necessary
to reduce labor requirements and delays. Trust is achieved
through transparency and accountability. ShieldSDN uses SDN
technology to automate the installation of packet filters on
the edge switches. ShieldCHAIN uses Blockchain technology

to automate sharing IOCs as immutable records that every
member can verify. This level of transparency and account-
ability validates that they come from trusted sources. The
same collaboration is also applicable in a private blockchain
network should the need arise for a private consortium model.
In this collaborative framework, one organization’s attack
detection efforts can be leveraged as attack prevention by other
organizations in the community.

While public blockchains require high computational re-
sources and have inherent delays in performance, the benefits
still outweigh the risk of being unprepared for botnet attacks.
Currently there are works on Ethereum that aim to cut energy
consumption by 99 percent [57]. We anticipate that high
computational requirements will be sufficiently addressed in
future. With regard to delay in performance, we consider 5
seconds to write (observed in Experiment 2) and 1 second to
read a transaction (observed in Experiment 3) to be sufficient
for the use case of sharing threat intelligence. From the
perspective of writing and retrieving information, this level of
performance is good enough to inform peers about indicators
of compromise. Increasing polling frequency by each peer
could also compensate for this delay so that they can be
informed as soon as new indicators become available.

The use of a public blockchain is a low-cost entry option to
establish viability and benefit. Given the pace of development
and change of private blockchains, the public blockchain in-
frastructure presents a low-cost option to validate the viability
of the framework. When features and benefits are identified
and established on a public blockchain, we would then have
good criteria to select among multiple private blockchain
options and make further improvements.

VII. FUTURE WORKS

Future works for shieldSDN can consider exploring areas
such as dynamic filtering and routing based on machine
learning calculations at the network edge. For example, the
raw data from community members can provide input to train
a machine learning model that could predict active Botnet
outbreaks and generate proactive filtering/routing rules. These
rules can then be enriched with community-relevant attributes
and distributed back to the community. This model would
create a perpetually learning defense system specific to a
particular community. Furthermore, this community-specific
prediction could be tailored to serve a specific industry sector,
e.g., finance, healthcare, manufacturing.

Future works for shieldCHAIN can consider adding richer
social dimensions to encourage positive contribution and dis-
courage negative influence in the community. For example, the
smart contract can be programmed to enforce the reward and
punishment mechanisms. Punishments are meant to prevent
abuse or participation that is not helping to accomplish the
tasks. For example, frequently sharing non-relevant data would
only add the noise and make it challenging to extract the
critical signals from the data. The punishment could be in
the form of negative feedback given by other members, which
will hurt their online reputations over time. On the contrary,

rewards are meant to encourage and acknowledge the positive
contribution from the community. For example, members can
vote for meaningful IoC contributions from other community
members. Over time, these votes build street credibility among
their peers, and they are recognized as the most valuable
members of the community.

Future works may consider enhancing shieldCHAIN with
a Decentralized Autonomous Organization (DAO). Ethereum
supports smart contracts that can serve as DAO. A loosely-
connected community can organize itself as a shieldDAO,
an autonomous organization that turns its processes into pro-
grammable code. For example, they can code their member-
ship application, membership fee, election, and voting process,
just like a typical organization. In this instance, the decision
and direction of this DAO are made by a voting process. These
decisions can then ensure that the functions of shieldSDN and
shieldCHAIN are maintained and keep serving the commu-
nity’s best interest. In this model, shieldDAO provides organi-
zational oversight for shieldSDN and shieldCHAIN operation.

