MARCO PAULO DE FIGUEIREDO CRAVEIRO

MODEL ASSISTED SOFTWARE DEVELOPMENT

MODEL ASSISTED SOFTWARE DEVELOMENT

MARCO PAULO DE FIGUEIREDO CRAVEIRO

A MDE-based Software Development Methodology

Doctor of Philosophy (PhD)
University of Hertfordshire

February 2022 —v1.2

Submitted to the University of Hertfordshire in partial fulfilment
of the requirements of the degree of PhD (Doctor of Philosophy)

Marco Paulo de Figueiredo Craveiro: Model Assisted Software Development,
A MDE-based Software Development Methodology, Doctor of Philosohphy
(PhD) © 2022

SUPERVISORS:
Dr. Michael Schmuker
Dr. Volker Steuber

LOCATION:
Hatfield

TIME FRAME:
September 2022

To my wife and kids: thank you.
Para meus avos, pais e irmdos: malembe malembe.

Para meus primos Elsa e Bruno: estamos juntos.

ABSTRACT

Model Driven Engineering (MDE) is a flexible approach for the creation and
evolution of software systems, centred around models and their transforma-
tions. MDE provides a fundamental substrate upon which practitioners can
create sophisticated solutions, invariably characterised by a high degree of
automation, but tailored specifically to their problem domain. Adoption liter-
ature reports of widespread MDE use across industry and academia but also
underscores its status as a niche technology. Meanwhile, the challenges it is
purported to overcome continue to loom large over software engineering.

The present work identifies factors underlying the deficit in MDE adoption,
both theoretical and practical, and determines the extent to which a new
MDE-based Software Development Methodology (SDM) can be used to ad-
dress them. It does so by putting forward Model Assisted Software Devel-
opment (MASD), a novel SDM that aids in the design and implementation
of software systems. MASD trades the flexibility and power of MDE for a
reduction in complexity, and consequently has a restricted but better defined
range of applications. MASD'’s problem space is a subset of the solution space
itself: it provides well-defined abstractions over elements of the domain of soft-
ware engineering and a conceptual framework for their manipulation. MASD
targets software developers with little to no knowledge of MDE, and aims to
act as a bridge between traditional software engineering and model-driven
approaches.

This dissertation describes the motivation for MASD, the core elements that
make up the methodology and how they interact, and, finally, its application.
It includes empirical evidence of its adoption by means of case studies, and
provides a detailed description of its reference implementation, itself created
using MASD.

vii

ACKNOWLEDGEMENTS

In Africa there is a concept known as “ubuntu” — the profound sense
that we are human only through the humanity of others; that if we are to
accomplish anything in this world it will in equal measure be due to the
work and achievement of others.

— Nelson Mandela (Stengel, 2010)

LONG TERM ENDEAVOUR as complex as this would certainly not come to
A fruition were it not for the help of a large number of people. First and
foremost, I'd like to thank my wife Shahinara and kids Isaac and Eliana for
putting up with my eccentricities, long work hours and all manner of odd
behaviour in order to reach the finish line.

I'd like to thank all of my fellow Ph.D. colleagues at UH who undertook this
journey with me; our conversations kept me sane and focused.

I'd like to thank all my friends at The Financial Company, as well as Indranil and
Ian, for always cheering me on, no matter what I get myself into.

I'd like to thank Piyush Shah for having faith in me by giving me my first real
programming job and for sponsoring me through a MSc programme that
changed my life, and allowed me to meet Scott and Andy, who are probably
responsible for making me think I could do a PhD.

Finally, I'd like to thank Ricardo Pereira, my high school teacher who taught

me all I know about programming, and my friends Adilson, J6j6 and Lau, with
whom I shared so many moments in life.

Marco Craveiro, Hatfield, January 2022.

MASD

—————————————————
Model Assisted Software Development

ix

CONTENTS

1 Motivation

1 Introduction

11 Audience
1.2 Conventions
1.3 ResearchQuestions
1.4 Contributions L
1.5 Organisation o .
2 State of the Art in Code Generation

2.1 The Importance of Code Generation
2.2 Historical Approaches to Code Generation

2.2.1
2.2.2

Computer Aided Software Engineering (CASE)
Generative Programming

2.3 Model Driven Engineering (MDE)

2.3.1
2.3.2
2.3.3

What is Model-Driven Engineering
Model Driven Architecture (MDA)
Architecture-Centric MDSD (AC-MDSD)

3 The State of MDE Adoption
3.1 Limitations oo

3.1.1
3.1.2

Intrinsic Limitationsto MDE
Adoption Literature Limitations

3.2 How Widely Adoptedis MDE?

3.2.1
3.2.2

3.2.3

Analysis of Evidence at a Macro-Scale
Analysis of Evidence at a Micro-Scale
Discussion oo

3.3 Empirical Analysis of Adoption Literature

3.3.1
3.3.2
3.3-3
334

Technical Factors
Internal Organisational Factors
External Organisational Factors
Social Factors o oo o

3.4 Discussion oo
4 Requirements
4.1 Theoretical Framework Requirements

4.1.1
4.1.2
4.1.3
4.1.4
4.1.5
4.1.6
4.1.7
4.1.8
4.1.9
4.1.10
4.1.11

Well-Defined Purpose
Well-Defined Identity
Well-defined Target Audience
Well-defined Domain Architecture
Caterfor Evolution
SDM Integration
Clear Governance Model
Support for PIMsand PSMs
Supportfor PDMs
Limited Support for Variant Management and Product Lines . .
Extensible Catalogue of Schematic and Repetitive Code

4.2 Tooling Requirements

4.2.1
4.2.2

“End-to-End” Solution 0L
Prioritise Black-Boxing,

O O U1 U1 U~ W

BSPR PR WWWWWWWNNNR R R R AR
W N OO ON B~ W Rr OO VO R ONUO1TU & R R

45
47
47
47
48
48
48
48
49
49
49
50
50
50
50
50
51

xi

4.2.3 Clear Separation of End-users and Tool Developers 51

4.2.4 Prioritise Tooling Integration 51
4.2.5 Support Incremental Use of Features 52
4.2.6 Conformance Testing 52

n Methodology and Components

5 The MASD Methodology 57
51 MotivationforanewSDM 57
52 Philosophy o o 59
521 Visiono 59
5.2.2 Mission Statement L. 59
52.3 CoreValues 60
5.2.3.1 First Principle: Focus Narrowly 60
5.2.3.2 Second Principle: Integrate Pervasively 61
5.2.3.3 Third Principle: Evolve Gradually 62
5.2.3.4 Fourth Principle: GovernOpenly 63
5.2.3.5 Fifth Principle: Standardise Judiciously 64
5.2.3.6 Sixth Principle: Assistand Guide. 64
5.3 Modeling Conventions 66
5.4 Processesand Actors L L. 67
5.41 Actors e 67
5.4.1.1 MASD Maintainer 0. 68
5412 MASDDeveloper. 68
5413 MASDUser 69
54.2 Processes. o o o 70
5.4.2.1 MRI Development Process 70
5.4.2.2 MSS Development Process 71
5.4.2.3 MASD ApplicationProcess 71
5.4.2.4 MASD Composite Process. 73
5.5 Comparison with Other Approaches 74
6 Domain Architecture 77
6.1 Physical Domain, 78
6.1.1 Physical Analysisand Design 78
6.1.2 Physical Modeling Process 79
6.1.3 Taxonomy of Functions of Input Variability 83
6.1.4 FileArtefacts L oo 86
6.1.41 Taxonomy 87
6.1.42 Morphology L o o 88
6.1.4.3 Relations. o 91
6.1.5 Folder Artefacts 94
6.1.51 Taxonomy 95
6.1.5.2 InputVariability 97
6.1.5.3 Examples L 97
6.1.6 The Physical Metamodel 101
6.1.7 Platforms and Cartridges 103
6.2 Logical Domain 105
6.21 Composition. L oL 105
6.22 DProjections Lo 111
6.3 Variability Domain 115
6.31 Approach L 115
6.3.2 The Variability Metamodel 116
6.3.3 The Variability Model 119

6.4 The Logical-Physical Space., 121

m Application
7 Literate Modeling with org-model

7.1 Motivation oL
7.2 LiteratureReview L o o o
7.3 Overviewoforg-mode
7.4 Creating the org-modecodec
7.5 Evaluation L oo L
7.5.1 Application Evaluation.
7.5.2 Meta-application Evaluation
8 MASD Reference Implementation

81 Dogen.
8.1.1 Historical Context.,
812 Requirements
8.1.3 Software Development Methodology
8.1.4 Architecture
815 Stitch
8.1.6 BasicUsage
8.2 Reference Products
821 C++4 ReferenceProduct,
8.2.2 C#ReferenceProduct.
83 Evaluation L
8.3.1 Application Evaluation.
8.3.2 Meta-application Evaluation
v Outlook

9 Conclusions

9.1 MASD Requirements Revisited,
9.1.1 Identity Related Requirements
9.1.2 Process and Integration Requirements
9.1.3 Modeling Requirements
9.1.4 Tooling Requirements
9.1.5 Testing Requirements

9.2 FurtherWork 0 0.

LIST OF FIGURES

Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5
Figure 2.6
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4

Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4
Figure 5.5
Figure 5.6
Figure 5.7
Figure 5.8
Figure 5.9
Figure 5.10
Figure 5.11
Figure 5.12
Figure 6.1
Figure 6.2
Figure 6.3
Figure 6.4
Figure 6.5

Figure 6.6

Figure 6.7

Figure 6.8

Figure 6.9

Figure 6.10
Figure 6.11
Figure 6.12
Figure 6.13
Figure 6.14
Figure 6.15
Figure 6.16
Figure 6.17
Figure 6.18
Figure 6.19
Figure 6.20
Figure 6.21
Figure 6.22

Basic tenetsof the MDA 17
KeyMDAterms. 18
Modeling levels and mappings. 19
Categories of codeinasystem. 22
Problem domain decoupling. 25
Different approaches to infrastructure development . 26
Google searches for Java, C#, UML and MDE. 35
Google searches related to MDE. 35
Questions tagged with UML on Stack Overflow. ... 36
Questions tagged with Java, C# or UML on Stack Over-

flow. . . . o 37
MASD principles. oL 60
MASD Pervasive integration strategy. 61
Interrelationship between discovery and application. . 62
The automation spectrum and the automation gradient. 65
MASD modeling language. 66
MASD top-level components 67
Use case diagram for MASD Maintainer. 68
Use case diagram for MASD Developer. 69
Use case diagram for MASD User.. 69
MRI Development Process. 70
MASD Application process. 72
MASD Composite Process 73
Key entities in the physical domain. 78
MDE analysis versus MASD physical analysis 78
Transforms from logical representation to filesystem. . 82
Physical elements and variability. 83
Taxonomy of physical elements with regards to vari-

ability. o 84
Example file taxonomy. 87
Morphology of a sample C++ file. 89
Example includeblock. 90
Morphology of a sample C#file. 91
Dependencies generalisation. 91
Relation between two files Aj and A,. 92
Taxonomy of file origins. 93
Taxonomy of modes of production. 93
Simplified folder artefact taxonomy. 95
Simplified part taxonomy. 96
Sample facet taxonomy. 96
Sample top-level folders in cpp_ref_impl. 98
Targets in a sample Component.. 98
Folder artefacts in the Boost component. 99
Example of a regular include path. 99
Folders in the LAM component. 100
Folders in the C# Reference Product. 100

XV

Figure 6.23
Figure 6.24
Figure 6.25
Figure 6.26
Figure 6.27
Figure 6.28
Figure 6.29
Figure 6.30
Figure 6.31
Figure 6.32
Figure 6.33
Figure 6.34
Figure 6.35
Figure 6.36
Figure 6.37
Figure 6.38
Figure 6.39
Figure 6.40
Figure 6.41
Figure 6.42
Figure 7.1
Figure 7.2
Figure 7.3
Figure 7.4
Figure 7.5
Figure 7.6
Figure 7.7
Figure 7.8
Figure 7.9
Figure 8.1
Figure 8.2
Figure 8.3
Figure 8.4
Figure 8.5
Figure 8.6

Figure 8.7
Figure 8.8
Figure 8.9
Figure 8.10
Figure 8.11
Figure 8.12

Example MASD metamodel hierarchy. 101

Fragmentofthe PMM 102
Technical Space composition 104
Example cartridge pipeline. 105
Logical generalisation of physical concepts. 106
Characterisation of TS entities 107
Packages withinthe LMM 107
Classes in the structural namespace. 108
Abstraction ladder in the Structural package.. 110
Example model with a selection of LMM metatypes . 110
Notation for points in physical and logical space. . . . 112
Projection across MASD spaces 113
Key entities in the codecmodel. 114
Projection of masd: :object into physical space. 115
Value and its descendant types. 117

Fragment of feature bundles defined within the LMM 117
Fragment of feature templates defined within the PMM 118

Fragment of the MRI configuration. 119
Sample MRI profiles 120
High-level view of MASDsLPS 121
Dia modeling tool with a MASD model 126
Information flow across representations in MASD . . 127
Fragment of example org-mode document. 131
Fragment with source codeblocks 131
Org-mode document with property drawers. 132
Dia representation of org-mode model. 132
Org-mode model in org-mode notation. 133
Example text template in a org-mode model. 135
PlantUML representation of org-mode model. 136
Dogen releases peryear. 140

Fragment of sprint backlog for Dogen’s 130th sprint. . 143
User-facing description of story effort for Sprint 30.. . 144
Collage of all Dogen models in a UML representation 145

UML representation of Dogen’s logical model 146
Fragment of Dogen'’s orchestration model with trans-

forms. 148
Fragment of a stitch text template in the text model. . 149
Binary downloads section in Dogen’s release notes. . . 150
Example Hello World model in org-model notation. . 151
Example Hello World model in UML notation 152
Example Hello World model as a PDF document . . . 152

Fragment of the directory settings model configuration. 156

LISTINGS

Listing 6.1
Listing 8.1
Listing 8.2
Listing 8.3
Listing 8.4

Listing 8.5

C++ class with SWIG macros. 111
Installation of Dogen on Debian GNU/Linux. 150
Dogen’s help command. 150
Generate source code for Hello World model. 152
Filesystem tree for Hello World component after gener-

ation. 153

Generated source code for class in Hello World model. 153

Xvii

ACRONYMS

AC-MDSD
AMDD

AO
AO-MD-PLE
AOP

API

ATL

BDD

CASE
CD

CI
CI/CD
CIM
CLI
CLR
CNF
CORBA
Ccsv
CVL

DDD
DLL
DOM
DRY
DSL
DTO
DVCS

EMF

FM
FODA
FOP
FOSS

GCC
GME
GMF
GoF
GP
GPML
GUI

HCI

Architecture-Centric MDSD.

Agile MDD.

Aspect Oriented.

Aspect-Oriented Model Driven PLE.
Aspect Oriented Programming.
Application Programming Interface.
Atlas Transformation Language.

Binary Decision Diagram.

Computer-Aided Software Engineering.
Continuous Delivery.

Continuous Integration.

Continuous Integration / Continuous Delivery.
Computation Independent Model.

Command Line Interface.

Common Language Runtime.

Conjunctive Normal Form.

Common Object Request Broker Architecture.
Comma-Separated Values.

Common Variability Language.

Domain Driven Design.
Dynamic-Link Library.

Document Object Model.

Don't Repeat Yourself.

Domain Specific Language.

Data Transfer Object.

Distributed Version Control Systems.

Eclipse Modeling Framework.

Feature Models.

Feature-Oriented Domain Analysis.
Feature-Oriented Programming.
Free and Open Source Software.

GNU Compiler Collection.

Generic Modeling Environment.
Graphical Modeling Framework.
Gang of Four.

Generative Programming.

General Purpose Modeling Language.
Graphical User Interface.

Human-Computer Interaction.

Xix

HTM
HTML
HTTP

IaC
IDE
IDL
IPC

J2EE
JAR
JSON
VM

LDL
LM
LMM
LOC
LPS
LSP

M2C
M2M
M2P
M2T
MASD
MBE
MBSE
MDA
MDD
MDE
MDSD
MDSE
MIC
ML
MMM
MOEF
MQOP
MRI
MSS
MT
MTRR
MTS
MWE

OCL
OMG
0/0)
OOP
ORM
oS
OVM

Hierarchical Temporal Memory.
HyperText Markup Language.
Hypertext Transfer Protocol.

Infrastructure-as-Code.

Integrated Development Environment.
Interface Description Language.
Implicit Presence Conditions.

Java Platform Enterprise Edition.
Java Archive.

JavaScript Object Notation.

Java Virtual Machine.

Layer Definition Language.
Logical Model.

Logical Metamodel.

Lines of Code.
Logical-Physical Space.
Language Server Protocol.

Model-to-Code.

Model-to-Model.
Model-to-Platform.

Model-to-Text.

Model Assisted Software Development.
Model Based Engineering.
Model-based Systems Engineering.
Model Driven Architecture.

Model Driven Development.

Model Driven Engineering.

Model Driven Software Development.
Model Driven Software Engineering.
Model-Integrated Computing.
Machine Learning.

MASD Meta-Model.

Meta-Object Facility.

Model Oriented Programming.
MASD Reference Implementation.
MASD SDM Specification.

Model Transformation.

Mean Time To Repair.

MASD Technical Space.

Minimum Working Example.

Object Constraint Language.
Object Management Group.
Object-Oriented.

Object-Oriented Programming.
Object Relational Mappings.
Operative System.

Orthogonal Variability Modeling.

PaC
PCL
PDF
PDM
PIM
PLE
PM
PMM
POSIX
PSM

QVT

RDBMS
REST
RTE

SAX
SDLC
SDM
SOA
SPLE
SRPP
SRT
SWIG

T2M
T2T
T4
TDD
TS

Ul
UML
UUID

VCS
VM
VMM

XMI
XML
XSD

Policy-as-Code.

Product Configuration Language.
Portable Document Format.
Platform Description Model.
Platform Independent Model.
Product Line Engineering.

Physical Model.

Physical Metamodel.

Portable Operating System Interface.
Platform Specific Model.

Query / View/ Transformation.

Relational Database Management System.
Representational State Transfer.
Round-Trip Engineering.

Simple API for XML.

Software Development Lifecycle.

Software Development Methodology.
Service Oriented Architecture.

Software Product Line Engineering.
Schematic and Repetitive Physical Pattern.
Schematic and Repetitive Text.

Simplified Wrapper and Interface Generator.

Text-to-Model.

Text-to-Text.

Text Template Transformation Toolkit.
Test Driven Development.

Technical Space.

User Interface.
Unified Modeling Language.
Universally unique identifier.

Version Control System.
Variability model.
Variability Metamodel.

XML Metadata Interchange.
Extensible Markup Language.
XML Schema Definition Language.

Part1

MOTIVATION

INTRODUCTION

Computer science until now has mainly focused on the building of special
kinds of models (mainly executable models written in programming
languages). It may be time to extend the variety of languages we are
using for building software models and to understand more precisely
what are the exact sources of the models we are building.

— Bézivin (Bézivin, 2005)

opEL Driven ENGINEERING (MDE) is an approach to the creation and evo-
M lution of software systems centred on models and their transformations,
and is used in industry as well as research (Mohagheghi and Dehlen, 2008;
Paige and Varré, 2012; Andolfato et al., 2014). MDE promotes the use of high-
level abstractions, and the cascading refinement of those abstractions towards
the realisation of a target system. MDE is characterised by an increased focus
on automation, only possible because abstractions are described by formal
means. MDE is believed to have many benefits, including enhanced produc-
tivity and defect reduction (Torchiano et al., 2012), with empirical studies
producing varying degrees of supporting evidence for these claims (Hutchin-
son et al., 2011; Andolfato et al., 2014; Shirtz, Kazakov, and Shaham-Gafni,
2007).

Nevertheless, as we have elsewhere argued (Craveiro, 2021c) (Chapter 2),
MDE itself is not a formal development process. Rather, it is a body of knowl-
edge composed of a broad number of concepts, notations, tools, processes and
rules. MDE is akin to a large and diverse toolbox from whence experienced
practitioners take out tooling most suitable for the task at hand, with some
tools requiring significant effort in assembly and training (cf. Section 2.3).
On one hand, this approach provides ultimate flexibility, allowing MDE to be
applied to almost any software engineering project, industrial or academic.
On the other hand, the learning curve is steep and pitfalls abound. The MDE
literature is rich in experience reports, adoption and meta-adoption studies,
with ample supporting evidence for both sides of the argument (cf. Chapter
3). What is clear is that the present state of affairs is challenging for those
seeking to dive into the deep and turbulent MDE waters for their first time.

This dissertation presents a novel MDE-based methodology to aid in the
qdevelopment of software systems called Model Assisted Software Development
(MASD). MASD is designed to address a well-defined subset of the issues
raised by MDE adoption literature, gathered in the form of requirements (cf.
Chapter 4). MASD trades MDE'’s flexibility and expressiveness for a reduction
in complexity and, consequently, has a restricted but better defined range of
applications. MASD targets all software developers, but focuses particularly

MDE'’s promises

MDE's dichotony

MASD

Chapter overview

Target audience

INTRODUCTION

on those with limited or no knowledge of MDE, aiming to act as a bridge
between the traditional and model-driven approaches.

The remainder of this work describes the motivation for MASD, defines the
methodology in detail and provides case studies of its application. The next
sections delineate the intended audience for the dissertation (Section 1.1), the
conventions employed within (Section 1.2), the research questions that guide
the work (Section 1.3) and its main contributions (Section 1.4). The chapter
concludes with Section 1.5, summarising the manuscript’s organisation.

1.1 AUDIENCE

As well as introducing a new software development methodology, this dis-
sertation spans a broad spectrum of topics related to modeling, making it
relevant to a varied audience.

e MDE Researchers: This work offers several items of interest to MDE
Researchers, including a critical review of MDE adoption literature, and
the analysis and application of several state of the art MDE techniques
to address MASD requirements. Most significantly, MASD’s overall
approach offers new directions for MDE research, suggesting that a
shift in focus towards usability and simplification may prove fruitful in
addressing gaps identified by the literature thus far.

e MDE Practitioners: For those evaluating the use of MDE, the present
work offers a valuable summary of the potential pitfalls of MDE applica-
tion, as well as an alternative methodology that can serve as a starting
point to explore the role of modeling in the development process. In
cases where MASD does not prove to be a good fit, it may still provide
useful insights when creating tailored processes and tooling. For those
already using MDE, there may be value in integrating MASD'’s reference
implementation with existing MDE tooling, in order to take advantage
of its functionality.

e Software Developers: For those looking to increase automation on
their projects, this dissertation presents a methodology to do so based
on modeling, with an open source reference implementation ready to
be used in industrial or research projects. Those only interested in
application can skim Part ii to sketch out the methodology and focus
mainly on the case studies in Part iii. On the other hand, developers
who wish to start exploring the modeling domain will find that this
work provides a compact but sufficient overview of MDE (cf. Chapter 2),
when augmented with the supplementary material (Craveiro, 2021c).

1.2 CONVENTIONS

The following conventions are used in this book:

1.3 RESEARCH QUESTIONS

o the editorial we is employed throughout, even though all of the material
here presented was written by the singular author of the dissertation.

e constant width font is used to denote source code listings or constructs
defined within source code. For example “object” refers to a program-
ming entity whereas “object” is a reference to a natural language concept.

1.3 RESEARCH QUESTIONS

Our research questions are as follows:

e What are the core factors in MDE theory and practice that: a) are act-
ing as barriers to entry to software engineers unfamiliar with model
driven practices; or b) are impeding the further progression of new MDE
practitioners?

Once these factors have been identified, we will investigate and develop an
approach to address them and supply empirical evidence of its successful
application.

1.4 CONTRIBUTIONS

The primary contribution of this thesis is the MASD methodology itself. The
secondary contributions are as follows:

e A metamodel for software development elements, targeting the code
generation of well-defined software artefacts, with support for product
lines and generative software architectures.

o A feature model for software artefacts that integrates with the metamodel
to provide variability handling.

e The integration of literate modeling with the modeling process, allowing
for the creation of expressive models which can target both source code
as well as reference documentation.

o A fully-functional reference implementation for MASD which can be
used in industrial and research projects.

1.5 ORGANISATION

What follows is a brief summary of the parts and chapters that make up this
dissertation.

INTRODUCTION

e Part i: Motivation and Fundamentals — Gathers the different strands
that motivated this work, and summarises the fundamental concepts
required to contextualise it. It is composed of the following chapters:

— Chapter 1: Introduction — The present chapter; introduces the
dissertation, the intended audience and its organisation.

— Chapter 2: State of the Art in Code Generation — Underscores
the systemic importance of source code to the modern software
engineering discipline. Reviews historical approaches to code-
generation, and introduces MDE as its state-of-the-art approach.
Investigates two MDE variants which are key for the present work.

— Chapter 3: The State of MDE Adoption: Performs a critical review
of MDE adoption research, highlighting key themes emerging from
its application.

— Chapter 4: Requirements — Outlines the requirements for an ap-
proach that addresses a well-defined subset of the issues identified
in Chapters 2 and 3, and in keeping with the Research Questions
defined in Section 1.3.

e Part ii: Methodology and Components — Describes MASD in detail. It
is composed of the following chapters:

— Chapter 5: The MASD Methodology — Overview of the SDM,
introducing all of its core concepts and describing how they relate
to each other.

— Chapter 6: Domain Architecture — Defines the MASD domain
architecture in detail, describing its purpose and elements, as well
as their roles and relationships.

e Partiii: Application — Contains case studies of MASD application. It
is composed of the following chapters:

— Chapter 7: Literate Modeling with org-model — Describes the
introduction of org-model to MASD, adding a new codec with
support for literate modeling.

— Chapter 8: MASD Reference Implementation — Describes the
reference implementation for MASD in detail, including all of its
constituent products: the code generator and the two reference
products.

e Partiv: Outlook — Places this thesis in a broader context. It is composed
of the single chapter:

— Chapter 9: Conclusions — Summarises the work, discusses key
points that emerged from its development and outlines areas for
future research.

1.5 ORGANISATION

7

[

STATE OF THE ART IN CODE GENERATION

Future tools will attack the more general problem of automatic code
generation. Automatic programming is a difficult problem and it is still
largely considered a research topic. Still, each new tool makes small
innovations in this area, and eventually, code generation will become
commonplace.

— Alan S. Fisher (Fisher and Fisher, 1988) (p. 30)

THE TRADE-OFFs MADE by Model Assisted Software Development (MASD)

can only be understood once the frame of reference of its parent approach,
MDE, has been established and positioned against other techniques for the au-
tomatic development of software systems. The present chapter addresses this
need by performing a state of the art review, centred on material of particular
relevance to the methodology put forward by this dissertation.

The chapter’s structure mirrors our own trajectory across the MDE landscape.
Section 2.1 starts by making a broad case for code generation within the mod-
ern software engineering environment. Section 2.2 outlines a brief description
of earlier approaches, with the aim of establishing an historical context. The
remainder of the chapter is dedicated to a detailed exposition of what we
consider to be the modern approach to code generation: Model Driven Engi-
neering (Section 2.3).

Our first step in this journey is then to establish the relevance of code generation
to the present engineering moment by looking at the rise of code itself.

2.1 THE IMPORTANCE OF CODE GENERATION

Software systems experienced immense growth in size over the past fifty years.
In 1970, Lion’s commented version of the UNIX Operative System had around
10 thousand Lines of Code (LOC) (Lions, 1996) and would fit comfortably in a
book of less than 300 pages.* By 2011, Feitelson and Frachtenberg reported that
Facebook’s 7-year-old codebase had 8 million LOC (Feitelson, Frachtenberg,
and Beck, 2013). Five years later, Potvin and Levenberg would nonchalantly tell
us that ”[Google’s source code] repository contains 86TBa of data, including
approximately two billion lines of code in nine million unique source files.”
(Potvin and Levenberg, 2016) As it is with size, so it is with scope; these vast

Much can be said about metrics used to describe the size of a software product. Whilst aware of
LOC'’s limitations — Jones went as far as calling it “one of the most imprecise metrics ever used in
scientific or engineering writing” (Jones, 1994) — we settled on this simplistic measure because
the point under consideration is unaffected by its deficiencies.

MDE and
MASD

Chapter
overview

Software’s
unstoppable growth

10

Modern development
processes

Continuous software
engineering

Automation and code

X-as-code

Advantages of code

W N

STATE OF THE ART IN CODE GENERATION

software systems are now so completely pervasive that Andreessen was led
to conclude that “software is eating the world.” (Andreessen, 2011)

Software development processes evolved in tandem with the new reality. Mod-
ern software engineering involves multidisciplinary teams with fluid roles,
and rigid views on product development have been replaced with flexible
approaches emphasising problem solving — hallmarks of agile thinking (Beck
etal.,, 2001). Integration, testing and deployment activities, once considered
distinct from the development activity itself, have now all but been fused into
a contiguous delivery stage by the DevOps movement and enshrined in Con-
tinuous Integration / Continuous Delivery (CI/CD) pipelines (Bou Ghantous
and Gill, 2017; Sanchez-Gordén and Colomo-Palacios, 2018). Some, such as
Ameller et al., envision (emphasis ours):

[...] continuous software engineering going one step further by estab-
lishing strong connections between software engineering activities.
The objective of these connections is to accelerate and increase the
efficiency of the software engineering process. (Ameller et al., 2017)

The jury may still be out on Ameller’s all-encompassing vision, but what is
already beyond doubt is the drive to remove the human element from any and
all activity amenable to automation. Here one finds a less obvious corollary to
Andreessen’s insightful observation: software is also eating software engineer-
ing too, for automation in this context is often synonymous with substituting
resources — human or otherwise — with more code.> The DevOps move-
ment pushed forward a series of “X-as-code” initiatives, arguably the most
noticeable of which is Infrastructure-as-Code (IaC) — the management of
hardware infrastructure by programmatic means (Morris, 2016) — along with
others, perhaps less visible but of import still, such as Policy-as-Code (PaC) —
which aims to “support separation of concerns, allow security decisions to be
separated from infrastructure and application logic, and make it possible to
unify security controls.” (Herardian, Marshall, and Prendergast, n.d.) What
DevOps has shown, in our opinion, is that anything that can, will become
code because automation’s value-add acts as a powerful forcing function.3

Automation may not be the only factor at play here, either. Where possible,
software engineers prefer using code in the software development process
over other kinds of artefacts, in no small part because its properties are now
thought to be well understood.# Large tooling ecosystems have been built to
manage all aspects of its lifecycle, including diffing tools, Distributed Version

That may change in the future as Machine Learning (ML) becomes more entrenched.

In (Beyer et al., 2016) (p. 67), Murphy makes a recent case for the value of automation by
associating it with the following characteristics: a) Scale: automated systems can be designed
to scale up and down very quickly, in response to external stimuli. b) Consistency: actions
performed by machines yield results that are consistent over time. c¢) Platform creation: when
designed adequately, the automated system becomes a platform upon which one can build and
even leverage for other purposes. ¢) Faster repairs: Murphy alleges that the result of regular and
successful automation is a reduced Mean Time To Repair (MTRR). d) Faster action: humans
usually are unable to react as fast as machines, particularly in cases where the response is well-
defined such as fail-over. e) Time saving: whilst difficult to calculate in practice, the most often
cited benefit for automation is the freeing up of human resources to perform other tasks which
cannot be so readily taken by machines.

Take its plain-text nature. Raymond dedicates an entire section in his opus (Raymond, 2003)
to "The Importance of Being Textual” (Section 5.1), where he makes an impassioned defense of
textual representations over binary formats. His thesis could be summed up with the following
passage: “Text streams are a valuable universal format because they’re easy for human beings

2.2 HISTORICAL APPROACHES TO CODE GENERATION

Control Systems (DVCS), text editors, IDEs and the like. Conversely, tools
that do not support this paradigm seem to fall out of favour in the developer
community. Badreddin et al. tell us about graphical modeling, where (emphasis
ours) "[...] there is evidence that the adoption of visual modeling in software
engineering remains low. The open source community remains almost entirely
code centric.”> (Badreddin, Forward, and Lethbridge, 2012)

If X-as-code — for all possible values of X — is the direction of travel, then
its limit will surely be the tautological code-as-code; that is, the creation of
code by automated means, or code generation. Given the rationale presented
thus far for automation, one would naively expect code generation’s role to
increase hand-in-hand with the general growth of codebases, for, in a definite
sense, it is the final frontier in the struggle for automation. It is the objective
of the present work to shed light on the role of code generation on the modern
software development process; to understand the limitations in its use; and,
ultimately, to put forward an approach that addresses some of the identified
weaknesses. As we shall see next, code generation has historically been an
important component of the software engineer’s toolkit.

2.2 HISTORICAL APPROACHES TO CODE GENERATION

The generation of source code by programmatic means, in the sense of auto-
matic programming or programme synthesis®, has had a long history within
Computer Science. Whilst many avenues have been explored and are worthy
of examination, in the interest of space we narrowed our scrutiny down to two
approaches: Computer-Aided Software Engineering (CASE) and Generative
Programming (GP). These were chosen both because of their influence on
the present work, on MDE itself and on related methodologies — e.g., (Jorges,
2013). Let us start our brief excursion by considering the first of the pair.

2.2.1 Computer Aided Software Engineering (CASE)

The literature on CASE is expansive, and yet, in our opinion, it still fails to
deliver an authoritative definition of the term. This is perhaps no more clearly
illustrated than via Fisher’s compendium (Fisher and Fisher, 1988), where
he first calls it a “nebulous term” and then dispenses not just one but two
definitions, both of which rather broad in scope (emphasis ours):

to read, write, and edit without specialized tools. These formats are (or can be designed to be)
transparent.” (Raymond, 2003) (p. 107)

The battle for textual representations has been fought in many fronts; from our perspective, the
use of graphical versus textual notations in modeling is of particular significance. Whilst results
remain far from conclusive, the anecdotal evidence in the literature does seem to tilt in favour of
textual notations, at least for some types of activities (Melid et al., 2016; Petre, 1995).

6 Biermann defines it as follows (Biermann, 1985) (emphasis his):

Q1

Computer programming is the process of translating a variety of vague and fragmen-
tary pieces of information about a task into an efficient machine executable program
for doingthat task. Automatic computer programming or automatic programming occurs
whenever a machine aids in this process.

11

Code-as-code,
or code generation

Automatic
programming

12

Operational definition

Wide domain
boundaries

CASE'’s lessons

Code generation
inadequacies

STATE OF THE ART IN CODE GENERATION

One definition of computer-aided software engineering is the use
of tools that provide leverage at any point in the software development
cycle. [...] A more restrictive but operationally better definition
for computer-aided software engineering is the use of tools that
provide leverage in the software requirements analysis and design
specification phases, as well as those tools which generate code auto-
matically from the software design specification. (Fisher and Fisher,

1988) (p. 6)

Whatever its precise meaning, what most definitions have in common is the
sketching of a wide domain boundary for CASE systems — supporting the full
range of activities in the software engineering lifecycle — as well as providing
automated “methods of designing, documenting and development of the struc-
tured computer code in the desired programming language.” (Berdonosov
and Redkolis, 2011) CASE was, by any measure, an extremely ambitious pro-
gramme, with lofty if laudable goals — as Fisher goes on to explain (emphasis
ours):

The ultimate goal of CASE technology is to separate design from
implementation. Generally, the more detached the design process
is from the actual code generation, the better. (Fisher and Fisher,

1988) (p- 5)

Though many of its ideas live on, perhaps unsurprisingly, the CASE pro-
gramme as a whole did not take hold within the broad software engineering
community — or, at least, not in the way most of those involved envisioned.”
Understanding why it was so imparts instructive lessons, particularly if you
have an interest in automatic programming as does the present work. With
similar thoughts in mind, Jérges (Jorges, 2013) (p. 19) combed through the
literature and uncovered a number of reasons which we shall now revisit, as
well as supplementing them with two of our own towards the end.

1. Deficiencies of translation into source code. Though instituting an
incredibly diverse ecosystem®, most CASE tooling emphasised black-
box transformation of graphical modeling languages into source code.
There was a belief that automatic code generation for entire systems was
looming in the horizon — with Fisher going as far as prophesying the
emergence of “a software development environment so powerful and
robust that we simply input the application’s requirements specification,
push a magic button, and out comes the implemented code, ready for
release to the end user community.” (Fisher and Fisher, 1988) (p. 283)
Perhaps due to this line of reasoning, generated code was often not
designed to be modified, nor were systems built to support user defined
code generators — both of which were required in practice. The resulting
solutions were convoluted and difficult to maintain.

2. Vendor lock-in. CASE predates the era of widely available Free and
Open Source Software (FOSS), and therefore there was a predominance

7 Fisher outlines a compelling vision of that promised future in Chapter 17, “Technological Trends
in CASE” (Fisher and Fisher, 1988) (p.281).

8 In its heyday, the CASE tooling market counted with hundreds of products. Fisher lists 35 tool
vendors dedicated solely to design and analysis specification tools (Fisher and Fisher, 1988)
(Appendix A).

2.2 HISTORICAL APPROACHES TO CODE GENERATION

of proprietary software. As with vendor lock-in in general, it was not in
the vendor’s best interest to facilitate interoperability since, by doing so,
it would inadvertently help customers migrate to a competitor’s product.
As a result, reusability and interoperability were severely hampered. In
addition, given the proliferation of small and mid-sized vendors, there
was a real difficulty in choosing the appropriate tool for the job — the
consequences of which could only be judged long after purchase.

3. Lack of support for collaborative development. Given the state of tech-
nology in the era when these tools were designed, it is understandable
they did not adequately support the complex collaborative use cases
that are required to facilitate the software engineering process. However,
some of the difficulties transcended technology and were exacerbated
by the vendor lock-in mentioned above; having data silos within each
application — with narrow interfaces for data injection and extraction —
meant it was difficult to supplement application workflows with external
tooling.

4. Limitations in graphical modeling languages. The generic nature of
contemporary graphical modeling languages meant they were found
wanting on a large number of use cases; oftentimes they were “too
generic and too static to be applicable in a wide variety of domains”

(Jorges, 2013) (p. 20).

5. Unfocused and overambitious vision. As already hinted by the lack of a
formal definition, in our opinion CASE is a great example of a movement
within software engineering that proposes an overly ambitious agenda,
and one in which outcomes are extremely difficult to measure, either
quantitatively or qualitatively. Due to this, it is hard to determine success
and failure, and harder still to discern how its different components are
fairing. In such a scenario, there is the risk of stating that “CASE failed”
when, in reality, some of its key components may have been salvaged,
modified and repackaged into other approaches such as MDE.

6. Emphasis on full code generation. Subjacent to CASE’s goals is the
notion that one of the main impediments to full code generation of
software systems is a formal language of requirements which is fit for
purpose.? However, in hindsight, it is now clear that attaining such a
general purpose formal specification language is an incredibly ambitious
target.

More certainly can be said on the subject of CASE’s shortcomings, but, in our
opinion, those six findings capture the brunt of the criticism. These lessons
are important because, as we shall see (c¢f. Section 2.3), MDE builds upon
much of what was learned from CASE — even if it does not overcome all of
its stated problems. However, before we can turn in that direction, we must
first complete our historical review by summarising an approach with similar
ambitions in the field of automatic programming.

Fisher admits that ”"the mechanisms for automatically translating a requirement’s specification
[...] still lack rigorous definitions. The inherent problem is the diversity and the imprecision of
the present specification techniques.” (Fisher and Fisher, 1988) (p. 287).

13

Technological
limitations

Intrinsic limitations

14

Definition

Software families

Conceptual model

10

11

STATE OF THE ART IN CODE GENERATION

2.2.2 Generative Programming

In sharp contrast with CASE’s lighter approach to theory, Czarnecki’s influ-
ential doctoral dissertation (Czarnecki, 1998) extended his prior academic
work — standing thus on firmer theoretical grounds. In it, he puts forward
the concept of Generative Programming (GP). GP focuses on (emphasis ours):

[...] designing and implementing software modules which can be
combined to generate specialized and highly optimized systems fulfill-
ing specific requirements. The goals are to (a) decrease the concep-
tual gap between program code and domain concepts (known
as achieving high intentionality), (b) achieve high reusability and
adaptability, (c) simplify managing many variants of a component,
and (d) increase efficiency (both in space and execution time).
(Czarnecki, 1998) (p. 7)

Of particular significance is the emphasis placed by GP on software families
rather than on individual software products, as Czarnecki et al. elsewhere
explain (emphasis ours):

Generative Programming [...] is about modeling families of software
systems by software entities such that, given a particular require-
ments specification, a highly customized and optimized instance
of that family can be automatically manufactured on demand from
elementary, reusable implementation components by means of
configuration knowledge [...]. (Czarnecki et al., 2000)

In sharp contrast with CASE (cf. Section 2.2.1), GP provides a well-defined
conceptual model, populated by a small number of core concepts which we
shall now enumerate. At the centre lies the generative domain model, respon-
sible for characterising the problem space (i.e., the domain of the problem),
the solution space (i.e. the set of implementation components) as well as pro-
viding the mapping between entities in these spaces by means of configuration
knowledge.” Though GP does not dictate specific technological choices at
any of the levels of its stack, Feature Models (Czarnecki, Helsen, and Eise-
necker, 2005) are often used as a means to capture relevant features of the
problem domain, as well as relationships amongst them. Concrete software
systems are obtained by specifying valid configurations, as dictated by the
modeled features, and by feeding the configuration knowledge to a generator,
which maps the requested configuration to the corresponding implementation
components.

As with CASE, GP did not come to dominate industrial software engineering'*,
but many of the ideas it championed have lived on and are now central to
MDE; the remainder of this chapter will cover some of these topics, with

Problem space and solution space are key concepts within MDE and MASD — the latter more so
than the former. In (Craveiro, 2021c), Chapter 4 is dedicated to their exposition.

Rompf et al.’s recent assessment of GP had an unmistakably dour tone (emphasis ours): “While
the general idea of program generation is already well understood and many languages provide
facilities to generate and execute code at runtime [...], generative programming remains somewhat
esoteric — a black art, accessible only to the most skilled and daring of programmers.” (Rompf et al.,
2015)

12

13

14

2.3 MODEL DRIVEN ENGINEERING (MDE)

others described elsewhere (Craveiro, 2021c) (Chapters 4 and 6 in particular).
In our opinion, GP also benefited from cross-pollination with CASE — for
example, by attempting to address some of its most obvious shortcomings such
as de-emphasising specific technological choices and vendor products, and
focusing instead on identifying the general elements of the approach. Alas,
one downside of generalisation is the difficulty it introduces in evaluating
the approach in isolation; many of the factors that determine the success or
failure of its application are tightly woven with the circumstances and choices
made by actors within a given instance of the software engineering process
— a ghost that will return to haunt MDE (c¢f. Chapter 3). And it is to MDE
which we shall turn to next.

2.3 MODEL DRIVEN ENGINEERING (MDE)

MDE is the final and most consequential stop on our quest to characterise the
state of the art in automatic programming. The present section briefly reviews
the core theoretical foundations of the discipline (Section 2.3.1), and subse-
quently delves into the specifics of two MDE variants of particular significance
to MASD: MDA (Section 2.3.2) and AC-MDSD (2.3.3). Let us begin, then, by
attempting to answer the most pressing question of all.

2.3.1 What is Model-Driven Engineering

Though the academic press has no shortage of literature on MDE"?, it is largely
consensual when it comes to its broad characterisation. Cuestas, for example,
states the following (emphasis ours):

[Within MDE, software] development processes are conceived
as a series of steps in which specification models, as well as those
which describe the problem domain, are continually refined, until
implementation domain models are reached — along with those
which make up the verification and validation of each model, and
the correspondence between them. In [MDE)], the steps in the
development process are considered to be mere transformations
between models.'> (Cuesta, 2016) (p. 1)

However, as we argued previously at length (Craveiro, 2021c), this apparent
consensus is somewhat misleading, and a characterisation of the fundamen-
tal nature of MDE is not as easy as it might appear at first brush.4 In the

The choices are varied, be it in the form of detailed assessments such as Vélter’s (Volter et al.,
2013), syntheses of the kind put forward by Brambilla (Brambilla, Cabot, and Wimmer, 2012), or
state of the art reviews in the vein of Oliveira’s (OLIVEIRA, 2011) and Jorges’ (Jorges, 2013).
This quote was translated from the original Spanish by the author. The reader is advised to
consult the primary source.

A deeper questioning of the nature of MDE was performed by the author in (Craveiro, 2021c)
(Chapter 2). More generally, MASD makes use of a much wider subset of MDE’s theoretical
underpinnings than it feasible to discuss in detail within the present manuscript, so its exposition
was relegated to supplemental material (Craveiro, 2021c). Whilst these notes are extremely
relevant to MASD, its absence on the primary material does not weaken the main argument of the

15

GPina
wider context

Section
overview

Informal
characterisation

16 STATE OF THE ART IN CODE GENERATION

afore-cited manuscript, we concluded that the MDE nature is instead better
summarised as follows (page 13, emphasis ours):

e MDE is an informal body of knowledge centred on the employ-
ment of modeling as the principal driver of software engi-
neering activities.

e MDE promotes the pragmatic application of a family of re-
lated approaches to the development of software systems,
with the intent of generating automatically a part or the total-

Discipline ity of a software product, from one or more formal models
characterisation and associated transformations.

e MDE is best understood as a vision rather than a concrete
destination. A vision guides the general direction of the ap-
proach, but does not dictate the solution, nor does it outline
the series of steps required to reach it.

e It is the responsibility of the MDE practitioner to select the ap-
propriate tools and techniques from the MDE body of knowl-
edge, in order to apply it adequately to a specific instance of
the software development process. By doing so, the practi-
tioner will create — implicitly or explicitly — an MDE variant.

The onus is thus on specific MDE variants, rather than on the body of knowl-
edge itself, to lay down the details of how the model-driven approach is to
be carried out. In this light, we have chosen to focus on two MDE variants, in
order to better grasp the detail. The first is MDA, chosen not only due to its
Importance of historical significance — in our opinion, it remains the most faithful embodi-
Variants ment of MDE's original spirit and vision — but also because it serves as an
exemplary framework to demonstrate the application of MDE concepts. The
second variant is AC-MDSD, which was selected because of its importance for
MASD (cf. Chapter 5). As we shall see, these two variants are also of interest
because they put forward contrasting approaches to MDE. Let us begin then
by looking at the first of the pair.

2.3.2 Model Driven Architecture (MDA)

MDA is a comprehensive initiative from OMG and arguably the largest industry-
wide effort to date, attempting to bring MDE practices to the wider software
engineering community.’> Based on the OMG set of specifications — which
include UML (OMG, 2017b) as a modeling language, the Meta-Object Facility
Characterisation, (MOF) (OMG, 2016) as a metametamodel and Query / View/ Transformation
specifications (QVT) (OMG, 2017a) as a transformation language — MDA is designed to

dissertation — thus justifying their exclusion. If, however, you are seeking a more comprehensive
background, the notes are recommended reading.

15 Itis difficult to overstate MDA's significance in shaping MDE. Brambilla et al. believe it is ”currently
the most known modeling framework in industry” (Brambilla, Cabot, and Wimmer, 2012) (p.
43); in Jorges assessment, it is “perhaps the most widely known MD* approach” (Jorges, 2013) (p.
23); Asadi and Ramsin attribute MDE’s familiarity amongst software engineers to ”the profound
influence of the Model Driven Architecture (MDA).” (Asadi and Ramsin, 2008)

2.3 MODEL DRIVEN ENGINEERING (MDE)

support all stages of software development lifecycle, from requirements gather-
ing through to business modeling, as well as catering for implementation-level
technologies such as CORBA (OMG, 2012).

Though more concrete and circumscribed than MDE, MDA is still considered
an approach rather than a methodology, in and of itself.'® The approach’s
primary goals are ”portability, interoperability, and reusability of software”.
(Group, 2014). Beyond these, the MDA Manifesto (Booch et al., 2004) identi-
fies a set of basic tenets that articulate its vision and which serve complemen-
tary purposes (Figure 2.1). These are as follows:

e Direct representation. There is a drive to shift the locus of software
engineering away from technologists and the solution space, and place it
instead in the hands of domain experts and on the problem space. The ob-
jective is to empower experts and to reduce the problem-implementation

gap."7

e Automation. The aim is to mechanise all aspects of the development
process that “do not depend on human ingenuity” (Booch et al., 2004).
Automation is also crucial in addressing the problem-implementation
gap because it is believed to greatly reduce interpretation errors.

e Open standards. By relying on open standards, MDA hoped to diminish
or even eliminate Booch et al.’s “gratuitous diversity” (Booch et al., 2004)
and to encourage the development of a tooling ecosystem designed
around interoperability, with both general purpose tooling as well as
specialised tools for niche purposes.’8

Direct
Representation

MDA

Automation Open Standards

Figure 2.1: Basic tenets of the MDA. Source: Author’s drawing based on an image from
Booch et al. (Booch et al., 2004).

Figure 2.2 presents a selection of MDA's basic terminology as per OMG docu-
mentation, which is, unsurprisingly, in line with the MDE terminology defined
thus far — as well as that of the supplementary material (Craveiro, 2021c).
This is to be expected given the central role of MDA in the early development
of MDE itself."® A noteworthy term on that list is viewpoint, for MDA sees

16 For an analytical survey of MDA based methodologies, see Asadi and Ramsin (Asadi and Ramsin,
2008).

17 Problem space, solution space and problem-implementation gap are all described in detail on
(Craveiro, 2021¢) (Chapter 4).

18 Booch et al.’s adverse reaction to “gratuitous diversity” is best understood in the context of CASE
(¢f. Section 2.2.1).

19 According to Bézevin, "MDA may be defined as the realization of MDE principles around a set of
OMBG standards like MOF, XMI, OCL, UML, CWM, SPEM, etc.” (Bézivin, 2005)

17

Approach,
goals

Basic tenets

Terminology,
viewpoints

18 STATE OF THE ART IN CODE GENERATION

systems modeling as an activity with distinct vantage points or perspectives.
Viewpoints give rise to architectural layers at different levels of abstraction,
each associated with its own kind of models:

TERM DEFINITION

System “[...] A collection of parts and relationships among these
parts that may be organized to accomplish some purpose.”

Model “[...] Information selectively representing some aspect of
a system based on a specific set of concerns. The model is
related to the system by an explicit or implicit mapping.”

Modeling Language “[...] A model is said to conform to a modeling language.
That is, everything that is said in some model is allowed
to be said by the modeling language.”

Architecture “A set of models with the purpose of representing a system
of interest.” Also: “The activity and or practice of creating
the set of models representing a system.”

Platform “[...] Set of resources on which a system is realized. This
set of resources is used to implement or support the sys-
tem.”

Viewpoint “[...] Specifies a reusable set of criteria for the construction,
selection, and presentation of a portion of the information
about a system, addressing particular stakeholder con-
cerns.”

View “[...] A representation of a particular system that conforms
to a viewpoint.”

Transformation “[...] Used to produce one representation from another, or
to cross levels of abstraction or architectural layers.”

Figure 2.2: Key MDA terms. Source: MDA Guide (Group, 2014).

e Computation Independent Models (CIMs): The “business or domain
models” (Group, 2014). Describes business functionality only, including
system requirements. CIMs are created by domain experts and serve as
a bridge between these and software engineers.

Modeling levels o Platform Independent Models (PIMs): The "logical system models”
(Group, 2014). PIMs describe the technical aspects of a system that are
not tied to a particular platform.°

o Platform Specific Models (PSMs): The “implementation models” (Group,
2014). PSMs augment PIMs with details that are specific to a platform,
and thus are very close to the implementation detail.

Figure 2.3 provides a simplified illustration of how the three types of models

are related. Instance models are intended to be created using either UML

— with appropriate extensions, as required, by means of UML Profiles —

or via any other MOF based modeling language, preexisting or specifically

MDA standards created for the needs of the system. Model-to-Model (M2M) transforms can be
and tooling handled by QVT — including cascading transformations from CIM to PIM and

to PSM — or by any other MOF based Model Transformation (MT) language

such as Atlas Transformation Language (ATL) (Jouault et al., 2008). Finally,

a large ecosystem of code generation tools, frameworks and standards have

evolved for MDA, such as MOFScript (Oldevik et al., 2005), MOFM2T (OMG,

20 The definition presented on Figure 2.2 gives a simplistic view of terms such as platform. To
understand the difficulties surrounding this and other related terms, see Chapter 4 of (Craveiro,
2021C).

21

22

23

2.3 MODEL DRIVEN ENGINEERING (MDE)

CIM (Computation Independent Model)

Business View Context and requirements,
independent from implementation.

M\ Mappings

¥]
Y]

PIM (Platform Independent Model)

Solution Description View Data and algorithms,
independent from implementation.

%\ Happings

¥]]
el I]
2]
N]
PSM (Platform Specific Model)
Implementation View Detailed speciﬁcaticn pfthe system,
aware of implementation platform.

Figure 2.3: Modeling levels and mappings. Source: Author’s drawing based on Bram-
bilia et al.’s image (Brambilla, Cabot, and Wimmer, 2012) (p. 45).

2008) and, arguably most significantly of all, the Eclipse Modeling Framework
(EMF) (Steinberg et al., 2008; Steinberg et al., 2009)?* — all of which which
facilitate the generation of code from PSMs.

Faced with a potentially large number of heterogeneous models, a requirement
often emerges to weave them together to form a consistent overall picture.?>
Within MDA, this role is performed by model compilers. Whilst the literature
does not readily supply a rigorous definition for the term, Mellor clearly de-
lineates the role they are expected to play, as well as outlining their challenges
(emphasis ours):

A model compiler takes a set of executable UML models*3 and weaves
them together according to a consistent set of rules. This task involves
executing the mapping functions between the various source and
target models to produce a single all-encompassing metamodel |...]
that the includes all the structure, behavior and logic — everything
— in the system. [...] Weaving the models together at once addresses
the problem of architectural mismatch, a term coined by David Gar-
lan to refer to components that do not fit together without the
addition of tubes and tubes of glue code, the very problem MDA is
intended to avoid! A model compiler imposes a single architectural
structure on the system as a whole. (Mellor, 2004)

The EMF is a modeling suite that is seen by some as a modern interpretation of the MDA ideals.
Steinberg et al. called it "MDA on training wheels.” (Steinberg et al., 2008) (p. 15)

For these and other challenges related to complex model topologies and model refinement, see
(Craveiro, 2021c), Chapter 4.

While executable models are beyond the scope of the present dissertation, its worthwhile depicting
its ambition. Mellor is once more of assistance (emphasis ours): “Executable models are neither
sketches nor blueprints; as their name suggests, models run. [...] Executable UML is a profile of
UML that defines an execution semantics for a carefully selected streamlined subset of UML.”
(Mellor, 2004)

19

Weaving

Model
compilers

20

Code generators,
cartridges

Querambitious claims,
complexity

Standardisation
challenges

Focused use,
managed expectations

24
25
26

27

28

STATE OF THE ART IN CODE GENERATION

Outside of executable models, model compilers are often associated with MDA
code generation, transforming PIMs and PSMs directly into source code. The
line between MDA's code generators and model compilers is blurry, both due
to the imprecise terminology as well as the fact that code generators often need
to conduct some form of model weaving prior to code generation. Several
MDA code generators exist, including AndroMDA?4 and Jamda?5, and these
typically allow for extensibility by means of plug-ins — the much maligned
cartridges.?

And it is with cartridges that we round-off MDA'’s concepts relevant to MASD.
Clearly, an overview as brief as the present cannot do justice to the breadth and
depth of MDA. However, for all of its impressive achievements, MDA is not
without its detractors. Part of the problem stems from the early overambitious
claims, which, as we shall see in Chapter 3, were not entirely borne out by
evidence.?” In addition, UML itself has been a source of several criticisms,
including sprawling complexity, a lack of formality in describing its semantics,
too low a level of abstraction, and the difficulties in synchronising the various
UML models needed to create a system.?®

Certain challenges are wider than UML and pertain instead to OMG's stance
towards standardisation. On one hand, open and detailed specifications un-
doubtedly facilitated MDA'’s adoption and helped create a large and diverse
tooling ecosystem. On the other hand, they also abetted an heterogeneous
environment with serious interoperability challenges, populated by large and
complex standards that forced practitioners to have a deep technical knowl-
edge in order to make use of them. As a result, numerous aspects of these
standards are not fully utilised by practitioners, with many either ignoring
them altogether or resorting to more trivial use cases. There is also a real dan-
ger of ossification, with some standards not seeing updates in years — partially
because the processes for their development are drawn-out and convoluted.

This state of affairs led Thomas to conclude that the best course of action is per-
haps a lowering of expectations: “Used in moderation and where appropriate,
UML and MDA code generators are useful tools, although not the panaceas
that some would have us believe.” (Thomas, 2004) Reading between the lines,
one is led to conclude that at least part of MDA’s problems stem from its

http://andromda.sourceforge.net

http://jamda.sourceforge.net/

Volter’s criticism of the term is scathing: ”[...] Cartridges is a term that get (sic.) quite a bit of
airplay, but it’s not clear to me what it really is. A cartridge is generally described as a ‘generator
module’, but how do you combine them? How do you define the interfaces of such modules?
How do you handle the situation where to cartridges have implicit dependencies through the
code they generate?” (Vélter, 2009).

Slogans such as Bézivin's “Model once, Generate everywhere” (Bézivin, 2003) are examples of
this optimism, as was the language of the MDA Manifesto itself (emphasis ours):

We believe that MDA has the potential to greatly reduce development time and greatly
increase the suitability of applications; it does so not by magic, but by providing
mechanisms by which developers can capture their knowledge of the domain
and the implementation technology more directly in a standardized form and by
using this knowledge to produce automated tools that eliminate much of the low-level
work of development. More importantly, MDA has the potential to simplify the more
challenging task of integrating existing applications and data with new systems that
are developed. (Booch et al., 2004)

For a brief but insightful overview of the lessons learned from UML, see France and Rumpe (France
and Rumpe, 2007), Sections 5.1 ("Learning from the UML Experience: Managing Language
Complexity”) and 5.2 (“Learning from the UML Experience: Extending Modeling Languages”).

http://andromda.sourceforge.net
http://jamda.sourceforge.net/

2.3 MODEL DRIVEN ENGINEERING (MDE) 21

vast scope. It is therefore interesting to compare and contrast it with the next
variant under study, given it takes what could be construed as a diametrically
opposed approach.

2.3.3 Architecture-Centric MDSD (AC-MDSD)

Product of several years of field experience, Stahl et al. introduced Architecture-

Centric MDSD (AC-MDSD) as a small part of their seminal work on Model

Driven Software Development (MDSD) (Vélter et al., 2013) (p. 21).?9 In

their own words, ”[...] AC-MDSD aims at increasing development efficiency,

software quality, and reusability. This especially means relieving the software

developer from tedious and error-prone routine work.” Though it may be Definition,
argued that the concepts around Model-to-Platform (M2P) transforms for ~ characterisation
infrastructural code were already well-established within MDE, having their

roots in ideas such as MDA model compilers and MDA code generators (cf.

Section 2.3.2), it is important to note that AC-MDSD has very few commonali-

ties with MDA.. It is a minimalist approach, specified only at a high-level of

abstraction and inspired mainly by practical experimentation.

AC-MDSD’s very narrow focus makes it a suitable starting point for the explo-
ration of model-driven approaches, as Stahl et al. go on to explain (emphasis
ours):

We recommend you first approach MDSD via architecture-centric

MDSD, since this requires the smallest investment, while the effort

of its introduction can pay off in the course of even a six-month

project. Architecture-centric MDSD does not presuppose a func- Narrow focus
tional/professional domain-specific platform, and is basically lim-

ited to the generation of repetitive code that is typically needed for

use in commercial and Open Source frameworks or infrastructures

(sic.). (Volter et al., 2013) (p. 369)

The core idea behind AC-MDSD emanates from Stahl ef al.’s classification of
source code into three categories:

e Individual Code: Code crafted specifically for a given application, and
which cannot be generalised.

e Generic Code: Reusable code designed to be consumed by more than
one system. Source code categories

e Schematic and Repetitive Code: Also known as boilerplate or infras-
tructure code, its main purpose is to perform a coupling between infras-
tructure and the application, and to facilitate the development of the
domain-specific code.

As represented diagrammatically in Figure 2.4, schematic and repetitive code
can amount to a significant percentage of the total number of LOC in a given

29 For the purposes of this dissertation. MDSD is understood to be a synonym of MDE. See (Craveiro,
2021c¢), Section 2.4, for an explanation of the various names employed under the MDE umbrella.

22 STATE OF THE ART IN CODE GENERATION

system, with estimates ranging between 60% to 70% for web-based applica-
tions (Volter et al., 2013) (p. 369) and 90% or higher for embedded systems
development (Czarnecki, 1998).3%/3' Besides the effort required in its creation,

Schematic and infrastructure code is also a likely source of defects because its repetitive na-

repetitive code tyre forces developers to resort to error prone practices such as code cloning
(Staron et al., 2015). Code generators do exist to alleviate some of the burden
— such as wizards in IDEs and the like — but they are typically disconnected
and localised to a tool, with no possibility of having an overarching view of
the system. Thus, the goal of AC-MDSD is to provide an holistic, integrated
and automated solution to the generation of infrastructural code.

Generic Individual
Code Code

Schematic and
Repetitive Code

Figure 2.4: Categories of code in a system. Source: Author’s drawing based on an image
from Stahl et al. (Volter et al., 2013) (p. 15)

Following this line of reasoning, Stahl ef al. theorise that systems whose soft-
ware architecture has been clearly specified have an implementation with
a strong component of schematic and repetitive programming; that is, the
system’s architecture manifests itself as patterns of infrastructural code, thus
ultimately leading to the idea of generative software architectures. In a gener-
ative software architecture, the schemata of the architecture is abstracted as
Generative software elements of a modeling language; domain models are created for an applica-
architectures tion, and, from these, code generators create the entire set of infrastructural
code. In the simplest case, the modeling language can be created as a UML
Profile with the required architectural concepts, and the instance models then
become PIMs (cf. Section 2.3.2). For simplicity, Stahl et al. recommend bypass-
ing explicit transformations into PSMs prior to code generation, and generate
code directly from the PIM instead. Once a generative software architecture
is put in place, only a small step is required to move towards the creation of
product lines.

With regards to the construction of software systems, Stahl et al. propose

a two-track iterative development model, where infrastructural engineering

Two-track is expressly kept apart from application development, though allowing for
development periodic synchronisation points between the two — a useful take that is not
without its dangers, as will be shown shortly. In addition, given only in-

Partial generation frastructural code is targeted, AC-MDSD presupposes a need for integrating
handcrafted code and generated code, with full code generation explicitly

defined as a non-goal. The onus is on the MDE practitioner to determine

the most suitable integration approach for the system in question, aided and

30 Stahl et al. may have discerned the general notion of schematic and repetitive code, but they left
the gory details of their identification as an exercise for the modeler, noting only in passing that
applications are composed of (emphasis ours) ”[...] a schematic part that is not identical for all
applications, but possess the same systematics (for example, based on the same design patters).”
(Volter et al., 2013) (p. 16) Whilst most developers are likely in agreement with this sentiment, in
truth it offers little additional clarity on how to identify those “same systematics”.

31 Our own personal experiences (Craveiro, 2021b) corroborated these findings, both in terms of the
existence of schematic and repetitive code as well as its relative size on a large industrial product.

2.3 MODEL DRIVEN ENGINEERING (MDE) 23

abetted by the literature — for instance, by deploying the techniques such as
those surveyed by Greifenberg et al. (Greifenberg et al., 2015a; Greifenberg
et al., 2015b).

Experience reports of AC-MDSD usage in various contexts do exist, though

they are by no means numerous and appear to lack a critical analysis of theory

and application (Al Saad et al., 2008; Escott et al., 2011b; Escott et al., 2011a;

Manset et al., 2006). The paucity may be attributable, at least in part, to

researchers employing terminology other than Architecture-Centric MDSD,

rather than to the principles espoused — the afore-cited evidence, anecdotal

though it may be, does suggest a favouring of the overall approach by software Absence of critiques
engineers when they embark on MDE.32 In the absence of authoritative points i the literature
of view, we have chosen to undertake a critique from personal experience,

rooted on our adoption of AC-MDSD on a large industrial project (Craveiro,

2021b). Whilst limited, and though it pre-empts the discussion on MDE

adoption (cf. Chapter 3), there are nevertheless advantages to this take, since

the principal difficulty with AC-MDSD lies on the specifics of its application

rather than with the sparseness of the theoretical framework.

We shall start by identifying the importance of AC-MDSD, which in our opin-

ion is understated in the literature. As Stahl et al.’s quote above already hinted,
infrastructural code is seen as low-hanging fruit for MDE because it is ar- ~ AC-MDSD’s
guably the most obvious point to automate in the development of a software importance
system. Carrying on from their analysis, our position is that the following
interdependent factors contribute to this outcome:33

e Ubiquitous Nature: Infrastructural code is prevalent in modern soft-
ware systems, as these are composed of a large number of building
blocks34 which must be configured and orchestrated towards common
architectural goals. It is therefore a significant problem, and its only
increasing with the unrelentingly growth of software (cf. Section 2.1).

e Deceptively Easy to State: Unlike other applications of MDE, the issues
addressed by AC-MDSD are easy to state in a manner comprehensible
to all stakeholders. Existing systems have numerous exemplars that
can serve as a basis for generalisation — employable simultaneously
as a source of requirements, as well as a baseline for testing generated Infrastructural code
code. For new systems, engineers can manually craft a small reference ~ @nd automation
implementation and use it as the target of the automation efforts, as did
we, twice — (Craveiro, 2021b) Section 4.5, and Section 8.2 of the present
document.

e Deceptively Easy to Measure: The costs associated with the manual
creation and ongoing maintenance of infrastructural code are appar-
ent both to software engineers as well as to the management structure,
because they are trivially measurable — i.e. the total resource-hours
spent creating or maintaining specific areas of the code base against the
resource-hour cost is a suitable approximation. Engineers also know

32 A trait we ourselves share, including the lack of awareness of the existence of AC-MDSD, as
narrated in (Craveiro, 2021b).

33 This analysis is largely a byproduct of the analysis work done in Sections 7 and 8 of (Craveiro,
2021b), as well as Chapter 5 of (Craveiro, 2021c).

34 Building blocks are to be understood in the sense meant by Volter (Volter et al., 2013) (p. 59). See
also Section 4.2.2 of (Craveiro, 2021c) (p. 33)-

24

Consequences of
unorthodoxy

Premature
de-investment

Short term gain, long
term pain

35

37

STATE OF THE ART IN CODE GENERATION

precisely which code they intend to replace, because they must identify
the schematic and repetitive code. As a corollary, simplistic measures of
cost savings are also straightforward to impute.35

e Deceptively Easy to Implement: The creation of technical solutions
to realise AC-MDSD are deceptively simple to implement, as there is
an abundance of template-based code generation tools that integrate
seamlessly with existing programming environments — e.g. Microsoft’s
T4 (Vogel, 2010) (p. 249), EMF’s XText (Eysholdt and Behrens, 2010),
etc.3® These tools are supplied with a variety of examples and target
software engineers with little to no knowledge of MDE.

e Produces Results Quickly: As already noted by Stahl et al., limited
efforts can produce noticeable results, particularly in short to medium
timescales but, importantly, the full consequence of its limitations play
out at much longer timescales.

Perhaps because of these factors, many localised AC-MDSD solutions have
been created which solve non-trivial problems, meaning the approach un-
doubtedly works. However, in our experience, AC-MDSD has inherent chal-
lenges which we ascribe to the following interrelated reasons.

Firstly, it exposes end-users to the complexities of the implementation and that
of MDE theory, discouraging the unfamiliar. Paradoxically, it may also result
in approaches that ignore MDE entirely — that which we termed unorthodox
practitioners37 in (Craveiro, 2021b) — and thus present inadequate solutions
to problems that have already been addressed competently within the body
of knowledge. This happens because its easy to get up-and-running with the
user friendly tooling — that is, without any foundational knowledge — but
soon the prototype becomes production code, and mistakes become set in
stone; before long, a Rubicon is crossed beyond which there is just too much
code depending on the generated code for radical changes to be feasible.

Secondly, the more automation is used, the higher the cost of each individual
solution because customisation efforts require a non-negligible amount of
specialised engineering work, and will need continual maintenance as the
product matures. The latter is of particular worry because these costs are
mostly hidden to stakeholders, who may have been led to believe that the
investment in infrastructural code “had already been made”, rather than seeing
it as an ongoing concern throughout the life of a software system.

The third problem arises as the interest on the technical debt (Cunningham,
1992) accrued by the first three factors comes due. Naive interpretations of
AC-MDSD inadvertently trade velocity and simplicity in the short term for
complexity and maintenance difficulties in the long term — at which point

The adjective simplistic is used here because we are performing a trivial extrapolation. It would be
non-trivial to account for qualitative factors present in manual code, such as efficiency, robustness
and many other non-quantitative properties in the domain of software quality, such as those
identified by Meyer (Meyer, 1988) (Chapter 1). These simplistic measurements can only indicate
that generated code is no worse functionally than its manual counterpart.

Here we include tools such as AndroMDA and Jamda (cf. Section 2.3.2) because, whilst typically
associated with MDA, they can be deployed to fulfil an AC-MDSD role. In addition, for a more
general treatment of these approaches, see (Craveiro, 2021c), Chapter 3 (Section 3.7).

An unorthodox practitioner is one who engages in independent rediscovery of fundamental
aspects of the MDE body of knowledge without the awareness of its existence.

2.3 MODEL DRIVEN ENGINEERING (MDE) 25

all deceptions are unmasked.3® This temporal displacement means that when
the consequences are ultimately felt, they are notoriously difficult to quantify
and address; by that time, the system may be on a very different phase of its
lifecycle (i.e. maintenance phase).

Fourthly, end-users are less inclined to share solutions because the common-

alities between individual approaches at the infrastructural level may not

be immediately obvious due to a lack of generalisation. Knowledge transfer

is impaired, we argue, because practitioners and tool designers view their ~ Silos
infrastructural code as inextricably linked to the particular problem domain

they are addressing or to a specific tool, and thus each developer becomes

siloed on an island of their own making. This notion is reinforced by MDE'’s

vision of every developer as a competent MDE practitioner, able to deploy Interaction with
the body of knowledge to fit precisely its own circumstances, and further =~ MDE principles
compounded by MDE'’s focus on the problem space rather than the solution

space.39 Conversely, aiming for generalisation is only possible once practi-

tioners have mastered the MDE cannon, which takes time and experience.

Thus, systems with similar needs may end up with their own costly solutions,

having little to no reuse between them.

Alas, generalisation is no silver bullet either, as attested by the fifth and final

challenge: that of problem domain decoupling.4° This issue emerges as the

emphasis shifts from special purpose AC-MDSD solutions towards a general

purpose approach, within a two-track development framework. With this shift, ~ Problem domain
the relative scopes of the application domain versus the infrastructural domain ~ decoupling
also shift accordingly, and what begins as a quantitative change materialises

itself as a qualitative change. Figure 2.5 models a simplified version of the

dynamic in pictorial form, though perhaps implying a discreteness to the

phenomena which is not necessarily present in practice.

A

Problem domain
Legend
O Core Problem Domain

O Infrastructure Problem Demain

S md

Scenario 1 Scenario 2 Scenario 3 Scenario 4

»

A

Specialisation Generalisation

Figure 2.5: Problem domain decoupling. Source (Craveiro, 2021¢) (p. 46)

38 For a reflection of our own experiences on the matter, see Section 6 of (Craveiro, 2021b).

39 It is perhaps for these reasons that MDA code generators put forward concepts such cartridges:
so that their end-users can extend a core to match their particular requirements. These are, in
effect, elaborate code generation frameworks to satisfy the needs of developers. Interestingly,
Jorges concluded that “[...] there is a high demand for approaches that enable a simple and
fast development of code generators.” In our opinion, developers do not want to create code
generators, but find themselves having to do so. As we’ll see in Chapter 3, demand is largely a
function of inadequate tooling.

40 Problem domain decoupling is addressed in pages 46 to 49 of (Craveiro, 2021c) (Chapter 5).

26 STATE OF THE ART IN CODE GENERATION

Though subtle at first, these changes are eventually felt for (emphasis theirs):

[...] as the scope of the infrastructural domain grows, it becomes
a software product in its own right. Thus, there is an attempt to
simultaneously engineer two tightly interlocked software products,
each already a non-trivial entity to start off with. At this junc-
ture one may consider the ideal solution to be the use of vendor
products as a way to insulate the problem domains. Unfortu-
nately, experimental evidence emphatically says otherwise, reveal-
ing that isolation may be necessary but only up to a point, beyond
which it starts to become detrimental. We name this problem
over-generalisation.4* (Craveiro, 2021c) (p. 47)

In other words, there is a fine balancing act to be performed between under
and over generalisation, with regards to the infrastructural domain and the
problem domain; finding the right balance is a non-trivial but yet essential
exercise (emphasis theirs):

What is called for is a highly cooperative relationship between
infrastructure developers and end-users, in order to foster feature
suitability — a relationship which is not directly aligned with tradi-
tional customer-supplier roles; but one which must also maintain a
clear separation of roles and responsibilities — not the strong point

Barely general enough of relationships between internal teams within a single organisa-
tion, striving towards a fixed goal. Any proposed approach must
therefore aim to establish an adequate level of generalisation by me-
diating between these actors and their diverse and often conflicting
agendas. We named this generalisation sweet-spot barely general
enough, following on from Ambler’s footsteps (Ambler, 2007)43,
and created Figure 5.5 to place the dilemma in diagrammatic form.
(Craveiro, 2021c) (p. 47)

< Under Barely General Enough Over ’

Generalisation Generalisation

Infrastucture Infrastructure Infrastructure

developed development using generic

in-house sweet-spot tooling

Too close to Too removed
end-user experience, from concrete
difficulties in reuse or change end-user experience

Figure 2.6: Different approaches to infrastructure development. Source (Craveiro,
2021¢) (p. 48)

As we shall see (c¢f. Chapter 5), this quest for an approach targeting the barely
general enough sweet-spot has greatly influenced the present work.

In summary, our opinion is that those very same attributes that make AC-
MDSD amenable as a starting point for MDE exploration are also closely

41 Chapter 3 deal with the complex issues surrounding MDE adoption, including vendor tooling
(Section 3.3 in particular).

42 Ambler states that (emphasis ours) “[...] if an artifact is just barely good enough then by definition it
is at the most effective point that it could possibly be at.” (Ambler, 2007)

2.3 MODEL DRIVEN ENGINEERING (MDE) 27

associated with its most significant downsides. Interestingly, this double-
edged sword characteristic is not unique to AC-MDSD, but instead generalises
well to MDE — as the next chapter will describe in detail.

[y

THE STATE OF MDE ADOPTION

But, as we look to the horizon of a decade hence we see no silver bullet.
There is no single development, in either technology or management tech-
nique, which by itself promises even one order of magnitude improvement
within a decade in productivity, in reliability, in simplicity.

— Brooks (Brooks, 1974) (p. 181)

You cannot reduce the complexity of your problem by increasing the
complexity of your language.

— Wirth (attributed)

NE OF THE MosT critical aspects of any new technological approach is the
O evaluation of its performance on the field — that is, an evidence-based
analysis of the impact of its application under real-world conditions. It is
particularly important to those embarking on the design of a new software
development methodology, itself based on model-driven principles, to under-
stand MDE’s benefits and drawbacks from a practical standpoint. This chapter
combines a review of MDE adoption literature with a limited amount of new
research, highlighting lessons learned and barriers to entry, with the objective
of clarifying MDE'’s current state of practice. As with theory (c¢f. Chapter
2), these findings will be used as input to MASD’s requirements gathering
process (cf. Chapter 4).*

The chapter is organised as follows. Section 3.1 sets out the reach of the analysis
to be presented. The analysis proper is composed of two sections: Section 3.2
characterises the popularity of MDE within the broad software industry while
Section 3.3 teases out the broad themes that emerge from its adoption. Lastly,
the chapter concludes with a brief discussion that summarises our findings
(Section 3.4). Let us begin by laying out the scope and limits of the effort.

3.1 LIMITATIONS

Our analysis is constrained by two types of impediments: intrinsic limitations
of the model-driven approach, and shortcomings related to the way adoption
research has been conducted. The next two sections delve into each of these
categories respectively.

It may be argued that our deep interrogation of MDE is excessive. However, it is our firm opinion
that its application — and the definition of methodologies based on it — can only be done
successfully once its key strengths and weaknesses are well understood, and this requires looking
at both theory and practice. To our knowledge, this is an undertaking thus far absent from the
literature.

29

Motivation

Chapter
Quverview

30

Motivation

Reasons for MDE
detrimental effects

Lack of maturity,
repeatability

THE STATE OF MDE ADOPTION

3.1.1 Intrinsic Limitations to MDE

As recently as 2011, Hutchinson ef al. (Hutchinson et al., 2011) warned that
MDE had historically lacked evidence to back many of its claims (Hutchinson
et al., 2011).2 These difficulties led Whittle ef al. to admit that ”[...] there
remains a lack of clarity on whether or not model-driven engineering (MDE)
isa good way to develop software.” Their wariness is not entirely unjustified. In
the previously mentioned paper, Hutchinson et al. identified three key reasons
for why, in practice, MDE may have a detrimental effect in the development of
software systems:

1. Higher abstraction levels may not lead to better software. Citing ex-
periments in psychology and psychology of programming, they point
out that individuals find thinking in abstract terms hard and, in general,
there is a tendency to prefer exemplars over abstract conceptualisations.

2. MDE activities may have both positive and negative effects. Code
generation is offered as an example, as it may have a positive effect on
productivity but also negative consequences — including the time re-
quired to develop the models for code generation as well as the possible
need to integrate manual code with generated code.3 Nor is code gener-
ation the only MDE activity with this conflicting property, making it a
very thorny issue: "How the balance between these two effects is related
to context, and what might lead to one outweighing the other, is simply
not known.” (Hutchinson, Rouncefield, and Whittle, 2011)

3. Determining the right approach is hard. Given the proliferation of
MDE variants, tools and frameworks4, it is very hard to evaluate benefits
and drawbacks in a rigorous way. Choices are highly dependent on
context and thus difficult to compare in a fair manner. This is a theme
we will return to in the next section.

Torchiano et al. (Torchiano et al., 2012) are even more critical of the status quo,
managing to combine the challenges of practice with those of theory into one
clear and incisive diagnosis (emphasis ours):

[MD*] is considered to be still evolving and not yet completely
mature. The first success stories were heard a long time ago but the
knowledge to make those successes consistently repeatable is still missing.
Being the discipline not yet fully understood, and the underlying
knowledge not yet codified, expertise is the only resource we can rely
on when a MD* solution is designed.

Their criticism evokes the idea of a practitioner mastering a body of knowledge,
as we have defended (Craveiro, 2021¢) (Section 2.2) — a scenario that is
inherently unsuitable for repeatable and comparative analysis as it is highly

2 The original wording by Hutchinson et al. is rather more intriguing (emphasis ours): "Although
MDE claims many potential benefits in terms of gains in productivity, portability, maintainability
and interoperability, it has been developed largely without empirical support for these claims.”

3 Our personal experience mirrors this effect quite closely (Craveiro, 2021b) (Section 6 and 7).

4 As detailed in (Craveiro, 2021c), Chapter 2 — and Section 2.4 in particular.

3.1 LIMITATIONS

dependent on context.> When taken together, all of these open questions raise
even further the significance of adoption research. Unfortunately, it too faces
several challenges.

3.1.2 Adoption Literature Limitations

The literature reveals a litany of experience reports and empirical studies on
MBDE application (Andolfato et al., 2014; Shirtz, Kazakov, and Shaham-Gafni,
2007; Paige and Varrd, 2012; Clark and Muller, 2012), and to these we have
added our own (Craveiro, 2021b). Taken together, they form a useful but
somewhat fractious breeding ground from which to extract universal answers
as to the suitability of MDE. Hutchinson et al. had already raised red flags
when performing a similar exercise (emphasis ours):

As many of our respondents admit, quantification of the benefits and
failures of MDE is complex and difficult. [...] [The] evidence for our
understanding of MDE at this stage derives from the quality and
perceptiveness of our descriptions and our analysis rather than any
simple mathematization. (Hutchinson, Rouncefield, and Whittle,
2011)

Much the same said Mohagheghi and Dehlen (Mohagheghi and Dehlen, 2008),
who, whilst identifying threats to the validity of their own work, inadvertently
enumerated the challenges faced by anyone risking a similar undertaking.
These are as follows:

e Small sample size. Though not lacking on variety, the number of reports
found in the literature is insufficient to reach a ”generalization to a
population or theory.” (Mohagheghi and Dehlen, 2008)

e Survivorship bias. In their opinion — which is also ours — successes
are more likely to be reported than failures; therefore, the literature
may portrait an inaccurate picture of the most likely outcome of MDE
projects.

o Incentives for biased reporting. Research projects with external financ-
ing may report biased results, downplaying negative outcomes. Com-
panies may also behave in a similar fashion to avoid negative publicity.
Incentives amplify the survivorship bias.

o Interference from competitive advantages. Conversely, companies may
avoid publishing results in order to keep a competitive advantage against
their peers.

e Large-scale projects are under-reported. The success of MDE on small-
scale projects such as academic research may not be indicative of its

5 Indeed, in this sense we are closer to McBreen’s Software Craftsmanship (McBreen, 2002) rather
than to Software Engineering. There is much to be said for McBreen’s idea that, on the main, the
creation of high-quality software may not be amenable to repeatable engineering processes, but
sadly such discussion falls outside the remit of this dissertation.

31

Qualitative versus
quantitative analysis

Pitfalls of
adoption surveying

32

Difficulties with
“universal
arguments”

Wicked problems

Importance of
empirical studies

THE STATE OF MDE ADOPTION

success on large industrial projects. Results for large-scale projects are
not as frequent as those of small-scale projects.

e Lack of baseline data. Most companies do not report baseline data,
which makes evaluations subjective. In addition, it is very difficult to
obtain relevant and unbiased baseline data.

e Lack of quantitative data. Most studies focus on the qualitative aspects
of the experience and neglect a quantitative analysis. More generally,
there is a lack of well-defined dimensions for the gathering of quan-
titative data, for reasons such as those outlined by Hutchinson et al.
above.

From what has been stated thus far, it seems clear that it is very difficult to
use the literature to make universal statements about MDE adoption with any
degree of confidence.® Indeed, we argue that most universal statements about
MDE are devoid of meaning from a scientific perspective because they must
be localised to the specifics of a context and can only be extrapolated to other
contexts with a great deal of care; even then, they would still be riddled with
reservations. In other words, it is extremely difficult to compare MDE projects
because they are highly sensitive to local conditions — conditions which are
not readily replicable — much less lend themselves to easy aggregation at
an industry-wide level. The essence of the problem was captured by Rumpe
earlier, who had stated:

The pressing problems that we tackle in the software and system
modeling research domain can be classified as “wicked problems”:
we learn more about the nature of the problems we tackle through
experimentation with proposed solutions. Rigorous evaluation of
these solutions invariably entails costly and lengthy experimen-
tation in industrial contexts. Experiments that seek to evaluate
solutions based on novel or radically different ideas are particularly
difficult to sell to potential industrial partners because the risks
are not well-understood by all involved. Even with committed
industrial partners, the wide variations in industrial development
environments makes it difficult (if not foolhardy) to extrapolate
the results beyond the specific industries. Despite the difficulties,
there is no getting away from the reality that evaluation is key
to developing progressively better solutions to wicked problems.
(France, 2008)

In this light, even though empirical studies are not particularly useful in prov-
ing or disproving universal claims, they are still extremely valuable because
they capture the themes emerging from within application. From these we
can build conceptual tooling to augment MDE’s body of knowledge — best
practices, patterns, guidelines and the like? — and, for the purposes of MASD,
these observations can guide the requirements gathering process (cf. Chapter
4). On the main, it is in this spirit that the MDE adoption literature is to be un-
derstood within this dissertation. All of that said, we shall start by attempting
to tackle one universal question — limitations described here notwithstanding.

6 By "universal statements” we mean blanket statements such as “MDE improves productivity”,
”"MDE improves software quality”, and suchlike.
7 Manuscripts such as Volter’s "MD* Best Practices” (Volter, 2009) capture well the idea.

(o]

\O

10

3.2 HOW WIDELY ADOPTED IS MDE?

We will do so for two reasons. Firstly, because we believe it offers far-reaching
insights into the application of modeling in general and therefore to MASD.
Secondly, because it can be answered — even if only broadly. So it is to that
pivotal question we turn to next.

3.2 HOW WIDELY ADOPTED IS MDE?

High expectations were set out in a seminal presentation by Bézivin (Bézivin,
2003), where he ambitiously declared model engineering to be the future of
object technology, and outlined a twenty year horizon for its maturing. As
we sail at speed towards Bézivin's evaluation date, it is increasingly clear that
the adoption curves of object technology and model technology are distinct:
the former became the mainstay of software engineering within less than
twenty years of its inception, whereas the latter is yet to achieve similar levels
of exposure. These thoughts are echoed by Mussbacher et al., who lamented
that (emphasis ours):

[...] MDE is arquably still a niche technology. It has not been adopted
as widely as popular programming languages such as Java and C#,
and, whilst some modeling languages like the UML have become
widespread, they are often not used to their full potential and the
use of models to automatically generate systems is still relatively rare.
(Mussbacher et al., 2014)

In sharp contrast with the hopeful tone of the past®, the literature now has a
downcast mood?, perhaps reflecting the realisation that MDE ”[...] is currently
not as widespread in industry as the modeling community hoped for.” (Muss-
bacher et al., 2014) This state of affairs is all the more surprising when one
considers that the claims associated with MDE are often decisive factors in an
industrial setting.’® There is therefore a clear disconnect between promises and
adoption, perchance not unrelated to the difficulties in evidencing grandiose
universal assertions (cf. Section 3.1.2).

Our objective for this section is twofold. First, we want to substantiate or
disprove Mussbacher et al.’s claims by representing, however broadly, MDE's
state of practice, because we believe it offers considerable insights as to the
applicability of its vision to the reality of industrial software engineering. Sec-
ond, we want to perform Bézivin’s evaluation by characterising the direction

For a partial timeline of events related to MDE, see Clark and Muller (Clark and Muller, 2012),
Section 2, “The MDD Landscape”.

Articles such as Bell’s “"Death by UML Fever” (Bell, 2004), Thomas” “MDA: Revenge of the
Modelers or UML Utopia?” (Thomas, 2004) and France et al.’s "Model-driven development using
UML 2.0: promises and pitfalls” (France et al., 2006) accurately depict the zeitgeist.

The MDA Guide is well aware of this, stating (emphasis ours): “Automation reduces the time and cost
of realizing a design, reduces the time and cost for changes and maintenance and produces results
that ensure consistency across all of the derived artefacts.” (Group, 2014)

33

Object technology,
model technology

Niche technology

Promise-adoption gap

Objectives,
approach

34

MDE is “not cool”

Google Trends
data source

1

[

12

13
14

15

THE STATE OF MDE ADOPTION

of travel of MDE adoption — again, in broad strokes'**> — because it gauges
industry’s reaction to it. The next two sections analyse evidence from multiple
sources to position MDE within this frame. Evidence was collected at two
different scales: the macro-scale — that is, across the software engineering pro-
fession — and the micro-scale — that is, small samples and empirical studies.
With this in mind, let us start our analysis from a high vantage point.

3.2.1 Analysis of Evidence at a Macro-Scale

Whilst the literature does provide detailed quantitative data for MDE adoption
at small sample sizes (cf. Section 3.2.2), measurements that place the approach
in an industry-wide context are harder to come by. In the above cited paper,
Mussbacher et al. used data from search engine queries to demonstrate, some-
what amusingly, that "MDE is simply not considered cool”. Unfortunately,
their dataset was insufficient for our purposes; however, their methodology
was promising, so we extended it to other large data sources freely available
on the Internet.

Two such sources were used for our analysis. The first, Google Trends'3, allows
measuring interest over time from a search engine perspective.’* We started
by gathering evidence to support Mussbacher et al.’s claim of MDE being a
niche technology by comparing interest in MDE and UML to interest in the
suggested programming languages — Java and C#."> Figure 3.1 does imply
that, compared to Java and C#, both UML and MDE are fairly niche from the
perspective of search engine querying.