Another potential future work is in the area of NFT. A
well-managed shieldDAO benefits its members by delivering
intelligence feeds and permission to collaborate with their
community. The membership of shieldDAO can be made
exclusive and could be codified as an NFT. In the physical
world, there are Information Sharing and Analysis Center
(ISAC) organizations where each member contributes finan-
cially to the operation of such an organization. ShieldDAO
could raise funds by selling a limited number of shieldNFT to
its members. This method introduced exclusivity and scarcity
to shieldNFT, which could be valued and assessed like col-
lectible items. However, shieldNFT brings real-world utility
to receiving intelligence feeds and membership instead of
just collectible items. Like other NFTs, shieldNFT can be
sold and bought in a market. As the demand to join this
shieldDAO increased or decreased, the monetary value of
shieldNFT would fluctuate accordingly. In this model, the
members are interested in keeping the shieldDAO community
helpful and constantly delivering benefits so that the value of
their shieldNFTs keeps increasing.

Future work can also enrich the IOC data to reflect the
reputation of IoT device manufacturers. For example, adding
the MAC address, device type, and firmware version of the
IoT device to the IOC data allows the community to learn
about vulnerabilities. Information on MAC addresses enables
the users to trace the manufacturer. Observations about high-
frequency attacks from specific IoT devices suggest that
the manufacturer did not follow secure by design principles
[58] when producing these devices. This information could
influence customers about their purchasing decisions in the
future. In addition, it could affect contracts and bids awarded
to manufacturers. The idea is to introduce financial conse-
quences to these manufacturers that produce IoT devices with
a weak security posture to maximize profit. The underlying
assumption is that an adequately hardened IoT device would
not be easily attacked and recruited to join a botnet. Poorly
designed and secured devices create a botnet and enable them

to deliver powerful attacks. Introducing economic impacts is a
powerful leverage that we could use to address the root cause
of Botnet attacks.

VIII. CONCLUSION

In this study, we performed experiments in synchroniz-
ing a DDoS Defense at Network edge with P4, SDN, and
Blockchain. The outcome of these experiments support the
hypothesis that these components (microVNF, shieldSDN, and
shieldCHAIN) can be orchestrated to scale a DDoS defense
against botnet by synchronizing packet filters on the edge
networks. The scope of defense and synchronization is initially
within one organization (intra-organization) and subsequently
extended to other organizations (inter-organization).

Four successful experiments were performed to validate the
hypothesis on shieldSDN and shieldCHAIN: to validate that
shieldSDN can distribute the IOC from one switch to multiple
switches within an organization; that the shieldCHAIN-agent
in the publishing-organization can share IOC to Blockchain;
that the shieldCHAIN-agent in the subscribing-organization
can receive IOC from Blockchain; and that the shieldCHAIN-
agent in the subscribing-organization can install packet filter
on the edge switch.

Some limitations were observed relating to the performance
of the public Blockchain, as depicted in Fig. 10 which is
beyond the user’s control. This factor needs to be considered
when building the solution. For more predictable performance
and enterprise-grade features, one might consider deploying
the same solution but using private and commercial blockchain
platforms. In that scenario the cloud provider is offering an
enterprise-grade technical support that is backed by a Service
Level Agreement (SLA). Future works for ShieldCHAIN have
been discussed extensively in the paper which can make
ShieldCHAIN more intelligent, user-friendly, and applicable.

The proliferation of IoT brings new opportunities and threats
to the community. The threat actors hijacked these IoT devices
for their benefit and profit. As we all have observed through the
reported incidents, the isolated defense approach is no longer
sufficient to address this problem. DDoS attacks are not going
away anytime soon, and they tend to get bigger and more
frequent. A different approach is required, and the community
needs to come together. Collectively, the community can form
a synchronized defense at their network edge and contribute to
the overall detection and mitigation capability. This approach
creates a distributed solution to the distributed problem. Ad-
dressing the DDoS problem allows us to protect our progress
in IoT so that it is working for us instead of being used against
us.

REFERENCES

[1] D. J. Trump, “Presidential executive order on strengthening the
cybersecurity of federal networks and critical infrastructure.”
https://www.whitehouse.gov/presidential-actions/presidential-
executive-order-strengthening-cybersecurity-federal-networks-critical-
infrastructure/, 2017.