Next, we analysed how queries related to MDE have evolved in the time
dimension. For this we plotted interest over time for six different search terms
related to MDE, with the results captured by Figure 3.2. The data allows us to
make some general observations, as the graph clearly shows a marked decline
from a peak around 2004, and a sharp descent soon thereafter; furthermore, it
lacks any obvious upticks during the latter years, which would indicate some
form of revival as the industry gets to grips with the approach.

The Hype Cycle Model (Linden and Fenn, 2003) is often deployed in this context —e.g. (Brambilla,
Cabot, and Wimmer, 2012) (p. 22), Torchiano ef al. (Torchiano et al., 2012) — and understandably
s0, for, in the words of Torchiano et al., "[h]ype is frequently associated to software development
processes/techniques until (sic.) they are not yet mainstream and fully understood; we think
it is also the case for modeling and MD*.” We opted for a dissenting view nonetheless, siding
instead with those with concerns about the model such as Dedehayir and Steinert (Dedehayir and
Steinert, 2016). Our main qualm is the difficulty in determining whether we are in the model’s
final moment (i.e. the so-called “plateau of productivity”) or if we have entered a perpetual
descent in the “through of disillusionment”. Without adequate quantitative datasets, statements
on this regard are problematic to substantiate and therefore we do not believe the model brings
any additional clarity towards the evolution of MDE adoption.

Note that due to the limitations already described (cf. Section 3.1.2), the purpose of this analysis
is not a rigorous determination, but merely the use of multiple sources to get a sense of where the
theory has led us thus far.

https://trends.google.com

Google Trends defines interest over time as follows: "Numbers represent search interest relative to
the highest point on the chart for the given region and time. A value of 100 is the peak popularity
for the term. A value of 50 means that the term is half as popular. A score of 0 means that there
was not enough data for this term.”

These languages rank 2™ and 5 respectively in the TIOBE Index, at the time of writing (TIOBE,
2021). The TIOBE Index offers a measure of popularity for programming languages.

https://trends.google.com

3.2 HOW WIDELY ADOPTED IS MDE? 35

Google Trends for Java, C#, UML and MDE

100
Java
ci# ——
UML
80 MDE 1

60

40

Frequency (%)

20

0 ;
=t 1=} [=+] [=] o =t =} oo
o =} o = — — — —
=1 = =1 o o o o o
o~ ~ ~ ~ ~ o~ ~ 3

Time

Figure 3.1: Google searches for Java, C#, UML and MDE. Source: Author’s plot using
Google Trends data (January 2004 to August 2018)

It is important to understand that there are numerous limitations with our

analysis, such as the clipped time horizon (available data excludes the period

from 2000 to 2004), the reliance on Google as the sole data source (searches

may have been performed on other search engines, though Google’s dominant ~ Google Trends threats
market position mitigates this risk), the exclusion of queries using acronyms ~ fovalidity
(adding MDE, MDA, etc. to the report caused false positives), and so forth.

Nonetheless, in the absence of better data, it serves as a coarse approxima-

tion.

Google Trends for MDE Related Searches

100 T T T T T
UML ——
Model Driven Engineering ———
Model Driven Architecture
80 Model Driven 1
Model Driven Software Development
- Model Driven Software Engineering ———
£ 60
)
c
Q
=
@ 40
L
20
e
0 I I I I I 1
= [{=] [=¢] o o =+ =} [=s]
o (=) o - - - - -
o o o o o o o o
o~ o~ o~ o~ o~ o o~ o~

Time

Figure 3.2: Google searches related to MDE. Source: Author’s plot using Google Trends
data (January 2004 to August 2018).

36

Stack Overflow
data source

Stack Overflow
threats to validity

16
17

18
19

THE STATE OF MDE ADOPTION

Our second data source was Stack Overflow?®, a question and answer website
popular with software engineers'7, which provides access to statistical data
via its Insights query interface.’® Questions in Stack Overflow are tagged by its
users to facilitate searching and aggregation'?, and the distribution of tags can
be analysed via Insights. The absence of evidence was informative in itself, as
no tags could be located with regards to “model-driven”, "MDE”, "MDD”,
"MDSE” or any other MDE variant described in this dissertation. UML was
the only available tag related to modeling, and the resulting data is plotted in
Figure 3.3. The number of questions for UML as a percentage of total questions
reached a maximum of 0.12% and has declined to around 0.02%.

0.20% -
0.18% ® uml
0.16% -
0.14% -
0.12%
0.10% || |
0.08% ||'|

|| |
0.06% - ||| ';'I I I|I \ |

|

e 1 I\
0.04% - ¥ "l AN A
AVA VAN

AV

0.02% 4

0.00%

2009 2010 2011 2012 2013 2014 2015 2016 2017

% of Stack Overflow questions that month

Year

Figure 3.3: Questions tagged with UML on Stack Overflow. Source: Stack Overflow
Insights from 2009 to July 2018.

We then tried to establish UML's position when compared to Java and C#. The
results, plotted in Figure 3.4, are in line with the findings from Google Trends:
UML is quite niche when compared to popular programming languages.

As with Google Trends, it is important to highlight the limitations of Stack
Overflow as a data source, since it excludes software engineers who need not
ask questions about MDE (e.g. experienced practitioners) as well as those
who use other sources of information (commercial product support, other
web forums), questions may be incorrectly classified, questions may be tagged
against specific tools rather than modeling terms, the data range is narrow
(only covers the period from 2009 to 2018) and so forth. Similarly to Google
Trends, these limitations were deemed acceptable for our purposes.

In summary, the picture emerging from the analysed data is in overall agree-
ment with those who view MDE as a niche technology, facing a trend of
decreasing interest in industry. We shall now contrast these findings with
evidence at the opposite end of the scale.

https://stackoverflow.com

According to internal data, Stack Overflow has a total of 16 million questions, 25 million answers,
9.2 million active users and over 9.8 million visits per day (Exchange, 2018).
https://insights.stackoverflow.com

Stack Overflow defines tags as follows: “A tag is a word or phrase that describes the topic of the
question. Tags are a means of connecting experts with questions they will be able to answer by
sorting questions into specific, well-defined categories.” (Overflow, 2018)

https://stackoverflow.com
https://insights.stackoverflow.com

20

3.2 HOW WIDELY ADOPTED IS MDE?

16.00% - Tag

P‘lll o c#
14.00% - | | java
® uml

12.00% |
10.00% -| N
8.00% - B NS
T
6.00% -|

4.00%

2.00%

T 0 T i i T T T
2009 2010 2011 2012 2013 2014 2015 2016 2017

0.00% -

% of Stack Overflow questions that month

Year

Figure 3.4: Questions tagged with Java, C# or UML on Stack Overflow. Source: Stack
Overflow Insights from 2009 to July 2018.

3.2.2 Analysis of Evidence at a Micro-Scale

A change of perspective is often revealing when addressing wicked problems
(¢f. Section 3.1.2). On what the authors claimed was the first wide-range
industry study of its kind, Whittle et al. (Whittle, Hutchinson, and Rouncefield,
2014) surveyed 450 MDE practitioners with the objective of characterising
MDE practice, and their findings are in stark contrast to those described thus
far. The authors were already aware of this discrepancy, stating (emphasis
ours):

Some claim that the application of MDE to software engineering is
minimal. MDE, they argue, is only used by specialists in niche mar-
kets. Our data refutes such claims, however. We have found that
some form of MDE is practised widely, across a diverse range of indus-
tries (including automotive, banking, printing, web applications
etc.

The unmistakable conclusion of Whittle et al.’s study is that MDE is widely
used in industry, but in ways that are extremely difficult to quantify in the
aggregate. For example, their analysis points out that practitioners prefer
creating DSLs over using general purpose modeling languages such as UML,
and implement these DSLs using a dizzying array of tools, techniques and
frameworks (emphasis ours): “We found no consensus on which modeling
languages or tools developers use — they cited over 40 modeling languages and
over 100 tools as 'regularly used” in our survey.” Whittle et al.’s analysis builds
upon earlier work from Petre (Petre, 2013), who showed that, in a sample of 50
software designers, very few used UML, and those that did — a total of 11 —
used it only for “selective” purposes.?® Petre’s findings are in agreement with

Petre defines selective in the following, somewhat recursive, manner: “UML is used in design
in a personal, selective, and informal way, for as long as it is considered useful, after which it is
discarded.” (Petre, 2013)

37

Widespread
use of MDE

Extreme diversity

38

Limitations

Mainstream
absorption

21

THE STATE OF MDE ADOPTION

the evidence from our macro-analysis. The picture that emerges from both
of these studies is one of great diversity and fragmentation, which further
reinforces our own views of MDE as a diffused body of knowledge (Craveiro,
2021¢) (Chapter 2). Furthermore, these results are not isolated; a related study
by Hutchinson et al., with 250 respondents (Hutchinson et al., 2011), found
similar heterogeneous patterns.

One can, of course, question the exact meaning of the expression ”practised
widely”, given the small sample size and the fact that Whittle et al. surveyed
only MDE practitioners — all of which makes it rather difficult to place their
work in the context of the wider industry. In addition, as previously demon-
strated, the boundaries of MDE are rather porous (Craveiro, 2021c) (Chapter
2) so the criteria for classifying any given project as an "MDE project” — in
their words, “some form of MDE” — is not entirely free of ambiguity; in the
limit, any project using code generation or a DSL could be construed as a
“"MDE project”, though that, perhaps, may not be in the spirit of the endeav-
our.?* Nonetheless, even when taking these validity threats into consideration,
it is clear that their work provides undeniable evidence of MDE adoption
across a variety of scenarios; more so than its niche status would imply.

Clark and Muller (Clark and Muller, 2012) uncover a second reason that
may help explain why it is difficult to find evidence of MDE use in the large,
when they conclude that “the spirit of model-driven technology is very alive,
although absorbed by mainstream programming environments [...].” In their
view, there has been a steady flow of ideas and concepts from MDE’s body of
knowledge to traditional programming environments, and this, they suggest,
is a trend that is set to continue or even accelerate due to commercial demands
(emphasis ours): "The next generation of companies making use of model-
driven technologies might be more successful if they manage to hide model-
driven technology, embedding it as a competitive advantage.”**

Taking all of these views into account, the evidence at the micro-scale is consis-
tent with the idea of MDE’s body of knowledge being digested and repurposed
into a series of technological changes that are fit for specific purposes. And,
now that both macro and micro cases have been presented with contradictory
results, we must attempt to reconcile these viewpoints.

3.2.3 Discussion

The evidence at a macro-level reinforces Mussbacher et al.’s intuition of MDE’s
niche status, whilst the evidence at the micro-level provides support for the
idea that MDE is in widespread use but, crucially, not in accordance to its

A small sample of the inclusion criteria in the reviewed material should suffice to give a flavour of
this dilemma. Hutchinson et al. stated (Hutchinson et al., 2011): "The study takes a deliberately
broad interpretation of MDE, as it is intended to be exploratory. Therefore, all variants of MDE are
covered, including both domain-specific modeling languages (DSMLs) and UML-based methods.
[...] The only hard criterion for excluding/including data was that the company must have been
using models as a primary development artifact (sic).” For their part, Mohagheghi and Dehlen
(Mohagheghi and Dehlen, 2008) limit their study to approaches that generate “models, code and
other artifacts from models”.

22 These very words were inspirational to the MASD approach.

3.3 EMPIRICAL ANALYSIS OF ADOPTION LITERATURE 39

original vision.?3 Both statements are not incompatible. Our opinion is that

this vision is yet to come to pass, and its now unlikely to do so within the = Detachment from
Bézivin horizon. Further: the limited available data seems to point out that ~ original vision
the industry is moving away from that direction altogether, and is instead

choosing the path of dispersing the MDE body of knowledge into small and

localised solutions, and this may ultimately prove to be the enlightenment

that has been long sought. If so, Cook’s words now sound eerily prophetic

(Cook, 2006) (emphasis ours):

The notion that all of software development will somehow be re-

placed by modelling is at least as mistaken as “objects are just there

for the picking”. [...] Specific kinds of models are useful in specific tasks; Modeling as a
the modelling language used for a specific task must be designed tool in the toolbox
to be fit for that task. Today’s increasing interest in Domain Spe-

cific Languages, rather than general-purpose modelling languages,

clearly recognizes this.

With these wise words, to which we subscribe fully, we conclude our outline of
the industry-wide adoption picture. It is now time to turn our attention to the
analysis of themes emerging from MDE’s application, in order to gain a better
understanding of the specific challenges faced by those using the approach.

3.3 EMPIRICAL ANALYSIS OF ADOPTION LITERATURE

A great deal of insightful information can be extracted from the MDE adoption

literature, much of which is relevant to our work. The information is, however,

in a form that is troublesome to analyse due to its qualitative nature. In order

to address this problem, we decided to deploy the classification system put Tooling
forward by Whittle et al. in (Whittle et al., 2013), and subsequently improved ~ Taxonomy
upon (Whittle et al., 2017). There, they describe it as “a loose taxonomy of
tool-related considerations, based on empirical industry data, which can be

used to reflect on the tooling landscape as well as inform future research on

MBDE tools.”

Our previous brushes with the taxonomy revealed it to be malleable, amenable

not only for the analysis of MDE tooling but also of MDE adoption issues in gen-

eral (Craveiro, 2021b; Craveiro, 2021d). This is likely a byproduct of the close Applicability
relationship between MDE application and its tooling, for, as Mohagheghi ~ outside tooling
and Dehlen perceptively noted, ”[s Jupporting MDE with a comprehensive

tool environment is crucial, as many of the techniques promoted as necessary

in MDE strongly depend on proper tool support.” (Mohagheghi and Dehlen,

2008)

23 This vision is articulated clearly by France and Rumpe:

In the MDE vision, domain architects will be able to produce domain specific
application development environments (DSAEs) using what we will refer to as
MDE technology frameworks. Software developers will use DSAEs to produce
and evolve members of an application family. A DSAE consists of tools to create,
evolve, analyze, and transform models to forms from which implementation, de-
ployment and runtime artifacts can be generated. Models are stored in a repository
that tracks relationships across modeled concepts and maintains metadata on the
manipulations that are performed on models. (France and Rumpe, 2007)

40

Approach

Developers prefer
black-boxes

Complex graphical
interfaces

Humans must
adapt to tools

THE STATE OF MDE ADOPTION

Each of the sections below tackle one of the four top-level categories in the
taxonomy. They start with a brief description of the category, in order to
contextualise those unfamiliar, and proceed to analyse relevant issues gleaned
from the adoption literature. As with Section 3.2, the objective is not to per-
form an exhaustive review but instead to capture overarching themes that are
pertinent to the present dissertation. In addition, due to its qualitative nature,
we have chosen to rely on the same approach as did Whittle et al. — namely,
the use of extensive quoting from original sources in order to register more
faithfully the underlying themes.

3.3.1 Technical Factors

Technical issues that affect the adoption of MDE, such as the features available
in tooling and their integration with development environments, were promi-
nent in the literature. In particular, there seems to be a noticeable mismatch
between developer expectations and functionality available in tools, as Clark
and Muller explain (emphasis ours):

Industry would like to use MDD as a shrink-wrapped black-box process.
Current technologies expose a great deal of the inner workings
of PIM, PSM and transformation design. Developers feel that they
need to have a detailed knowledge of all aspects of the technology which
undermines its commercial value compared to the use of more
trusted mature technologies such as compilers. (Clark and Muller,
2012)

The compiler metaphor is particularly apt, since developers are used to code
generators that behave in a fashion similar to compilers (Craveiro, 2021d).
Whittle ef al.’s findings echoed similar thoughts, revealing that the available
functionality often exceeds the typical needs of software engineers:

Our interviewees emphasized tool immaturity, complexity and
lack of usability as major barriers. Usability issues can be blamed,
at least in part, on an over-emphasis on graphical interfaces: ... I
did an analysis of one of the IBM tools and I counted 250 menu
items.” More generally, tools are often very powerful, but it is too
difficult for users to access that power; or, in some cases, they do
not really need that power and require something much simpler:
"] was really impressed with the power of it and on the other hand
I saw windows popping up everywhere... at the end I thought
I still really have no idea how to use this tool and I have only seen a
glimpse of the power that it has.” (Whittle et al., 2017)

The reliance on graphical interfaces appears to be a common complaint from
developers: “There is a large amount of evidence that software engineers prefer
textual representations for system artifacts rather than diagrams.” (Clark and
Muller, 2012) The underlying thread that unifies all these observations is an
impedance mismatch between how developers would like tools to behave
versus how tool developers view the role of those tools. Whittle et al. express a
concern for the egregious ”[...] lack of consideration for how people work and

3.3 EMPIRICAL ANALYSIS OF ADOPTION LITERATURE

think: ‘basically it’s still the mindset that the human adapts to the computer,
not vice-versa.”” (Whittle et al., 2017)

They go on to explain that many practitioners addressed this mismatch by
creating their own special purpose tooling, with reportedly better results
(emphasis ours):

The majority of our interviewees were very successful with MDE
but all of them either built their own modeling tools, made heavy
adaptations of off-the-shelf tools, or spent a lot of time finding ways
to work around tools. The only accounts of easy-to-use, intuitive
tools came from those who had developed tools themselves for
bespoke purposes. Indeed, this suggests that current tools are a
barrier to success rather than an enabler and "the fact that people are
struggling with the tools... and succeed nonetheless requires a
certain level of enthusiasm and competence.” (Whittle et al., 2017)

Nevertheless, it is important not to underestimate the immense effort required
to create industrial-grade MDE tooling, even when experienced practitioners
are involved, as Paige and Varré’s work amply demonstrates (Paige and Varro,
2012), and so does Andolfato et al.’s (Andolfato et al., 2014). Speaking in the
context of tool vendors, Clark and Muller put the matter in more forceful terms
(emphasis theirs): "Tool development is expensive. However much you think it
will cost in terms of time and effort to develop a business based on a modelling
tool, multiply by 10. Be prepared to be patient and support development
through other activities.” (Clark and Muller, 2012) Internal tool development
does benefit from a narrower focus, of course, but it is no less difficult; the cost
and the associated risk in developing new tools for a complex problem domain
such as modeling — in most cases, a proposition that is entirely unrelated
to the main business activity and the current engineering skill-set — is an
obvious barrier to MDE adoption. Our own work sheds light on some of the
challenges developers faced:

Interviewees developed an appreciation for the difficulty of cre-
ating a general purpose code generator: ”[...] It was a massively
ambitious project, right? [To] [b]uild a general purpose code
generator, is a very, very difficult thing.”

Once the magnitude of the task was understood, a natural process
of de-scoping started to take place: “But when you say, 'I want to
write a code generator that is going to work for everything’, well
then now you need to define what everything is. And how do you
define everything? [...] You can’t, so you say right I'm guessing I'm
going to need lists, but I'm guessing I won't really need dictionaries,
I'm guessing it will [be] good enough just to have public setters but
let’s not worry about public/private, everything will be public and
that’s [...] something reasonable that I can write a code generator
for, within a year and a half and [...] thatll have to do.” [...]”
(Craveiro, 2021b) (Section 6.1)

Thus, the trade-offs between off-the-shelf tooling and internal tool develop-
ment are very complex, and highly dependent on situational context. Whittle

41

Bespoke tools are more
successful

Tool development is
expensive

Scope challenges

42 THE STATE OF MDE ADOPTION

et al.’s words summarise the issues with technical factors rather aptly (emphasis
ours):

It is ironic that MDE was introduced to help deal with the essen-
tial complexity of systems, “but in many cases, adds accidental
complexity”. Although this should not be surprising [...], it is in-
teresting to describe this phenomenon in the context of MDE. For
MDE as a source the technical categories, in almost every case, interviewees gave
of accidental examples where the category helped to tackle essential complexity,
complexity but also other examples where the category led to the introduc-
tion of accidental complexity. So, interviewees talked about the
benefits of code generation, but, at the same time, lamented the
fact that “we have some problems with the complexity of the code
generated [...] we are permanently optimizing this tool.” (Whittle
etal., 2017)

3.3.2 Internal Organisational Factors

The adoption of MDE takes place in the context of an organisation with its own
distinctive structure, processes and procedures, as well as a unique culture.
The literature clearly highlights both the importance and the difficulty in
integrating MDE related infrastructure with what precedes it:

One interviewee described how the company’s processes had to
be significantly changed to allow them to use the tool: a lack of
control over the code generation templates led to the need to mod-
Difficult tooling ify the generated code directly, which in turn led to a process to
integration control these manual edits. Complexity also arises when fitting an
MBDE tool into an existing tool chain: “And the integration with
all of the other products that you have in your environment...”
Despite significant investment in providing suites of tools that can
work together, this is clearly an area where it is easy to introduce
accidental complexity. (Whittle et al., 2017)

This stumbling block was also observed by Mohagheghi and Dehlen: ”Integrat-
ing a tool suite that satisfies these requirements into a coherent environment
is evidently a challenge. In the MODELWARE project, a wide range of tools
were used, but all partners experienced problems with instability of the tools
and their integration.” (Mohagheghi and Dehlen, 2008)

Interestingly, whilst bespoke development facilitates tooling integration as the
requirements are very specific to an organisation, it often has a clear downside
Sustainable tool with regards to the sustainability of tooling engineering because it lacks an
development alignment with core business activities. In general, developers have very
little appetite for extraneous activities on an already congested development

schedule, as we witnessed first-hand:

A key point was the difficulty in justifying continued investment
on a bespoke code generator from a business perspective: “Its quite
product-y? So it almost feels like, you know, its something which

3.3 EMPIRICAL ANALYSIS OF ADOPTION LITERATURE

[we] should be buying in or open source [...]. Not what you want
to be focusing your interest on, if you can [...] avoid it.” (Craveiro,
2021b) (Section 6.5)

Finally, there are also challenges due to the immaturity of the formal processes
associated with MDE, as Mohagheghi and Dehlen note:

The importance of utilizing a defined process in software engineer-
ing has been known for several years. However, most “tried and
tested” processes are not tailored for MDE, which does not make
any assumptions on the software development process or the de-
sign methodology. Baker et al. report that many teams in Motorola
encountered major obstacles in adopting MDE due to the lack of
a well-defined process, lack of necessary skills and inflexibility
in changing the existing culture [...]. (Mohagheghi and Dehlen,
2008)

3.3.3 External Organisational Factors

MDE adoption is also impaired by factors that are external to the organisation
applying it. As already highlighted (cf. Section 3.2.2), the MDE tool offering
is very large and diverse, bringing with it its own problems such as a difficulty
in deciding on the appropriate tooling for a given project — much as did
CASE before it (cf. Section 2.2.1). In addition, once tools are identified, there
are always fears of vendor lock-in, as Mohagheghi and Dehlen report: ”[t]he
vendor lock-in problem persuades some users to use open source tools such
as the Eclipse framework. Others combine third-party products with self-
developed tools [...], or develop their own tools [...].” (Mohagheghi and
Dehlen, 2008)

Relying on a vendor may also be problematic if the vendor is small, as Paige
and Varr6 demonstrate by vividly narrating the many lessons they’ve learned
whilst creating and shutting down two MDE tool vending start-ups (Paige and
Varré, 2012). Our key take-away from their work is that the software tooling
market is generally very competitive and MDE tooling is no different, so, as
part of any feasibility analysis, it is very important to take into consideration
the sustainability of vendors far into the future. This problem is exacerbated
because interoperability between tools of different vendors is not yet a fully
resolved issue, even in the presence of mature industry standards such XML
In (Lundell et al., 2006), Lundell et al. analysed the impact of XMI on hetero-
geneous tooling environments and, whilst being generally positive about the
standard, they also helped explain why interoperability remains such a thorny
issue (emphasis ours):

In considering the results of the tests it should be noted that any-
thing short of complete success is of limited value in practice. The work
involved in repairing significant semantic loss in an interchanged
model is often considered infeasible for industrial strength models.
With this in mind, from the perspective of legacy systems and tool
lock-in, the new generation of modelling tools has not generally

43

Process integration

Tool selection,
vendor lock-in

Vendor sustainability

XMI

Tool interoperability
challenges

44

Bottom-up
approach

Top-down
development

Consequences of
tooling inadequacy

Tool subversion

THE STATE OF MDE ADOPTION

improved prospects for importing existing models exported from
earlier tools. (Lundell et al., 2006)

As a result, practitioners are often wary of finding themselves involved with
what France and Rumpe called the “the DSL-Babel challenge”; that is, the
fear that the ”[...] use of many DSLs can lead to significant interoperability,
language-version and language-migration problems.” (France and Rumpe,
2007)

3.3.4 Social Factors

An influential aspect of MDE adoption is concerned with issues of control and
trust, particularly with regards to the tools of third-party vendors or of those
produced by large internal tooling teams with a degree of independence from
their end-users. Whilst vendors have historically tried to promote holistic
top-down solutions — very much in line with the MDE vision (cf. Section 3.2)
— the adoption literature shows that small-scale, bottom-up approaches tends
to yield better results in practice, as Whittle et al. explain (emphasis ours):

Our findings also lead us to believe that most successful MDE practice
is driven from the ground up. MDE efforts that are imposed by high-
level management typically struggle; interviewees claimed that
top-down management mandates fail if they do not have the buy-
in of developers first. As a result, there are fewer examples of the use of
MDE to generate whole systems. Rather than following heavyweight
top-down methodologies, successful MDE practitioners use MDE
as and when it is appropriate and combine it with other methods in
a very flexible way. (Whittle, Hutchinson, and Rouncefield, 2014)

Regardless of whether tools are bespoke or sourced from external vendors, a
common approach taken by developers to handle tooling inadequacies is to
subvert the tools in order to achieve some desired behaviour:

These and other speculative features [immutability, factory meth-
ods] were not optional, perhaps in order to restrict variability, so
as a consequence software engineers started to make use of them
best they could: “I think its a good point, you just learn to live
with what you got, right? [...] These are the [...] constraints that
we have, so we're going to have to [...] live with those constraints.
[...] And you find a way, right?” (Craveiro, 2021b) (Section 6.3)

Whittle ef al. recorded eerily similar experiences: A second example is a
company that mandated the use of a commercial MDE tool. However, the
developers could not get the tool to fit their processes, and, under pressure
to ‘make things work’, they hacked it, messed with the generated code, and
circumvented it when they had to.” (Whittle, Hutchinson, and Rouncefield,
2014)

And it is with those telling words — with pragmatism overriding theory to get
things done — that we must end our swift excursion through Whittle et al.’s

3.4 DISCUSSION

taxonomy, as well as through the larger terrain of MDE adoption literature.
Let’s us now gather a set of lessons learned from the analysis.

3.4 DISCUSSION

The previous sections presented themes unveiled by empirical analysis in the
MDE adoption literature. Of these, we would like to highlight those that are
of key importance to MASD:

e Usability is often a concern with MDE tooling. There is often a mis-
match between what developers expect of a tool and what vendors view
as the role of the tool. Empirical evidence has shown this is a barrier for
adoption.

e MDE tools are expensive to develop and maintain. Whilst bespoke
tooling has a better fit, it is very difficult to develop due to the need for
specialist skills and the costs involved.

e Developers prefer bottom-up and incremental approaches. Manage-
ment and tool vendors seem to prefer top-down approaches, but software
engineers prefer to integrate new tools and approaches incrementally,
experimenting with them over time and increasing their usage as their
mastery of the tool improves.

o Integration with existing tooling is a challenge. Software engineers
typically use a variety of tools to achieve their goals, and continually
pick up new tools over their career. In general, tools that integrate with
existing toolsets are favoured over tools that force wholesale changes to
development workflows.

Our conclusion from the analysis of MDE adoption is that there is a gap in
the literature for methodology and tooling that are better aligned with how
practitioners actually use MDE rather than researcher and tool developer’s
expectations. Now that the gap has been established, it is the role of the next
chapter to distil these and other findings into a set of requirements designed
to address this impedance mismatch.

45

Emerging themes

Conclusions

46 THE STATE OF MDE ADOPTION

REQUIREMENTS

Current modeling approaches, techniques and tools do not live up to the
challenge. Often, mature tools provide techniques that can successfully
cope with software systems that we were building a decade ago, but fail
when applied to model complex systems [...]. Some academic techniques
propose interesting ways of addressing these shortcomings, but the proto-
typical nature of academic tools often prohibits their application to the
development of real-world software systems.

— Mussbacher et al. (Mussbacher et al., 2014)

EVERAL FAR-RANGING themes emerged from Chapters 2 and 3, as well as
S previous analysis (Craveiro, 2021b; Craveiro, 2021c; Craveiro, 2021d).
The present chapter distils these themes into a cohesive narrative of gaps
exploitable by a new MDE-based approach, linking each requirement back to
the theoretical or practical concerns which gave rise to it. Since, in our view, Chapter
application is inextricably linked with theory, we have opted for two categories Overview
of requirements: requirements for the theoretical framework (cf. Section 4.1)
and requirements related to tooling (cf. Section 4.2). Each requirement is
comprised of a numbered requirement definition to facilitate cross-referencing
by the remainder of the dissertation® and a short overview. Let us start then
by looking at what is deemed necessary from a theoretical standpoint.

4.1 THEORETICAL FRAMEWORK REQUIREMENTS
411 Well-Defined Purpose

Requirement 1 The new approach will target a single, specific purpose, which is the
automated generation of schematic and repetitive code.

As explained at length in (Craveiro, 2021¢) (Chapter 2), MDE is a vast body
of knowledge with unclear boundaries. The new approach must avoid these
difficulties by explicitly defining its purpose and clarifying its relationship
with MDE and MD*. In addition, the boundaries of the new approach are
circumscribed exclusively to AC-MDSD — namely, to the automatic generation
of schematic and repetitive code (cf. Section 2.3.3).

1 e.g., R-1references the first requirement, defined in Section 4.1.1.

47

48

REQUIREMENTS

4.1.2 Well-Defined Identity

Requirement 2 The new approach must have a cohesive and well-defined identity,
distinct from that of MDE and MD*.

Identity is a thorny problem within MDE (Craveiro, 2021c) (p. 10), and
thus a frequent source of confusion to newcomers. In addition to having a
well-defined purpose (R-1), any proposed solution must also have a well-
defined identity, explicitly distinct from all existing approaches within MDE.
An important consequence of a well-defined identity is that it will facilitate
macro-analysis of its application (c¢f. Section 3.2.1).

4.1.3 Well-defined Target Audience

Requirement 3 The new approach must be designed to serve specifically software
engineers inexperienced in MDE.

MDE accumulates knowledge on the subject of modeling, serving many dis-
tinct audiences in the software development process. As a consequence, it is
difficult to find an entry point into the body of knowledge (Craveiro, 2021b),
(Craveiro, 2021c) (Chapter 2). The new approach must set out its target
audience explicitly; its focus is only on software engineers with little to no
knowledge of MDE. The intent is not to discourage experienced MDE practi-
tioners, but to bring clarity as to whom the approach is aiming to serve. All
decisions must take into account the target audience.

4.1.4 Well-defined Domain Architecture

Requirement 4 Resolve ambiguity in terminology by means of a single, well-defined,
domain architecture that covers all core vocabulary.

A key part in establishing a well-defined purpose (R-1) and identity (R-2)
is to create a domain architecture that acts as the single source of truth for
the approach. MDE concepts that are difficult to define rigorously — such as
Technical Spaces (TSs), platforms and the like — must be made clear and un-
ambiguous within the domain architecture. In addition, these more rigorous
definitions must not disagree with their common usage within MDE.

4.1.5 Cater for Evolution

Requirement 5 In order to adapt continually to the needs of end-users, the domain
architecture must have an associated set of processes that cater for its continued
evolution.

4.1 THEORETICAL FRAMEWORK REQUIREMENTS

The domain architecture (R-4) must be designed for continuous extension in
order to remain relevant. The approach must define the processes by which it
can be updated, as well as the criteria for inclusion or exclusion of changes.
This requirement attempts to address France and Rumpe’s warning regarding
the “widening of the problem-implementation gap” through evolution (cf.
Section 2.3.2), and reflects the importance placed on keeping up to date with
changes on platforms and TSs.

4.1.6 SDM Integration

Requirement 6 The new approach must be able to integrate seamlessly with existing
SDM:s.

Given the limited scope of the new approach, software engineers will require
an overall process to manage the software development lifecycle via a tra-
ditional SDM, which we call the host methodology. As with MDE, the new
approach must be agnostic to the host methodology being applied. Unlike
MDE, the new approach must integrate with its host without requiring any
changes to the latter or to itself.?

4.1.7 Clear Governance Model

Requirement 7 The new approach must have a clear governance model, identifying
the responsibilities of all actors and allowing all interested parties to contribute.

In order to allay concerns over cost, vendor lock-in and vendor survivability (cf.
Section 3.3.3), the approach and all of its components must have a governance
model that accepts contributions from a variety of sources. The approach must
include a process by which any interested party can contribute changes. The
governance model should be focused towards increasing the number of use
cases for the approach (R-11), in accordance to its purpose (R-1) and target
audience (R-3).

4.1.8 Support for PIMs and PSMs

Requirement 8 The modeling language must support PIMs as well as PSMs.

The modeling language for the new approach must support both PSMs and
PIMs (cf. Sections 2.3.2). Platform independence must be built upon a set of
well-defined mappings in accordance with the domain architecture (R-4), and
extensible by users. Use of PIMs must remain optional.

2 The relationship between MDE and SDMs is discussed at length in (Craveiro, 2021c) (Chapter 5).

49

50

[SS)

REQUIREMENTS

4.1.9 Support for PDMs

Requirement 9 The modeling language must support Platform Description Models
(PDMs).

The new approach must cater for PDMs.3 These provide mappings for external
building blocks, making them accessible by the methodology’s modeling
language. PDMs must be extensible by users and subsequently incorporable
into the domain architecture (R-4) and tooling via a well-defined process.

4.1.10 Limited Support for Variant Management and Product Lines

Requirement 10 The approach’s modeling language must provide support for vari-
ant management and product lines.

The modeling language put forward by the approach must include limited
support for product lines, constraining variability to a well-defined variability
space.4

4111 Extensible Catalogue of Schematic and Repetitive Code

Requirement 11 The new approach must define a framework for the management of
schematic and repetitive code.

A framework for the management of schematic repetitive code (cf. Section
2.3.3) must be defined as part of the domain architecture (R-4). It must
include a catalogue of the patterns already identified, including their taxonomy,
variability and dependencies, as well as outlining a process to identify and
propose new patterns.

4.2 TOOLING REQUIREMENTS

4.2.1 "End-to-End” Solution

Requirement 12 The new approach must encompass all of the tooling required for
its application.

In the sense defined in (Craveiro, 2021c), Chapter 4 (p. 35); that is to say, a model responsible for
mapping platform-level concepts into the domain architecture.

A review of the literature on variability falls outside of the scope of the present work. For a
high-level overview of the subject — as well as an analysis of its relationship with MDE — see
Chapter 6 of (Craveiro, 2021c).

4.2 TOOLING REQUIREMENTS

In order to avoid the complexity created by heterogeneous tooling (cf. Section
3.3.3), the new approach must provide a single, end-to-end solution for the
modeling and generation of schematic and repetitive code (R-11).

This entails specifying the behaviour of all necessary tooling (R-4) both in
terms of their inputs — i.e. modeling languages — and outputs — i.e. pro-
gramming languages. It also entails providing a comprehensive reference
implementation. Significantly, this requirement does not preclude integrating
with external tools, but instead attempts to minimise accidental complexity
within its core competences (R-1).

4.2.2 Prioritise Black-Boxing

Requirement 13 Where possible, MDE concepts should be made invisible to end-
users.

All tooling should use a black-box approach where possible. For example,
end-users are not expected to have access to a MT language to operate on the
input models; instead, from an end-user perspective, PIMs and PSMs must act
as if transformed directly into source code (cf. Section 3.3.1). More generally,
the approach should aim to promote tooling closer in spirit to special purpose
code generators (Craveiro, 2021d) rather than to traditional MDE tools.

4.2.3 Clear Separation of End-users and Tool Developers

Requirement 14 There must be a clear separation of roles and responsibilities for
all actors.

Closely related to R-13 is the need for a clear demarcation of responsibilities
between those applying the new approach and those maintaining and extend-
ing it. End-users — the consumers of the approach — should only be required
to learn a minimal set of modeling concepts in order to use it. Those working
on the approach itself are expected to be competent MDE practitioners.

Note that this requirement does not preclude allowing end-users to get in-
volved with tool development, but merely defines the distinct roles available.

4.2.4 Prioritise Tooling Integration

Requirement 15 The new approach must be designed to integrate tightly with ex-
isting tooling and workflows.

One of the most significant themes to come out of the adoption literature anal-
ysis were deficiencies in tooling integration (cf. Section 3.3.1). Consequently,
the new approach must take special care in this regard, as follows:

51

52

REQUIREMENTS

e Reuse input formats: instead of proposing new native representations
for its modeling language, the new approach should focus on specifying
mappings (via R-4) to existing modeling languages. These mappings
are intended to cover tooling used by developers such as IDEs and build
systems, as well as existing modeling tools.

e Standard error reporting: the reporting of errors and warnings must be
designed in accordance with existing tooling — in particular those which
are already well supported in contemporary development environments
(Craveiro, 2021d).

e Minimal dependencies: in order to facilitate integration, the reference
implementation must be available as both as a command-line utility and
as a library, with little to no external dependencies (Craveiro, 2021d).

The overall objective of these dimensions is to allow end-users to continue using
preferred toolsets and to cause minimal disruption to existing workflows.

4.2.5 Support Incremental Use of Features

Requirement 16 The approach must support different levels of use, from "basic” to
“advanced”.

Following on from R-15, end-users must be able to make use of the approach
according to their specific needs. These range from code-generation of trivial
PSMs (R-8) to the management of products and even entire product lines
(R-10), and thus span both top-down and bottom-up application (cf. Section
3.3.4). As a result, the domain architecture (R-4) must specify these different
levels of use, and define how they are to be supported by the approach and
its tooling — with the objective of guiding users towards more advanced uses
as their mastery develops.

Last but not least, experienced MDE practitioners should also be able to make
use of the approach if, and only if, such use cases do not raise the complexity
bar for the target audience (R-3) and are within the remit of the approach’s
purpose (R-1).

4.2.6 Conformance Testing

Requirement 17 The new approach should include a comprehensive set of confor-
mance tests to validate implementations.

The reference implementation must be validated by a set of automated confor-
mance tests which determine the level of compliance. These can then be reused

by third-party implementations. Conformance tests must cover scalability —
i.e. expected behaviour for different model sizes — as well as any available

integration with third party tooling.

4.2 TOOLING REQUIREMENTS 53

Part I1

METHODOLOGY AND COMPONENTS

THE MASD METHODOLOGY

Use computer-based tools to mechanize those facets of software develop-
ment that do not depend on human ingenuity.

— Booch et al. (Booch et al., 2004)

THE PRESENT CHAPTER outlines the fundamental characteristics of the Model
Assisted Software Development (MASD) methodology, and it is organ-
ised as follows. Section 5.1 starts by arguing that the multifaceted list of
requirements set out by Chapter 4 can only be addressed by a new SDM, and
explains how our methodology differs from typical SDM use cases. Atten-
tion is then turned towards the three canonical SDM components: the core
philosophy (Section 5.2), the modeling conventions (Section 5.3) and the
methodology’s processes and actors (Section 5.4). The chapter ends with
Section 5.5, where a comparison of MASD against like-minded approaches is
performed. Let us begin then by establishing our motivation.

5.1 MOTIVATION FOR A NEW SDM

After combining literature review with personal experience’, it is our posi-
tion that Stahl et al.’s two-track iterative software development model (cf.
Section 2.3.3) did not advance far enough for our needs. In our opinion,
problem domain decoupling becomes a significant factor in the context of the
requirements gathered in Chapter 4. This happens because the infrastruc-
ture problem domain we’ve set out to explore is simultaneously sufficiently
complex and sufficiently distinct from the core problem domain to warrant a
clearer demarcation of responsibilities between the two.>

Accordingly, we argue instead for the logical consequence of Stahl ef al.’s ideas,
which is to have a dual-SDM approach, because one can only mediate such
complex interactions by means of an SDM, crafted specifically to handle the
infrastructure problem domain, and to ensure it is kept it at arms length from
the core problem domain.3 However, it does not suffice to merely isolate the
two problem domains with two distinct SDMs. Using tool vendor offerings as
a proxy, our analysis demonstrated they tend to fall in what we named the

[

The traditional notion of an SDM was examined in (Craveiro, 2021c) (Chapter 5), as well as its

integration with model-driven approaches. (Craveiro, 2021b) covers our personal experiences.

2 n.b., we are not attempting to make a general argument about AC-MDSD; instead, the discussion
is restricted to an application of AC-MDSD that targets our specific requirements (cf. Chapter 4).
Simpler uses need not share this level of complexity, and for those, this analysis would not be
relevant.

3 For details of the complex interactions alluded to here, please see (Craveiro, 2021c) (p. 46-47).

57

Chapter
overview

Two-track
limitations

Towards
dual-SDMs

58

Versus traditional
SDMs

Approach
summary

1

[e)}

THE MASD METHODOLOGY

over-generalisation trap.# Therefore, in order to avoid this fate, it is also crucial
for the SDM to explicitly target the “barely general enough” generalisation
sweet-spot described towards the end of Section 2.3.3.

It is in this sense that the application we put forward differs from the typical
integration of MDE with SDMs; its purpose is not to manage the entirety of
the software development lifecycle but merely a small but well-defined subset
of its activities: those related to the management of Schematic and Repetitive
Physical Patterns (SRPPs), which take central stage in the methodology. SRPPs
are a furthering of Stahl ef al.’s ideas around schematic and repetitive code (cf.
Section 2.3.3), but generalised to other kinds of patterns within the physical
space’; they result from a deep interrogation on the nature of physical and
logical dimensions within a software project, and are discussed in great detail
in Chapter 6. This approach is believed to hold the key in shielding end-
users from many of the complex themes discussed in Chapter 2, allowing
the methodology’s modeling conventions — and consequently its domain
architecture — to be reduced to only those concepts needed in order to realise
its objectives.®

The endeavour can now be summarised in a more concrete fashion. MASD is a
new SDM designed to aid in the engineering of software systems by fulfilling
the requirements previously gathered in Chapter 4. An SDM is needed in
order to orchestrate the many complex moving parts into an organised form
of collaboration towards a common, well-established goal. MASD makes use
of a well-defined subset of MDE techniques, and applies them to the problem
domain of infrastructure, striving to attain an adequate level of generalisation.
Significantly, MASD has not been designed as a replacement for the application
of MDE to the core problem domain, but as a complementary approach with
which it can be integrated.

We shall now build upon this motivational framework, and tackle the philo-
sophical considerations that underpin the methodology.

MDE vendor tooling is deemed to be a good proxy for the level of complexity of our requirements
because they target a generalised problem domain, in the same fashion as we intend to tackle the
infrastructure problem domain.

MASD employs the terms physical and logical in the same manner as put forward by Lakos in his
systematic study of development artefacts in a software system. He states (emphasis ours):

Developing successful software on a large scale demands a thorough understanding
of two distinct but highly interrelated aspects of design: logical design and physical
design. Logical design, as we will use the term, address all functional aspects of the
software we develop. [...] Physical design [...] addresses issues surrounding the
placement of logical entities, such as classes and functions, into physical ones, such
as files and libraries. All design has a physical aspect. That is because all of the source
code that makes up a typical C++ program resides in files, which are physical.

(Lakos, 2019) (p. 44)

Lakos appears to be quite unique within the literature for his incessant questioning of compile
time physical design, and its implications to logical design. Regrettably, a literature review of
Lakos’ copious material is unfeasible, given the space and time constraints of the present work.
The interested audience is directed to Lakos multi-volume opus as our preferred recommendation
(Lakos, 2019). However, as far as this dissertation is concerned, the essence of the argument had
already been made in the prior incarnation of the work (Lakos, 1996), of a more modest size.

It may be argued that the UML has long had provisions for a physical view, distinct from the
logical view — e.g., (Stevens and Pooley, 1999) (p. 155), (Booch, Rumbaugh, and Jacobson,
1999) (p. 343). Nonetheless, in stark contrast to our intentions, the physical view has often
been relegated to deployment as well as runtime concerns, whereas our focus is on compile-time
artefacts. This disconnect forced MASD to turn its gaze towards Lakos.

5.2 PHILOSOPHY

5.2 PHILOSOPHY

In order to plot a clear and concise narrative for MASD, we have divided its
philosophy into three distinct but interdependent concerns: a vision, a mission
statement and a set of fundamental core values.”” The vision provides MASD
with a overarching purpose, setting the overall direction for the methodology.
The mission statement is comprised of a set of actions that will be taken to
fulfil the vision. Finally, the core values are the basic principles that act as
guides or sign-posts for all decision making on the long road towards making
the vision a reality. The next three sections describe these elements in detail.

5.2.1 Vision

MASD'’s vision is as follows:

To accelerate MDE adoption by traditional software engineers for
the generation of infrastructural code.

5.2.2 Mission Statement

MASD’s mission is to provide a systematic and integrated approach to the
lifecycle management of SRPPs, a class of patterns found in software systems.
The lifecycle management of these patterns calls for:

their identification, capture and classification in a open, centralised and
continuously evolving library;

e the analysis and characterisation of their inter-dependencies and vari-
ability requirements;

o their generation by automated means;

e the associated conformance testing, required to empirically verify and
validate their generation;

e their evolution, as related use cases are considered; and, ultimately,

o their decommission, once no longer required.

7 A literature review on vision and mission statements is deemed to be beyond the scope of the
present work. The interested reader is directed to Stallworth Williams (Stallworth Williams, 2008)
for an accessible treatment.

8 In our opinion, setting out a clear vision and mission statement for MASD is crucial due to the
deficit in clarity that surrounds MDE'’s variants (Craveiro, 2021c) (p. 10).

59

Components

Scope of SRPP
management

60

Querview

Single focus,
user base

O

THE MASD METHODOLOGY

5.2.3 Core Values

MASD'’s core values are anchored on six complementary principles, all centred
around increasing automation, as depicted in Figure 5.1. The next six sections
discuss each principle in turn, anti-clockwise, supplying context and a ratio-
nale for their inclusion. Each principle is composed of a numbered principle
definition for cross-referencing purposes?, a list of the associated requirements
it addresses (cf. Chapter 4) and an overview detailing the objective of the
principle. Note that the principles are stated in imperative form by design, as
they are intended as exhortations to MASD actors (cf. Section 5.4).

Evolve
Gradually

Integrate
Pervasively

Focus
Narrowly

Automation

Assist
and
Guide

Standardise
Judiciously

Figure 5.1: MASD principles.

5.2.3.1 First Principle: Focus Narrowly

Principle 1 MASD has a narrow focus on its problem domain, with well-defined
identity, boundaries, audience and responsibilities.

Related Requirements: R-1, R-2, R-3, R-12, R-13.

MASD has a single focus on solution space concepts — given that’s where
software infrastructure resides — and commits itself to only serving one set of
users: software engineers. With a narrower focus comes a smaller conceptual
framework and hence a smaller cognitive load, making it suitable for new
practitioners. In addition, a well-defined scope also provides a more straight-
forward filtering function with which to circumscribe the methodology’s
boundaries.*®

MASD is able to externalise a large subset of modeling concerns because
its only focus is the code generation of infrastructural code. Therefore, all

e.g, P-1 references the first principle, defined in Section 5.2.3.1.

Besides the lessons learned from MDE, MASD’s narrow focus is also a product of our research
into special purpose code generators (Craveiro, 2021d) (Section 3.1), as well as the incredibly
insightful comments by Clark and Muller regarding the industry’s search for a “shrink-wrapped
black-box process” that hides its MDE internals (Clark and Muller, 2012) (cf. Section 3.3.1)

5.2 PHILOSOPHY 61

other functionality related to modeling is deemed to be external to MASD’s

domain, such as support for graphical notations, DSLs, MTs, model evolution, Externalisation
model synchronisation, reverse engineering and many other aspects of MDE.

Where required, these must be addressed elsewhere; and their integration

with MASD is the role of the next tenet.

5.2.3.2 Second Principle: Integrate Pervasively

Principle 2 MASD adapts to users’ tools and workflows, not the converse. Adapta-
tion is achieved via a strategy of pervasive integration.

Related Requirements: R-4, R-13, R-15.

MASD promotes tooling integration: developers preferred tools and work-

flows must be leveraged and integrated with rather than replaced or subverted.

First and foremost, MASD's integration efforts are directly aligned with its

mission statement (cf. Section 5.2.2) because integration infrastructure is un- Role of integration
derstood to be a key source of SRPPs."* Secondly, integration efforts must be ~ within MASD
subservient to MASD’s narrow focus (P-1); that is, MASD is designed with

the specific purpose of being continually extended, but only across a fixed

set of dimensions. For the purposes of integration, these dimensions are the

projections in and out of MASD’s TS, as Figure 5.2 illustrates."*

MASD Injectors MASD Extractors

Visual Studio IDE

Figure 5.2: MASD Pervasive integration strategy.

Within these boundaries, MASD's integration strategy is one of pervasive inte-

gration. MASD encourages mappings from any tools and to any programming

languages used by developers — provided there is sufficient information pub-

licly available to create and maintain those mappings, and sufficient interest

from the developer community to make use of the functionality. Significantly, Integration
the onus of integration is placed on MASD rather than on the external tools, ~ strategy
with the objective of imposing minimal changes to the tools themselves. To
demonstrate how the approach is to be put in practice, MASD'’s research in-

cludes both the integration of org-mode (cf. Chapter 7), as well as a survey

on the integration strategies of special purpose code generators (Craveiro,

11 In other words, much of the machinery required for integration is believed to be schematic and
repetitive in nature. This belief is justified empirically via the author’s two decades of industrial
software development, as well as the experiences in MDE application (Craveiro, 2021c).

12 See Chapter 4 of (Craveiro, 2021c) (p. 31) for details on Technical Spaces (TSs) and associated
projections.

62

Limitations

Problem space
landscape

Incremental
growth

13

14

THE MASD METHODOLOGY

2021d); subsequent analysis generalised these findings so that MASD tooling
can benefit from these integration strategies. Undertakings of a similar nature
are expected as the tooling coverage progresses.

Clearly, if left to its own devices, pervasive integration could be construed as
an unachievable target due to its overly ambitious scope — particularly given
the very large size of the pool of potential integration candidates. Moreover,
this is a problem that affects the capture of SRPPs in general. It is the role of
the next principle to provide direction for the exploration of such an immense
problem space.

5.2.3.3 Third Principle: Evolve Gradually

Principle 3 MASD is designed to grow gradually and deliberately over time, cover-
ing an increased surface area of its problem domain.

Related Requirements: R-4, R-5, R-10, R-11.

MASD sets out to create a conceptual framework for the exploration of the
problem space of infrastructural code; in the limit, it views all infrastructural
code as part of one single but extremely large problem domain — allowing for
a globalised view — and its objective is to identify and model its entities along
with their associated variability. Thus, MASD sees the processes related to the
continual discovery of the shape of the problem domain as a indissoluble part
of the methodology, as is the resulting library of patterns of infrastructural
code, and strives for comprehensive coverage over long timescales.

Discovery

The more applications
MASD finds, the greater
the coverage of the
infrastructural code
problem domain.

The greater the coverage
of the infrastructural code
problem domain, the more
applications MASD

will find.

Application

Figure 5.3: Interrelationship between discovery and application.

The exploration of infrastructural code is made through empirical and iterative
means, and guided by pragmatism. In this manner, MASD expects to fulfil
its vision through a very large number of gradual steps over a long period
of time, slowly and incrementally building up its SRPP library in a cohesive
manner — which also includes integrations (P-2). The driver for changes is
practice; that is, in general, features in MASD must be driven by concrete use
cases from users in the field rather than through the inclusion of speculative
features.’>*4

Nonetheless, there is a significant caveat: MASD’s reference implementation is a key end-user of
the methodology, meaning that features will be specifically added for this purpose, even if they
have no external use cases.

Chapter 3 alluded to the challenges posed by making “too many” features available to end users.
For a more specific example of the dangers in adding speculative features to MDE tooling, see
our own experience report (Craveiro, 2021b) (Section 6.3).

15

16

5.2 PHILOSOPHY

However, even taking long timescales into account, such a large undertaking
can only be performed by leveraging an equally large and motivated group
of individuals. This in turn raises issues of community and organisation,
addressed by next principle.

5.2.3.4 Fourth Principle: Govern Openly

Principle 4 MASD promotes an open governance model because a thriving commu-
nity is a necessary condition to fulfil its vision.

Related Requirements: R-5, R-7, R-14.

Whilst all work on MASD thus far was performed by the dissertation’s author,
careful consideration has been given to creating a governance model that will
allow external parties to contribute.’> These contributions are viewed as an
essential ingredient for the fulfilment of the methodology’s vision (c¢f. Section
5.2.1), because, from a end-user perspective, MASD’s usefulness is closely
related to the breadth and depth of its SRPP pattern library, and the library
can only grow if the methodology is pitted against the full breadth and depth
of its target problem domain.

These lofty aspirations are not without precedent. MDE has a long-standing
experience with FOSS development in leading projects such as EMF (Steinberg
et al., 2008), Generic Modeling Environment (GME) (Davis, 2003) and many
others; in the most successful cases, the approach has yielded several positive
results such as a growing and diverse community as well as source code reuse
— characteristics which we seek to emulate.

Benefiting from their experience, we thought important to structure MASD

in a fashion similar to a FOSS project, in anticipation of its expected future.*®

Once chosen, the governance model had implications on actors and processes,
so that we could mirror more closely the structures typically found in FOSS —
i.e. roles such as maintainer, contributor, end-user and so forth can be directly

mapped to MASD’s actors and processes defined in Section 5.4.

A plurality of voices has benefits but is not without its hazards, requiring care-
ful orchestration to ensure all involved pull in the same direction. Therefore,
in addition to P-1, we also set a clear stance on the use of standards, as the
next principle will demonstrate.

Availing themselves of Renz’s ideas on the matter (Renz, 2007), Capra et al. define governance in
this context as follows: “The governance of software projects is defined as the complex process
that is responsible for the control of project scope, progress, and continuous commitment of
developers. Governance is recognized to have a key role in enabling software project success
[...].” (Capra, Francalanci, and Merlo, 2008)

A review of the available literature was carried out before embarking in this direction, but it is
deemed to lay outside the scope of the dissertation. For those interested, we relied mainly on
Crowston et al.’s comprehensive survey of the literature on FOSS development, spanning over 135
published empirical studies and including both quantitative and qualitative methods (Crowston
etal.,, 2012). The review highlighted several points of interest, but the findings most relevant to
the present work relate to the different roles in FOSS projects. Once these were identified, Lee
and Cole’s analysis was used to attain an increased understanding of their properties (Lee and
Cole, 2003).

63

Community
relevance

Precedents

Governance
model

64

de jure
standards

de facto
standards

Philosophical
changes

THE MASD METHODOLOGY

5.2.3.5 Fifth Principle: Standardise Judiciously

Principle 5 MASD employs de facto standardisation at its core to promote agility,
and de jure standardisation at the edges to ensure stability.

Related Requirements: R-1, R-2, R-4, R-11.

After reflecting on the MDA experience with international standards (cf. Sec-
tion 2.3.2), we decided to limit the use of de jure standards in MASD to pro-
jections in and out of MASD’s TS (P-2), as that is where we see them adding
most value. Projections from and to the outside world are expected to remain
stable, and are aligned to the target of the projection, so it makes sense to use
well-known standards where those are available. Conversely, MASD’s core
shall be restricted to de facto standards because, there, empiricism and agility
are deemed more important than stability.

Within the core, de facto standards are based on two pillars: this dissertation, as
the basis for the definition of the methodology in a future document called the
MASD SDM Specification (MSS); and the MASD Reference Implementation
(MRI) (c¢f. Chapter 8) as the single source of truth of everything else — tooling
interfaces, the SRPP library of patterns and associated variability, and the like.
The duality is justified as follows. In order to remain relevant to its users, the
MRI is expected to undergo constant change (P-3), making it a good candidate
for an Agile process (Beck et al., 2001).

On the other hand, the SDM itself is expected to experience only minor re-
visions, reconcilable with the vision and principles here put forward. This
does not mean the MSS is frozen; change is strongly encouraged in MASD
and the philosophy is itself liable to change just as much as any other of its
components — provided there is sufficient justification. However, it is impor-
tant to understand that, by design, the identity of MASD is deeply embedded
within its philosophy. Therefore, we anticipate it to change in a small and in-
cremental manner, maintaining a similar direction to what has been proposed
by this document — or else for a completely new (and distinct) SDM to be
put forward in its place.

This multi-layered approach with regards to standards is designed to provide
an adequate support for the speed of change of each of these aspects, in order
to better serve the target audience. That said, the target audience is multi-
layered as well, and thus demands support for distinct levels of usage. And
that is the role of the next and final principle.

5.2.3.6 Sixth Principle: Assist and Guide

Principle 6 MASD’s role is to continually assist its end users in choosing the
appropriate level of automation for their projects.

Related Requirements: R-6, R-8, R-9, R-10, R-16.

17

18

19

5.2 PHILOSOPHY

MASD is designed from the ground up to support both top-down and bottom-
up approaches, and is focused on identifying a set of levels of usage that mirror
the behaviour uncovered from adoption literature and personal experience.
As a result, instead of enforcing a model-driven view of software engineering,
MASD views the use of automation in the development of a software system
as a spectrum of possibilities (Figure 5.4), ranging from no automation to
the automated generation of all infrastructural code, as the full MASD vision
is eventually realised.'” All points in the spectrum are equally valid and a
system may be composed of an heterogeneous mix of automation approaches,
both from within and outside of MASD — though hopefully orchestrated via
its strategy of pervasive integration (P-2).

Ease of use, More complex.

‘ more flexible; i . less flexible; >
expensive, Less Automation : More Automation cheap, repeatable,
error prone, reliable,
craftmanship. mass-production.

Manually written Generation of Generation of
code structural features product lines

Generation of L —]

One-off Generation products
of stubs =1

Generation of trivial))
behaviours Automation Gradient

Figure 5.4: The automation spectrum and the automation gradient.

MASD aims to empower its practitioners in determining the adequate level of

automation for a given context, as a function of their prior experience. Over

time, as they master methodology and tooling, practitioners are expected —
but not forced — to progressively climb the automation gradient, though

always remaining within the narrow confines of an AC-MDSD approach. Cru-
cially, MASD does not promote the use of automation as a uniquely positive

development regardless of context, but rather views it as a set of engineer-
ing trade-offs that must be made during the software development process.
Though assisted by the methodology;, it is ultimately the practitioner’s respon-
sibility to make those trade-offs.’® MASD views software engineering not as

driven by modeling but by the manual writing of code; modeling is consid-
ered a subsidiary activity that can be of assistance to the development process

in distinct but well-defined capacities, within the scope of infrastructural

code.™

And it is with this message of end-user focus that we conclude our incursion
through MASD’s philosophy. It’s also worthwhile noting that the methodol-
ogy’s philosophy has had far reaching implications to all the work carried out;
for one, it was instrumental in shaping MASD’s modeling language and other
related aspects of its domain architecture. And it is to these we shall turn our
attentions to next.

The MASD automation spectrum is inspired on Groher and Volter’s’s analysis of variability and
their modeling of it as a continuum (Groher and Voelter, 2007). Figure 5.4 in particular is our take
on their idea of the "Expressive power of DSLs” as a spectrum of possibilities. The automation
gradient was inspired on Bosch ef al.’s work on variability (Bosch et al., 2001).

Hence why the adjective assisted was chosen, as opposed to the more traditional choices such as
oriented, driven, based and the like, as touched upon in (Craveiro, 2021¢) (p. 10, note 5).

At this juncture, one can begin to see the key differences between MASD and model-driven
methodologies emerging, and it is certainly a topic worthy of further elaboration; it is addressed
at the end of the chapter (cf. Section 5.5).

65

Automation spectrum

Model-driven vs
model-assisted

66

Versus domain
architecture

Ubiquitous
language

THE MASD METHODOLOGY

5.3 MODELING CONVENTIONS

The second aspect of an SDM are its conventions with regards to modeling.
In our view, the notion carries additional weight within MDE application,
because modeling conventions manifest themselves as a modeling language,
and the modeling language is but one component of the domain architecture.
All components of the domain architecture must be designed to work in concert
and cannot be understood in isolation, leading us to defer their wholesale
exposition to Chapter 6. Therefore, the present section is tasked exclusively
with painting the backdrop with which to understand the domain architecture
— i.e., elucidating the conventions and motivation in the MASD’s modeling
landscape. And it is here that DDD, as championed by Evans (Evans, 2004),
takes central stage.

Though making selective use of the approach, MASD was nonetheless greatly
influenced by DDD, particularly with regards to modeling conventions. A
clear example is MASD'’s ubiquitous language=°: it is explicitly composed of
both an informal model and a formal model, as depicted in Figure 5.5, and
we view it as a significant statement of intent with regards to the limits of a
formal modeling approach. As does Evans, we do not believe it is possible
— or even desirable — to express all entities in MASD’s problem domain
formally. Furthermore, when an entity is captured formally, effort must be
made to ensure only those aspects needed to recreate the associated SRPPs
are modeled. That is, MASD seeks to keep the footprint of the formal model
as small as possible because, from experience, we have found its maintenance
to be costly (Craveiro, 2021c). Since the formal model does not tell the whole
story, the informal model is then responsible for weaving an all-encompassing
narrative that imbues entities with meaning.

Formal Model

MASD
Ubiquitous

Informal Model Language

Figure 5.5: MASD modeling language.

That said, the MASD modeling landscape is somewhat convoluted at present;
due to this, its distinct moving parts and their relationships are perhaps best
explained from a high vantage viewpoint.** Figure 5.6 provides a birds-eye
view of the top-level components and their associations, which we shall now
describe. As mentioned previously (cf. Section 5.2.3.5), the MSS is a subset

20 Evans states (capitalisation his):

The vocabulary of that UBIQUITOUS LANGUAGE includes the names of classes
and prominent operations. The LANGUAGE includes terms to discuss rules that
have been made explicit in the model. It is supplemented with terms from high-
level organising principles imposed on the model [...]. Finally, this language is
enriched with the names of patterns the team commonly applies to the domain
model. (Evans, 2004) (p. 23)

21 Brining order to this complex picture will be part of our future work.

5.4 PROCESSES AND ACTORS 67

of the present document, containing only the aspects relevant to the MASD

SDM. The MRI (c¢f. Chapter 8) is a software product family composed of

several software products: a code generator and a set of reference products

— at present, one per supported TS. There is only one implementation of = Top-level
the code generator, called Dogen and described in Section 8.1. The formal components
model is specified and implemented within the code generator and it is used

to document and generate the code generator itself, as well as for testing

its functionality. The reference products (cf. Section 8.2) also serve a dual

purpose, being used for both conformance testing as well as canonical instances

of the domain architecture for demonstrative purposes. Finally, the informal

model is scattered across the MSS and the MRI — in particular, the developer
documentation included in the code generator’s source code repository.

4composed of composed ofk

Code Generator Reference Products

example instance ofe

MASD

4example instance of

Domain Architecture
contains part ofk Acontains part of

Figure 5.6: MASDs top-level components.

Given this context, it should by now be clear that MASD views the determi-
nation of its modeling conventions as a dynamic process. Consequently, the
manner in which the domain is explored is of key importance to the methodol-
ogy, as are those responsible for performing the exploration; and it is to them
we shall turn to in the next section.

5.4 PROCESSES AND ACTORS

The third and final component of MASD as an SDM are its processes and
associated actors. Accordingly, both the application of MASD as well as
its internal development are governed by well-defined processes and their
corresponding actors playing well-defined roles. This section provides an
overview of both actors (Section 5.4.1) and processes (Section 5.4.2), linking
them back to the concepts defined thus far.

5.4.1 Actors

Within MASD, there are three distinct personas with different responsibilities:
the maintainer, the developer and the user.?> These represent the canonical roles
available in MASD software development. The next three sections shed light
on these actors.

22 To avoid conflating these names with the more general usage of the terms in a FOSS context, we
have henceforth prefixed them with MASD (e.g., the MASD maintainer).

68

Role

Changes and
compatibility

Role

Example activities

23

THE MASD METHODOLOGY

5.4.1.1 MASD Maintainer

The MASD Maintainer is the gatekeeper of the MSS and the MRLI. Its role is to
review change requests, often made as pull requests to the desired component,
ensuring they are consistent with the methodology’s philosophy (cf. Section
5.2) and fit the MRI codebase. All changes that impact the MRI must have a set
of tests that specify and validate empirically the new behaviours, in order to
be considered for inclusion; they must therefore update all relevant reference
products. Once the changes have been reviewed and approved, the MASD
Maintainer is responsible for merging them and releasing new versions of the
affected components.

Review and apply changes
to the MSS

X

MASD Maintainer
Review and apply changes
to the MRI

Figure 5.7: Use case diagram for MASD Maintainer.

Since MASD is continuously evolving, the management of backwards and
forwards compatibility is a significant challenge for the MASD Maintainer.
In general, maintaining compatibility should be the main priority, unless
there are explicit technical reasons not to do so. In cases where compatibility
must be broken, the MASD Maintainer will communicate the change to its
users by means of semantic versioning (Preston-Werner, 2018), supplying
detailed examples on how to update legacy models to the newest version.?3
The reference products are used for this purpose, demonstrating the before
and after states.

5.4.1.2 MASD Developer

The MASD Developer is responsible for creating change requests for the MSS
and the MR, in response to demands for new features or fixes to existing
features. The MASD Developer is expected to be familiar with state of the art
approaches in MDE as well as MASD itself, and to use those selectively, in
accordance with the MASD vision.

As an example, the MASD Developer can create mappings for new platforms,
add new injectors or extend existing ones with new functionality, add new
modeling elements to the MASD metamodels, target new TSs or augment

Stahl et al. suggest avoiding this problem altogether by always maintaining backwards compat-
ibility: “The DSL typically continues to be developed in the course of one (or more) projects.
The knowledge and understanding of the domain grows and deepens, so the DSL will thus be
extended. To make life simpler, one must make sure that the DSL remains backwards-compatible
during its evolution.” However, this approach limits the evolution of the DSL so MASD forfeits it.
Nevertheless, breaking compatibility should be seen as the alternative of last resort.

5.4 PROCESSES AND ACTORS

Propose updates
to the MSS
Propose new features
to the MRI
Fix bugs with existing
features in the MRI

Figure 5.8: Use case diagram for MASD Developer.

A

MASD Developer

the features on the already supported TSs and so forth. All changes must be
submitted and reviewed by the MASD Maintainer.

5.4.1.3 MASD User

As a consumer of the MASD methodology, the MASD User is a traditional
software developer who applies MASD to the development of a software
system. The typical use cases for the MASD User is to create new models and
to transform them into code. However, as MASD is continuously evolving,
users are also encouraged to identify limitations and opportunities to extend
it.

Create MASD models

Transform MASD models
using the MRI

X

MASD User

Create requirements for
changes in MRI

Figure 5.9: Use case diagram for MASD User.

MASD Users communicate their requests for new features to MASD Devel-
opers, who are then responsible for its development. Change requests must
include a Minimum Working Example (MWE) demonstrating the proposed
change. The MWE is used as a target for the reference products and will
form the basis of the conformance tests used to ensure the new change was
implemented correctly. The MWE will make its way into the code base via the
appropriate processes, as described in the next section.

69

Role

Extending MASD

70

SRPP discovery

SRPP incorporation

Implementation of
new features

THE MASD METHODOLOGY

5.4.2 Processes

There are three processes within MASD catering for both the internal devel-
opment of the methodology as well as its application: the MRI Development
Process (Section 5.4.2.1), the MSS Development Process (Section 5.4.2.2) and
the MASD Application Process (Section 5.4.2.3). All these processes are then
combined under the MASD Composite Process (Section 5.4.2.4). The next four
sections describe these processes in more detail.

5.4.2.1 MRI Development Process

The MRI is a dynamic software product family whose evolution takes place
via the MRI Development Process. A simplified version of the process is shown
on Figure 5.10. MASD Users and MASD Developers are responsible for identi-
fying patterns in source code deemed to be SRPPs. The identification process
must include a distilling of the schematic and repetitive structure into a MWE
so that the fundamental characteristics of the pattern can be isolated from
irrelevant content. If the isolated patterns are not yet covered by the MRI,
MASD Developers act according to Test-Driven practices and start by updating
the impacted reference products to match the desired result.

Identify SRPPs not Create a MWE and update
yet in MASD reference products

Update the MRI Create features and/or

to use new modeling elements modeling elements to

and/or features model those patterns

Submit a request for changes Publish new version e
in the MRI of the MRI

Figure 5.10: MRI Development Process.

MASD Developers then attempt the automated generation of the reference
products, which now incorporate the MWE, by making changes to the MRI
until all tests pass. Often, the code generation of the requested changes forces
a cascading set of modifications across the MRI metamodels, in order to reflect
the introduction of the new feature throughout the stack. However, simpler
cases may be able to make use of the existing infrastructure.

Once the MWE has been successfully reproduced and both MASD User and
MASD Developer are in agreement with how the feature has been imple-
mented — e.g. configuration settings, impact on existing features, and so on —
the changes are then proposed to the MASD Maintainer as a change request
to the affected MRI repositories. The MASD Maintainer reviews and validates
the changes and, once approved, publishes the new versions of the impacted
software products. Via this process, the MRI is expected to evolve and grow
over time, eventually providing a rich SRPP library of out of the box.

5.4 PROCESSES AND ACTORS

5.4.2.2 MSS Development Process

As described in Section 5.2.3.5, changes to the MSS are expected to be few
and far between. Nonetheless, for completeness, a process catering for these
changes is provided — as illustrated by figure 5.4.2.2. Once a shortcoming to
the MASD methodology is located and discussed with the MASD Maintainer,
the instigator of the change is expected to create a patch to the MSS as a change
request. The MASD Maintainer will then apply the change and release a new
version of the MSS.

Start Identify issues with Propose changes to
the MASD SDM the MASD Maintainer
Submit a pull request Update the MSS with

with changes to MSS proposed changes

Publish new version of
the MSS

5.4.2.3 MASD Application Process

MASD Users apply the methodology in the development of software systems
by using the MRI to generate code for their system. Before they can do so,
they must first settle on the appropriate injector to use — e.g. IDE or preferred
modeling tool support if those injectors are available in MASD, or otherwise a
simpler format such as JSON — and on a MASD application level. The applica-
tion level will determine how much MASD will influence the development
process, via P-6. There are four levels of application, with an increasing level
of dependency in MASD:

o Level o: Stub and Skeleton Generation. The MRI is used as a one-off
generator to create stubs for methods, skeletons for classes and the like.
Once the code is generated, it must be manually maintained.

e Level 1: Artefact Generation. The MRI acts like a special purpose
code generator (Craveiro, 2021d), albeit with a potentially wider remit
given the feature set of MASD (c¢f. Chapter 6). The project structure,
integration of generated artefacts and other development decisions are
unaffected by MASD.

o Level 2: Component Generation. MASD is used to model and generate
one or more components in a larger system, such as a library or an
executable. The component follows the MASD component directory
structure layout and may use MASD generated build files. However, the
remaining system remains unaffected.

71

Overview

Quverview

Application levels

72

Determining the
application level

Process description

Importance of
application

THE MASD METHODOLOGY

o Level 3: Product Generation. MASD is used to model and generate
an entire product —i.e. a complete software system, composed of exe-
cutables and libraries. In this case, all (or most) components that make
up a product are modeled and generated using MASD, with the user
writing code to implement problem space specific behaviour. The prod-
uct follows all of MASD’s conventions, including its product directory
structure layout.

e Level 4: Product Line Generation. MASD is used to model and generate
a family of related products.

Typically, new MASD Users start at Level o and explore the methodology
incrementally — use more features, model different types of elements, etc.
Over time, as they gain experience, they are expected (but not required) to
progress towards Level 4. Experienced MASD Users may then decide that
MASD is too limiting for them and move to a more traditional MDE modelware
stack, or work on integrating existing MDE tooling with MASD.

Once the level of application has been decided upon, the process of application
itself is straightforward, as Figure 5.11 depicts. It works as follows: MASD
Users identify the elements to model and the features that are of interest.
If those features are already available in MASD — as implemented by the
MRI, and explored in more detail in Chapter 6 — users can freely create their
models, generate code and consume the generated code from handcrafted
artefacts. As with most development today, the process is an iterative one,
with identification and modeling progressing side-by-side with traditional
programming. If the required features are not available, the MASD User
is encouraged to report it via the MRI Development Process (cf. Section

5.4.2.1).
Identify entities to model

Features available
in MASD?

Metamodel support
in MASD?

Identify features of
interest

Model and
generate artefacts

No

via MRI Development
Process

1

Report missing functionaltj

Figure 5.11: MASD Application process.

The simplicity of the workflow described above may not adequately convey
its significance within the methodology, so it is worthwhile stating explicitly
that all moving parts of MASD exist solely to service the MASD application
process. Furthermore, application and empiricism are the main drivers for
MASD — an ideal we tried to enshrine within its core values (cf. Section 5.2.3).
This notion of interconnectivity between processes in MASD can be modeled
at a higher level of abstraction, giving rise to a composite process.

5.4 PROCESSES AND ACTORS 73

5.4.2.4 MASD Composite Process

MASD’s development has been characterised by severe resource constraints —

more so than any of our previous experiences with MDE (Craveiro, 2021c).

Due to this, there has been an emphasis on doing more with less, forcing us

to apply a strategy of bootstrapping — that is, using the MRI to develop the Bootstrapping,
MRI itself — and dogfooding — a generalisation of bootstrapping, applying it ~ dogfooding
not just tooling but to MASD itself; in other words, using the methodology

to develop the methodology.>4 The next obvious step in this generalisation

ladder is the notion of a MASD Composite Process, using MASD’s processes for

its own development.?> Figure 5.12 illustrates the idea.

Choose next MRI story
in Agile sprint

Story
completed

Implement MRI story via
MASD Application Process

Required features
avallable in MRI?

Add features to MRI via
MRI Development Process sodsted

Features
implemented

No

Features require MSS.
(conceptual) changes?

Update the MSS via
MSS Development Process

Figure 5.12: MASD Composite Process.

The centrepiece of the flowchart is the use of MASD Application Process (cf.
Section 5.4.2.3) to drive the development of MASD (i.e., the MRI and the MSS).
Since the MRI is a non-trivial software product, it allows us to realistically
emulate the traditional two-track environment one would find in the industry, Flowchart description
without having to absorb the cost of simultaneously developing two distinct

24 Harrison states: ”[T]he idea that someone would use the products they were making became
known as “eating your own dog food.” [...] Regardless of its genesis, the software industry has
adopted the phrase to mean that a company uses its own products. Somewhere along the line,
the noun ‘dog food” appears to have morphed into a verb.” (Harrison, 2006)

25 Further theoretical work is required with regards to the classification of this composite process.
An argument could be made in favour of naming it a meta-process, which Rolland ef al. define as
”[...] a process for the construction of a process model.” (Rolland, Prakash, and Benjamen, 1999)
The composite process could be said to drive the underlying processes, but as it is not acting as a
constructor for its components, we decided against this approach.

74

Fitness function

Versus MDE

26

27

28

THE MASD METHODOLOGY

software products.2® In addition, by forcing the MRI to travel through the same
four levels of the MASD Application Process we expect end users to travel, we
obtain first-hand knowledge of the benefits and pitfalls of the process. More
generally, this recursive application forces us to gain direct experience on the
roles enacted by all actors (cf. Section 5.4.1), as well as all processes (cf. Section
5.4.2), meaning we can ensure they are fit for purpose.*”

The nature of the MASD Composite Process means that all of our application
case studies (cf. Part iii) will have two distinct levels of application:

e Application level: that is, the use of MASD as a regular user. Conclu-
sions at this level will be applicable to any user of the methodology
and/or the MRI.

e Meta-Application level: that is, the impact of this particular application
on the methodology itself.

Finally, the Composite Process also supplies a very useful fitness function with
which to measure progress for both the methodology and MRI: the objective
of the MRI is to be able to generate itself, via the MASD Application Process, at
Level 4 (product line generation), without requiring further changes to MASD.
Achieving this milestone marked the end of the development of MASD's basic
framework.

With this words we complete our analysis of MASD'’s processes and actors.
The picture painted thus far is quite distinct from typical applications of MDE.
The next section will bring the chapter to a close by elaborating on these
differences.

5.5 COMPARISON WITH OTHER APPROACHES

The previous sections have outlined a system of beliefs which underlies
all thinking within MASD. Before proceeding, it is worthwhile comparing
MASD’s beliefs against others already analysed in Chapter 2, with MDE being
the obvious starting point.28 In contrast with the latter, MASD’s vision is

Using the MRI as a model for a typical software product is in the Rothenberg spirit (Craveiro,
2021¢) (p. 16), for he had stated: “Modeling, in the broadest sense, is the cost-effective use of
something in place of something else for some cognitive purpose. It allows us to use something
that is simpler, safer or cheaper than reality instead of reality for some purpose.” (Rothenberg
etal., 1989) This is precisely our intent.

The MASD Composite Process is a translation of compiler bootstrapping to MASD. On the former,
Sjolund et al. explain:

One of the advantages [of compiler bootstrapping] is assumed to be higher quality
since the designers and developers of a language and its compiler will be major
users, and therefore will be highly motivated to correct possible design flaws and
errors. Another advantage is portability — the bootstrapped compiler is primarily
dependent on itself, not on other languages, once it has been bootstrapped. [...]
Bootstrapping means that the language and its compiler is defined and implemented
using itself.

In so far as only one philosophy exists for MDE. For the purpose of this exercise, we can consider
the statements by France and Rumpe in Section 3.2.3 as representative of the MDE vision. However,
the subject is by no means uncontroversial. This, we posit, is yet another side-effect of MDE’s role
as a diverse and constantly evolving body of knowledge (Craveiro, 2021c) (Chapter 2).

29

5.5 COMPARISON WITH OTHER APPROACHES

carefully designed to be compact in scope. One might go as far as saying it is
only small subset of the overall MDE vision, and with a different direction of
travel: where MDE shows a tendency towards increased rigour, abstraction
and completeness®?, MASD tilts the balance towards empiricism and engi-
neering. This focus on the small is a fundamental characteristic of MASD and
is also in line with our findings about MDE’s state of practice (¢f. Chapter 3).
In this sense, MASD's use of MDE is seen mostly as an implementation detail.
This is a subtle but crucial point so perhaps worthy of further elaboration.

Just as MDE’s vision is to insulate domain experts from the intricacies of
the implementation details, allowing them to focus on the problem space
and narrowing the problem-implementation gap, so does MASD use MDE
itself to insulate its domain experts — i.e., software engineers — from the
implementation details — that is, the MDE techniques used by MASD, as well
as the solution space implementation details — in order to allow them to focus
on their problem space — the engineering of software systems — therefore
reducing their problem-implementation gap: the distance between models of
infrastructural code and infrastructure code itself.

On the face of it, this distinctive focus on software engineers and the solution
space may appear to confront MDA's calls for direct representation (cf. Figure
2.1). MASD'’s intent is not to make any statements with regards to the validity
of either of these approaches, but merely to clarify the distinctiveness of
their scopes. There is thus a need to integrate MASD with other MDE based
approaches, such as MDA, in order to cater for direct representation and the
problem space.

The relationship between MASD and AC-MDSD is also of great relevance.
Whilst MASD can be thought of as one possible realisation of the AC-MDSD
principles, it is also designed to address our deep-seated concerns with naive
applications of the approach (cf. Section 2.3.3). What is novel about MASD,
when compared against AC-MDSD, is its view of infrastructural code as a
problem domain on its own right, worthy of study by employing MDE tech-
niques. That is, unlike typical AC-MDSD solutions, which are customised for
the specifics of a given problem, the objective of MASD is to find solutions
that are applicable to the problem of infrastructural code in general.

This is a very important conceptual leap because we no longer view infras-
tructure code as a system-specific attribute, with perhaps some aspects that
are generalisable; instead, we view it as a completely generalisable problem
domain, which requires a degree of customisation for specific systems. Where
AC-MDSD sees a localised solution that may only share few commonalities
with other localised solutions, MASD sees it merely as the expression of vari-
ability between two different MASD models. As all quests for generality are
fraught with difficulties, MASD has taken special care to temper these efforts
via its core values (cf. Section 5.2.3).

And so ends our exploration of MASD as a methodology for the development
of software systems. The next chapter’s focus is on exploring the conceptual
model imposed by MASD and all of its associated machinery.

As inferred by looking at research roadmaps such as France and Rumpe’s (France and Rumpe,
2007), as well as Mussbacher et al.’s (Mussbacher et al., 2014).

75

Problem space /
solution space
inversion

Versus MDA

Versus
AC-MDSD

Generalisation,
variability

76 THE MASD METHODOLOGY

=

[S§]

DOMAIN ARCHITECTURE

One thing that has not changed and that has been proven repeatedly is
that all real-world software benefits from physical design. That is, the
way in which our logical content is factored and partitioned within files
and libraries will govern our ability to identify, develop, test, maintain
and reuse the software we create. In fact, the architecture that results
from thoughful physical design at every level of aggregation continues to
demonstrate its effectiveness in industry every day.

— John Lakos (Lakos, 2019)

AT THE CENTRE OF MASD lies its domain architecture. The present chap-
ter builds upon the backdrop sketched by Section 5.3 and provides a
comprehensive picture of its motivation, core entities and associations.* The
chapter first discusses the three individual domains that make up the domain
architecture: the physical domain (Section 6.1), the logical domain (Section
6.2) and the variability domain (Section 6.3). Section 6.4 then concludes the
chapter by bringing these three domains together to form the Logical-Physical
Space (LPS).

Before entering the analysis proper, a word is warranted with respect to the

descriptions and figures employed within. These are not intended as formal

models but are instead at a higher level of abstraction, and should be under-
stood as exemplary cartoons, freely mixing architectural levels as necessary —
e.g., metamodels, models and object instances may be combined on the same

plane, if doing so makes an explanation more accessible.> Secondly, a note

on typography: a constant width font is used to highlight terms of MASD’s

ubiquitous language.3

With that in mind, let us enter the first and most important domain within
MASD.

MASD’s domain architecture and all of its related topics developed in this chapter fall under the
remit of the MSS and the MSS Development Process (cf. Section 5.4.2.2).

In other words, we are not portraying implementation level details by design, because doing so
invariably obscures the point at hand. Furthermore, implementations change as frequently as
our understanding does, so, at best, one can only hope to describe a snapshot in time, soon to be
superseded. This concern will be mitigated with the chapter’s abstract descriptions, as their focus
is to convey the process by which the implementation reached its present state rather than the
state itself.

Whilst agreeing in general with the argument Evans puts forward (Evans, 2004), his use of
CAPITAL LETTERS to highlight terms of the ubiquitous language was deemed detrimental to
readability. Using a different font for the same end, in our opinion, is an acceptable compromise.
That said, as MASD'’s vocabulary is large, we opted for highlighting only those keywords defined
in the current sub-domain under analysis.

77

Chapter
overview

Initial
considerations

78 DOMAIN ARCHITECTURE

6.1 PHYSICAL DOMAIN

The physical domain is the subset of MASD’s problem domain comprised of

physical artefacts, as depicted by Figure 6.1, and it is predictably dominated

by file artefacts and folder artefacts. Prior to analysing these entities in detail,

Section one must first describe the processes that led to the present state of affairs,
Overview in terms of physical analysis and design (Section 6.1.1), physical modeling
(Section 6.1.2) and, subsequently, by characterising its relationship with input

variability (Section 6.1.3). The remaining subsections will then cover in detail

each of the core physical elements and their associations (Sections 6.1.4 to

6.1.7).

< contains

File artefacts are
often associated with Artefact
a Technical Space.)

]
RN
Sources of schematic and Folder Artefact
9 repetitive physical patterns. *
[Binary File Artefact| [Text File Artefact| Segments

made ofe

[
|Techni(a| Space{o— File Artefact|

Figure 6.1: Key entities in the physical domain.

6.1.1 Physical Analysis and Design

At a first glance, MASD’s physical analysis and design appears to be a simple
expression of Domain Engineering’s Domain Analysis and Domain Design
(Craveiro, 2021c) (Chapter 6), when applied to MASD’s physical domain.
However, since the shift in perspective caused by the "problem space / solution
Versus Domain space inversion” adds significant complexity (cf. Section 5.5), it is important
Engineering — to understand the specificity of this application. Figure 6.2 helps in doing so
by portraying both in simplified form: on the left, we have Domain Analysis
and Domain Design — often used in an MDE context — and, on the right,
MASD'’s physical analysis and design. The two approaches are separated by a
bold black line.

Typical MDE Analysis and Design MASD Physical Analysis and Design

__

+ Technical H R RLLLLET T

| space O:

Logical H : : :
Representation H MASD
Physical Physical Problem
Representation ! Representation Domain

Logica

} ! Technical
space

Core Problem
Domain

Problem
Domain

Figure 6.2: MDE analysis versus MASD physical analysis.

In the figure, yellow circles represent physical artefacts such as files and di-
rectories, clustered around dashed blue squares that denote individual TSs.
For their part, light-blue circles represent logical elements such as classes

6.1 PHYSICAL DOMAIN

and other high-level modeling constructs, likely in TS agnostic form. On the
left side of the figure, one begins by observing a nebulous problem domain
and designing a set of logical entities to form one or more models that fit
requirements. Those logical entities will ultimately give rise to concrete phys-
ical entities through refinement, although these are often viewed as mere
by-products of the process.

In contrast, the right-hand side of the picture reflects MASD’s call for the
reversal of this approach: physical entities themselves become the problem
domain and one arrives at their logical representation, denoted by orange
circles, through empirical analysis, with the core problem domain losing
relevance in the process (far right).> Though perhaps not clear from the
diagram, MASD’s emphasis is on a comparative analysis of physical elements
across TSs, not on the metamodels associated with each TS. It is so because
MASD’s analysis is driven by empirical evidence within the physical domain,
rather than by the logical entities and meta-entities that inhabit each TS —even
if the latter is more in keeping with MDE’s ethos of metamodel to metamodel
transforms (Craveiro, 2021c) (Chapter 3).6

A consequence of this favouring of empirical evidence is that physical analysis
and design became distinct from that of their traditional MDE counterparts,
where discussions with stakeholders and UML diagrams from a business
viewpoint abound.” In contrast, their application within MASD is closer, at
least in spirit, to the modeling of scientific objects such as neurons, which
were inspirational.® Since the object of our study are Schematic and Repetitive
Physical Patterns (SRPPs), we opted for designing a specific approach for their
handling which combines physical analysis and design into a single process,
described next.?

6.1.2 Physical Modeling Process

The first challenge in modeling SRPPs is in defining their nature. As already al-
luded to in Section 5.2.2, SRPPs are conceptually close to Stahl et al.’s schematic
and repetitive code; however, physical patterns were preferred over code so as
to bring clarity to our ubiquitous language. Whilst source code is MASD’s
primary target — it is, by definition, the central artefact type in a conventional
software product — the methodology aims to model any physical entity man-

Mellor (Mellor, 2004) and others in the Executable UML camp call for executable models, pre-
sumably bypassing the need for a physical representation altogether.

Note that we are referring to the development of MASD, rather than its application (cf. Section
5.42.3).

That is not to say TS metamodels are disregarded entirely. As we shall see later on (cf. Section
6.2), they are very useful as an input to the design process, but cannot be the main driver because
much of its detail is too low-level to be suitable for our purposes.

MDA'’s CIM is a good example of modeling at this level of abstraction (cf. Section 2.3.2).

Here we find a typical example of cross-pollination in disparate fields. The first two years of our
PhD were spent with the Computational Neuroscience lab, working with microscopic imagery
and 3D mesh generation for neurons. The scientific processes used for this kind of modeling
forms the basis of the process put forward by the present analysis.

Whilst SRPPs have already been mentioned (cf. Section 5.2.2), their discussion was purposely left
to the present moment, so that it could be articulated in the broader context of physical modeling.