[2] The Secretary of Commerce and Homeland Security, “A Report
to the President on Enhancing the Resilience of the Internet and
Communications Ecosystem Against Botnets and Other Automated, Dis-
tributed Threats.” https://csrc.nist.gov/CSRC/media/Publications/white-
paper/2018/05/30/enhancing-resilience-against-botnets–report-to-the-
president/final/documents/eo13800botnetreport−f inalv2.pdf, 2018.

[3] The Secretary of Commerce and Homeland Secu-
rity, “A Road Map Toward Resilience Against Bot-
nets.” https://www.commerce.gov/sites/default/files/2018-
11/Botnet%20Road%20Map%20112918%20for%20posting 0.pdf,
2018.

[4] K. Boeckl, M. Fagan, W. Fisher, N. Lefkovitz, K. N. Megas, E. Nadeau,
D. Gabel, O. . Rourke, B. Piccarreta, and K. Scarfone, “NISTIR 8228
Considerations for Managing Internet of Things (IoT) Cybersecurity and
Privacy Risks,” p. 44, 2019.

[5] M. Fagan, M. Yang, A. Tan, L. Randolph, and K. Scarfone, “Security
Review of Consumer Home IoT Products,” Nist, p. 41, 2019.

[6] M. Fagan, K. N. Megas, K. Scarfone, and M. Smith, “Foundational cy-
bersecurity activities for IoT device manufacturers,” tech. rep., National
Institute of Standards and Technology, Gaithersburg, MD, may 2020.

[7] E. Lear, W. C. Barker, D. Cohen, and J. Harrington, “NIST SPECIAL
PUBLICATION 1800-15C Securing Small-Business and Home Internet
of Things (IoT) Devices,” 2020.

[8] E. Lear, R. Droms, and D. Romascanu, “RFC 8520: Manufacturer Usage
Description Specification,” Internet Engineeging Task Force, 2019.

[9] M. Bjorklund, “The yang 1.1 data modeling language,” RFC 7950, RFC
Editor, August 2016.

[10] T. Bray, “The javascript object notation (json) data interchange format,”
STD 90, RFC Editor, December 2017.

[11] M. Jethanandani, S. Agarwal, L. Huang, and D. Blair, “Yang data model
for network access control lists (acls),” RFC 8519, RFC Editor, March
2019.

[12] L. Lhotka, “Json encoding of data modeled with yang,” RFC 7951, RFC
Editor, August 2016.

[13] R. Housley, “Cryptographic message syntax (cms),” STD 70, RFC
Editor, September 2009. http://www.rfc-editor.org/rfc/rfc5652.txt.

[14] P. Watrobski, J. Klosterman, and M. Souppaya, “Draft NIST CSWP,
Methodology for Characterizing Network Behavior of Internet of Things
Devices,” 2020.

[15] S. Symington and W. Polk, “Trusted Internet of Things (IoT) Device
Network-Layer Onboarding and Lifecycle Management (Draft),” 2020.

[16] W. Kumari and D. McPherson, “Remote triggered black hole filtering
with unicast reverse path forwarding (urpf),” RFC 5635, RFC Editor,
August 2009.

[17] P. Marques, N. Sheth, R. Raszuk, B. Greene, J. Mauch, and D. McPher-
son, “Dissemination of flow specification rules,” RFC 5575, RFC Editor,
August 2009. http://www.rfc-editor.org/rfc/rfc5575.txt.

[18] F. Baker and P. Savola, “Ingress filtering for multihomed net-
works,” BCP 84, RFC Editor, March 2004. http://www.rfc-
editor.org/rfc/rfc3704.txt.

[19] K. Sriram, D. Montgomery, and J. Haas, “Enhanced feasible-path unicast
reverse path forwarding,” BCP 84, RFC Editor, February 2020.

[20] C. Morrow and R. Dobbins, “Ddos open threat signaling (dots) working
group operational requirements,” in Proc. IETF 93 Prague, 2015.

[21] E. Osterweil, A. Stavrou, and L. Zhang, “21 years of distributed denial-
of-service: A call to action,” Computer, vol. 53, no. 8, pp. 94–99, 2020.