79

MDE figure
commentary

MASD figure
commentary

Analysis and
design approach

Versus schematic and
repetitive code

8o

Axioms

Reproduction

Modeling process

10

11

12

13

DOMAIN ARCHITECTURE

ifesting schematic and repetitive patterns, making the new nomenclature a
better reflection of these broader aspirations."®

Terminology aside, an open question remained on what was meant precisely by
the term, so placing the concept on firmer ground was a priority. We did so by
stating three axioms upon which all our analysis was to rest. First, ascertaining
what is “schematic and repetitive” was declared to be a subjective matter,
relative to many qualitative factors such as the experience of the observer, and
thus demanding extensional definitions."***

Secondly, regardless of their subjective nature, we decided that:

o not all physical entities have patterns, nor are all patterns schematic and
repetitive; these we deemed to lay largely beyond the scope of MASD."3

e a physical entity may be partially composed of schematic and repetitive
patterns, and thus only partially under the remit of MASD (cf. Section

6.1.4.3).

Thirdly, and most significantly, we equated the discovery of physical entities
with schematic and repetitive patterns to the modeling of physical entities at a
level of detail sufficient for their reproduction. In other words, one determines
if a physical pattern is schematic and repetitive by reproducing it by automated
means; if it is possible to do so, then a pattern is deemed to be an SRPP.

What follows from these axioms is that an empirical process of discovery is
needed in order to uncover patterns of interest. To arrive at such process,
ad-hoc experimentation was carried out on a number of artefacts from an initial
set of projects, until reproduction was achieved. Reflecting on the endeavour,
we identified a number of well-defined steps:

1. Sampling: one must first determine the size of the physical sample,
ensuring adequate coverage — e.g. across different TSs, possibly of
different kinds, files of different types, and so forth.

2. Decomposition (or Segmentation): each entity in the sample must be
analysed in detail, and divided into well-defined constituent parts called
segments.

The term text was also considered, for much the same reasons Model-to-Code (M2C) transforms
became known as Model-to-Text (M2T) transforms within MDE. However, schematic and repetitive
text was deemed insufficiently general because patterns can span other types of physical artefacts
besides text files.

Extensional definitions are also referred to as definition by enumeration; that is, the definition of
a concept by enumerating all of its parts. For details on definition by enumeration and other
nuances related to definitions, the interested reader is directed towards Hebenstreit (Hebenstreit,
2007). For a high-level overview, Del Gaudio and Branco’s introduction may sulffice (Del Gaudio
and Branco, 2009).

This assumption does not preclude using formal methods to define the nature of schematic and
repetitive patterns, but merely states that this avenue was not exploited by the present work,
relying instead on empirical forms of analysis. Similarly, another interesting but unexplored
avenue is the use of ML techniques.

Largely, because one can still make use of MASD's infrastructure as a “helper”, and then manually
override the generated artefacts as needed.

14
15
16
17

6.1 PHYSICAL DOMAIN

3. Labelling and Classification: the identified parts must be named and
categorised by means of taxonomic and morphological analysis. These
will give rise to models of the physical entities and their constituent
parts.

4. Reconstruction: the models are then used to recreate the original phys-
ical entity — for example via M2T transforms — at which point the
pattern is declared to be a SRPP.

5. Cataloguing and Parameterisation: finally, the model for the entity is
placed in the broader context of the existing catalogue of patterns. Doing
so may entail merging the functionality with existing entities, adding
additional parameterisation to existing entities, and so on.

Whilst well-defined in theory, note that the modeling process laid out here
is a generalisation of what happens in practice, for these steps are seldom
applied in such a clear-cut manner. There often is an overlap between steps,
as well as a need for continued iteration in order to obtain the best results. In
addition, though our work incorporated all of these steps, several challenges
were faced initially due to the ad-hoc nature of the approach, as we tried to gain
a better understanding of its mechanics. Sampling proved to be particularly
problematic. Firstly, our original sample was composed of two trivial C++
and C# projects — in software engineering parlance, “hello world” projects
— but these evolved over time and ultimately become the MRI's C++ and
C# reference products (c¢f. Section 8.2)."4*5 Secondly, the source code of the
MRI code generator was also incorporated into our sample, even as it mu-
tated drastically over time (cf. Section 8.1).1%'7 Clearly, a more disciplined
experimental approach would have been beneficial, with a rigorous process
for artefact selection and better care taken in managing artefact evolution.

A second type of challenge was in distinguishing between physical elements,
models and their instances, since we initially referred to all using the same
terms (i.e. files and directories). In order to avoid confusion between real
files and directories, as found in a filesystem, and their representation within
MASD, we decided to qualify MASD physical entities with artefact (e.g. file
artefact, folder artefact). This terminology was incorporated into MASD'’s ubiq-
uitous language and is used consistently throughout the present manuscript.
In the same vein, though not often mentioned to avoid confusion, MASD’s
physical elements are still logical representations of concrete physical ele-
ments.

As Figure 6.3 should make clear, we are not referring to the logical dimension
within MASD (c.f Section 6.2), but instead to the modeling and subsequent
refining of MASD's logical representation of physical entities into its final form,
encompassed by the area of the dashed blue square in the picture. There, we
take an instance of a physical model element (circles in orange) and create
the corresponding file or folder in the filesystem (circles in yellow). Once
the terminology was modified to reflect this, the ubiquitous language became
unambiguous.

https://github.com/MASD-Project/csharp ref impl
https://github.com/MASD-Project/cpp ref impl

https://github.com/MASD-Project/dogen

All findings within this chapter are based on this moving sample of physical entities, which we
cover in more detail on Chapter 8.

81

Sampling challenges

Vocabulary challenges

Logical
representations

https://github.com/MASD-Project/csharp_ref_impl
https://github.com/MASD-Project/cpp_ref_impl
https://github.com/MASD-Project/dogen

82

SRPPs in the MIRI

Patterns of patterns

DOMAIN ARCHITECTURE

AN
Logical representation
of logical entities.

Logical Physical
Domain Domain

..

Filesystem

Files and
directories
stored in a
filesystem

Logical Representation Physical Representation

Figure 6.3: Transforms from logical representation to filesystem.

Regardless of challenges, the process has allowed us to identify and incor-
porate a number of physical patterns, many of which proved useful in the
implementation of the MRI’s code generator itself. What follows is a non-
exhaustive list of SRPPs:

type definitions, including constructors and properties (getters and
setters);

GoF design patterns (Vlissides et al., 1995);

serialisation support for different formats such as JSON and XML, pos-
sibly using different serialisation libraries;

several mechanisms for test data generation;

pretty-printing — i.e. dumping object state into a human-readable string
representation;

ORM mapping, providing RDBMS support;

hashing — the generation of a hash function for the given state of an
object;

lexical casting, converting a C++ type into a string representation;

unit test generation, validating the functionality of the generated fea-
tures;

generation of mocks for unit testing;

and many more.

As more physical patterns were identified and implemented, further empirical
evidence was accumulated on their general characteristics. Since the contin-
ued growth of the pattern catalogue is a key concern of the methodology,
and given that reconstruction is not always feasible, distinguishing what is
reconstructible from what is not became a central question to MASD. In or-

18

19

6.1 PHYSICAL DOMAIN

der to better understand the commonalities between the patterns within the
catalogue, we decided to classify them with regards to input variability™®.

6.1.3 Taxonomy of Functions of Input Variability

A property common to the captured SRPPs is that they all are trivial func-
tions of input variability. Somewhat tautologically, a trivial function of input
variability is defined to be any physical entity that can be fully or partially
reproduced, given arbitrary (but valid) input describing structural or non-
structural variability."® Reflecting on the modeling process (cf. Section 6.1.2),
we realised that the steps of decomposition, labelling and classification are in
effect an exercise in teasing apart functional dependencies on input variability
from each physical entity, as explained by the flowchart in Figure 6.4.

Obtain physical
artefact

Is it a function
of input
variability?

Is it a trivial
function of
Input variability?

Artefact must
be handwritten

Model artefact as
a trivial function of
non-structural variability

Is it a trival
function of structural
variability?

Model artefact as
a trivial function of
structural variability

Figure 6.4: Physical elements and variability.

A taxonomy of variability has been discussed in detail on Section 6.4 of (Craveiro, 2021¢) (p.

56). It is largely based on the work of Groher and Volter (Groher and Voelter, 2007; Groher

and Voelter, 2009). However, a short summary is sufficient for the purposes of this chapter.

Variability can be grouped into two kinds: input variability, reflecting variation within the input
models, and generational variability, concerning variability within the generated variants. Input
variability is further split into structural and non-structural variability: “Structural variability is
described using creative construction DSLs, whereas non-structural variability can be described
using configuration languages.” Generational variability is subdivided into positive and negative
variability: ”[in positive variability, the] assembly of the variant starts with a small core, and
additional parts are added depending on the presence or absence of features in the configuration
model. [...] [For negative variability, the] assembly process starts by first manually building the
‘overall’ model with all features selected.”

There is an implicit assumption here; empirical evidence is required in order to decide if a given
text can be generated or not. This can be achieved by creating M2T transforms that regenerate the
desired text. In addition, in keeping with our pragmatic approach, we are not looking for formal
proof that all structural permutations result in well-defined output, merely empirical evidence
regarding a set of common cases.

83

Trivial functions

84

Taxonomy description

20

21
22

23

DOMAIN ARCHITECTURE

From this perspective, one can then create a taxonomy of the identified SRPPs

with regards to input variability, leading us to Figure 6.5. Physical elements are

first classified as dependent or independent of input variability. Any element

which is independent of input variability is inherently not reproducible —
for example, free text, arbitrary directory structures and the like — and thus

ignored (marked in red). Next, physical elements which are functions of input

variability can either be complex functions — that is, functions which cannot

be described in a mechanical manner, and thus must be ignored — or they are

trivial functions of input variability. As there are two kinds of input variability,
there are also two kinds of trivial functions: trivial functions of structural

variability and trivial functions of non-structural variability.*° Two sample

trivial functions of non-structural variability are supplied: boilerplate and

a long-form licence text such as the GNU Public Licence.?*** Finally, trivial

functions of structural variability — which we often abbreviate to just trivial

structural functions — are classified into two kinds, and several examples are

provided for both.

Physical Element

A

[1
Independent of Input Variabilityl |Functinn of Input Van'abilityl

[
|Trivial Function of Input Variablity| |Cnmplex Function of Input Variablity|

|Trivial Function of Structural Variablity| |Trivial Function of Non-Structural Variablityl

| [
|Trivial Behaviuur| |Bnilerplate|

[[[[[|
m |Enumeration| |Pretty-printing| |Seria|isatinn| |Trivial Unit Test| |DRM Mappingl |Hashing| |Design Patternsl
AN FAN

Type Definition

|Text Serialisatiunl |Binary Serialisatinnl m m

[]]
[1soN serialisation] [XML serialisation] ~ [ASN.1 Serialisation|

Figure 6.5: Taxonomy of physical elements with regards to variability.

Trivial structural functions have two main use cases. The first and most obvious
is the definition of data types — e.g., classes and their attributes.?3 The second
use case is the implementation of simple behaviours for those data structures
which depend on structural variability, such as serialisation and ORM support.

Of course, the matter is simplified here for didactic purposes, since physical elements tend to be
functions of both types of input variability simultaneously. For example, a type definition is a
function of structural variability, but we often then further parameterise it — e.g. generate a full
constructor, generate getters only, etc. Nonetheless, one variability type can be said to be dominant
over the other, for any given physical entity.

https://www.gnu.org/licenses/gpl-3.0.en.html

Wikipedia provides the following definition (emphasis ours): ”Boilerplate text, or simply boilerplate,
is any written text (copy) that can be reused in new contexts or applications without significant
changes to the original.” (Boilerplate text, 2021)

More specifically, we are building upon the DTO concept. Wikipedia tells us that (emphasis ours)

The difference between data transfer objects and business objects or data access
objects is that a DTO does not have any behavior except for storage, retrieval, serialization
and deserialization of its own data (mutators, accessors, parsers and serializers). In
other words, DTOs are simple objects that should not contain any business logic
but may contain serialization and deserialization mechanisms for transferring data
over the wire.

https://www.gnu.org/licenses/gpl-3.0.en.html

24

25

26

27

6.1 PHYSICAL DOMAIN

These we refer to as trivial behaviours, in contrast to complex behaviours which
transcend “simple mathematization” — to borrow Hutchinson et al.’s wise
words, out of context though they may be (Hutchinson, Rouncefield, and
Whittle, 2011) — and thus demand manual handling. From this lens, special
purpose code generators (Craveiro, 2021d) are seen to either generate type
definitions and a single trivial behaviour — e.g. protobuf and the XSD tool
generate the type definition and a serialisation format — or solely a trivial
behaviour — e.g. ODB generates the ORM infrastructure, but relies on an ex-
isting type definition. With SRPP, what MASD proposes is the inventorisation
of all such trivial behaviours and their unification under a single, integrated,
framework.>4

Once a taxonomy for input variability functions had been arrived at, we then
set on devising a scheme for their composition. The literature provided ample
material in this regard, which was found to be inspirational but ultimately
unsuitable for our needs.?> Using MASD’s philosophy as a guide (cf. Section
5.2), we settled on a simple — and consequently inflexible — approach: a
generated artefact may only be composed of zero or one trivial structural
functions and zero or more trivial non-structural functions.?® Admittedly, the
limitation is severe, but the trade-off removes most of the complexity inherent
to composition, and is therefore in keeping with the methodology’s goals.

The limitation is perhaps best understood by means of an example. In tradi-
tional OO programs, objects accumulate different kinds of behaviours, in an

attempt to model entities found in the problem domain. Thus, it is common

for a class to contain both domain-specific behaviours — e.g. a Shape may be

able to Draw, Rotate and so forth — as well as infrastructural behaviours —
e.g. the Shape may also be able to SerialiseToJson, ToString and the like. It

is often the case that all of these behaviours are implemented as methods in

one file. The restrictions on composition described above mean that MASD

explicitly forbids such behavioural composition with regards to infrastructure;

each of these behaviours —e.g. ”JSON Serialisation”, ”Pretty-printing”, etc.

— is mapped to a separate trivial structural function and is associated with a

single file artefact.>”

Having embraced the unsophisticated approach, it was then straightforward
to align generational variability with the specific use cases identified within
the physical space:

In fact, we propose to go even further and integrate special purpose code generators themselves
within the framework as cartridges, (cf. Section 6.1.7).

For instance, there was an attempt to use Groher and Volter’s Aspect-Oriented Model Driven PLE
(AO-MD-PLE) (Groher and Voelter, 2007; Groher and Voelter, 2009) — a capable AOP-based
approach which ”“integrates model-driven software development and product line engineering
by providing means for expressing variability on (sic.) model level.” Given that the composition
of trivial functions is reminiscent of AOP’s concerns, it seemed a good fit; however, in practice, it
proved too complex: “In our opinion, its main downside is complexity, not only due to challenges
inherent to AOP itself, but also because it uses several different tools to implement the described
functionality and, understandably, requires changes at all levels of the stack.” (Craveiro, 2021c)
(p- 57)-

Both are allowed to be zero because the empty or null file artefact is theoretically composed of zero
trivial structural functions and zero trivial non-structural functions. In practice, it is implemented
as a trivial non-structural function.

The problem domain specific behaviours are, of course, either not functions of structure or
non-trivial (i.e. complex) functions of structure, and so must be handcrafted (cf. Section 6.1.4.3).

85

Trivial and complex
behaviours

Function composition

Limits to composition

86

Application of
generational
variability

Approach Summary

DOMAIN ARCHITECTURE

o Positive variability was deemed to be best suited to modeling the inter-

artefact composition of trivial structural functions. By making these
responsible for separate artefacts, we greatly simplified the process of
stitching together the final implementation — which now becomes a
mere expression of artefact relations (c¢f. Section 6.1.4). In addition, non-
structural variability can be used to configure the presence or absence
of each top-level function, in turn determining artefact relations. Thus,
whilst still a difficult problem, it opens the door to the application of
solving (cf. Section 6.3).

Negative variability was deemed to be better suited to modeling intra-
artefact instances of non-structural variability. For example, one can
enable or disable class constructors as part of a type definition in a
straightforward manner, adding little complexity to the overall process.

All of these moving parts can now be summarised into a cohesive narrative:

MASD locates physical entities with SRPP by empirical means. Con-
tent is deemed to be a SRPP if a trivial function can be created that
reconstructs the target.

MTs (M2Ts in particular) are be used to implement trivial functions of
input variability. These make use of negative variability techniques to
handle non-structural variability.

each generated artefact must have a single responsibility, and that re-
sponsibility imbues the artefact with a type within MASD’s physical
representation.?® The type is the trivial structural function.

a broader framework is required to handle the inter-artefact composition
of trivial functions of input variability, making use of positive variability
techniques. As we shall see, MASD'’s solution is to embed the framework
into the geometry of physical space itself (cf. Section 6.1.5).

Now that both the physical modeling process as well as the effect of variability
on the object of study are understood, we can put these ideas in practice by
analysing physical entities. Given their centrality, file artefacts are a most
fitting point from whence to begin our exploration.

6.1.4 File Artefacts

File artefactsin MASD are a generalisation of regular files as defined by the
POSIX specification (“IEEE Standard for Information Technology-Portable Op-

28 The approach echoes a well known principle within software engineering called the single-
responsibility principle, which Wikipedia defines as follows:

The single-responsibility principle (SRP) is a computer-programming principle that
states that every module, class or function in a computer program should have
responsibility over a single part of that program’s functionality, and it should encap-
sulate that part. All of that module, class or function’s services should be narrowly
aligned with that responsibility. (Single-responsibility principle, 2021)

29

30
31
32

6.1 PHYSICAL DOMAIN

erating System Interface (POSIX(TM)) Base Specifications, Issue 7” 2018).>9
They can be organised hierarchically using folder artefacts, a generalisa-
tion of POSIX’s directories which will be the subject of further scrutiny in
Section 6.1.5. The next three sections demonstrate how physical modeling
helped reveal the deep structure3® within file artefacts by dissecting their
taxonomy, morphology and relationships.

6.1.4.1 Taxonomy

MASD divides file artefacts into two types, according to their content
encoding: text file artefacts and binary file artefacts (Figure 6.1).
The latter are outside the methodology’s present remit, and hence marked
in red in this and subsequent figures. Encoding is a salient property of file
artefacts, but it is only a starting point for their taxonomy; Figure 6.6 provides
an example of a more detailed taxonomic view.

A

Folder Artefact File Artefact
Containse Containsk

[Text Fite Artefact] [Binary Fiie Artefact] Content snmd;ngﬁ

|
I
Da] |t
FA A FA
l—l_\ : I_l_V—I
I]
I [I I

I I [I
[org-mode] [Markdown| [c++ Code| [c# Code| [Build File Artefact| [JSON Data]| [XML Data| [cSV Data|

Alignment to a
specific TS.

[Header File Artefact] [1Implementation File Artefact] [Makefite]

Figure 6.6: Example file taxonomy.

In this taxonomy, the green box contains three classes of file artefacts ac-
cording to their purpose: documentation, source code and data. Conversely,
the blue box consists of artefacts that are aligned with a specific TS. For ex-
ample, documentation is sub-divided into org-mode3' and markdown3?, two
popular formats used in FOSS projects. Source code has two sample program-
ming languages, C++ code and C# code. The C++ TS is of particular interest
because it supports several distinct file types. The figure depicts header file
artefacts — typically used to declare types and functions to be called else-
where — and implementation file artefacts; other types do exist within
this TS, such as module definitions, as per the latest revisions of the language

For context, the relevant POSIX concepts are as follows. A file is a stream of bytes. Files are
classified as either regular files or special files. Regular files are stored in media such as a disk drive
and support random access. A directory is a special file that lists a set of files and their associated
attributes.

To make use of Kottemann and Konsynsk vivid terminology (Kottemann and Konsynski, 1984).
https://orgmode.org/

https://daringfireball.net/projects/markdown/

87

Versus POSIX

Encoding

File artefact taxonomy

https://orgmode.org/
https://daringfireball.net/projects/markdown/

88

Classification
challenges

Structural analysis

C++ example

33

34

35
36

37

DOMAIN ARCHITECTURE

(ISO,n.d.).3334 Build file artefacts were added to the diagram to demon-
strate that not all source code is connected with a programming language,
with makefiles illustrating the kind of instances to be found in this category.
Finally, three data file artefacts are shown, targetting JSON, XML and CSV
representations.

One may infer from the above description that artefact classification is largely
mechanical, but the process proved more challenging in practice. Let us con-
sider the case of the Visual Studio35 IDE projects, where there are at least two
file types conveying project information: .csproj for C# projects and . vcxproj

for C++ projects. These files have been expressed in XML for a number of
releases, but later versions use JSON instead. In either case, they could be
plausibly classified as data or source code, so an amount of judgement is
needed to guide the decision making. Within MASD they were classified as
build file artefacts, because the internal representation was deemed less
important than the role they play on the development process. Similarly, it’s
also debatable whether build file artefacts constitute source code or are
a separate category altogether, such as IaC. These and other questions are grey
areas in the classification process.

6.1.4.2 Morphology

Beyond taxonomy, physical modeling also interrogated the composition of
file artefacts by inspecting their internal structure. Using elements from
the before-mentioned sample projects, a morphology was constructed by divid-
ing each file into its constituent parts until atomic segments were reached.3®
The analysis greatly benefited from our prior research on special purpose
code generators (Craveiro, 2021d), because tools such as ODB had already
identified segments such as prologue and epilogue.

Figure 6.7 exemplifies the segmentation process by decomposing a C++ enu-
meration header file into its fundamental parts, which shall now be described.
The file in question has three top-level segments: the prologue, the body and
the epilogue. The prologue and the epilogue make up the boilerplate,
thusly named because it has little sensitivity to structural variability.3” The
prologue is composed of the following sections:

This observation may appear to be cursory but it is indeed significant: not all file types are
supported for all versions of a given TS. The TS version has, of course, an impact on the available
syntax of the language as well.

Note that file types have a complex relationship with file extensions. C++ is, as always, the most
exotic of all TSs surveyed. In general, header files have a different extension from implementation
files, but C++ custom allows for a diverse set of extensions. For example, header files can use .h,
.H, .hxx, .hpp, etc. — with many other extensions having been observed in the wild (.ixx,
ipp and the like). Similarly, implementation files use .C, .cpp, .cxx and so on. More generally,
MASD models file extensions as non-structural variability associated with file artefacts.
https://visualstudio.microsoft.com/

n.b., segments are atomic from a reconstruction perspective, not from a TS metamodel perspective
This may perhaps be obvious given they are not a TS metamodel concept, but its worthwhile
clarifying.

The wording was chosen carefully here for, as we shall see, the boilerplate may have a small amount
of sensitivity towards structural variability. It is, of course, highly sensitive to non-structural
variability.

https://visualstudio.microsoft.com/

6.1 PHYSICAL DOMAIN

Fields

\ Editor modeline
[~ Copyrignt atiribution Decoration

Short-form licence

Boilerplate: Prologue

Header guard start

|— include block (none required)
— Namespace start
| Type documentation

Body

Type definition

Namespace end

Boilerplate: Epilogue

Header guard end

Figure 6.7: Morphology of a sample C++ file.

o the decoration, so named because it mainly contains informational
elements. It is made up of the following:

- the editor modeline, where editor-specific parameters are config-
ured such as the spacing to use in Emacs or Vi, and variables of a
similar ilk. The editor modeline is composed of a start marker,
a set of key-value-pairs called fields, a separator between them
and an end marker.

— the copyright attribution, identifying the author or authors of
the file. The copyright attribution is composed of zero or more
copyright attribution entries, each made up of a date range,
a copyright holder and a copyright email address.

— ashort-form licence, detailing the terms and conditions for the
source code. A long-form licenceisalso available, butitis a stand-
alone file whereas the short-form licenceis a file sub-component.

o the header guard, used by C++ to ensure a type is defined only on first
inclusion, with subsequent mentions acting as no-ops. Header guards
are the first scoped segment, with a start and an end; the start is part of
the prologue whereas the end belongs to the epilogue. Also of signifi-
cance is the fact that the header guard name is a function of structural
variability — more specifically, of namespace containment.

Next we have the body, containing the core of the file and highly sensitive to
structural variability. The body in the figure is made up of:

e a namespace, the second scoped segment within the file, with its own
start and end.

89

Prologue

90 DOMAIN ARCHITECTURE

Body e the type documentation, expressed in Doxygen notation.3

e the type definition. Note that each individual entry within the enu-
meration can have its own documentation, if supplied. In the example,
only the invalid enumerator makes use of this feature. Significantly,
note that the type definition is not a scoped segment in MASD because
it is contiguous; that is, it does not contain other elements.

The file ends with the epilogue, in this particular case catering only for the

Epilogue closing of the header guard. Variability does allow for the editor modeline
to be moved onto the prologue when requested, via configuration, but this
feature is not used by the example.

Absent from Figure 6.7’s body is the include block, as the enumeration does
not depend on any other file.39 Since include blocks are a significant element
in MASD’s support for the C++ TS, a sample was sourced from elsewhere to

Include block ~ demonstrate the concept (Figure 6.8). The include block, bounded by a red
box in the picture, is typically located right after the header guard’s start. It is
composed of a set of include directives, often abbreviated to just includes,
one of which is labelled in green. Include directives contain the inclusion
path for all files the current artefact depends on, as exemplified in blue.

Include path

: Include block

cpp model/types/b
cpp L

Figure 6.8: Example include block.

Include blocks were also chosen for this analysis because they demonstrate
how and why MASD departs from TS concepts. In this particular case, the
language of the ISO Standard was overridden because include paths are
a clearer statement of intent when compared to the standard’s wording.4°

Departures from Similarly, the C and C++ programming language specifications do not require

TS terminology the notion of a “block” — includes may be placed anywhere in a file, according
to language syntax — whereas MASD finds having a cohesive entity to handle
inclusion extremely helpful for its modeling and reconstruction needs. In
other words, MASD cares about the observed patterns of use rather than the
full universe of possibilities allowed by the TS metamodel.

For completeness, Figure 6.9 carries out a similar morphological examina-
tion on an file from the C# TS, it too depicting an enumeration. There are
some noteworthy points, so a brief comparison between figures is in order.
Versus C# example Most of the elements are common to both Figure 6.7 and 6.9, with a few no-
table exceptions. The boilerplate of Figure 6.9 is composed entirely of the

38 https://www.doxygen.nl/index.html

39 File dependencies will be revisited towards the end of this section.

40 The C11 ISO Standard, in which the C++ ISO Standard depends, states: “Each library function is
declared, with a type that includes a prototype, in a header, whose contents are made available by
the #include preprocessing directive.” (ISO, 2011) (p. 181) It then goes on to muddy the waters
further, stating ”[a] header is not necessarily a source file, nor are the < and > delimited sequences
in header names necessarily valid source file names.” The term “header” therefore does not seem
particularly enlightening for the purposes of MASD’s domain language. Many similar decisions
were taken across the supported TSs.

https://www.doxygen.nl/index.html

Fields

6.1 PHYSICAL DOMAIN 91
[~~~ Editor modeline
[~ Copyrignt attribution Decoration
— Short-form licence
Boilerplate: Prologue
| Using block
| Namespace start
Type definition
Body
Namespace end
:I Boilerplate: Epilogue

Figure 6.9: Morphology of a sample C# file.

decoration, for no other elements are available to this TS, and the comment
syntax used in the decoration is shown to be sensitive to the TS.#* Within the
body, the using block replaces the before-mentioned include block in the
latter figure, though performing a similar role.

Overall, a surprising degree of symmetry emerges between these two exam-
ples, though they belong to two distinct TSs. To further the similarities, one

could — and indeed, MASD does — generalise the include block and the

using blockinto a dependencies block, as shown in Figure 6.10 below. This
generalisation of relations was carried out as part of our third and final take
on file artefacts, discussed in the next section.

Include Block
¢

Include Path

Using Block
{

Include Directive

C++ TS
4
_ » Dependency Directive
>
= {
C#TS

Figure 6.10: Dependencies generalisation.

6.1.4.3 Relations

TS-agnostic

Our last line of enquiry on file artefacts examined how they relate to
each other. In MASD, a file 4, is related to another file a, if the content of

41 In truth, both C# and C++ support the C style of comments, so one could conceivably have
exactly the same syntax. We chose not to do so because this style is more idiomatic to C# code, as
well as illustrating the point at hand. In MASD, idiomatic expressions are preferred unless they

add significant complexity.

Dependencies block

92

Definition

Relations and
input variability

Origin

DOMAIN ARCHITECTURE

a; has a functional dependency on a,, meaning that a, references a,.4> The
reference can be an include path, the use of a type, or any other form of
textual dependency. Mapping this example to MASD’s physical domain, the
file artefact A; — instantiated by the file a; — has a relation with file
artefact A, — instantiated by the file a,. In the relation, A, is known as the
referee whereas file A, is the referrer, as per Figure 6.11.

Referrer Referee

Ar A;

Reference I

Figure 6.11: Relation between two files A; and A,.

Having identified relations, the next task was to study their characteristics.
Reusing our initial project sample, three factors were uncovered which affect
relations: input variability, origin and mode of production. With regards
to input variability, the following types of file artefact relations were ob-
served:

o Constant relations: these cater for cases where a file artefact is al-
ways related to other well known file artefacts, insensitive to both
structural and non-structural variability. For example, if all C++ files
implement the std: : swap algorithm, an include of the C++ Standard
Library header file <algorithm> must always be present.43 Similarly, a
typical C# class will require a using System statement in order to im-
plement ToString. Both examples presume there are no switches with
which to toggle these features.

e Variable relations: these are dependencies on file artefact as a func-
tion of input variability. Given that there are two types of input variabil-
ity, it is unsurprising that two types of variable relations were found:

— As afunction of structural variability: that is, the shape of the body
of a file induces a dependency on another file. For example, if type
t1, defined in file a1, has an attribute of type t,, defined in file a,, it
will induce a dependency on the definition of type t,, manifesting
itself as a relation between file artefacts A; and A,.

— As a function of non-structural variability: meaning the configu-
ration selected by the user creates relationships between files. For
example, if a configuration enables an optional method, the method
itself may necessitate the inclusion of additional types.

File artefacts can also be categorised in terms of their origin, as per Figure
6.12. When viewed from a MASD perspective, file artefacts can either

42 Referencing doesn’t just apply to file content, but to identity, meaning its path, as well as to any

other associated meta-data. This requirement is necessary in order to support the full gamut of
variation associated with relations — e.g. C++ include statements, C# using statements efc.

43 The C++ std: : swap function exchanges the values of two objects, a and b. It is a utility method

often present in domain types.

6.1 PHYSICAL DOMAIN

be exogenous — that is, created externally — or endogenous — created and
managed internally within MASD.

!

Figure 6.12: Taxonomy of file origins.

File artefact relations are impacted by its origin, giving rise to the follow-

ing:

e Exogenous relations: when an File Artefact is related to one or more

file artefacts which are not generated by MASD. This encompasses,
for example, all of the files in the C++ Standard Library. The inclusion
path for external files is irregular — that is, it may follow any number of
conventions regarding folder nesting and file naming, all of which are
outside of MASD'’s control. If the referee is exogenous, it must first be
exposed to MASD via a PDM, containing all required information about
the file via non-structural variability, including a mapping to irregular
paths.

Endogenous relations: when a file artefact is related to one or more
file artefacts generated by MASD, either within the same product or
from a different product. The inclusion path of internal files is regular;
that is to say, MASD is able to enforce a convention for the include path,
making it largely — if not entirely — a function of structural variability
(cf. Section 6.1.5).

Finally, a concept closely related to a file artefact origin is its mode of
production — thatis, how it was originated. Files have three distinct modes of
production: manual, when produced by humans, automated, when produced
by machines and partially automated, when produced by a combination of
the two. Figure 6.13 depicts these three different modes in diagrammatic form.
A file produced manually is commonly known as handwritten or handcrafted.
Since the main method for the automated production of files is code generation,
these are known as code-generated or simply just generated. Finally, files
produced in part by automated means are known as partially generated /
automated, and require the merging of handwritten and generated content to
attain the file’s final form.

|Mode of Production |

Automated

[Partially Automated |

Figure 6.13: Taxonomy of modes of production.

93

Relations and origin

Mode of
production

94

Integration strategies

Relations and
integration strategies

Pervasive modeling

Querview

DOMAIN ARCHITECTURE

A software project that contains both handwritten and generated files, partially
or fully, will require one or more integration strategies (Greifenberg et al,,
2015a; Greifenberg et al., 2015b). The mode of production is significant to the
MASD domain architecture because it is responsible for setting out the menu
of available integration strategies to its end users; these strategies impact file
relations. Given that exogenous Referrers are outside of MASD’s remit by
definition, one needs to focus only on endogenous referrers and thus arrives
at the following permutations:

e Fully generated referrer. MASD is made aware of this relationship
via input variability — structural or non-structural, depending on the
case. This encompasses a number of sub-cases for the referee —e.g. en-
dogenously generated, endogenously partially generated, endogenously
handwritten, exogenous — but on all cases, its details must exposed into
the system; this is done via regular MASD models for all endogenous
cases and via PDMs for the exogenous case.

o Partially generated referrer. The generated portion of the file is handled
as per the previous case. However, the handwritten portion of the
file, created via protected regions, may bring in additional relations
which MASD must generate. These are made known to MASD via input
variability.

e Handwritten referrer. The user is responsible for creating the file, as
well as managing its relations. However, the relations must also be made
known to MASD via input variability, because they may impact other
files such as build files.

Joining all of these dots, one is forced to conclude that all file relations must
be exposed to MASD, regardless of origin or mode of production, if text
file reconstruction is to be achieved; and input variability, either structural
or non-structural, is how MASD is to be made aware of those relations. This
isn’t by any means a novel conclusion — it has been MDE’s long held position
that everything within a software product should be modeled — but it is
nonetheless significant that bottom-up analysis (i.e. physical to logical) is in
agreement with its top-down counterpart (i.e. logical to physical).

This conclusion is also an apt end to the physical analysis of files. A similar
process to what is described here was carried out for different types of text
files, across multiple TSs and with bodies carrying different payloads; once we
established a basic taxonomy and morphology that satisfied all our samples,
our attention then turned towards characterising folders.

6.1.5 Folder Artefacts

Like file artefacts, folder artefacts also have an underlying structure,
albeit simpler, and therefore it too can be unearthed via the physical modeling
process (cf. Section 6.1.2). The analysis is presented in three parts. First,
we discuss the folder taxonomy revealed by dissecting our sample, which
includes terse descriptions of the identified elements (Section 6.1.5.1). Next,

44

45

6.1 PHYSICAL DOMAIN

the interaction with different forms of input variability is investigated. Finally,
examples are provided to clarify all concepts discussed (Section 6.1.5.3).

6.1.5.1 Taxonomy

Folder artefacts possess an underlying taxonomy because folders serve
different purposes within a software product, storing distinct types of file
artefacts (cf. Section 6.1.4). Of course, products may be organised in any
number of possible folder hierarchies, each a function of complex variables
such as the prevailing coding standards, IDEs and other build tooling, the
target TS and many more. For example, a “typical” Java folder structure
(Maven Project, 2021) is noticeably distinct from that of C# (Microsoft, 2021),
with both TSs having experienced a considerable amount of change since
inception. C++ is further complex still, spanning the widest range of structural
variation of all considered TSs.44

Nevertheless, as it was with file artefacts, so it is with folder artefacts:
our objective is not to address all possible permutations found in the wild, but
instead to model variation within a sample set and then grow outwards from
this baseline. This incremental approach enabled us to extract key entities for
these specific use cases by abstracting away TS-specific details, and adding
parametrisation via non-structural variability as needed. When combined
with the requirements for the composition of input variability functions (cf.
Section 6.1.3), it allowed us to arrive at the taxonomy depicted by Figure 6.14,
and which will form the basis for the discussion in the present section.

Folder Artefact
A

Containse ‘ Containsk ‘ Contains

Product | [c c ion| c Major Technical Space

s
2
v
—l
o [5
= (2
S |5
A
3
e
v

Figure 6.14: Simplified folder artefact taxonomy.

The first folder artefact of interest to MASD represents the software product
itself, and it is expected to be the topmost of the hierarchy — typically, the
root in a version controlled repository. A product, from MASD’s physical
viewpoint, is a named and versioned artefact hierarchy evolving over time.
Products are ensembles of components4>, and these can have zero or more
TS-specific targets — e.g., executables, shared libraries, PDFs and the like.
Typically, each component is associated with one major TS, but multiple major

Unfortunately, we did not find material within the academic literature surveying folder layout. It
is however an issue of great interest within the FOSS community, as demonstrated by a survey
carried out by Pike (Colby Pike, 2018). There is also a wealth of community documents on
project layout such as (Colby Pike, 2021) and (Boris Kolpackov, 2021) (Section “Canonical Project
Structure”), which proved invaluable to our research and, to an extent, corroborate the above
statements. An area of further research is to collate the community contributions into a disciplined
academic survey.

Whilst Lakos’ work is of great significance to our own, we nevertheless disagreed with some of his
choices on terminology. For example, Lakos couples components with the C++ TS, defining these
as an amalgamation of header and implementation files. This was not a useful definition from a
MASD perspective, given our quest to find TS-agnostic entities, so it required redefinition. More
generally, Lakos work is best seen as inspirational to our analysis rather than its literal substrate.

95

Structural variation

Physical modeling

Products, components

96

Parts

Facets

Modules

4

(o)}

DOMAIN ARCHITECTURE

TSs are also supported, catering for more exotic topologies.4® For brevity,
components with a single major TS can elide the TS folder via non-structural
variability. Components within the ensemble can also form cohesive sub-groups
called component collections; where the component collectionismade up
of a single component, the component collection folder may be elided.

A component is divided into one or more parts; components with a single part
may omit the part folder. Parts were originally introduced to cater for the
filesystem layout of C++ projects, which often store public header files in
a different directory from that of private headers and implementation files
—e.g., the idiomatic include and src directories. However, the concept has
been subsequently generalised to cater for other artefact groupings such as
MASD models, as well as component documentation, both of which reside
on their own top-level folder within a component. Figure 6.15 illustrates the
generalisation via a part taxonomy with two TSs, and depicts a number of
sample parts for each.

AN
[|
Documentation Partl |C++ Technical Space Partl |Mndeling Partl |C# Technical Space Partl
|C++ Include Partl |C# Implementation Partl |C# Generated Tests Part
C++ Generated Tests Partl |C++ Implementation Part|

Figure 6.15: Simplified part taxonomy.

Parts may be further sub-divided into facets. A facet is a container for a set
of related file artefacts, all belonging to the same TS, and was introduced
as the mechanism to implement the composition of trivial structural functions
via positive variability techniques (Figure 6.16). Facets align closely with the
types of input variability functions identified in Figure 6.5, and can be thought
of as the containers of the concrete artefacts that emerge from this process —e.g.
the C++ type definition facet contains class type definitions, enumeration
type definitions and so on.

A

I
|C++ Technical Space Facetl C# Technical Space Facet

A

I [
[c++ Type Definition| [c# Type Definition| C# Serialisation

C++ Serialisation| [c++ Pretty Printing| [c# Pretty Printing]

Figure 6.16: Sample facet taxonomy.

It is within the facet that MASD’s physical domain finally meets the major
TS’s domain via modules. Modules are the physical representation of the pro-
gramming language concept of package or namespace, and their expression is

This additional complexity is required in order to support components with implementations
in multiple programming languages. It is of particular relevance in the context of tools such as
SWIG (Craveiro, 2021d) (Section 5.3).

47

48

49

6.1 PHYSICAL DOMAIN

mostly controlled by structural variability, though non-structural variability
also plays a vital role as the next section will explain.

6.1.5.2 Input Variability

Folder artefacts are also functions of input variability, though, as with
the taxonomy, the observed variation is narrower than that of files. Input
variability interacts with folder artefacts in the following manner:

e Structural variability determines the object graph of the physical model
entities within MASD that are part of the folder artefact taxonomy:.
For example, the product and its associated properties, its components,
available facets and so on.

e Non-structural variability controls, amongst other things, how the ob-
ject graph is transformed into entities on a filesystem. For example, if
a component targets a single TS, non-structural variability determines
whether a TS folder artefact is expressed into a folder or not. Non-
structural variability can also used to override default names of expressed
folders — e.g. changing the name of the C++ TS folder from cpp to say
cxx, etc.47

And with this we have now introduced the main concepts regarding folder
artefacts in MASD. Let us now turn to examples of their application, to bring
these concepts to life.

6.1.5.3 Examples

The terse definitions of the previous sections will now be made clearer by
reviewing four snapshots taken from our sample projects. These were selected
so as to portray the elements identified thus far from different viewpoints. A
UML package diagram is used to represent folder artefacts, with compo-
sition indicating containment — thus simplifying diagram structure — and
stereotypes signifying MASD physical types. The diagrams also introduce
the use of colour, which is exploited throughout MASD to convey the various
meta-elements in a distinctive manner.48:49

Tobe clear, the folder artefact representing the C++ TS is always called cpp within the physical
domain, as this is an intrinsic property of the entity. However, the MT chain that transforms the
folder artefact into a folder takes non-structural variability into account, allowing users to
override the folder’s name.

MASD’s use of colour is inspired on Coad et el.’s work (Coad, Luca, and Lefebvre, 1999), though
heavily customised for its purposes. Coad et el. put forward a compelling argument for the use of
colour in UML diagrams, stating (emphasis theirs): “Color gives us a way to encode additional
layers of information. The wise use of color increases the amount of content we can express.” (Coad,
Luca, and Lefebvre, 1999) (p. 6) Their analysis rests on the shoulders of Tufte (Tufte, Goeler,
and Benson, 1990), but it goes further by performing a thorough analysis of the types of logical
entities found in domain models. Part of MASD future work is to reconcile their approach with
the physical and logical entities we have identified.

At present, MASD makes use of an ad-hoc palette for its metamodel elements. A review of the
literature on the use of colour is needed, including material such as Waskom’s interesting work
(Waskom, 2021), so that solid foundations can be laid in this regard.

97

Folders and input
variability

Approach

98

C++ reference
implementation
example

Targets

DOMAIN ARCHITECTURE

The first example is sourced from MASD’s C++ reference model cpp_ref_impl
(¢f. Chapter 8). It contains a fragment of the product directory structure and is
depicted by Figure 6.17. The image shows a selection of top-level components
for the product, with facets and modules being deferred to subsequent ex-
amples.

<<Component Collection>>| <<Component Collection>>|
d

buil projects

rt>> <<Part>> <<Part>>
generated_tests generated_tests include

Figure 6.17: Sample top-level folders in cpp_ref_impl.

At the top we have the product folder artefact, cpp_ref_impl, with two
visible component collections: build and projects. Build contains an as-
sortment of files related to the build process such as CMake5° modules (cmake
component), as well as the output component, dealing with the artefacts
created by the build system. The main source code for the product lives
under the projects component collection, of which two components are
shown: cpp_ref impl.boost model and cpp_ref impl.compressed. Prefix-
ing a component name with the product name is a configuration choice which
can be disabled via non-structural variability. Both components have the same
internal structure, with C++ as the single major TS, and the TS folder sup-
pressed by non-structural variability; and both have three parts on show:
generated_tests, housing all code-generated test code, include, with all
header files for public inclusion, and src, with the implementation files.

<<Components>
cpp_ref_impl.boost_mode

<<Library>> <<Executable>>
cpp_ref Impl.boost_model cpp_ref_Impl.boost_model. generated_tests

| acepunds on 9

Figure 6.18: Targets in a sample Component.

The association between targets and components is not shown in the pre-
vious diagram but, for completeness, it is displayed in Figure 6.18. Both
components have two targets: an executable target — responsible for making
the generated tests executable, which is associated with the generated tests
part and runs all code-generated tests — and a library target, associated with
the src part. However, it is important to note that targets are not directly
related to folder artefacts in the MASD domain architecture, and MASD is
not interested in the targets themselves; instead, they are seen as by-products
of build file state.

50 https://cmake.org/

https://cmake.org/

6.1 PHYSICAL DOMAIN

<<Component>>
cpp_ref_impl.boost_model

=

<sPart=> <sPart=>
include generated_tests

I =

<<Modulex> <<Facet>> <<Facet>>
cpp_ref_impl.boost_model serialization types

B

<<Facet>> <<Facet>>
serialization types

=

<<Module>>
PKgl

<<Module>>
PKgl

<<Module>>
PKgl

<<Module>>
PKgl

Figure 6.19: Folder artefacts in the Boost component.

The next example zooms in on component cpp_ref_impl.boost_model, allow-
ing us to see a selection of facets and modules (Figure 6.19). As with the
previous figure, three parts are shown: generated_tests, include and src.
The include part has a top-most module named after the component itself
(cpp_ref_impl.boost_model). This module is known as the component mod-
ule because it is used by C++ to create distinctive include paths for header
files, as we shall see momentarily. The diagram displays two of the available
facets: types, containing type definitions, and serialization, containing
support for the Boost serialisation library. Each facet contains the module pkgl,
a user-defined namespace in the C++ TS.

These elements can now be put together to form an example include directive
for a file called entity.hpp, defined in the types facet and the pkgl module
(Figure 6.20). The include path within the directive is regular (cf. Section
6.1.4.3), being a function of both MASD'’s physical topology and structural
variability.

#include "cpp_ref_impl.boost_model/types/pkgl/entity.hpp"

/ /)]

Component module Facet Module C++ Header File

Figure 6.20: Example of a regular include path.

Our third example focuses on the Language Agnostic Model or LAM, which ex-
ercises PIM support. This component is designed to export the same generated
code to two TSs, C++ and C#. As shown on Figure 6.19, each TS is stored on
its own folder, named cpp and cs respectively. The internal structure of each
TS is as per previous examples — with parts, facets and the like — and thus
omitted from the picture.

The fourth and final example is a snapshot from the C# reference product
CSharpRefImpl (Figure 6.22). Whilst conceptually simpler than the examples
covered thus far due to having a single part in each component, this TS is not
without its challenges. Marked in red in the picture is the component with the
generated tests for the main component CSharpRefImpl.CSharpModel. It is so

99

Boost component

Regular includes

TS folder artefact

C# reference
implementation
example

100

Emergent features

51

52

DOMAIN ARCHITECTURE

<<Components>
cpp_ref impl.lam model

—

<<Technical Spaces>

<pp

=

<<Parts>>
generated_tests

—

<<Technical Spaces>

cs
<<Partss
src

Figure 6.21: Folders in the LAM component.

=

<<Partss
include

because MASD does not yet support a topology where the generated tests can
be placed outside the main component from whence they were generated; at
present, the notion of hierarchical composition of physical entities is enforced
strictly, so the same component cannot exist in more than one place.5* Tests
notwithstanding, the remainder of the diagram is straightforward, with three
facets being shown: types, with type definitions, SequenceGenerators, for
test data generation, and dumpers for pretty-printing. Each of these facets has
two modules — namespaces in the C# TS: Packagel and Package?2.

<<Component Collection>>
Src

—

<<Compenent>>
CSharpRefImpl.CSharphodel

]

—

<<Compenent>>
CSharpRefImpl.CSharphodel, Tests

<<Facet>>
Types

<<Facet>> <<Facet>>

Dumpers

SequenceGenerators

—

<<Hodule>>
Packagel

—

<<Hodule>>
Package2

—

<<Hodule>>
Packagel

—

<<Hodule>>
Package2

—

<<Hodule>>
Packagel

—

<<Hodule>>
Package2

Figure 6.22: Folders in the C# Reference Product.

This example demonstrates the importance of covering multiple TSs in order
to increase the range of variation within MASD’s domain architecture. As
further TSs are incorporated, the architecture will evolve to support those
use cases, providing end users with additional flexibility. Moreover, non-
obvious connections between TSs are also revealed, resulting in the unexpected
emergence of features. For example, it is likely that the solution to support tests
in a idiomatic manner in C# will enable additional use cases for all TSs.>>

This issue is under active investigation at present, and will likely require minor changes to the
domain architecture.

At present, all facets are combined into a single library per component. This has sufficed so far,
but does have its inconveniences because you pay the full cost of a component regardless of the
features in use. If one could separate say serialisation from type definitions, users of a component
that do not require serialisation support would not have to link against it. It seems plausible both
external test generation and facet splitting are related at a meta-level.

6.1 PHYSICAL DOMAIN

This example concludes our dissection of folders within MASD. Now that the
main characters of the physical domain have been identified, they must be
brought together into the methodology’s metamodel architecture.

6.1.6 The Physical Metamodel

The entities described thus far in this chapter are part of MASD’s PMM. The
PMM defines the geometry of physical space in MASD. Physical space has an
hierarchical nature, which is to be expected given its entities emanate from
a hierarchical filesystem. Figure 6.23 exemplifies the relationship between
the metametamodel (M3), the PMM (Mz2) and the PM (Mz1) by populating
a metamodel hierarchy with a small number of sample entities. Files in the
filesystem (Mo) have been omitted for brevity.

Archetype

AN A

[cpp_ref_impl.boost_model.types.pkgl.entity.hpp| [cpp_ref impl.boost_model.types.pkgl

M1

Figure 6.23: Example MASD metamodel hierarchy.

In the figure, MASD’s metametamodel is comprised of archetypes, divided
into file archetypes and folder archetypes. Within the metamodel, the
archetypes are instantiated by artefacts such as file artefacts and folder
artefacts. The figure then goes on to supply examples for both artefact
types and, of these, the file artefact example is of special interest due to
its name:

cpp.include.types.class_header

The notation denotes a fully-qualified physical meta-nameand itisaphysical
address within MASD’s physical space; it conveys a point in that space. To
bring the notion home, let us look at a few more example archetypes:

e cpp.include.types.enum_header is the archetype responsible for gen-
erating the definition for a C++ enumeration. It exists within the cpp
TS, the include part and the types facet.

e cpp.src.types.class_implementation is the archetype that generates
the implementation of a C++ class. It exists within the cpp TS, the src
part and the types facet.

101

Quverview

Example archetypes

102

Physical regions

PMM figure
description

PMM use cases

DOMAIN ARCHITECTURE

e csharp.main.types.class is the archetype responsible for generating
the definition of a C# class. It exists within the csharp TS, the main part
and the types facet.

More generally, physical addresses take the following form:
[technical space].[part].[facet].[archetype]

Besides just points, physical addresses can also be used to denote regions of
physical space, which are sets, in the mathematical sense, of physical entities.
For example, cpp contains all parts, facets and artefacts in the C++ TS;
cpp.include is a subset of cpp and contains all facets and artefacts within
that part. The geometry of physical space brings structure to the modeled
physical patterns but, more significantly, the space is arranged in this fashion
to facilitate the management of variability of physical entities — a topic of
later analysis (cf. Section 6.3).

Physical Metamodel Technical Space
—— containsn contatnes oyp Y <extondes oy Y
1 [
Physical Model Archetype [Pratform| [Building Blocks|
. containsk ((lnstar\(sof))b defined byw
Artefact
<composed of
]
Folder Artefact —— [File Artefact] [Code generator}c>——
A
orchestratess.
[I I []]
[Product] [Component] [Technical space] [sRPP| [Binary Artefact] [Text File Artefact] [cartridge|
<outputs

Figure 6.24: Fragment of the PMM.

Figure 6.24 provides a birds-eye view of the PMM and related entities, bring-
ing together all of the elements discussed thus far as well as introducing two
new ones — platforms and cartridges — which, due to their complexity,
will be dealt with by the next section (cf. Section 6.1.7). The image is largely
a collage of previous diagrams, with a few noteworthy points. First, TS are
shown twice to illustrate their dual nature in MASD: for endogenous purposes,
they represent folder artefacts, but for exogenous purposes they are seen
as sets of platforms. In addition, we see archetypes associated with the PMM
though we previously alluded to a metametamodel; in practice, MASD opted
for folding the metametamodel into the metamodel — that is, for employing
loose metamodeling rather than strict metamodeling (Craveiro, 2021c) (Sec-
tion 3.4). It was done so because the PMM was designed to cater for specific
two use cases:

e To generate the code generator; that is, elements such as TS, parts,
facets and artefacts were modeled as SRPPs themselves. This was
done by applying the physical modeling process to the development
of the code generator, and extracting physical patterns, which were
modeled and catalogued just as any other physical pattern.

o To serve as the target of refinement; that is, logical entities are trans-
formed into physical entities via transform chains, and these physical
entities are subsequently transformed into files and directories in the
filesystem.

6.1 PHYSICAL DOMAIN

Loose metamodeling was sufficient to satisfy both of these use cases, so it was
preferred to strict metamodeling. This "use case focused” approach is also in
keeping with the vision for the methodology (cf. Section 5.2.1) — targetting
narrow application and thus affording simpler solutions when compared to
more ambitious applications of MDE. Loose metamodeling is not without its
costs, however, and terms such as archetypes and artefacts are where its
limitations start to show. These two terms are used through MASD, and at
times it may appear that they are interchangeable; however, as the metamodel
hierarchy already alluded to, they serve different roles in MASD’s domain
architecture. The choice of term is meant to denote the level of abstraction at
which one is operating:

e the term archetype is used in the following contexts: 1) when we are
referring to the generating function that creates instances of individual
artefacts; 2) when we want to describe sets of artefacts, such as regions
of physical space.

e the term artefact is employed when we want to classify a set of files,
or when we have an artefact instance in memory for example.

And with this clarification, we are close to completing our survey of the
physical domain. Before we do so, there are two additional physical entities
we need to cover, and these are of a different nature of those identified thus
far.

6.1.7 Platforms and Cartridges

The artefact-centric view of the world posited by the physical domain is instru-
mental in addressing some of MDE’s ambiguities in its vocabulary, previously
described in Chapter 2 and (Craveiro, 2021c) (Chapter 4). This section ex-
plains how it is used to characterise two important concepts, pertaining to two
key entities within MASD'’s physical domain: platforms and cartridges. We
start with the former.

A platformis understood to be an aggregation of building blocks within a TS
(¢f. Figure 6.24) — that is, a named and possibly versioned set of artefacts
which, for all intents and purposes, is indistinguishable from a software prod-
uct. The only difference between the two is that MASD deems products to be
artefact collections it generates —i.c., endogenous — whereas platforms
are external to it and can only be accessed by means of an associated PDM (cf.
Section 6.2) — i.e, exogenous. In other words, platforms lack the regularity
afforded to MASD software products — thus requiring mapping — and are
responsible for raising the abstraction level — thus simplifying the generating
functions. Figure 6.25 illustrates MASD’s artefact-centric and hierarchical
view of platforms.

Whilst broad, this is nonetheless a definition that contains no ambiguity; a
TS defines the syntax via its metamodel, and platforms are sets of artefacts
that are valid instantiations of the syntax, and which have not been created by
MASD. With this we avoid questions such as “is the CLR a platform?” or “is the
JVM a platform?” (Craveiro, 2021c) (Chapter 5), as these are not meaningful

103

Narrow role,
limitations

Artefact versus
archetype

Overview

Platform definition

Addressing ambiguity

104

Cartridge definition

Example workflow

Cartridge pipeline

53

54

55
56

DOMAIN ARCHITECTURE

Technical Space

Platform

Building Block

Artefact

Figure 6.25: Technical Space composition

in a MASD context. If there is a library exposing the internals of the CLR or
the JVM, then these libraries are considered platforms. More broadly, MASD
is only interested in statements involving sets of physical artefacts.

Cartridges are of a similar nature to platforms with regards to their endo-
geneity.53 They are defined as any code generator external to MASD whose
input can be modeled as a text artefact generated by MASD, and whose
output is a set of text artefacts on which MASD may perform further pro-
cessing. The cartridge entity in the PMM (cf. Figure 6.24) models aspects of
the external code generator such as its version and any other properties that
have a functional dependency on the input artefacts generated by MASD.54
In this way, the role of the cartridge entity is similar to that of the PDM: it
regularizes external entities for consumption by MASD. From this perspective,
MASD works as an orchestration framework for cartridges, requiring only
minimal knowledge about the cartridges themselves; significantly, this is
merely a by-product of the fact that cartridge inputs are sources of SRPPs.

MASD’s interplay with cartridges is perhaps best understood by example.
Let us consider MASD's integration of the tools ODB5 and clang-format>®,
two tools popular with C+4 developers. MASD consumes these tools via a
workflow with the following steps:

e Step 1: MASD generates the input files for ODB whenever users request
RDBMS support for a given C++ project.

e Step 2: MASD supplies the input files to ODB, which generates a set of
C++ files implementing the database layer.

e Step 3: MASD supplies the output of ODB to clang- format, which
indents the source code according to a user-defined convention.

This workflow is implemented in the MRI as a cartridge pipeline, as depicted
graphically in Figure 6.26. Regular M2T transforms are used to implement Step
1, whereas Steps 2 and 3 are exposed to the MASD framework as Text-to-Text
transforms — i.e., receiving artefacts as inputs and producing artefacts.
Note that the T2T transforms are composed into a transformation pipeline

Cartridges were originally introduced in the context of MDA, on Section 2.3.2; there, the challenges
with the term were also discussed. The notion, however, is generally applicable to any MDE-based
methodology.

Examples of candidates for cartridges are the XSD tool and Protocol Buffers as well as other
tools described in (Craveiro, 2021d). These become cartridges once they have been modeled and
integrated with MASD.

https://www.codesynthesis.com/products/odb/
https://clang.llvm.org/docs/ClangFormat.html

https://www.codesynthesis.com/products/odb/
https://clang.llvm.org/docs/ClangFormat.html

57

58

6.2 LOGICAL DOMAIN

™
shells out to execute an
external process.

N

clang-format T2T Transform I—-I Final Artefacts

[MASD M2T Transtorm|—p- ODB T2T Transform

™
Produces input artefacts
Tor the 0DB cartridge.

MASD M2T Transform

Produces configuration artefacts
for the clang-format cartridge.

Figure 6.26: Example cartridge pipeline.

to produce the desired output, as they are parametrised by non-structural
variability — i.e., users can decide if they would like RDBMS support and/or
source code formatting. In addition, the T2T transform encapsulating clang-
format has an input artefact with configuration specific to the tool; it is
generated by a M2T transform within MASD.57

Platforms and cartridges enable MASD to access the outside world. How-
ever, their modeling is seen as an instance of a more general process: ultimately,
MASD extracts a general set of modeling entities from within the physical
domain. These entities live in MASD’s logical domain, and it is to it we shall
turn to next.

6.2 LOGICAL DOMAIN

The logical domain is the portion of MASD’s problem domain that deals with
logical elements extracted from supported TSs, alongside with their relation-
ships and variability requirements.?® Unlike its physical counterpart, the
logical domain is large in terms of footprint as it models an ever growing
number of entities, and manifests a trend that is expected to continue over
time. Nevertheless, from the perspective of the domain architecture, its role
can be condensed to just two key themes: an overall characterisation of its
composition (Section 6.2.1) and an analysis of the projections in and out of
logical space (Section 6.2.2). The next two sections cover these two themes
respectively.

6.2.1 Composition

MASD’s Logical Model (LM) is an instance of the Logical Metamodel (LMM),
responsible for housing meta-elements modeling entities of interest within
the logical domain. The LMM also caters for the various types of logical
models such as PIMs, PSMs and PDMs — which, as already mentioned, are
the gateway for exposing platforms to MASD. The LMM was created with
Piefel and Neumann's ideas in mind (Piefel and Neumann, 2006), in that it is

Cartridges are a good example of the power of integrating generation within a single framework.
MASD initially added targets in build files to invoke ODB, with the tool invocation performed
by the end user during the build process. By moving the ODB invocation into a T2T transform,
we have opened the possibility of performing further processing on the generated files (via
clang-format in this case).

In order to improve readability, constant width font is used only for source code entities and
vocabulary pertaining to the logical domain. Physical space terms are depicted in regular font.

105

Section
Overview

LMM, LM

106

Entity sources

LMM versus
TS metamodel

Abstraction levels

59

60

DOMAIN ARCHITECTURE

an intermediate model designed specifically for code generation and serves
no other purpose.5? The majority of the entities housed in the LMM originate
from generalisations of elements uncovered via physical analysis and design
(¢f. Section 6.1.1), via the process depicted by Figure 6.27.

Physical Domain Logical Domain

Generalisation

Logical model entities,

Physical artefacts spanning multipie abstrading the notion of
Technical Spaces. Technical Space where possible

Figure 6.27: Logical generalisation of physical concepts.

Nonetheless, it is important to note that the TS metamodel is also of great
relevance to the shape of the logical entities; there is a natural relationship
between constructs in the TS’s metamodel and the patterns we are trying to
capture in the LMM, as demonstrated by Figure 6.28. The bottom part of the
diagram, in yellow, points out useful sources for logical entities given common
elements in TSs; it is a logical view of the argument already put forward from a
physical perspective via trivial structural functions (cf. Section 6.1.3).°

The free-style depiction used in the figure also tries to elicit the dangers of
reading too much into the relationship between the TS’s metamodel and
MASD’s logical representation. A construct is only relevant to MASD’s logical
model if it captures all the information required to create a projection of said
construct into the physical domain (cf. Section 6.2.2). The TS metamodel offers
a good source of inspiration for the identification of these logical elements;
however, the objective of the LMM is not to replicate a TS’s metamodel but
instead to abstract commonalities between them, from the perspective of the
projections. In this vein, as depicted in Figure 6.28, it is often necessary to
break down TS metamodel entities, such as classes, into constituent parts
— assignment, cloning, construction and so on — or finding higher level
constructs which are not directly relevant to the TS metamodel — such as
design patterns. Therefore, by observing patterns of use within text artefacts,
we model at varying levels of abstraction when compared to the TS metamodel,
as well as modeling languages such as UML — both of which designed for

In the before-cited paper, Piefel and Neumann explain that (emphasis ours)

[...] the ultimate purpose of modelling is often code generation. While code can be
generated from any model, we propose to use an intermediate model that is tailored
to code generation instead. In order to be able to easily support different target
languages, this model should be general enough; in order to support the whole
process, the model has to contain behavioural as well as structural aspects. (Piefel
and Neumann, 2006)

The analysis also raises the question of where to place the boundary between logical and physical
domains. For Lakos, there is a stark distinction between the two: files and directories are part of
the physical domain, classes and other TS constructs belong to the logical domain. In MASD the
split is not quite as clear because we view file morphology and taxonomy as part of the physical
domain; therefore some of what Lakos places in the logical domain is understood to be in the
physical domain from a MASD perspective. In addition, the role of the logical domain in MASD
is to model the physical domain, which is a very different take on the matter when compared to
Lakos, where these two domains are largely unconnected. The lack on rigour in determining
these boundaries has not yet brought about challenges, so the subject remains a candidate for
future work.

6.2 LOGICAL DOMAIN

Complex
A
classes with classes with
complex structural complex domain
relationships behaviour
classes with
interpersed
infrastructural
behaviour
Structural behavioural Behavioural
design
strugtural creational [PELEHES o
1aC, PoC degdign design ORM bindings
__ P ?ttems pattermns .ot data
- structural | generation : Serialisation !
i SWIG Interop i § || socaocosceaocosascsngeosagmose 0 ' '
g » : Hefinitons i | ¢ Basicclass functionality XML
IDLs (protobuf, g classes for g : g
CORBA, etc) i frameworks ; assignment) : ; Binary
e ' (eCore, Qt, etc) i | !) hashing :
i build system files I — : cloning : JSON
struct-like (POJOs, abstract classes g construction [
POCOs, PODs, etc) | equality !
! structs, enums destruction

Trivial

Figure 6.28: Characterisation of TS entities.

different use cases. This is perhaps best understood by looking at modeled
entities and their groupings. Figure 6.29 provides a high-level overview.

[Cogical Hetanode]
[Structurat [oror Varisbiiic [Mapping Tizat

e fimt stuoo] [rempiating] Fecoration] Fryices

Figure 6.29: Packages within the LMM.

At present, the LMM is made up of ten distinct packages, each targetting
a distinct area of a software product.®® Their intent can be summarised as
follows:

o Structural: Models structural variability within programming languages.

It is the portion of the LMM that is the closest to programming language
constructs.

e Build: contains entities responsible for build files such as Makefiles and
CMake files, often used on UNIX-like operative systems.

e ORM: provides support for RDBMS, including tools such as ODB.

e Visual Studio: models the infrastructure needed to support the Visual
Studio IDE, used on Windows platforms.

61 Please note that these packages form a snapshot of current state, since the LMM is expected to
change as our understanding of the domain improves; new packages may be added, existing
packages may be merged when deemed to have overlapping functionality, and so on. The LMM
has changed considerably since its inception.

107

108 DOMAIN ARCHITECTURE

e Variability: contains all entities required to generate non-structural
LMM packages variability support in the MRI (cf. Section 6.3).%2

e Templating: models entities related to logic-less templates, used in
MASD to create M2T transforms.

e Mapping: support for PIMs is attained via these entities, which pro-
vide the infrastructure to map TS-agnostic types to their TS-specific
counterparts.

e Decoration: contains all entities modeling file artefact decoration, as
uncovered by morphological analysis (cf. Section 6.1.4).

e Serialization: provides support for entities required in a serialisation
context.

e Physical: Models MASD’s physical entities such as parts, archetypes,
relations and the like; contains the LMM'’s representation of the PMM,
and it is used to generate it.

As there are over one hundred individual classes in the LMM, it is not feasible
— nor necessary — to cover each of them in detail. It is however worthwhile
sampling one of the packages in order to get a flavour for how these elements
are modeled. Figure 6.30 does just so, providing a glimpse of the main compo-

Structural package nents in the LMM'’s structural package. Most of the depicted elements are
TS-agnostic representations of metatypes commonly found in programming
languages, but there are a few noteworthy exceptions which warrant a fuller
description — as do the varying levels of abstraction, denoted in the figure by
the colour scheme.®3

Structural
|Enumeration| |Bui|t-ln| |Mndu|e| |Dbject| |Exceptinn| |Entry Pointl
|Enumeratnr| |Prnperties| |Dpemtinns| |Primitive|

1

| Object Template |

Visitor| [Singleton] [Builder]

Figure 6.30: Classes in the structural namespace.

Module, enumeration and built-in model, respectively, namespaces (or pack-

ages), enumerations and built-in types. Object is intended to stand for DTOs,

"Traditional” though at present is synonymous with the TS concept of class, containing
metatypes both properties (attributes) and operations.®4 Grouped together, these four

62 Within the LMM, we took the somewhat unfortunate decision of abbreviating non-structural
variability to just variability. This is a decision that may be reviewed in the future to avoid
confusion.

63 Unlike in previous diagrams (e.g. Figure 6.22), this figure employs colouring merely to facilitate
the present explanation. Typical MASD models do not follow this colour scheme.

64 The names of these types are somewhat atypical, by design. We sought to avoid terms which were
either keywords in MRI's implementation language (C++) or which were already well-known
from other popular TSs — the idea being that MASD's interpretation may not necessarily map
to their understanding on a given TS. It is for this reason that names such as class, namespace,
package and so on were eschewed. The prefix meta was also explicitly avoided because it was felt
to be a noise word (Kevlin Henney, 2021), given that all the types within the LMM are metatypes.

65

66

6.2 LOGICAL DOMAIN

elements and their dependent types (in light blue) can be thought of generali-
sations of the “traditional metatypes” found in a programming language TS,
as well as modeling languages such as UML.

Moving upwards in the abstraction ladder, we then have a second group of
metatypes, in purple, which exist at a higher level of abstraction from that
of the TS metamodel, and which we named idiomatic metatypes. These are as
follows:

e Exception represents types that denote error conditions. During the
projection into physical space, MASD takes care of all of the machinery
needed to make them idiomatic in the target TS, such as inheriting from
std: :exception in C++ or System.Exception in C#. They can also be
mapped to error codes where the TS has support for these — e.g. the C
language.

e Primitive is a wrapper around a built-in type that allows the creation
of strong primitive types. For example, instead of using std: :string to
denote a unique identifier for a person, MASD allows the creation of a
specialised primitive type for this purpose —e.g., a PersonId, with an
underlying type of string.®s

o Entry point represents the function where program execution begins —
e.g., main in the C/C++ TS and, typically, its C# counterpart of Main.

All of these entities should be familiar to software developers, with more
of their ilk to be added in the near future such as named key-value pairs,
units (e.g. support for units of measure like the metric system), named bitsets
and the like. Types in this grouping are mainly related to idioms, uses and
conventions that often span multiple TSs, but are restricted to a single type.

Moving up the abstraction ladder once more takes us to the GoF’s design
patterns (Vlissides et al., 1995); these are shown in green on the diagram.
Design patterns distinguish themselves from idiomatic use cases by being
larger aggregates, usually involving the collaboration of multiple classes. The
MRI only supports the visitor pattern (p. 331) at present — applicable
whenever inheritance is employed — but other patterns such as singleton
(p. 127) as well as builder (p. 8y7) are currently under development. Though
they are being accrued incrementally, it is expected that the majority of the
GoF patterns will eventually be represented within the LMM.

Nonetheless, these policies may be reviewed in the near future, particularly where greater clarity
can be attained.

Some modern languages such as Nim (Nim Project, 2022b) have built-in support for strong types.
Nim calls these distinct types, defined as follows: ”A distinct type is a new type derived from a
base type that is incompatible with its base type. In particular, it is an essential property of a
distinct type that it does not imply a subtype relation between it and its base type. Explicit type
conversions from a distinct type to its base type and vice versa are allowed.” (Nim Project, 2022a)
Primitives highlight another advantage of the MASD approach, which is to cross-pollinate ideas
across TSs.

Whilst GoF designed patterns are referenced often, please note that MASD does not limit itself to
this set of patterns. It just so happens that there is abundant literature as well as implementations
— and therefore ready-made use cases for MASD to consume. However, the expectation is that
other kinds of patterns will follow. As an example, work has begun on integrating dependency
injection — a technique of inversion of control that echoes the strategy pattern (p. 315).

109

"Idiomatic”
metatypes

Design patterns

110

Object templates

Example object
template

67

68

DOMAIN ARCHITECTURE

Metametatypes: Object template

LMM's Design Patttern Metatypes: Visitor, singleton, builder
Abstraction
Ladder "Idiomatic” Metatypes: Exception, primitive, entry point

"Traditional" Metatypes: Modules, objects, built-ins, enumerations

Figure 6.31: Abstraction ladder in the Structural package.

From design patterns, the level of abstraction is raised one final time; Figure
6.31 captures the entire ascent over the abstraction ladder. Object templates
are to be found at this highest level (Figure 6.30, in orange). They allow the
creation of modeling entities that exist only at modeling-time, and demon-
strate the power of employing loose metamodeling in this context. Object
templates were inspired on C++ concepts®?, because they abstract classes
with the same shape, though entirely unrelated from the TS’s type system
perspective. In addition, now that C++ 20 has introduced language-level
concept specifications, MASD is looking into projecting object templates
into the physical domain via the new language feature. Regardless of this new
use case, object templates have already proven extremely useful to the MRI,
and are used extensively throughout MASD'’s code generator. Their use may
not be entirely obvious, however, so a small example is required to clarify how
it and other LMM metatypes are employed in practice.

|

<<masd: rvisitables> <<masd::object_template>> <<masd: :primitive>>
Base Identifiable Elementld
= masd.primitive.un
(e] deriying_element=
Ta\ A starstring
! I
Derived <<Identifiable=> <<Identifiable=>
 — ClassA ClassB

Figure 6.32: Example model with a selection of LMM metatypes.

Figure 6.32 does so by portraying a UML class diagram that instantiates object
templates, objects, primitives and visitor. MASD metatypes are supplied
as UML stereotypes, contained within the MASD UML profile. First, we turn
out attention to object templates. The metatype Identifiable dynamically
generates a new stereotype, in this case applied to types ClassA and ClassB;
both classes will be generated with a property called Id, but there will be no
reference to the object template Identifiable within the generated C++
code.®8

With regards to the primitive ElementId, its underlying type is defined via
UML's tagged values, located just below the class name:

masd.primitive.underlying element=std::string

Abrahams and Gurtovoy define C++ Concepts as follows (emphasis theirs): “A concept is a de-
scription of the requirements placed by a generic component on one or more of its arguments.”
(Abrahams and Gurtovoy, 2004) (p. 77) Similar notions exist on other TS such as C#'s generics,
though it seems to be particularly developed within C++.

As previously mentioned, the generation of constraints for concepts, as per C++ 20, is not yet
supported.

69

6.2 LOGICAL DOMAIN

The tag in the tagged value —masd.primitive.underlying_element —repre-
sents an entity within MASD’s variability domain (cf. Section 6.3). The value
of the tag represents the type std: :string, sourced from the C++ Standard
Library. It is made accessible to MASD via the PDM cpp.std, containing all
exposed types within the C++ Standard Library.

Next, we turn to visitor support, which, at present, is not without its flaws.
The element Base is annotated with the stereotype of masd:visitable, trig-
gering the generation of a visitor for this base type, dispatching to all of its
derived types (Derived, in this case). Alas, the approach is now understood
to be a misuse of the LMM'’s type system because the visitor class itself is not
present in the class diagram, being instead generated internally.®® And on
the theme of implicit associations, the object metatype is also used implicitly
in Figure 6.32: UML classes without a MASD stereotype denoting a LMM
metatype default to masd: :object; thus Base, Derived, ClassA and ClassB
are all implicitly tagged as masd: :object.

The analysis of the model put forward in Figure 6.32 concludes with a demon-
stration of how object templates can be linked back to TS-specific features
such as concepts. In the listing below, a sample print function was hand-
crafted, with a template parameter whose name matches the object template;
the generic function can be instantiated by any type meeting the requirements
of the Identifiable concept — e.g. ClassA or ClassB. In other words, the
C++ concept maps to our logical representation of the Identifiable object
template. Note that the listing presupposes the presence of all necessary in-
cludes for pretty-printing of the ElementId primitive. The listing also demon-
strates the initialisation of primitive types — e.g. 1dA and idB.

template<typename Identifiable>
void print(const Identifiable& ident) {
std ::cout << ”Id:” << ident.Id() << std::endl;

}

void caller () {
Elementld idA(”A”);
ClassA a(idA);
print(a);

Elementld idB(”B”);
ClassB b(idB);
print(b);

Listing 6.1: C++ class with SWIG macros.

This example of a logical entity projected into the physical domain brings us
into the general topic of projections, which the next section will develop.

6.2.2 Projections

As shown previously (cf. Section 6.1.6), MASD’s physical domain can be
thought of as a physical space, with an associated notation for points. The

Having intermediary types generated implicitly without representation in the model was found
to be detrimental to the modeling process. This is because it is no longer possible to associate
non-structural variability with the implicit type. For example, visitors at present must always be
named CLASS_visitor, with CLASS being the name of the type annotated with masd: :visitable.
Nor can one add other configurable features to the type — for example, generate immutable
visitation only, etc. The correct solution is to force users to create the visitor type as a UML class
with the stereotype masd: :visitor, and then, via tagged values, associate the visitor with the
visited base class. This approach will be implemented in the next releases of the MRI.

111

Example primitive

Example visitor
and object

Example source code

112

Logical space

Logical point

70

[y

7

N

7

73

DOMAIN ARCHITECTURE

logical space is a similar construct, with its own point notation derived from
element containment. As a result, much like physical space, logical space is
also hierarchical in nature. Since modules are the only LMM element that can
contain other elements”°, the following notation describes any point in logical
space (with the word modules omitted due to space constraints):

[product].[component].[internal].[element name]

Product stands for product modules and represents the set of one or more
modules associated with the product name — e.g. Some.Product, using dot
notation, is made up of product modules Some and Product. Component stands
for component modules and represents one or more modules associated with
the component (e.g. Some.Component); and internal — i.e., internal modules
— represents zero or more modules used internally within the component
(e.g ModuleA.ModuleB).”* Finally and predictably, element name represents
the name of the logical element, e.g. ElementA. There are clear similarities
between this approach and what was put forward in the physical domain;
Figure 6.33 joins them together into a single viewpoint.7>73

Logical Space Physical Space

[Technical Spacel.
[Part].
[Facet].

[Product modules].
[Component modules].

[Internal modules].
Metamodel [Element name] [Archetypel
[Product folders].
[Compenent folders].
[Product modules]. [Technical Space].
[Component modules]. [Part folders]
Model [Internal modules]. [Facet folders].

[Element name]

[internal folders].

[Element namel.
[Extension]

Figure 6.33: Notation for points in physical and logical space.

As implied by this statement, MASD does not support inner classes at the logical model level
— i.e. classes defined within classes, which would map to the LMM as objects defined within
objects. These constructs are supported in many TSs such as C++ and C#. Note that inner classes
may be generated as part of the projection into physical space; however, their creation cannot be
arbitrarily driven by structural variability. As typical in MASD, this feature will only be supported
when there are well-defined use cases for their implementation.

The sub-typing of modules with regards to ownership at a logical level may appear counter-
intuitive, given that all of these three types of modules ultimately represent containment. MASD
does so because we often treat these groupings separately. For example, product modules are at
times necessary — when creating include paths for instance — but in other cases omitted. In
addition, both product and component modules are combined using dot notation when creating
folders rather than creating one folder per module. Clearly these entities are treated specially
when compared to “regular” modules, justifying the distinction. Furthermore, these different
types of modules are also projected to distinct physical elements (cf. Section 6.1.5).

For historical reasons, product modules are currently named external modules and component
modules are named model modules in the MRI. These legacy names are part of the evolution of
the understanding of the domain architecture, since the purpose of these modules wasn’t obvious
initially. The MRI will be corrected to match the description here presented.

Composite product names are useful to denote product families, e.g. Famly.Product.
Composite component names allow creating groups of components within a product, e.g.
ComponentGroup.Component.

6.2 LOGICAL DOMAIN 113

The first interesting point in this comparison is that all points in logical space
use the same notation, whether when representing elements in the metamodel
(e.g. the LMM) or any instance model (e.g. any LM). Since there is nothing
distinctive about the LMM — it is just a regular model after all — and since
we prefer loose metamodeling, there is no requirement to make a distinction ~ Point notations
between its types and any user types. On the right hand side of the diagram,
at the top, we have the previously described notation for points in physical
space at the metamodel level (cf. Section 6.1.6). Finally, at the bottom right,
physical paths are shown — i.e. physical points at the model level. These
represent the projection of logical elements across to physical space and are a
function of:

e The geometry of physical space, as dictated by the PMM, which enforces
regularity — e.g. specifies the placement of product folders, component
folders, part folders, facet folders, etc.;

e Structural variability in the logical model, which instantiates each of Path projection
these elements: the product and component names are supplied by the
user, as are all internal folders and the element name;

e Non-structural variability, dictating the exact configuration to select;
for example, what extension to use for C++ headers, whether to express
product and component folders, whether to override the name of the
technical space folder, and so forth.

Paths are just one of many projections within MASD. Almost all logical entities

are projected into the physical dimension — the most obvious exception being

object templates, which at present are consumed by the transform chains

during processing and do not have a physical representation.”+ Typically, pro-

jections are functions of structural variability, parametrised by non-structural Element projection
variability, and often implemented as M2T transforms. To simplify matters, we

shall ignore non-structural variability for the purposes of the present discus-

sion, as it is covered elsewhere (cf. Section 6.3); but it is important to bear in

mind that any such projection will offer a number of configurable parameters

which will have a significant effect on the result of the projection.

Projections are best understood with examples. Figure 6.34 shows an example
projection of the logical element masd: :object (cf. Section 6.2.1).

Codec Logical Model Physical Model Filesystem

Class in UML diagram Instance of the structural A logical metatype can Each physical metatype
annotated with stereotype metatype object. project to a number of projects to a file or
physical archetypes. .

masd: :object. folder in the filesystem

bbb

Figure 6.34: Projection across MASD spaces.

74 As previously mentioned, this is expected to change in the near future with the addition of C++
concept constraints. The C# TS also has a notion of constraints, but as these are more limited, the
mapping to object templates will require additional analysis.

114

Codec representation

Codec projections

Physical projections

75

DOMAIN ARCHITECTURE

In the diagram, an initial representation is used as input to the process; this is
known as the codec representation and it is designed to be as simple as possible.”>
The idea is to make the creation of extractors a straightforward matter, allowing
the implementation of a codec for each required tool, in keeping with the
methodology’s tenets (P-2 in particular). In addition, we want to keep the
number of bespoke transforms in each codec to a bare minimum, leaving all
the heavy lifting to common transforms. Figure 6.35 contains a fragment of
the codec model, with the key entities.

53 objett templates
Stereotypable

|

weELaent>

Figure 6.35: Key entities in the codec model.

The codec representation defines the projection of its elements into the logical
model proper, taking these ideas into account; it is always a one-to-one projec-
tion, but because LMM elements are highly specialised, many such projections
have been defined. By and large, UML stereotypes determine the routing to
a logical element — e.g., an element with stereotype of masd: :obejct will be
converted into the LMM'’s structural metatype of object, an element with a
stereotype of masd: :enumeration will be mapped to a structural metatype of
enumeration and so on. Elements without stereotypes are assigned a de-
fault mapping; for example, UML classes without stereotypes default to
masd: :obejct.

Next we have the projections from the LMM into the PMM. These projections

are functions that take points in logical space and map them into sets of points

in physical space, often spanning multiple regions. Returning to our example,
the UML class at the codec level is first projected into a masd: :object, and

then projected into the physical locations depicted by Figure 6.36. The figure

uses the same colouring scheme as before, with TS, parts and facets containing

archetypes. Its not necessary to go into the details on each archetype shown —
hopefully most have self-explanatory names — but it is significant that there

are a large number of them (18, in yellow) and their number is expected to

grow considerably over time, as more patterns are added to MASD.

From the perspective of the domain architecture, the codec representation is merely an imple-
mentation detail and as such we will not spend a lot of time describing it. The chapter on the
MRI will provide implementation-level details in this regard (¢f. Chapter 8).

76

77

63 VARIABILITY DOMAIN

115

<pp

include

src

types

serialization

types

tests

class_header

class_header

| class_implementation

| class_implementation

class_forward_declarations

class_forward_declarations

hash

test_data

hash test_data | class_implementation | class_implementation

| class_header | class_header serialization

0 lexical_cast | class_implementation

| class_header | class_header

odb

class_header

object_odb_options

csharp

main

types io

| class | class

test_data

class

Figure 6.36: Projection of masd: :object into physical space.

Clearly, not all functionality is required for all use cases; for example, one may
require type definitions only, or type definitions with serialisation support,
meaning that all other projections would not be necessary. And it is here
that we enter the last domain within MASD, dealing with the configurability
of logical and physical model elements, as well as the configurability of the
projections between spaces.

63 VARIABILITY DOMAIN

The third and last domain of interest to MASD is the variability domain; it is
only concerned with the modeling of non-structural variability. As this choice
may be surprising, we begin by justifying the approach (Section 6.3.1), and
then move on to discuss the metamodel entities in the VMM (Section 6.3.2).
Finally, Section 6.3.3 discusses the VM, which is concerned with how instances
of the VMM are used to enable support for Software Product Line Engineering
(SPLE) in MASD.

6.3.1 Approach

Variability is a vast and complex topic within MDE, so, to avoid confusion,
all mentions in this document have been carefully qualified — up to the
present section.”®77 Unfortunately, given its prominence within MASD, it is
impractical to enunciate so clearly each use of variability within the domain
architecture, as doing so would make naming entities unwieldy. Further-

Chapter 6 of (Craveiro, 2021c) summarises our incursion into variability, and introduces, at a
high level, all concepts used by MASD in the variability domain.

This entailed, for instance, making a clear distinction between structural and non-structural
variability, with input variability taken to mean the superset of both kinds; and using wvariability, in
isolation, when referencing the entire field of variability modeling within software engineering.

Section
Ouverview

116

Domain boundaries

Integrated approach

Use cases

7

7

o]

O

DOMAIN ARCHITECTURE

more, a natural alignment was observed between certain variability kinds and
MASD’s domains, meaning that, in practice, confusion seldom arises.”8 For
all of these reasons, the variability domain specialises only on non-structural
variability; and the term “variability”, when used in a MASD-only context, is
understood to be synonymous with this kind of variability, with other uses
explicitly qualified.

Once boundaries had been established, the question of how to integrate do-
main modeling with variability modeling emerged. Clauf$ (Claufs, 2001) and
Thibaut et al.’s (Possompes et al., 2010; Possompés et al., 2011) take on the
matter was preferred over others, mainly due to their emphasis on a single
integrated modeling approach that encompasses variability requirements.
The simplicity of the implementation was of particular interest, since having a
single model meant augmenting MASD’s UML profile with a limited num-
ber of variability concepts. Whilst not as expressive as Feature Modeling or
Orthogonal Variability Modeling (OVM), the approach is sufficient for the
well-defined needs of MASD — especially because it lowers the cognitive load
of end-users by reducing the number of concepts needed to model effectively.
Having settled on the boundaries and the approach to variability modeling,
our efforts then shifted towards identifying the entities of interest within this
domain, covered in the next section.

6.3.2 The Variability Metamodel

The Variability Metamodel (VMM) is designed to provide variability services
to MASD’s logical and physical domains. Due to this, it’s deeply intertwined
with both domains, and it is used in many complex workflows. However, at
its core it was created to address two simple needs:

e enabling and disabling regions of physical space, such as TS, facets and
artefacts;

e configuring various aspects of the projections to physical space: naming
the directories for facets, configuring file names and extensions, enabling
or disabling certain features in code generation, efc.

Since in MASD variability is built atop of UML class diagrams, we made use
of tagged values to convey configuration.”? As an example, a masd:object
can be configured to enable two regions of physical space — types and hash
— by supplying the following tagged values:

masd.cpp.include. types.enabled=true
masd.cpp.src.types.enabled=true
masd.cpp.include.hash.enabled=true

Structural variability is modeled in the logical domain, whereas generational variability is de-
ployed mainly within the physical domain. Non-structural variability is dealt with in isolation
because it was shown to be self-contained; as we shall see, once modeled, the variability domain
is then superimposed over the logical and physical domains.

Please note that this is a simplification; MASD does not require the use of UML per se, as we
shall soon see (c¢f. Chapter 7). Historically, however, the majority of MASD’s modeling was
done using UML class diagrams, and they will remain a first class citizen. In addition, any other
representation supported by MASD must be isomorphic to the entities in UML class diagrams.

63 VARIABILITY DOMAIN

masd.cpp.src.hash.enabled=true

Boolean values are one of many possible types for tagged values. Over time,
MASD accrued many additional types and a type system was created in order
to validate user input, as well as to facilitate the processing of these entities
within the MRI. Figure 6.37 shows the available value types at present, with
more on the pipeline.

| comma_separated | | number | | boolean | | text |

[Fcontents star Ustestaristrings| [rcontent: int] | [Fcontemt: bool| [Fcontent: starrstring|

| comma_separated_collection | | text_collection | | key_value_pair
[Fcontent: std::Uistesta: flistosta:istrings| [Fcontent: std:Uistesta:istrings| [Fcomtent: std::Uistesta::pair<std:istring, stdiistring>s|

Figure 6.37: Value and its descendant types.

As with values, a similar problem was faced with regards to tag validation.
Initially, ad-hoc code was written for each new tag as they were introduced but,
once enough use cases were collected, the notion was generalised via the intro-
duction of features and configurations. Features implement a simplified
version of the concept as found in Feature Modeling, allowing the creation
new configuration points within the domain architecture. Features are
grouped into semantically related sets called feature bundles. Figure 6.38
shows a small subset of the feature bundles defined in the LMM. There we
can see that the LMM metatype feature_bundle is instantiated, with each
instantiation containing a number of features of varying types.

=<<masd: :variability: : Teature_bundle>> <<masd::variability::feature_bundles>
enumerator type_parameters

[+value: masd::variability::text +variable number of parameters: masd::variability::boolean = "false'|
+count: masd: :variability::number = "0"
+always in heap: masd::variability::boolean = "false"

=<<masd: :variability: : Teature_bundle>> <<masd: :variability: :Teature_bundle>>

mapping enumeration

[+target: masd::variability::text use_implementation defined underlying element: masd::variability::boolean - "false'|

[+destination: masd::variability::text +underlying element: masd::variability::text
+use_implementation defined enumerator values: masd::variability::boolean = "false"
+add_invalid enumerator: masd::variability::boolean = "true"

Figure 6.38: Fragment of feature bundles defined within the LMM.