[22] M. Nawrocki, J. Blendin, C. Dietzel, T. C. Schmidt, and M. Wählisch,
“Down the black hole: Dismantling operational practices of bgp black-
holing at ixps,” in Proceedings of the Internet Measurement Conference,
IMC ’19, (New York, NY, USA), p. 435–448, Association for Computing
Machinery, 2019.

[23] V. Giotsas, G. Smaragdakis, C. Dietzel, P. Richter, A. Feldmann,
and A. Berger, “Inferring bgp blackholing activity in the internet,” in
Proceedings of the 2017 Internet Measurement Conference, IMC ’17,
(New York, NY, USA), Association for Computing Machinery, 2017.

[24] C. Dietzel, M. Wichtlhuber, G. Smaragdakis, and A. Feldmann, “Stellar:
Network attack mitigation using advanced blackholing,” in Proceed-
ings of the 14th International Conference on Emerging Networking
EXperiments and Technologies, CoNEXT ’18, (New York, NY, USA),
p. 152–164, Association for Computing Machinery, 2018.

[25] A. Hamza, H. H. Gharakheili, T. A. Benson, and V. Sivaraman, “De-
tecting volumetric attacks on lot devices via sdn-based monitoring of
mud activity,” in Proceedings of the 2019 ACM Symposium on SDN

Research, SOSR ’19, (New York, NY, USA), p. 36–48, Association for
Computing Machinery, 2019.

[26] A. Hamza, H. H. Gharakheili, and V. Sivaraman, “Combining mud
policies with sdn for iot intrusion detection,” in Proceedings of the 2018
Workshop on IoT Security and Privacy, IoT Samp;P ’18, (New York,
NY, USA), p. 1–7, Association for Computing Machinery, 2018.

[27] Y. Afek, A. Bremler-Barr, D. Hay, R. Goldschmidt, L. Shafir, G. Avra-
ham, and A. Shalev, “Nfv-based iot security for home networks using
mud,” in NOMS 2020-2020 IEEE/IFIP Network Operations and Man-
agement Symposium, pp. 1–9, IEEE, 2020.

[28] Y. Afek, A. Bremler-Barr, D. Hay, L. Shafir, and I. Zhaika, “Nfv-based
iot security at the isp level,” in NOMS 2020-2020 IEEE/IFIP Network
Operations and Management Symposium, pp. 1–2, IEEE, 2020.

[29] P. Bull, R. Austin, E. Popov, M. Sharma, and R. Watson, “Flow
based security for iot devices using an sdn gateway,” in 2016 IEEE
4th International Conference on Future Internet of Things and Cloud
(FiCloud), pp. 157–163, 2016.

[30] M. Ozcelik, N. Chalabianloo, and G. Gur, “Software-Defined Edge De-
fense Against IoT-Based DDoS,” in 17th IEEE International Conference
on Computer and Information Technology, 2017.

[31] S. S. Bhunia and M. Gurusamy, “Dynamic attack detection and miti-
gation in iot using sdn,” in 2017 27th International Telecommunication
Networks and Applications Conference (ITNAC), pp. 1–6, 2017.

[32] A. Molina Zarca, J. Bernal Bernabe, I. Farris, Y. Khettab, T. Taleb,
and A. Skarmeta, “Enhancing iot security through network softwariza-
tion and virtual security appliances,” International Journal of Network
Management, vol. 28, no. 5, p. e2038, 2018. e2038 nem.2038.

[33] Q. Yan, W. Huang, X. Luo, Q. Gong, and F. R. Yu, “A multi-level
ddos mitigation framework for the industrial internet of things,” IEEE
Communications Magazine, vol. 56, no. 2, pp. 30–36, 2018.

[34] D. Yin, L. Zhang, and K. Yang, “A ddos attack detection and mitigation
with software-defined internet of things framework,” IEEE Access,
vol. 6, pp. 24694–24705, 2018.