Note that feature bundles themselves also make use of the variability ma-
chinery. For example, features have binding points — thatis, each feature
must enunciate the set of meta-entities that can legally make use of it — and
these are declared via variability, as are other configurable elements:%

masd.variability.default binding point=element
masd.variability.key prefix=masd.type parameters

Features are useful in isolation, but MASD’s approach of having a dynamically
expanding PMM posed a challenge: as new TSs, parts, facets and archetypes

80 Bindings are deficient at present, in that they do not support referring to specific elements in the
LMM. For example, the correct binding for the enumerator feature bundle should have been
masd: :enumerator, given that this is the only metatype in the LMM that can make use of this
feature. In the future, the address of the logical elements will be used for the binding.

117

Value type
system

Features, feature
bundles

Features for
features

118

Feature
templates

Template domains

Iterative process

81

DOMAIN ARCHITECTURE

were added, there was a need to model individually their respective features,
such as for example enabled as per previous listing. The process was error
prone and repetitive, so the notion of feature templates was introduced.
These are abstract features which must be instantiated over a domain in
order to become concrete features —i.e., made available to end-user diagrams.
Figure 6.39 shows how features such as enabled are defined as templates.

<<masd::variability::feature template bundle>> <<masd::variability::feature template bundle>>
archetype_features backend_features

+postfix: masd::variability::text = " +directory_name: masd::variability::text = ""
+overwrite: masd::variability::boolean = "true"

<<masd::variability::feature template bundless> <<masd::variability::feature template bundle>>
enablement facet_features

+enabled: masd::variability::boolean = "true" +directory_name: masd::variability::text - ™"

+postfix: masd::variablility::text - "*

+overwrite: masd::variability::boolean = "true"

Figure 6.39: Fragment of feature templates defined within the PMM.

Each of these modeling elements declares a domain over which template
instantiation is to be performed. For example, archetype_features has the
following tagged value:

masd.variability.instantiation domain=masd.archetype

The domain masd.archetype covers all available archetypes across the entirety
of the PMM. Other domains exist such as masd — spanning the whole physical
space —masd. facet, including only facets — and so forth. This scheme allows
the fine-grained definition of features across the different regions of the PMM.
At present, the main source of domains has been the geometry of physical
space, but there is no direct connection between the domain as a variability
concept and the PMM; these are merely seen as sets of strings, meaning other
applications are possible. At present, no additional use cases have emerged.

Significantly, the VMM resulted from the application of the physical modeling
process (cf. Section 6.1.2) to the MRI itself. All of the generalisations presented
here emerged from a long iterative process, with several years of experimen-
tation — from detecting SRPP’s within the variability domain, through to
modeling them in the LMM and ultimately to generating code to encapsu-
late them as trivial structural functions — and this process is still ongoing.
For example, one area where support is limited at present is in declaring re-
lationships between features; once implemented, it will allow solving for
valid configurations.®* And configurations brings us to the final topic within
variability: the Variability model (VM).

The matter is best understood via an example. Given two types A and B, where type A has a member
variable of type B; if type A enables certain regions of physical space — for example the hash
and serialization facets — then this implies that these regions must also be enabled on type
B in order to create a valid configuration. Solving, via methods such as BDDs (Czarnecki and
Wasowski, 2007) or SAT (Batory, 2005), will allow the automated resolution of these dependencies.
This is an area of future work.

82

63 VARIABILITY DOMAIN

6.3.3 The Variability Model

All entities described in the VMM thus far are mainly used for the code gener-
ation of variability support in the MRIL. However, a second aspect of variability
is the creation of run-time configurations, which instantiate the available
features with specific values. The simplest case of a configuration was
already covered, which is to add all configuration points to the affected
elements via tagged values. However, a problem soon emerged with regards
to reusing configurations: once features were made available and used
throughout, it became obvious that component models for a given product
shared a great degree of commonality configuration-wise, as did products
from the same product line.

This use case was addressed by introducing profiles to the LMM®2. These
are bundles of configuration points that can be bound to logical elements
such as component models and objects. With the introduction of profiles,
the VM took a renewed relevance, meaning each product can now define a
configuration model describing a configuration language for the product
or product line, and it can then be reused across a set of component models.
Figure 6.40 shows a fragment of the MRI's configuration, with a number of
profiles (stereotype masd::variability::profile). The use of inheritance
enables the construction of elaborate trees of profiles, supporting simultane-
ously minimal duplication and fine grained configuration.

<<masd::variability::profiles>
ignores

<<masd::variability::profile>
decoration

<<masd::variability::profile> <<masa: :variability::profile>>
extraction csharp

[+ignore_iles matching regex = .+/test/.*
+1gnore_files matcning_regex = .*/tests/.*

i

[+enabled = true
[+Licence_name = masd.gpl_v3
[+nodetine _group_name = masd.emacs
|+copyright_notice

i

[delete_extra files = true
[+detete_empty_directories = true

i

[renabled = talse

]

<<nasd: :variability: :profile>>
base

[*masd. cpp.standard = cr+-17

A

<<masd::variability::profile templates>
disable_all_facets
“enabled - false

<<masd::ivariability:iprofiles>
base_profile
odb.enabled - Talse
+hash.enabled = false
+seriatization.enabled - false
+lexical cast.enabled - false
+tests.enabled = false
+test_data.enabled - false

%

<<masd::variability:iprofiles> —<masd: rvariability::profiles>
default_profile relational_profile

E———"—"—"" [odb.cnabled = true

[+build.enabled = true

<<masd::varisbility:iprofiles>
test_all_facets

[“nasd.decoration .marker name - dogen.profiles.test marker|
[+nasd.cpp.tests.main.enabled = true

Figure 6.40: Fragment of the MRI configuration.

A second point of interest in the figure is the use of profile templates. These
follow the same logic as do feature templates, allowing for the instantiation
of a configuration point over a domain. Its main use, as per the image, is in
enabling or disabling all regions of physical space of a given type (facets, in the
example). Much like feature templates, they are very useful given the ever
expanding geometry of PMM, saving users from duplicating configuration
points.

As already alluded to, another extremely important aspect of profiles is how,
via their names, they can be used to create a very useful DSL that describes

The name profile is unfortunate because it is easily conflated with the notion of “UML profile”.
Presently, there is ongoing analysis to determine a better name for this concept.

119

Configurations

Profiles

Profile templates

DSL

120

Colouring

Binding

Binding scopes

83

DOMAIN ARCHITECTURE

the intended characteristics of various model elements. Figure 6.41 shows
a number of profiles used in the MRI, all named after the abilities they
convey, such as for example serializable or hashable. To further increase
the relevance of this DSL, one can associate a colouring scheme with profiles
(¢f. Section 6.1.5.3), making the diagrams visually distinctive.

<<masd: :variability::profile>>

handcrafted

+masd.variability.profile - dogen.profiles.base.disable all_facets|

—=

<<masd::variability::profile>> <amasd::variability::profile>> <<masd::variability::profile>>
pretty_printable handcrafted_typeable serializable

+enabled - true +enabled - true +enabled - true

+overwrite - false

+class_forward_declarations.enabled = false

<amasd::variability::profile>> <amasd::variability::profile>> <<masd::variability::profile>>
header_only implementation_only hashable
+class_implementation.enabled - false| |+class_header.enabled - false +enabled - true
+class_forward_declarations.enabled - false
+class_implementation.enabled = true

Figure 6.41: Sample MRI profiles.

Once defined, profiles can then be bound to models and model elements in
one of two ways: either via variability or via stereotypes. The latter takes the
same approach as object templates — i.e. one can populate element stereo-
types with one or more profiles names, thus binding the profile with the
element.3 The former is achieved by applying the profile tag to the element
in question:

masd.variability.profile=default profile

To facilitate the detection of binding errors — such as binding a profile that
was meant for a model against an element such as object —MASD allows set-
ting the scope of the binding on a profile;e.g., the following configuration
point ensures that a profile can only be bound to a model:

masd.variability.binding point=global

Whilst workable, this high-level specification of scopes does not address all
of the present use cases. As with feature binding, more work is needed in
order to satisfy the fine-grained binding specifications we need for the
current uses across logical and physical domains. And with this, we have now
introduced all of the core domains that make up MASD’s domain architecture.
What remains is to join the dots between these three domains, forming a
combined space.

The rules defining the application of multiple profiles are, at present, deceptively straightfor-
ward: each profile is applied, in turn, in the order defined by the binding. However, there
are clear limitations with this approach such as the definition of conflicting configurations (e.g.
enabling feature A in profile P8 and disabling feature A in profile P1). As with solving for valid
configurations, an element of upfront validation is required to, at a minimum, alert users to
potential conflicts.

64 THE LOGICAL-PHYSICAL SPACE

64 THE LOGICAL-PHYSICAL SPACE

The domain architecture as described thus far suggests three unconnected do-
mains with their associated models and metamodels, which may be composed
to address the methodology’s requirements (cf. Section 4). MASD has indeed
started in this disjointed manner but, as the problem domain understanding
deepened, they were fused together conceptually and the amalgam became
the Logical-Physical Space (LPS). The key idea behind the LPS is that the PMM,
LMM and the VMM are distinct dimensions of a multidimensional space, but
they only make sense when viewed as a whole. The LPS is designed to allow
elements to move seamlessly from representation to representation, all the
while catering for configurability — as shown in Figure 6.42.

sprojects to

Codec
Representation

—

Logical 4 confiqures
Representation

variability
Representation

Physical
Representation

projects tom

Figure 6.42: High-level view of MASDs LPS.

From this standpoint, MASD's role is two-fold: a) to define the composition
of all dimensions in the LPS — that is, the metamodels with their elements
and associations; and, b) to define a framework of projections between LPS
dimensions. The MRI is the canonical implementation of both of these points.
The framework is responsible for taking models from a codec representation,
processing them through a series of transform chains that aggregate transforms
of various kinds (e.g. M2M, M2T, T2T), most of which parametrised by
non-structural variability, to their ultimate destination which are files and
directories in the filesystem. More succinctly: the LPS is MASD’s domain
architecture.

And so concludes our incursion into MASD’s domain architecture, which also
marks the end of our exposition of the methodology and components. The
next part of this work will concern itself with its practical application, starting
with its approach to the modeling activity itself.

121

Fused domains

Framework of
projections

122 DOMAIN ARCHITECTURE

Part II1

APPLICATION

=

LITERATE MODELING WITH ORG-MODEL

I believe that the time is ripe for significantly better documentation of
programs, and that we can best achieve this by considering programs to
be works of literature. Hence, my title: ”Literate Programming.”

Let us change our traditional attitude to the construction of programs:
Instead of imagining that our main task is to instruct a computer what
to do, let us concentrate rather on explaining to human beings what we
want a computer to do.

— Donald Knuth (Knuth, 1984)

AVING EMPLOYED MDE techniques extensively for over a decade, we became
H keenly aware of the importance of both the medium and tooling with
which to compose and edit models, as well as of the significance of its inte-
gration with the remainder of the software engineering stack. This chapter
concerns itself with org-model, a new technology developed within MASD that
benefits from lessons learned and is designed specifically to satisfy our mod-
eling use cases. Org-model marks MASD'’s internal departure from graphical
representations, and underlines a new emphasis on textual representations
and literate modeling."

The chapter is organised as follows. Section 7.1 motivates the need for a new
approach, and points to the general direction in which to follow. Section 7.2
performs a brief literature review on the topic, with particular attention paid
to literate modeling.> An overview of org-mode is then provided by Section
7.3, and org-model — a solution built atop of it — is put forward by Section
7.4. The chapter ends by discussing the benefits and drawbacks of the new
approach (Section 7.5). Let’s start by looking into why a change was necessary
in the first place.

7.1 MOTIVATION

Pervasive integration with development tooling is one of MASD’s core tenets
(P-2). As the previous sections alluded to, great care was taken in creating a
codec representation, specifically designed to facilitate tooling integration (cf.
Section 6.2.2). The idea is to lower barriers to entry, allowing bindings to any

To be clear, this chapter discusses MASD’s internal modeling needs. Our approach may be suitable
to others, wholesale, or merely seen as an experience report with restricted application. Either
way, MASD remains strictly neutral with regards to its users’ choice of tooling.

The topic is not without its representation in the literature, and certainly much could be said about
it. However, given the role of this chapter in the present manuscript, the review was circumscribed
to only items with a direct impact on our solution. Clearly, a thorough state of the art review
would be beneficial, but its left as a future direction.

125

Approach

Chapter
overview

UML integration

126

Dia Characteristics

Tooling challenges

LITERATE MODELING WITH ORG-MODEL

modeling tool used by developers. The initial expectation was that extraction
— i.e. projections from external TSs into MASD — would entail parsing a file
format in JSON or XML, preferably XMI (cf. Section 3.3.3), because UML was
seen as the obvious language for model editing. For the majority of MASD’s
lifespan, Dia3 has been used in this regard. Dia is a general-purpose FOSS
diagramming tool, with support for UML amongst great many other notations.
Figure 7.1 shows Dia with a fragment of a model from MASD’s MRI.

View Layers Objects Select Tools Help

@ 50%

dogen.variability.dia % dogen.logical.dia X dogen.profile;

Figure 7.1: Dia modeling tool with a MASD model.

From a perspective of industrial-grade modeling, Dia suffers from significant
deficiencies: it has limited understanding of UML — not much beyond seeing
it as a set of shapes — and supports several core features in an inconsistent
manner. For example, model-level stereotypes and tagged values are not
available, though they exist for other elements — hence why these have been
added to UML notes via a MASD-specific extension, as demonstrated in Figure
7.1 (top-left, in yellow). That said, these limitations were incidental to MASD
because our express intent is to avoid coupling the domain architecture to
any one tool, and to use tooling merely as a means for model composition. In
other words, the richer the feature set of the tool, the higher the risk of creating
unwanted dependencies between it and MASD; conversely, having basic UML
support acts as a mitigating factor.

Nevertheless, after over a decade of extensive Dia usage, an unexpected con-
clusion was reached: the tool had begun to have a restrictive impact in MASD’s
development, and on the MRI in particular (cf. Chapter 8). A reflection on the
challenges faced revealed that these issues were not related to Dia per se but
were instead properties of graphical modeling in a MASD context — all the

3 https://gitlab.gnome.org/GNOME/dia/

https://gitlab.gnome.org/GNOME/dia/

7.2 LITERATURE REVIEW

more noticeable because models are central to our work.*5> Whilst a graphical
representation aids comprehension — particularly when carefully curated and
aided by colour schemes, as is done in the MRI — a large proportion of the
modeling work is related to editing elements and their properties. Often times
it entails going backwards and forwards between different representations, as

depicted by Figure 7.2.
Agile Modeling
Representation Representation
Documentation Source Code
Representation Representation

Figure 7.2: Information flow across representations in MASD.

The image provides a simplified view of information flows across representa-
tions within the MR, as observed during the development of new features.®
Typically, one begins with a textual representation in natural language, cap-
tured as a user story during an agile sprint. The story may evolve over time,
remaining in analysis until mature and ready for implementation. At this
stage, the story is often then modeled in a graphical representation (i.e., Dia),
and one begins to iterate between it and a source code representation during
one or more sprints. Finally, as the story nears completion, work commences
on updating the documentation in light of the changes it brought about, which
in turn may spur the development of new and related stories, change the un-
derstanding of existing stories, and so forth, in a continuous loop that lasts
the lifetime of the software product.

With the exception of modeling, all representations are in a textual form. Thus,
an obvious way in which to reduce friction in information flow is to decrease
the impedance mismatch between representations; this can be achieved by
normalising them all to a similar textual form. To understand how best to go
about this, we consulted the literature.

7.2 LITERATURE REVIEW

Our views on the limitations of graphical representations are amply echoed
within the literature, such as by the work of Arlow et al. (Arlow, Emmerich,
and Quinn, 1998), subsequently augmented by (Arlow and Neustadt, 2004).
There, Arlow et al. substantially advanced our own diagnosis:

4 Note that our intention is not to make a general statement about graphical modeling — though, as
our review of adoption literature points out, perhaps such a case can indeed be made (cf. Section
2.1, and also Chapter 3). Instead, our personal view is that textual modeling is better suited to
our workflow, because, as software developers, manipulating text is at the core of our profession.

5 For a more detailed discussion on this subject, please consult the MRI's release notes when this
feature was introduced. (Craveiro, 2021a)

6 For additional details on how agile is used in the MRI's development, see Section 8.1.3.

127

Information flows

Representation
normalisation

128

Challenges with
graphical modeling

Literate modeling

MOP

FOSS modeling
approaches

7
8

9

LITERATE MODELING WITH ORG-MODEL

One problem you will find with UML models (and in visual mod-
els in general) is that the valuable information captured in the
model is only accessible to those who know the visual syntax of
the modelling language. In a sense, valuable information about
the business becomes encrypted in a concise, elegant modelling
language [...].

In fact, it is not just the visual syntax of UML models that creates
problems. If you need to access the information embedded in a
model, you may also need to know how to work a CASE tool to
navigate that information effectively. [...]

Also, unless you already know the general “shape” of a model,
knowing precisely where to start with either the model in a CASE
tool, or with a generated report can be difficult. (Arlow and
Neustadt, 2004) (p. 88)

Moreover, their suggestion on how to address these issues pointed towards
literate modeling, which resonated closely with MASD’s needs:

Literate modelling applies of Knuth’s idea of Literate Programming

(Knuth, 1984) to UML models. The approach is very simple —
you interleave UML models with a narrative text that explains the

model to both the author of the model and to all the roles discussed

above [e.g., the actors involved in the development process].

Whilst in overall agreement with their diagnosis, we nonetheless disagreed
with the proposed solution, preferring a text-only approach over the suggested
content interleaving. Text was then the direction of travel, but there was still
an important decision to be made with regards to the specific notation to
employ. Research on textual representations for modeling languages has
a prolific presence in the literature; our excursion uncovered approaches
such as Model Oriented Programming (MOP) — the work of Badreddin and
Lethbridge being of particular interest (Badreddin and Lethbridge, 2013), as
well as Executable UML (Mellor, Balcer, and Foreword By-Jacoboson, 2002).
However, the requirements of MASD directed us away from such complex
endeavours since models within MASD cater only for structural aspects, with
simpler behaviours encoded in the geometry of physical space (cf. Section
6.1). In this light, complex behaviour is entirely relegated to the programming
language representation, thus negating the main advantages of an expressive
modeling language in the vein on MOP.

In addition to the more comprehensive MOP languages, a host of lightweight
representations was also found, including MetaUML?, TextUMLS, PlantUMLY,
yUML' and others of a similar ilk, all characterised by a compact scope and
a focus on outputting diagrams as images; one could conceivably target the
structural subset of any one of these implementations to satisfy MASD’s re-
quirements. Alas, by carefully observing MASD'’s information flow (Figure
7.2), these approaches were seen to be better suited for extractive projections

http://metauml.sourceforge.net
http://sourceforge.net/projects/textuml/
https://github.com/plantuml/plantuml

10 https://yuml.me/

http://metauml.sourceforge.net
http://sourceforge.net/projects/textuml/
https://github.com/plantuml/plantuml
https://yuml.me/

11

12
13

14
15

16
17

18
19

20

7.3 OVERVIEW OF ORG-MODE

out of MASD rather than as injections. It is so because both the agile represen-
tation and the documentation representation involve natural language; the
literate modeling approach is closer to either of these two representations than
it is to the source code representation.™

The analysis of information flows also revealed that both MASD’s documen-
tation as well as its agile processes rely extensively on org-mode'?, a textual
representation available in the Emacs editor used for MRI development — but
also supported by a host of other editors and IDEs.’3 Org-mode had been
shown to be a competent environment for literate programming and repro-
ducible research by Schulte et al. (Schulte et al., 2012); its tree-like structure
and support for annotations provide ample scaffolding with which to map all
of the modeling constructs required to represent UML constructs.

Furthermore, as Schulte et al. had already noticed, org-mode has a broad and
diverse tooling ecosystem that can be applied directly to both modeling and
the weaving of MASD’s information flow. The following should suffice as a
demonstration of the strength of the tooling ecosystem: org-roam'4 augments
org-mode with support for zettelkasten'5; org-brain'® adds support for concept
mapping'7; and org-ref18 manages citations, cross-references, indexes, glos-
saries and bibliographies for org-mode documents.' These are all useful tasks
in a modeling environment driven by literate modeling and DDD (cf. Section
5.3). With this in mind we begun to explore the possibility of modeling using
org-mode documents. But before delving into how this was achieved, we shall
first provide a brief overview of org-mode.

7.3 OVERVIEW OF ORG-MODE

There are a great number of markup languages widely used in software de-
velopment, starting with arguably the most known of all, HTML.?>* Whilst
org-mode is part of the family of markup languages, it distinguishes itself due

In other words, it is not the case that diagrams require contextual text; instead, the text describing
a software product can be augmented by contextual diagrams.

https://orgmode.org/

At the time of writing, org-mode plugins were found for Visual Studio Code, Vim, Atom, and
Sublime. Note that this is not an exhaustive list. However, not all features are supported and
Emacs is still its reference implementation.

https://www.orgroam.com/

Wikipedia defines zettelkasten as follows: “The zettelkasten [...] is a method of note-taking and
personal knowledge management used in research and study. [...] A zettelkasten consists of
many individual notes with ideas and other short pieces of information that are taken down as
they occur or are acquired.” (Zettelkasten, 2021)

https://github.com/Kungsgeten/org-brain

Wikipedia states that A concept map or conceptual diagram is a diagram that depicts suggested
relationships between concepts.[1] Concept maps may be used by instructional designers, en-
gineers, technical writers, and others to organize and structure knowledge.” (Concept map,
2021)

https://github.com/jkitchin/org-ref

All of our research, including writing the present manuscript, was performed using org-mode,
making ample use of org-mode’s tooling ecosystem — for example for note taking, reference
management, etc.

Wikipedia defines markup languages as follows: ”In computer text processing, a markup language
is a system for annotating a document in a way that is visually distinguishable from the content.
It is used only to format the text, so that when the document is processed for display, the markup
language does not appear.” (Markup language, 2021)

129

Org-mode

Tooling ecosystem

Markup languages

https://orgmode.org/
https://www.orgroam.com/
https://github.com/Kungsgeten/org-brain
https://github.com/jkitchin/org-ref

130 LITERATE MODELING WITH ORG-MODEL

to a deep integration with the Emacs editor (Stallman, 1981) and its program-
ming language Emacs Lisp (Lewis, LaLiberte, Stallman, et al., 1993). In the
previously mentioned paper, Schulte et al. convey enthusiastically both the
simplicity and the power of this combination (emphasis ours):

At the core of Org-mode is the Emacs text editor and Emacs Lisp,

a dialect of Lisp that supports the editing of text documents. [...]

Org-mode extends Emacs with a simple and powerful markup

language that turns it into a language for creating, parsing, and

Org-mode interacting with hierarchically-organized text documents. Its rich feature
characterisation set includes fext structuring, project management, and a publishing
system that can export to a variety of formats. Source code and data

are located in active blocks, distinct from text sections, where ”active”

here means that code and data blocks can be evaluated to return

their contents or their computational results. (Schulte et al., 2012)

Since, for our purposes, we need not leverage all org-mode features, we shall
only unpick those which are relevant to MASD. First and foremost, the hier-
archical nature of org-mode is a great fit for MASD’s modeling data, given
its focus on structural modeling as emphasised constantly in the domain ar-
Org-mode and chitecture (c¢f. Chapter 6). Secondly, the support for source code interleaving
MASD s also of great interest to MASD, allowing us to carry fragments of code or
even complete source files within a model — a theme for later development
(cf. Section 8.1.5). Finally, the fact that org-mode is tightly integrated with
Emacs — the tool used for the majority of software development in MASD
— is a very important point and goes to the heart of our ideas on pervasive
integration (P-2); modeling should be integrated as tightly as possible with
existing developer workflows.>*

As org-mode is well documented, physical modeling (cf. Section 6.1.2) relied
on existing sources such as (Org Syntax, 2021). Two brief examples will be
shown to demonstrate the morphology of org-mode files. Figure 7.3 displays
Document and a fragment of a sample org-mode document, as sourced from the previously
headlines cited project’s website.'> The document is at the centre, with a darker back-
ground; to its left and right are annotations to help identify elements and
features. The outline structure of org-mode is created via the star or asterisk
character (*), with the number of stars conveying depth — shown in the
picture with headlines of varying colours.

Different kinds of metadata can be associated with the document — such as
title, author and date, top left — as well as task management annotations —
for example, the so called TODO keywords are in upper case, such as TODO and
DONE. In addition, though not shown in the picture, each headline can have one

Metadata or more associated tags, in the form : TAG_NAME:. Note also how headlines can
be folded, making them non-obtrusive (headline “Check CSS on main pages”).
Finally, the example also demonstrates a variety of mechanisms for linkage
to other sources of information: from HTTP links, to links to arbitrary files
in the filesystem, to including other org-mode documents via the #+include
keyword.

21 By this we are not stating that all developers working on MASD should use Emacs or even org-
mode; instead, they should either perform a similar analysis to the present one, figuring out how
to best integrate modeling to their workflow, or find ways of using org-mode with their current
setup.

7.3 OVERVIEW OF ORG-MODE

Metadata | #+title: Example Org File

#+author: TEC

#+date: 2020-10-27

* Revamp orgnode.org website Outlining
Agenda Headings and folding make

. 8 g
List todos across all your files. The /beauty/ of org *must* be shared. structured editing a breeze.
Pl et o o [[https://upload.wikimedia.org/wikipedia/commons/b/bd/Share_Icon.svgl] i A D
place. BT I S and version control Org files.
CLOSED: [2020-09-03 Thu 18:24]

** DONE Restyle Site CSS
6o through [[file:style.scss][stylesheet]]

** TODO Check CSS on main pages [42%]...

pProse| * Learn Org
Org makes easy things trivial and complex things practical.
You don’t need to learn Org before using Org: read the quickstart
page and you should be good to go. If you need more, Org will be
here for you as well: dive into the manual and join the community!

** Feedback

#+include: "other/feedback.org*manual” :only-contents t

* Check CSS minification ratios

Figure 7.3: Fragment of example org-mode document. Source: Project website.

Our second example, also sourced from the org-mode website, demonstrates
the usage of source code blocks within a org-mode document (Figure 7.4).
The #+begin_src keyword denotes the start of the source code block, followed
by the language used within the block (python in this particular case). In
addition to providing syntax highlighting relative to the language used, org-
mode also allows editing the source code block within an environment that is
similar — if not exactly identical — to a full programming environment, with
access to IDE-like features such as code completion, compilation errors and
the like.

“ode | #+begin_src python ‘Babel
from pathlib import Path

ssRatios = []

for css_min in Path(“resources/style").glob("*.min.css"):

css = css_min.with_suffix('').with_suffix('.css')

cssRatios.append([css.name,

{:.0f}% minified ({:4.1f} KiB)".format(100 *
css_min.stat().st_size / css.stat().st_size,
css_min.stat().st_size / 1000)1)

Perform literate programming
in org, with notebook-like live
code execution in the buffer.

return cssRatios
#+end_src

Figure 7.4: Fragment with source code blocks. Source: Project website.

The third and final example focuses on property drawers. Documents, head-
lines and other org-mode elements can be associated with an arbitrary number
of properties. As with headlines, these can be kept open or folded away for
convenience. Figure 7.5 demonstrates the use of property drawers, both at the
document level, as well as at the headline level. In the example, we show the ID
property associating a UUID with each element, including the document itself
(at the top). One of the property drawers is folded away (headline “Example
sub-headline collapsed”). For completeness, we also created a sample prop-
erty called MY-PROPERTY that is only associated with the top-most headline
”Example headline”.

This brief overview portrays only a sliver of org-mode’s power and abilities.
Nonetheless, these examples demonstrate all of the core features needed by
MASD in order to store its models within an org-mode document. The next
section shall now explain how this was achieved.

131

Source code blocks

Property drawers

132

Library challenges

New library
implementation

22

23

LITERATE MODELING WITH ORG-MODEL

Document title

Figure 7.5: Org-mode document with property drawers.

7.4 CREATING THE ORG-MODE CODEC

Given that the purpose of the new codec was to introduce org-mode based
modeling, we decided to name it org-model.>* The first step to introducing a
new codec to MASD involves locating an existing platform library that can
parse files of this format, implemented on the TS of choice for the MRI (C++).
As mentioned before, there had been an expectation that input formats for
codecs would be in JSON, XML or other popular data interchange formats,
for which there are many supporting libraries, providing adequate platforms
from which to work from. For org-mode, the number of choices was very
limited; few libraries could be located, and of those only OrgModeParser?3
was of industrial grade quality, with support for all the required features.
Unfortunately, its large number of dependencies and sparse maintenance
made it incompatible with the approach used in the MRI.

Figure 7.6: Dia representation of org-mode model.

Having no other alternative, we implemented org-mode support by extending
the MRI. This was done by creating a component model to store all of the data
structures required by the codec (Figure 7.6), and writing a parser that reads
input files in org-mode notation and instantiates entities with MASD’s org-
mode model. Thanks to the codec pipeline, the integration of the org-mode
model with the remainder of the framework was quite straightforward, and
required only two trivial M2T transforms that are specific to org-mode. The

The codec name is not of great significance in the near future as it is only used internally, and as a
way to name the set of conventions MASD has created for its org-mode documents. As a future
direction, we would like to add org-model specific support to Emacs to facilitate the authoring of
org-model diagrams.

https://github.com/mirkoboehm/0OrgModeParser

https://github.com/mirkoboehm/OrgModeParser

24

7.4 CREATING THE ORG-MODE CODEC

key decisions were related to the mapping of the modeling elements to the
org-mode document elements, which we shall now describe.

The mapping was surprisingly simple:

e The org-mode document itself was mapped to a model. Its stereotypes
and tagged values are supplied as properties in the document-level
property drawer.

o Headlines were mapped to different modeling elements, depending on
their tags. We mapped each meta-element in the codec model to its own
tag: module, element and attribute.

e Finally, the content of the headline was used to populate the comment
for the codec element.

The mapping can be seen in action on Figure 7.7, depicting an org-mode
representation of the org-mode model previously shown in its Dia incarnation
(Figure 7.6). The property drawers have been left open for illustrative purposes
but, even in their expanded state, it should be apparent how documentation
now dominates the model when compared to its UML representation, taking
us much closer to literate modeling without subverting the org-mode file
format.

Figure 7.7: Org-mode model in org-mode notation.

This outcome was not completely left to chance. Indeed, a key principle when
designing the mapping was to try to keep to org-mode’s native idioms as much
as possible, so that MASD models would not appear surprising to regular
(i.e. non-MASD) org-mode users. The advantages extend beyond humans
since such an approach also ensures compatibility with the tooling ecosystem.
However, note that the mapping is not completely native as of yet, with further
analysis work still ongoing; for example, references could make use of links to
facilitate navigation between org-mode documents, but at present these are
properties within the model drawer (e.g. masd.codec. reference in Figure
7.7, near the top).?4

Using org-roam to enable cross-document referencing appears to be a fruitful way with which to
address this issue, though additional analysis still remains on how best to perform this integration.

133

Codec to org-mode
mapping

Mapping example

Native behaviour

134

Readability and
exporting

Levels of application

Approach advantages

LITERATE MODELING WITH ORG-MODEL

A final note is warranted on the processing of headline titles. In the interest of
pushing forward with the literate modeling agenda, titles can make use of nat-
ural language conventions such as spaces and capitilisation, greatly improving
readability: e.g., "An example title” instead of “an_example_title”. Doing
so means benefiting directly from org-mode’s extensive export machinery
without requiring preprocessing — such that a model generate documents in
formats such as PDF, HTML and many others. Conversely, for the purposes of
code generation, headlines are converted internally into valid identifiers, as a
function of non-structural variability; for instance, users can decide to replace
spaces by underscores, camel or pascal casing as well as other conventions
popular with software engineers.

7.5 EVALUATION

Introducing org-model into the MRI was a typical application of the MASD
Composite Process (cf. Section 5.4.2.4). Consequently we must analyse the
impact of the application at two distinct levels: application and meta-application.
The first level is the most obvious: there was a practical requirement to address
a set of diagnosed issues and, in doing so, a significant new feature was added
to the MRI. However, the exercise was also a test on how the fundamental
ideas of MASD are to be applied in the real world, and thus a meta-application
of the methodology. The next two sections delve into the details of these two
levels.

7.5.1 Application Evaluation

Though all models within MASD’s MRI have been converted to the org-mode
representation, this feature has been in production for less than a year, making
it difficult to perform a thorough evaluation. Nonetheless, given the limitations
previously had faced with graphical modeling, certain improvements are
unequivocal:

e Improved information flow: it is clearly easier to move information
between the different representations, particularly between the agile
representation and the documentation representation as we had hoped.
Having all documentation in the same format greatly helps in this regard.

e Improved tooling integration: in the past, it was very difficult to move
models backwards and forwards between versions in version control.
Though Dia stored diagrams in a text representation, its XML file format
is quite verbose and clearly designed for machine consumption rather
than human. With org-mode, it is now trivial to diff versions of models,
and to synchronise them using the exact same tools we use to manage
source code

o Better model navigation and editing: closely related to the previous
topic, it is now much easier to find and edit model elements — again,
because we are making use of the same tooling as for programming. For

7.5 EVALUATION

example, we often use Unix tools such as grep, sed, sort efc. to retrieve
and manipulate information stored in models — something which was
not possible in the past due to the complexity of the Dia file format; these
issues are common to any XML-based file format, so XMI would be no
different.

o Text templating integration: org-mode source code blocks allowed us
to integrate the text templates used to generate M2T transforms in a
very natural way. These will be discussed in more detail on Chapter 8,
but the example shown on Figure 7.8 demonstrates the principle. The
templates are carried within source code blocks in org-mode documents,
facilitating their editing and composition.

Figure 7.8: Example text template in a org-mode model.

However, not all aspects of this transition have been positive. By far, the most
significant downside of moving towards a text representation was the loss
of a graphical representation for modeling. Given that UML class diagrams
had been very central to modeling within MASD, this was not an acceptable
trade-off, so we decided to address this shortcoming by adding a PlantUML
codec to the MRI. As Figure 7.9 attests, basic support for class diagrams is
already available, though their expressiveness is not yet at the same level of
past Dia diagrams.

Figure 7.6 had shown the Dia representation for a fragment of this very model.
It should be apparent that the manually crafted diagram is “easier on the eye”
when compared to the automatically generated PlantUML diagram, though
the qualitative nature of this judgement makes it difficult to measure. Nonethe-
less, the easiness with which both org-mode and PlantUML codecs were added
to the MRI validate the approach in creating a framework for codecs. They
also make a broader statement with regards to pervasive integration, which
the next section shall address.

7.5.2 Meta-application Evaluation

The implementation of org-model as a new feature in the MRI is a canonical
example of how we expect MASD to change and adapt to developer workflows.
By reflecting on the process, the following salient characteristics were found:

135

Approach
disadvantages

PlantUML challenges

136

LITERATE MODELING WITH ORG-MODEL

entities|

htps

Represents a headline in org mode.

Headlines and Sections

A headiine is defined as:
‘STARS KEYWORD PRIORITY TITLE TAGS

STARS is a string starting at column 0, containing at least one
asterisk (and up to org-inlinetask-min-level if org-inlinetask library

is loaded) and ended by a space character. The number of asterisks Is
used to define the level of the headline. It's the sole compulsory

part of a headiine.

KEYWORD is a TODO keyword, which has o belong ta the list defined in
org-todo-keywords-1. Case is significant

PRIORITY is a priority cookie, i.e. a single letter preceded by a hash
sign # and enclosed within square brackets.

TITLE can be made of any character but a new line. Though, it will
match after every other part have been matched.

TAGS is made of words containing any alpha-numeric character,
underscore, at sign, hash sign or percent sign, and separated with
colons.

:_and_Sections

|©« ‘tag Ve”l |©« mduﬁkeywnm”l

|

(© Hheadine
int
list<affiiated_keyword> e «masd:-enumeration’)
© (© arawer_content] [(©) amiatea_keywora Zemes
9 © key stdzsiring o key stdstring v
- contents © value std:siring © value sid:string o pronerty._drawer
© tags stdistetag>
0 toto_keyword todo_keyword
(© block ® -
“ 5 - block_type «masd: primitive:
e s e
| — © contents std:string © greater_block
 type block._type

Figure 7.9: PlantUML representation of org-mode model.

Friction in the modeling process was detected. Parts of the develop-
ment process had changed specifically to accommodate modeling, and
demanded the use of tools that were not needed previously (i.e., Dia).

Over a period of time, analysis was carried out on how to best perform
the same modeling activities within the existing tooling; the aim was to
discover a more efficient way of integrating the new processes with the
existing development process, lowering the overall friction.

Org-mode was chosen as the technology with the best fit with the current
development environment. Physical modeling was applied to org-mode
artefacts, even though their role was not to augment the PMM. This was
not a use case we had anticipated for physical modeling, but it proved
extremely useful.

Additional use cases that had not been anticipated originally in MASD
were made available by the new technological choice, with literate mod-
eling being an important addition, as well as the many tools that make
up the org-mode ecosystem.

Our conclusion is that the processes defined by MASD worked precisely as
intended, and their application resulted in an overall improvement of the

MRI.

7.5 EVALUATION 137

MASD REFERENCE IMPLEMENTATION

High-level models are quite different from programs in conventional
programming languages. They abstract from most of the detail that a
programming language exhibits. Once you want to generate real code,
all this detail has to be filled in. This makes code generation from those
models a difficult task. Moreover, many decisions in this process are
similar for different target languages, but it is hard to make use of these
commonalities.

— Piefel and Neumann (Piefel and Neumann, 2006)

T’S HARD TO OVERESTIMATE the importance of the MASD Reference Implemen-
tation (MRI) to MASD; it is a key component of the methodology, playing
three distinct roles. First, due to our reliance on dogfooding (cf. Section
5.4.2.4), all ideas and features must be battle-tested in the MRI before they can
be incorporated and exposed to end users; in this guise, the MRI acts as their
litmus test.* Secondly, the MRI is the de facto standard for anything not covered
in the present document (cf. Section 5.2.3.5). This includes core elements such
as the MASD UML profile, non-structural variability definitions, the menu
of supported codecs and much more. Finally, and perhaps most significantly,
the MRI supplies the tooling needed by end users in order to apply MASD to
their own software projects.>

The MRI is a software product line presently composed of three individual
products. This chapter will present an overview of each of these, as follows.
Section 8.1 covers Dogen, the code generator, and contains the bulk of the
chapter’s material. Section 8.2 discusses the two reference products for each
of the supported TS’s (C++ and C#). The chapter ends with a discussion
of the lessons learned with the MRI (Section 8.3). Let us then start with the
software project at the root of it all.

8.1 DOGEN

Dogen3, the domain generator, is a FOSS project implementing a code generator
based on MDE principles and is deeply interwoven with MASD, as this section

These tests are both literal — in that the MRI contains an automated test suite to validate its

features — and conceptual, in that the MRI is expected to have use cases for all relevant aspects of

MASD as a methodology. The MRI is printus inter pares of all software products generated using

the MRIL

2 Note that MASD is not against using third party implementations, but at present these do not exist;
and when they do, it is likely they will lag behind the MRI. Thus, this option is not considered in
the present document.

3 https://github.com/MASD-Project/dogen

[

139

Multifaceted roles

Chapter overview

https://github.com/MASD-Project/dogen

140

Section overview

Releases

MASD REFERENCE IMPLEMENTATION

will explain. The scene will be first set by discussing the historical context
and the motivation for the project (Section 8.1.1). Section 8.1.2 then discusses
the additional requirements the tool had to satisfy, followed by Section 8.1.3
which elaborates on the SDM used to deliver those requirements. Section 8.1.4
provides a brief summary of its implementation details, including its architec-
ture, and relates it back to MASD’s own domain architecture (cf. Chapter 6).
Section 8.1.6 concludes Dogen’s synopsis by taking on end user concerns such
as tool usage and application, and supplies a quick tour of the main features
of the command-line tool.

8.1.1 Historical Context

Dogen was started in 2011 by the author of the present document, who acts
as both its maintainer and main contributor. Dogen has been in continuous
development since inception, with a frequent if somewhat irregular release
cadence, totalling 130 releases over the decade-long span — 110 of which
are publicly available. Figure 5.11 shows the distribution of releases per year,
starting in 2012, which is the year the project was first made available in
GitHub.# Its latest release is v1.0.30, published at the start of January 2021.5
Focus then shifted towards completing the present document, meaning no
further releases have been made since.

Dogen releases per year

16
14
12
10
3 B Releases
6
4
:]]
o [|
R3] g $ $ 5 ™ 2 o h e

o

& P R R & & &
Figure 8.1: Dogen releases per year.

The current hiatus in development is not uncommon in Dogen’s history, as pe-
riods dominated by software engineering have been intentionally interleaved
with periods dedicated mainly to theoretical work. Looking back on over a
decade of engineering, one can divide it into the following phases:

e The second-system effect® phase (2011 to 2013): Though Dogen was
created from scratch, it is conceptually the second iteration of the expe-
riences narrated in (Craveiro, 2021c). At inception, a naive belief was
held that most of the previous problems were rooted in inexperienced

4 For completeness, the first public release was v0.20.588. Prior to this release, there had been 19
releases which were not made available to the outside world.

5 https://github.com/MASD-Project/dogen/releases/tag/v1.0.30

6 Brooks describes the second-system effect vividly: “This second [system] is the most dangerous
system a man (sic.) ever designs. [...] The general tendency is to over-design the second system,
using all the ideas and frills that were cautiously sidetracked on the first one. The result, as Ovid

1

says, is a ‘big pile’.” (Brooks, 1974) (p. 55)

https://github.com/MASD-Project/dogen/releases/tag/v1.0.30

8.1 DOGEN

engineering decisions; and that these could be overcome, quickly, via
a sounder software engineering approach. To a small extent this con-
jecture was proved correct, as improvements in the testing framework,
parsing and other key areas resulted on an enhanced code generator.
However, more issues were created than resolved overall and the archi-
tectural complexity increased significantly. By the end of this phase, the
magnitude of the original ask was finally understood. As a result, the
scope of the endeavour was reduced to a manageable size, and scope
narrowing became enshrined in the approach’s core values (P-1).

o The experimental phase (2013 to 2015): The boundaries may have been
set but the internal architecture remained unclear, so the next two years
were spent on architectural experimentation. Whilst neither inputs or
outputs changed a great deal, the architecture was redesigned multiple
times, and all of its components were renamed several times over. As an
example, a TS-level model was introduced, using constructs from the
supported programming languages directly. Predictably, the approach
resulted in failure as the resulting models and associated transforms were
too complex. Several other attempts of this ilk were made, and though
some of the ideas were kept — most notable of which is stitch, a new
text templating language (cf. Section 8.1.4) — no overall breakthroughs
were achieved.

e The research phase (2015 to 2020): This phase begun with the reali-
sation that a strong theoretical foundation was necessary. During this
period we familiarised ourselves with the literature on code generation,
with a particular focus on MDE, and conducted a formal programme of
research that produced the present manuscript as its final outcome. The
theoretical foundations for Dogen begun as a series of concepts which
were iterated upon for just over 70 releases, until the emergence and
consolidation of the domain architecture (¢f. Chapter 6). This phase
included the separation of MASD, the methodology, from Dogen, the
tool.

e The productionisation? phase (2021 onwards): The current objective
for Dogen is to add a small number of missing features needed to fully
support product line generation, at which point it can be said to have
passed the MRI’s fitness function (cf. Section 5.4.2.4). Appropriately,
the completion of these features will be marked by the release of Dogen
v2.0.8 Subsequent to this release, we will begin to implement some of
the many ideas for new features which have been captured over the
product’s lifetime.

An important aspect in our drive towards the productionisation of Dogen has
been the consolidation of the requirements for the tool. Further to the require-

Wikipedia tells us that: “Productionisation [...] is the process of turning a prototype of a design
into a version that can be more easily mass-produced. It is mostly a necessary step in the devel-
opment of any product, since it is rare that the initial design is free from flaws or construction
methods which make it difficult or more expensive to manufacture.” (Productionisation, 2021)
Originally, we had intended to release v2.0 before publishing the present document. However,
there were inevitable delays in coding, which is to be expected given the difficulty in estimating
outstanding effort. Since all of the conceptual work had been completed, we opted for finalising
the document first and then resuming the programming activities at a later stage.

141

Phases of development

142

Non-functional
requirements

\O

MASD REFERENCE IMPLEMENTATION

ments laid out in Chapter 4 — mainly driven by theoretical considerations —
more practical concerns have been added, as described next.