[35] A. Al Shorman, H. Faris, and I. Aljarah, “Unsupervised intelligent
system based on one class support vector machine and grey wolf
optimization for iot botnet detection,” Journal of Ambient Intelligence
and Humanized Computing, vol. 11, no. 7, pp. 2809–2825, 2019.

[36] Y. Afek, A. Bremler-Barr, D. Hay, L. Shafir, and I. Zhaika, “Demo: Nfv-
based iot security at the isp level,” in NOMS 2020 - 2020 IEEE/IFIP
Network Operations and Management Symposium, pp. 1–2, 2020.

[37] V. Andalibi, J. Dev, D. Kim, E. Lear, and L. J. Camp, “Is visualization
enough? evaluating the efficacy of mud-visualizer in enabling ease
of deployment for manufacturer usage description (mud),” in Annual
Computer Security Applications Conference, ACSAC, (New York, NY,
USA), p. 337–348, Association for Computing Machinery, 2021.

[38] Barret, M., “Framework for Improving Critical Infrastructure Cyberse-
curity Version 1.1, NIST Cybersecurity Framework,[online],” 2018.

[39] F. Bannour, S. Souihi, and A. Mellouk, “Distributed sdn control: Survey,
taxonomy, and challenges,” IEEE Communications Surveys Tutorials,
vol. 20, no. 1, pp. 333–354, 2018.

[40] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, et al., “P4: Pro-
gramming protocol-independent packet processors,” ACM SIGCOMM
Computer Communication Review, vol. 44, no. 3, pp. 87–95, 2014.

[41] Netbergtw. https://netbergtw.com/products/aurora-710/, 2020.
[42] Netronome. https://www.netronome.com/products/agilio-cx/, 2020.
[43] Pensando, “Pensando dsc-25 distributed services card.”

https://pensando.io/wp-content/uploads/2020/03/Pensando-DSC-25-
Product-Brief.pdf, 2020.

[44] Cisco, “Cisco silicon one.” https://www.cisco.com/c/en/us/solutions/service-
provider/innovation/silicon-one.html?dtid=osscdc000283/, 2020.

[45] M. Casado, A. Horowitz, N. Mckeown, and S. Shenker, “SDN History,”
tech. rep., 2019.

[46] C. Ünsalan, H. D. Gürhan, and M. E. Yücel, Memory Operations,
pp. 293–340. Cham: Springer International Publishing, 2022.

[47] O. Kupreev, E. Badovskaya, and A. Gutnikov, “Ddos attacks in q2 2020,”
2020.

[48] Mininet. https://mininet.org/, 2020.
[49] p4lang, “Github - p4lang/behavioral-model: The reference p4 software

switch.” https://github.com/p4lang/behavioral-model, 2020.
[50] OpenJS Foundation. https://nodejs.org/en/, 2020.
[51] Microsoft, “Azure functions serverless compute — microsoft azure.”

https://azure.microsoft.com/en-us/services/functions/, 2020.
[52] Amazon. https://aws.amazon.com/lambda/, 2020.

[53] Google, “Cloud functions — google cloud.”
https://cloud.google.com/functions, 2020.

[54] SQLite, “Sqlite home page.” https://www.sqlite.org/, 2020.
[55] “Ethereum API — IPFS API amp; Gateway — ETH Nodes as a Service

— Infura.” https:/infura.io. Web. Accessed 17 Apr. 2022.
[56] A. Febro, H. Xiao, J. Spring, and B. Christianson, “Edge security for sip-

enabled iot devices with p4,” Computer Networks, vol. 203, p. 108698,
2022.

[57] P. Fairley, “Ethereum plans to cut its absurd energy consumption by 99
percent,” IEEE spectrum, vol. 2, 2019.

[58] “Good Practices for Security of IoT - Secure Software Development
Lifecycle.” https://www.enisa.europa.eu/publications/good-practices-for-
security-of-iot-1. Web. Accessed 30 Apr. 2022.