8.1.2 Requirements

Dogen introduces four additional non-functional requirements which signifi-
cantly constrain the set of choices for its implementation; of these, three are
refinements of what has already been outlined in Chapter 4. They are as
follows:

e Performance requirements. Generating all its models must not take
longer than 5 seconds, and running the entire test suite — including
regenerating all of the C++ and C# reference implementation models (cf.
Section 8.2) — must not take over 10 seconds. Whilst somewhat arbitrary,
these numbers were chosen as an acceptable upper bound on wait time
during development. Higher values would result in a degradation of
the edit-compile-run cycle, negatively impacting developer experience.?

e Dependency requirements (furthering of Requirement 15). In order to
facilitate integration to development environments, Dogen must be as
self-contained as possible. This means it cannot necessitate the installa-
tion of run times such as JVM or the CLR, as these would act as a further
barrier to entry to developers not using those technologies. Thus, only
technologies which produce native binaries can be used.

o Cross-platform requirements (furthering of Requirement 15). Dogen
must support all of the main platforms used by developers. These in-
clude Windows, Linux and Mac OS X (OSX). The code base must support
compilation across all of these platforms, implying that the generated
code must also have cross-platform support.

e Integration requirements (furthering of Requirement 15). Finally, Do-
gen must supply a library with access all of its functionality; the library
can be used as a basis to extend existing programming environments. In
order to make the library compatible with any of the myriad of technolo-
gies used to engineer development environments, the interface should
be available on a low-level programming language such as C. This is
because binding C interfaces into any of the modern languages via tool-
ing such as SWIG (Craveiro, 2021d) (Section 5.3) is a straightforward
exercise.

These non-functional requirements stem in no small part from our own expe-
riences in developing MDE tooling (Craveiro, 2021b), as well as our reading
of the adoption literature (cf. Chapter 3), where performance and disregard
for developer workflows are often cited as pitfalls. Furthermore, the long list
of requirements, both functional and non-functional, together with the many

Though by no means fans of the edit-compile-run cycle, Lemma and Lanza do describe it rather
aptly: “Most mainstream programming languages [...] are based on the traditional edit-compile-
run cycle. This approach allows developers to recognize clear boundaries between the different
phases to focus on one activity at a time: first write the code, then compile it, and finally observe
and test the system at runtime.” (Lemma and Lanza, 2013)

10

11

12

8.1 DOGEN

phases that the development has gone through (cf. Section 8.1.1) are reflec-
tive of a difficult search for a solution over a vast problem space. Our choice
of SDM proved decisive in leading us through such a long and open-ended
search, as the next section will explain.

8.1.3 Software Development Methodology

A cornerstone of Dogen has been its extensive use of agile, in itself a demon-
stration of how MASD integrates with typical SDMs.* The practice of sprints
has been adopted from inception, with a sprint elapsing around 8o-developer
hours of effort and culminating with a release. Each sprint has a sprint backlog
checked in to version control, documenting all development activity under-
taken in the form of stories. Figure 8.2 captures a fragment of the sprint backlog,
showing the time-keeping aspect. Note that whilst publicly accessible, the
sprint backlog is meant mainly for internal consumption.

Sprint Backlog 30

Sprint Goals

Stories

Active

<75
Headline %

Total time 100.0

100.0

100.0

7.5

Figure 8.2: Fragment of sprint backlog for Dogen’s 130th sprint.

The second salient aspect of our agile approach has been the use of retro-
spectives.” Lacking traditional forms of interaction and validation that come
naturally with being part of a wider engineering team, we turned instead
towards publishing online content in order to emulate this feedback loop.
Unlike the sprint backlog, the material produced in this context is meant for
external consumption, and so provides the additional background required by
a lay audience. As part of this outreach effort, detailed release notes have been
authored from 2016 onwards, made available in the project’s repository.> The
release notes provide user-friendly descriptions of the main stories carried
out, discussing trade-offs and supplying a rationale for the changes, as well

For more details on SDM’s, including agile, as well as their integration with MDE, please consult
Chapter 5 of (Craveiro, 2021c¢).

The term is used in the sense put forward by Derby et al.: ”[retrospectives are] a special meeting
where the team gathers after completing an increment of work to inspect and adapt their methods
and team work. Retrospectives enable whole-team learning, act as catalysts for change, and
generate action.” (Derby, Larsen, and Schwaber, 2006)
https://github.com/MASD-Project/dogen/releases

143

Sprints, sprint
backlog

Retrospectives,
subsidiary material

https://github.com/MASD-Project/dogen/releases

144 MASD REFERENCE IMPLEMENTATION

as providing links to a video demonstrating the changes. Figure 8.3 is taken
from v1.0.30’s release notes, and shows a graphical summary of development
effort across stories, measured as story duration as a percentage of total sprint
duration.’> Release notes and other online material has helped enormously as
Dogen progressed through the development phases (cf. Section 8.1.1).

Sprint 30 Stories

® Add support for reading arg mode documents
® Add org-mode codec for input
Edit release notes for previous sprint
m Add PlantUML markup language support
m Create amodel to org transfarm
Sdlve emacs issues
= Add inchude directories to models
Consider replacing properties drawer with tables
& Merge dia codec model into main codec model
® Convert reference models into org
® Sprint and product backlog grooming
= Stitch templates are consuming whitespace
® Syt orchestration tests by model and codec
® Create a"frozen” project
Mave documentation transform to codec model
® Convert library models into org
® Remaove JSON and Dia models for Dogen
Add tags o org modsl
® Remove leading and trailing new fines from comments
Allow spaces in headlines for org mode documents
® Add missing provenance details to codec models
Add orgHo-ong tests
®m Assarted improvements to org model
® Inject custom IDs into org documents.
® Create ademo and presentation for previous sprint
® Analysis on org mode round-tripping
Add comments to PlantUML diagrams

Figure 8.3: User-facing description of story effort for Sprint 30.

The final but by no means less significant component of our agile approach has
been the product backlog. All ideas, thoughts and notes pertaining to Dogen
which cannot be immediately acted upon are kept in the product backlog.
At present count, it contains just over 800 stories and proto-stories awaiting
further attention. The stories in the product backlog are loosely organised

Product backlog ~ into buckets, capturing the notion that some relate to present work whereas
others are of a more visionary (or aspirational) nature. Each sprint allocates
resources towards grooming the product backlog, thus ensuring its relevance:
stories that are no longer required are pruned, duplicate stories are merged
and so on, keeping the information up-to-date.

Sprint and product backlogs are connected via the story workflow. Planning
for a new sprint begins by moving relevant stories from the product backlog
into the sprint backlog. Some stories, such as for example org-mode support (cf.

Story workflow Chapter 7), can remain on the product backlog for several years, accumulating
more details until they are selected for implementation. In this manner, the
product backlog has been vital in organising our search across the problem
space, acting as a repository of accumulated knowledge, which reaches its
actionable stage in the sprint backlog.

13 The interested reader is directed towards these documents in order to understand the historical
context in greater detail. Where available, the release notes also link to associated audiovisual
material, produced within the scope of each release. Moreover, all audiovisual material can
be accessed via the author’s YouTube channel (Marco Craveiro, 2021). Finally, assorted blog
posts have also been published in the author’s blog — e.g., “The Refactoring Quagmire” (Marco
Craveiro, 2018) — which narrate significant episodes during the before-mentioned development
phases.

14

15

8.1 DOGEN

It is a fair assessment to state that Dogen would not have reached its present
state were it not for our choice of SDM. Its ability to break down an open-ended
problem into a series of small, actionable stories, has propelled us forward,
even when the way ahead was unclear. Whilst each sprint delivered only
a sliver of change, when aggregated over a ten-year span, the iterative and
incremental approach conducted us to the comprehensive architecture we
have today — and which the next section will describe, taking us towards
implementation-level concerns.

8.1.4 Architecture

Dogen is written entirely in the C++ programming language, chosen specifi-
cally to meet our non-functional requirements, particularly with regards to
performance and dependencies (cf. Section 8.1.2). The decision had the unfor-
tunate side-effect of closing the doors on a plethora of MDE tooling, platforms
and libraries — such as EMF and T4 — as they are often written in Java or
C#.'4 This helps explain Dogen’s size, weighing in at just under 150 thousand
LOC, as measured by the sloccount tool.™

Figure 8.4: Collage of all Dogen models in a UML representation.

On the other hand, around 50% of the total line count is generated by Dogen
itself, and all components of Dogen are modeled as Dogen models. Figure 8.4

Lack of access to MDE tooling in C++ is by no means a novel problem. Jager ef al. had already
encountered this very difficulty in 2016 (Jager et al., 2016), as had Gonzalez et al. before, six
years prior (Gonzalez, Ruiz, and Perez, 2010). Though differing in the details, both opted for
a native C++ port of Ecore, the EMF metamodel. After analysing both implementations, we
decided against using either of them due to their complexity (largely a byproduct of Ecore rather
than the projects themselves), fears about vendor lock-in (both projects have a small user and
developer base) and, most significantly, the fact that Dogen did not require many of Ecore’s
features such as runtime introspection, for which there is likely a runtime penalty associated.
However, we do intend to support Ecore as a codec, allowing users to create their models using
EMF and generating them via Dogen. Thus, as future work, we will likely integrate with one of
these libraries, but relegating their use to only input (and possibly output).
https://dwheeler.com/sloccount/

145

Agile’s significance

Implementation
language

Generated code

https://dwheeler.com/sloccount/

146

MASD REFERENCE IMPLEMENTATION

shows a collage of all seventeen Dogen models in Dia’'s UML representation,
prior to their move to org-model format (cf. Chapter 7). Though perhaps not
particularly helpful with regards to detail, its bird’s eye view does portray
adequately the size and complexity of the application, as well as demonstrating
the use of colour in our UML diagrams (cf. Section 6.1.5.3). Figure 8.5 zooms
in on the largest of these components, dogen. logical, implementing the LMM
(cf. Section 6.2).

Each component in Figure 8.4 represents a distinct sub-system within Dogen,
with a well-defined set of responsibilities. What follows is a summary of
the components, with a reference back to MASD’s domain architecture (cf.
Chapter 6) where applicable.

e dogen.codec: (cf. Figure 6.35) contains the codec framework and its
associated transform chains. It is responsible for the extraction of model-
ing information from foreign TS, and converting them into the simplified
codec representation. It collaborates with external platforms (e.g. for
JSON) or internal components (e.g. dogen.dia, dogen.org) to read the
external representations. For certain limited cases it also provides ex-
traction support — at present org-mode and PlantUML.

Figure 8.5: UML representation of Dogen’s logical model.

e dogen.dia: internal implementation of the Dia object model, including
a parser that uses an XML library to read Dia diagram files. The library
is asymmetric — that is, it can only read diagrams.

e dogen.org: internal implementation of an org-mode parser. Contains
all of the domain objects representing org-mode entities, as well as
transforms that convert from and to this representation.

e dogen.identification: defines all identifiers across LPS dimensions
(i.e, logical, physical and variability dimensions), as well as identifiers
for codecs, used in projections across these spaces (cf. Section 6.2.2).

e dogen.logical: implements the logical dimension of the LPS (cf. Section
6.2), as well as supplying all the transformations required to process
logical elements (bottom left in Figure 8.5).

8.1 DOGEN

dogen.physical: implements the physical dimension of the LPS (cf. Sec-
tion 6.1), and contains all the transformations required to generate files
in the filesystem. Also contains an implementation of the PMM, encod-
ing with it at compile time the geometry of physical space. Conceptually,
this can be thought of as a reflection layer on the physical space, allowing
us to query it at run time — e.g., “list all facets for the C++ TS”, etc.

dogen.variability: implements the variability dimension of the LPS —
i.e., the VMM (cf. Section 6.3) — and contains all of the transformations

required to extract configurations from any of the supported consumer

models (i.e. dogen.logical, dogen.physical and dogen.codec).

dogen.profiles: contains the configuration for the Dogen product, in-
stantiating the VMM and defining the configuration language for Dogen.
Figure 6.40 shows a fragment of this model.

dogen.text: projection framework that takes logical model elements
and generates their physical representation. These are implemented as
Ma2T transforms, defined using the internal text templating languages
discussed next.

dogen.templating: provides the two templating engines used through-
out Dogen. The first one is a trivial implementation of the mustache
logic-less templates® and is expected to be replaced in the near future
by a platform library such as mstch.”7 The second templating engine is
called stitch, and it is used to create M2T transforms (cf. Section 8.1.5).

dogen.tracing: provides transform tracing infrastructure. When en-
abled, the tracing sub-system creates trace dumps of model state before
and after transform execution as text files in JSON format. These files
can then be diffed using command line utilities such as diff or further
processed with tools like JQ'®, which specialises in JSON processing.

dogen.relational: provides a RDBMS backend for the tracing sub-
system, allowing trace data to be stored in database tables. However, at
present, the information is stored as JSON documents, making querying
difficult. Further work is required in order to fulfil the initial promise of
this approach, making deeper use of the relational model. It will also
serve as an improved test of the ORM support in Dogen.

dogen.orchestration: orchestration engine for Dogen that creates the
top-level transformation chain, calling out to each sub-system as re-
quired. It is responsible for creating the pipeline that converts from a
codec representation, to a logical model representation and finally to the
physical representation. Figure 8.6 shows a fragment of the transforms
defined in the orchestration model.

dogen.utility: assorted utility functions such as logging, XML process-
ing, testing helpers and other miscellaneous functionality.

16 https:
17 https:
18 https:

//mustache.github.io/
//github.com/nolmsd/mstch
//stedolan.github.io/jq/

147

https://mustache.github.io/
https://github.com/no1msd/mstch
https://stedolan.github.io/jq/

148

Relationship
with T4

Increased integration

MASD REFERENCE IMPLEMENTATION

?, T e M? I

S —

Figure 8.6: Fragment of Dogen’s orchestration model with transforms.

e dogen: the API model. Contains the top-level entry point to Dogen. This
component will be exposed as a library via SWIG using a language such
as C, to enable bindings for a number of programming languages.

e dogen.cli: implements the command-line driver for Dogen. This is the
application entry point from a coding perspective, if using Dogen as a
stand-alone tool.

Most of these subsystems have complex implementation details which cannot
be adequately covered in the present manuscript. We shall, however, look into
one such subsystem because it offers some insight on the overall approach.
This is the templating language used in dogen. text.

8.1.5 Stitch

As previously mentioned (cf. Section 7.5.1), Dogen has support for a text
templating language which can be embedded into org-mode source code
blocks. This language was implemented specifically for Dogen, and now
binds closely to its use cases. Its syntax is inspired by Microsoft’s T4, a text
templating engine popular in industry (e.g. (Craveiro, 2021c)). Figure 8.7
depicts a small fragment of a larger text template defined in the dogen. text
model.

As explained, stitch was created because T4 was unavailable for our develop-
ment stack. In its initial incarnation, stitch was envisioned as a stand-alone
tool that pre-processed a set of text templates and generated compilable C++
code, acting like a cartridge in a cartridge pipeline (cf. Section 6.1.6). However,
as the problem domain became better understood over the years, stitch was
wired ever more closely to the domain architecture, to the point where its
templates are now modeled in the LMM and the external templating tool has
been removed altogether. The process leading to the current state of affairs is
instructive, as it has implications for cartridges in general.

19

8.1 DOGEN

Figure 8.7: Fragment of a stitch text template in the text model.

Applying the physical modeling process (cf. Section 6.1.2) to stitch’s text
templates revealed these contained a great deal of SRPP’s. In addition, the
analysis also demonstrated templates could be simplified in two significant
ways:

o Reducing the variability surface: given that their purpose is solely to
create M2T transforms for Dogen’s transform framework, they need not
cater for general use cases like T4 does. The generated code can thus
be hard-coded to fit precisely the transform framework, minimising the
use of non-structural variability to a few select cases. Doing so reduces
considerably the size of each template.

e Reusing metamodel information: adding stitch to the LMM gives ac-
cess to a wealth of information about modeled types, such as their rela-
tionships (cf. Section 6.1.4.3). This removes the need for handcrafting
relations in the template, as well as any other parameter that can be
inferred from the metamodel and its instances such as the boilerplate,
etc.

In summary, though in an initial stage stitch was deemed to be outside MASD’s
remit — as stipulated by its core values, and P-1 in particular — over time it
was shown to be an integral part of the approach. This is a general trade-off
that will be faced with all cartridges: there are obvious benefits of keeping their
functionality external to Dogen, reducing the tool’s footprint. On the other
hand, tighter integration has many benefits, such as improving the overall
user experience.” And it is to the user experience that we shall turn to next.

For example, end users need to install and configure the tooling for external cartridges. At present
this is a significant source of accidental complexity for some cartridges such as ODB, due to its
complex installation procedures.

149

Template
simplification

Cartridges and
trade-offs

150

Packages

20

MASD REFERENCE IMPLEMENTATION

8.1.6 Basic Usage

The present section gives a brief overview on the command line tool supplied
with Dogen, dogen. cli. In order to it, you must first install the Dogen pack-
age. Packages for supported operative systems are available for download
from the release notes, at the bottom, as shown in Figure 8.8.2° GitHub is
the recommended provider, as BinTray will be decommissioned in the near
future.

EIGERES

Figure 8.8: Binary downloads section in Dogen’s release notes.

The installation process is as per native packages in each operative system; for
example, for Debian GNU/Linux, the installation can be performed using the
root user, as follows:

dpkg —i dogen_1.0.30_amd6g—applications.deb

Selecting previously unselected package dogen—applications.

(Reading database ... 625869 files and directories currently installed.)
Preparing to unpack dogen_1.0.30_amdé4—applications.deb ...

Unpacking dogen—applications (1.0.30) ...

Setting up dogen—applications (1.0.30) ...

Listing 8.1: Installation of Dogen on Debian GNU/Linux.

Onceinstalled, the application should be ready to use by regular users. You can
validate your installation by running the command dogen. cli with - -version
or --help. The below listing shows the truncated output of the - -help com-
mand.

$ dogen.cli —help

Dogen is a Model Driven Engineering tool that processes models encoded in [...]
Dogen is created by the MASD project.

dogen.cli uses a command-based interface: <command> <options>.

See below for a list of valid commands.

Global options:

General :

—h [—help] Display usage and exit.

—v [—version] Output version information and exit.
Output:

—byproduct—directory Directory in which to place all of the
byproducts of the run such as log files,
traces , etc.

Logging:

—e [—log—enabled] Generate a log file .

-1 [—log—level] arg What level to use for logging. Valid values:
trace , debug, info, warn, error. Defaults to
info.

[...]

Commands:
generate Generates source code from input models.
convert Converts a model from one codec to another.
dumpspecs Dumps all specs for Dogen.

For command specific options, type <command> ——help.

Listing 8.2: Dogen’s help command.

Due to issues with our CI/CD provider, Mac OS X builds have been discontinued. This is an
issue which will be addressed in the near future. For now only Windows and Linux packages are
available, as shown in the screenshot.

8.1 DOGEN 151

A model is required in order to drive the tool. A trivial model is supplied with
Dogen for this purpose, called hello_world.org. Figure 8.9 shows its org-
mode representation which, though simple, still deserves a closer inspection.
First, there are several of configuration options at the model level, as follows:

Figure 8.9: Example Hello World model in org-model notation.

o the model targets the C++ input TS (e.g., input_technical_space).
Amongst other things, this enables C++ notation for specifying types,
such as std: :string. When targeting the C# TS, C# notation must be
used instead (e.g. System.DateTime).

e the model references two additional models: cpp.std and masd. The
first is a PDM that gives access to C++ Standard Library types such as
std::string. The second model contains MASD infrastructural types,
providing support for decorative elements such as modelines, licences,
etc. (cf. Section 6.1.4.2).

e both the deletion of extra files as well as of empty directories have been
disabled. Doing so delegates the management of artefacts to the user. ~ Model configuration
As we move up the generation levels towards product family generation
(Level 4), all of the filesystem management features should be enabled,
allowing Dogen manage all artefacts in the filesystem for the user (cf.
Section 5.4.2.3).

o the code generator will output C++ code (i.e. masd. cpp.enabled is set
to true) but it will not output C# code (i.e. masd.csharp.enabled is set
to false). The version used for C++ is 17.

The model then defines a single element which, via defaulting, results in

the instantiation of a masd: :object LMM entity, containing a single property

called one property. To help visualisation, Figure 8.10 depicts the same model PlantUML
in UML notation as created by PlantUML, from a Dogen-generated source. ~ "epresentation
Documentation is used both at the model level, the element level and the

152

PDF representation

Source code
representation

MASD REFERENCE IMPLEMENTATION

property level, some of which visible in the PlantUML representation as UML
notes.

Welcome to Dogen!

This is one of the simplest models you can generate, a single class with one Hello world class.
property. You can see the use of comments at the class level and property
level.

@ one_property

o property std::string

Figure 8.10: Example Hello World model in UML notation.

It is also useful to visualise the literate modeling view. Figure 8.11 does so
by displaying the PDF output of the model as generated by org-mode. Note
that, for the purpose of this simplistic example, we rely on org-mode’s default
configuration, resulting on a less visually appealing document; for example,
the red boxes representing hyperlinks to document sections can be configured
to use a more idiomatic link notation. In addition, as explained in Chapter
7, spaces in headlines are allowed by Dogen to facilitate literate modeling;
internally, headline titles are normalised to valid identifiers according to a
selected scheme, involving for example converting spaces to underscores.

hello world

Contents
|L one property ELEMENT| 1
[L.T property ATTRIBUTE] 1

Welcome to Dogen!

This is one of the simplest models you can generate, a single class with
one property. You can see the use of comments at the class level and property
level.

1 one property ELEMENT

Hello World class.

1.1 property ATTRIBUTE

This is a sample property.
Figure 8.11: Example Hello World model as a PDF document.

Calling dogen. cli with the generate command produces source code for this
model, as per listing below. Full logging at log level trace is also enabled in
the example, which is the highest. It is a useful setting for troubleshooting
— as are other options such as transform tracing — but these are not to be
used unless required, for they have a significant impact on execution speed.
After running the command, all byproducts such as logs and trace files are
stored under the directory dogen.byproducts, whereas generated source code
is saved in the component directory dogen.hello_world.

$ dogen.cli generate —t hello_world.org —log—enabled —log—level trace

$1s -1

total 9

drwxr—xr—x 3 marco marco 4096 2021—09—01 17:10 dogen.byproducts

8.1 DOGEN 153

drwxr—xr—x 5 marco marco 4096 2021—09—01 17:10 dogen.hello_world
—IW—r—r— 1 marco marco 940 2021—09—01 17:10 hello_world.org

Listing 8.3: Generate source code for Hello World model.

As we used the default directory structure and naming, and since all facets in
the C++ region of physical space are enabled, the directory tree generated in
the filesystem is a simple reflection of the geometry of the PMM (cf. Section
6.1.6) in this region:

$ tree —charset nwildner

|-— dogen.byproducts

| ‘—— cli.generate.hello_world .org

| ‘—— cli.generate.hello_world.org.log
|-— dogen.hello_world

|-— generated_tests

| ‘—— one_property_tests.cpp

|-— include

| ‘—— dogen. hello_world

| |-— hash

| | ‘—— one_property_hash.hpp

| |-— io

| | ‘—— one_property_io.hpp

| |-— odb

| | ‘—— one_property_pragmas.hpp
| |-— serialization

| | |-— one_property_fwd_ser.hpp
| | ‘—— one_property_ser.hpp
| |-— test_data

| | ‘—— one_property_td .hpp
| ‘—— types

| |-— hello_world .hpp

| |-— one_property_fwd .hpp
| ‘—— one_property .hpp

|-— hash
| ‘—— one_property_hash.cpp
|—— io
| ‘—— one_property_io.cpp
|-— odb
| ‘—— one_property_options.odb
|-— serialization
| ‘—— one_property_ser.cpp
|-— test_data
| ‘—— one_property_td.cpp
‘—— types

‘—— one_property .cpp
‘—— hello_world .org

Listing 8.4: Filesystem tree for Hello World component after generation.

Enabled facets include hash, io, odb, etc.** For completeness, we’ll also have

a peek at one of the generated files, the type definition of one_property.hpp

shown below. As decoration-related options were not selected — such as

licence, modeline and so on — no decoration was generated. For the same rea- Type definition
son, default methods have been outputted, such as the “complete constructor”

— a constructor that takes all properties as arguments, which in this case is just

property. Dogen supplies a large number of options to control the generation

of these constructs via non-structural variability, but for simplicity all of these

have been omitted.

#ifndef DOGEN_HELLO_WORLD_TYPES ONE_PROPERTY_HPP
#define DOGEN_HELLO_WORLD_TYPES ONE_PROPERTY_HPP

#if defined (_(MSC_VER) && (_MSC_VER >= 1200)
#pragma once
#endif

#include <string>
#include <algorithm>
#include “dogen.hello_world/serialization/one_property_fwd_ser.hpp”

namespace dogen:: hello_world {

Jx

* @brief Hello World class.

*/

class one_property final {

public:
one_property () = default;
one_property (const one_property&) = default;
one_property (one_property&&) = default;

21 The roles and responsibilities of each facet shown are as detailed in see Section 6.1.2.

154

Historical context

MASD REFERENCE IMPLEMENTATION

~one_property () = default;

public:
explicit one_property(const std::string& property);

[...]

public:
Jax
* @brief This is a sample property.
*/
[##+@{*/
const std::string& property() const;
std ::string& property ();
void property (const std::string& v);
void property (const std::string&k& v);
/#2@)]

public:
bool operator==(const one_property& rhs) const;
bool operator!=(const one_property& rhs) const {
return !this—>operator==(rhs);

}

public:
void swap(one_property& other) noexcept;
one_property& operator=(one_property other);

private:
std::string property_;

[...]

Listing 8.5: Generated source code for class in Hello World model.

The source code listing concludes our brief overview of Dogen. Many features
have been left out due to space constraints, such as C# support, as did the
advanced usage of the code generator. Presently, the best example of Dogen’s
usage is Dogen itself, so the interested reader is directed to the project in
GitHub. The next section will perform a brief overview of the testing frame-
work used in the MRI, centred around reference products.

8.2 REFERENCE PRODUCTS

Originally Dogen tried to make use of all of its features within the main code
base, in keeping with our views on dogfooding. Eventually, as the number
of features increased, it became impractical to continue doing so, resulting
in the introduction of test models. At the start, all test models were kept with
the Dogen code base to facilitate project management. Unfortunately, as the
code base became larger, it became unfeasible to continue using this mono-
repository approach due to long build times and checkouts; at this point, all
test code was separated into its own repositories.

As our understanding of the theory improved this approach was shown to be
the correct one, and so a reference product was assigned to each supported
TS. The purpose of the reference product is to exercise all features available
on a TS, for three interrelated reasons:

e Conformance: reference products fulfil MASD’s requirements around
conformance testing (cf. Requirement 4.2.6), ensuring that all supported
features are working as specified. Dogen runs a suite of unit tests that
regenerate all reference products in its CI/CD pipeline, to ensure cor-
rectness.

e Test Driven Development (TDD): features must be added to the refer-
ence models first, with the Dogen code base being subsequently updated
to get the tests to pass. In the future, as we expand to external users, the

8.2 REFERENCE PRODUCTS 155

expectation is that they will create MWE’s by changing the reference
models via change requests as part of the MRI Development Process (cf.
Section 5.4.2.1).

e Documentation and Samples: reference products serve as samples for
new users who wish to gain a better understanding of Dogen’s capabili-
ties. As these products do not have any additional behaviour, they are
"bare-bones” demonstrations of specific Dogen features.

Note that the Dogen code base is still deemed as vital for both conformance

testing as well as a form of documentation for advanced use cases; and all

features that are not intended to be user facing are only tested within Dogen

models. The size of this feature set is still considerable because a significant

portion of Dogen exists only to satisfy Dogen’s internal use cases. Amongst Second line of defense
many other features, this includes the transform framework and its integration

with stitch (cf. Section 8.1.5). In other words, since we could not cover all

supported features and since its use cases are too advanced for new comers,

Dogen is seen as a second line of defense rather than the primary mechanism

for these aspects.

The reference products are named after the TS they cover: cpp_ref_implis the
C++ Reference Implementation — now known as the C++ Reference Product
— and CSharpRefImpl is the C# Reference Implementation — now known as the
C# Reference Product. The next two section provide a brief overview of each
product.

8.2.1 C++ Reference Product

At just over 85 thousand lines of code, 90% of which code-generated, the C++
Reference Product is the largest reference product of the MRI. It is composed of
a number of component models, which can be described by grouping related
functionality.

o Facet enablement tests: A number of models are used just to ensure
that enabling and disabling facets works as expected. These include
enable_facet hash, enable facet io and so on, with all models fol-
lowing the same naming convention.

o Platform tests: Some models test the integration with PDM’s, such as
the C++ Standard Library (std_model) and the Boost C++ library>>
(boost_model). In general, for each new PDM added, there should be
an associated PDM component to test it.

e Language features: The cpp_model is responsible for testing the core
features supported in the C++ language. It covers only the latest stable
version, C++ 17. In the future, this model will be renamed to take the
version into account. We also have cpp_98 to validate our support for a
legacy version of C++.

22 https://www.boost.org/

https://www.boost.org/

156

MASD REFERENCE IMPLEMENTATION

e MASD-levels support: Dogen has a number of configuration options
designed to support the varying usage levels defined by MASD (cf.
Section 5.4.2.3), including force_write, delete_extraandout_of_sync
to check for the deletion of unmanaged files, disable_facet_folders to
check for the flattening of the directory structure, ignore_extra to check
that we ignore unmanaged files when requested via regular expressions,
skip_empty_dirs to test our management of empty directories, efc.

This model tests all settings related to paths and file names.

#DOGEN masd. codec .dia. comment=true

#DDGEN masd. codec .model modules=cpp_ref_impl.directory settings
#DOGEN masd. coder . reference=cpp. builtins

#DOGEN masd. codec . reference=cpp.std

#DDGEN masd. codec . reference=cpp. boost

#DOGEN masd. coder . reference=nasd

#DOGEN masd. coder . reference=nasd. Lam

#DOGEN masd. codec . reference=cpp_ref_inpl .profiles

#DDGEN masd. variability.profile=cpp_ref impl.profiles.base.enable all facets
#DOGEN masd. coder . input_technical_space=agnostic

#DOGEN masd. physical .delete extra_files=true

#DOGEN masd. physical .delete_enpty_directories=true

#DDGEN masd. physical .output_technical space=cpp

#DOGEN masd. physical .enable_backend_directories=true

#DOGEN masd. csharp. enabled-Talse

#DDGEN masd. cpp .enabled=true

#DDGEN masd. cpp s tandard=ct+-17

#DOGEN masd. cpp.directory_name=cpp_backend

#DOGEN masd. cpp.source_directory name=sd

#DDGEN masd. cpp . include directory name=id

#DOGEN masd. cpp.header_file_extension=hh

#DOGEN masd. cpp. implementation_file_extension=cc

#DOGEN masd. cpp.hash . directory name=hash dir

#DDGEN masd. cpp . hash.postfix=the hash

#DOGEN masd. cpp. hash .class_header . post fix=d_6_B

#DOGEN masd. cpp.hash.class_implementation.postfix=h 8 1
#DOGEN masd. cpp. hash.enun_hesder. postfix=h 8 1

#DDGEN masd. cpp hash.primitive_header. postfix=n 8 4

#DOGEN masd. cpp.hash .primitive_implementation.postfix=8_8_3
#DOGEN masd. cpp.io.directory name=io dir

#DOGEN masd. cpp .io.postfix=the_io

#DOGEN masd. cpp.io.class_header.postfix=0_1_8

#DOGEN masd. cpp.io.class_implementation. postfix= 1 1

#DOGEN masd. cpp.io.enun_header .post fix=B 1 2

#DOGEN masd. cpp.io.primitive header postfix=0_1 4

#DOGEN masd. cpp.io.primitive_implementation.postfix=8_1 5
#DOGEN masd. cpp.odb. directory_name=odb_dir

#DOGEN masd. cpp.odb. postfix=the odb

#DDGEN masd. cpp . odb. class_header. postfix=h 2 €

#DOGEN masd. cpp.odb. enum_header. postfix=8_2_1

#DOGEN masd. cpp.odb. prinitive hesder.postfix=82 2

#DOGEN masd. cpp.odb. comnon_odb_options.post fix=d 2 3

#DDGEN masd. cpp .odb. object_odb_options.postfix=8 2 3

#DOGEN masd. cpp.serialization. directory_name=serialization_dir
#DOGEN masd. cpp.serialization. postfix=the serialization
#DDGEN masd. cpp .serialization. class_header.postfix=0_3 8
#DDGEN masd. cpp .serialization. class_implementation. postfix= 3 1
#DOGEN masd. cpp.serialization. enum_header.postfix=h_3_2
#DOGEN masd. cpp.serialization. primitive header.postfix=h 3 3
#DOGEN masd. cpp .serialization. primitive implementation.postfix=8_3 4
#DOGEN masd. cpp.serialization. class_forsard_declarations .postfix=d_3 6
#DOGEN masd. cpp. test_data.directory_name=test_data_dir

#DOGEN masd. cpp. test_data.postfix=the test data

Figure 8.12: Fragment of the directory settings model configuration.

e Physical configuration: Though somewhat misleadingly named, the
model directory_settings is responsible for exercising all of Dogen’s
configuration options regarding the naming of physical entities. Figure
8.12 contains a fragment of these options.

e PIM support: The lam_model is designed to generate both C++ and C#
code, ensuring our PIM support works as intended — LAM standing for
Language Agnostic Model. At present Dogen only supports basic type
mapping, with much work still outstanding for PIMs to be considered
first class citizens.

o Codec-specific features: In some cases we need to validate features that
are only available on a given codec. At present there are two such models:
compressed, which tests compressed diagrams in Dia, and two_layers,
which contains a Dia model using multiple layers. In general, the policy
is to avoid having codec-specific features and, by implication, avoid
codec-specific tests, so this group of components is not expected to grow.

e RDBMS support: The northwind model exercises Dogen’s relational
database support, which at present requires ODB. In the future, it may
serve as the basis for an implementation that does not rely on a cartridge
— an approach which is presently under analysis.

8.3 EVALUATION

8.2.2 C# Reference Product

The C# reference product, CSharpRefImpl, has the same aims as the C++
reference product but the feature coverage is not symmetric across TSs. Its
much smaller size in LOC is indicative of this asymmetry: 12 thousand versus
85 thousand. This is to be expected: the C++ TS is the main target of our work
because Dogen relies on it directly; conversely, C# was introduced largely as a
device to protect ourselves against hard-wiring the domain architecture and
implementation to a specific TS.

At present, the product is composed of the following component models:

e CSharpModel: Tests the C# language, and a small number of types from
the base library. There is no separation between language and library
for the moment because we only support a small number of types from
C#’s Base Class Library.

e DirectorySettings: C# version of the directory settings model, with
the same objectives as the C++ version — to exercise all features related
to the configuration of the PMM.

e LamModel: C# version of the Language Agnostic Model, the test model
used to verify PIM functionality.

Our product backlog has a series of stories related to missing features in C#
support, most of which are on the roadmap for the v2.o release. As part of
the work on implementing those features, the C# reference product will be
augmented with the missing test components — making it similar in shape to
the C++ reference product.

These words conclude our brief introduction to the MRI product line. The next
and final section of the chapter discusses the lessons learned by implementing
Dogen and the reference products.

8.3 EVALUATION

Dogen is the main application of both MASD and the MRI, which is to say
of Dogen itself, giving us firm grounds from whence an evaluation of both
methodology and tooling can be performed. As with org-mode (cf. Section
7.5), our conclusions are split between the application (Section 8.3.1) — that
is, the use of the methodology and tooling from the perspective of a regular
user — and meta-application (Section 8.3.2) — that is, how the development
of Dogen impacted the methodology as a whole.

157

Overview

158

Costly exercise

Stop-start
development

Recursive stories

One-off cost

MASD REFERENCE IMPLEMENTATION

8.3.1 Application Evaluation

By far, the biggest problem faced with Dogen application as a user were the fre-
quent stalls due to fundamental issues with the tool, either at the architectural
level or with its conceptual framework. In many cases, these issues have taken
long periods of time to be addressed adequately, as the size and complexity of
the present document attests. As explained at length in (Craveiro, 2021c¢), the
creation of MDE tooling is an extremely expensive exercise in general, and it is
a cost most software companies are unwilling to absorb. Dogen’s development
has demonstrated precisely why it is so. From the perspective of more than
two decades of industrial software engineering, it is our firm opinion that
a project such as Dogen could not be achieved within an industrial setting
because the pressure to deliver working products would not allow for the
necessary time on fundamental research.

The ”stop-start” development also had a negative impact on Dogen itself; we
have often been side-tracked when implementing a given story due to one or
more missing features in the tool, the implementation of which also required
adding additional features, creating a recursive loop that continued several
levels deep. As a result, it proved very difficult to keep a focus on the features
being implemented. A small example should suffice to give a flavour of the
dilemmas faced:

e Whilst trying to add code generation support for PMM entities, such as
facets, parts, etc., we ran into a limitation on how stitch templates were
handled via an external tool.

e In order to address this problem, we promoted the stitch templates
themselves to the LMM as regular metamodel entities. This enabled us
to perform a tighter workflow, including the expansion of stitch templates
as a regular M2T transform, rather than a cartridge.

e However this then resulted in a new problem: since stitch templates were
model elements rather than stand-alone files, it was necessary to extract
them in and out of Dia diagrams for editing purposes. The process
was cumbersome and error prone, and greatly reduced development
velocity.

e Whilst reflecting on this matter, we realised that a long-running org-
mode story in the product backlog could be used to solve both problems
elegantly, so we implemented org-model (cf. Chapter 7).

o Finally, the original task was resumed.

This entire loop took over a year to play out, and many excursions of a similar
(or even greater) magnitude were made during the development of Dogen.

On the other hand, these two negative findings reinforce our belief in the
approach. No project other than Dogen will need to absorb this large cost
once the framework and the methodology have been put in place, provided
one is willing to accept MASD’s rigid structure. It is a one-off cost that Dogen
itself will pay, with subsequent applications having a much smaller cost base

8.3 EVALUATION

because their features are expected to fit in with the existing framework. For

example, though not completely trivial, adding a new TS should be a much

easier affair in the future, with the main requirement being to follow the

patterns supplied in the C++ and C# implementations. In summary, Dogen

demonstrates the approach works, but also that it will only be suitable for

end users once the tool is mature enough to handle all of its own use cases —
leading us to meta-application.

8.3.2 Meta-application Evaluation

It is our firm opinion that the application of MASD to Dogen, and the use of
Dogen to develop MASD, has proven the validity of both tooling and method-
ology. The six core principles of MASD (cf. Section 5.2) have been forged in
empirical application during Dogen’s development, and were selected after
many different approaches had been tried; in the same vein, all of MASD
processes and actors (cf. Section 5.4) have evolved precisely from the contin-
ued observation and reflection on the practices within Dogen development —
even if somewhat restricted by having a single developer taking on different
roles.

Furthermore, we believe that this virtuous cycle was instrumental in shaping
both Dogen and MASD (cf. Section 5.4.2.4), since it allowed us to escape most
of the challenges of a dual track process. Whilst not without its flaws — such
as the deeply nested recursion described in the previous section, and a risk of
over-fitting to Dogen’s use cases — in the end, the approach supplied us with
a tight feedback loop that removed all distractions that come from having to
develop two distinct software products.

In conclusion, dogfooding and bootstrapping aren’t merely an expedient ap-
proach taken for the development of Dogen; we believe they are a crucial
ingredient to the approach, and the main reason why both Dogen and MASD
reached its present state.

159

Self-validation

Tight feedback loop

Part IV

OUTLOOK

CONCLUSIONS

It is our view that software engineering is inherently a modeling activ-
ity, and that the complexity of software will overwhelm our ability to
effectively maintain mental models of a system. By making the models
explicit and by using tools to manipulate, analyze and manage the mod-
els and their relationships, we are relieving significant cognitive burden
and reducing the accidental complexities associated with maintaining
mentally held models.

— France and Rumpe (France and Rumpe, 2007)

THIS MONOGRAPH introduced Model Assisted Software Development (MASD), a

novel methodology for the construction and evolution software products
and product lines, as well as its associated tooling, the MASD Reference Im-
plementation (MRI). The document started by identifying a number of issues
with the state of the art in code generation, most pertinent of which a lack
of a developer-centric approach, and captured a subset of these problems as
a set of requirements. The MASD SDM was then put forward as a solution,
including its domain architecture, after which we demonstrated the feasibility
of the approach by means of two case studies: the incorporation of org-mode
support as an enabler for literate modeling; and the implementation of the
MRI itself as a product line, using MASD principles and driving MASD’s
development via a carefully designed virtuous circle.

The present chapter reflects on the work carried out and is comprised of two
sections. Section 9.1 looks backwards, re-examining the original requirements
to assess how well they were addressed by methodology and tooling. Then,
Section 9.2 looks forwards to the future, discussing a number of future ap-
plications for MASD — particularly in the realm of integration with existing
MDE tooling, which was deliberately absent from the present work. We begin
then by assessing how MASD has fared.

9.1 MASD REQUIREMENTS REVISITED

MASD is best evaluated by revisiting the requirements formulated earlier in
this manuscript (cf. Chapter 4). Previous chapters have already alluded to
how these were addressed by MASD in different contexts — particularly at the
methodology level (c¢f. Chapter 5) — so our objective is merely to summarise
conclusions to paint the overall picture. To facilitate the review, requirements
have been grouped into related topics.

Monograph overview

Chapter overview

164

CONCLUSIONS

9.1.1 Identity Related Requirements

R-1: Well-Defined Purpose
R-2: Well-Defined Identity
R-3: Well-Defined Target Audience

The objective of this group of requirements is to ensure that the new method-
ology is distinct from MDE and related MD* approaches, and that both its
raison d’étre as well as its boundaries are clear and obvious to prospective end
users. The requirements are all explicitly addressed by the methodology’s
core values (Section 5.2). By first discerning the issues surrounding scope and
identity within MDE (cf. Section 2.3) and then by subsequently positioning
MASD in a clear manner across all of the selected dimensions, we ensured
that the methodology addressed all of the identified issues.

9.1.2 Process and Integration Requirements

R-6: SDM Integration

R-7: Clear Governance Model

R-5: Cater for Evolution

R-14: Clear Separation of End-users and Tool Developers

Collectively, these four requirements deal with issues of integration and gov-
ernance, ensuring all actors and processes have been clearly identified and all
responsibilities have been attributed. These requirements are fundamental
to the approach, in light of our characterisation of MDE as an unstructured
body of knowledge (cf. Section 2.3); our target audience can only be serviced
with a structured process, and a clear path for SDM integration (e.g. working
with Agile). The methodology dedicated a section to specifically address
these requirements: Processes and Actors (Section 5.4). It ensured clarity and
transparency in this regard, with roles and responsibilities clearly specified.
In addition, the development of Dogen using Agile (cf. Section 8.1.3) was a
test bed to ensure SDM integration worked as planned (c.f. Section 8.1.3)..

9.1.3 Modeling Requirements

R-8: Support for PIMs and PSM

R-9: Support for PDM

R-10: Support for Variant Management and Product Lines
R-11: Extensible Catalogue of Schematic and Repetitive Code

Whilst MASD’s objective is to allow for a restricted and well-defined use
of MDE techniques, some core aspects of MDE are still considered to be
extremely important and must be supported as first-class citizens. The domain
architecture (Chapter 6) was designed specifically to address all of these
requirements, from product lines to the various supported model kinds (e.g.

9.2 FURTHER WORK

PIMs, PDMs, PSMs). In addition, due to MASD’s artefact-centric view of the
software engineering world, the methodology also provides clear definitions
of key concepts such as platforms (cf. Section 6.1.7), meaning the roles of
PIMs, PSMs and PDMs are clearly defined.

9.1.4 Tooling Requirements

R-12: ”End-to-End” Solution

R-13: Prioritise Black-Boxing

R-15: Prioritise Tooling Integration

R-16: Support Incremental Use of Features

Dogen, the product in the MRI product line responsible for implementing
the code generator, has addressed all of these requirements comprehensively
(Section 8.1). It provides a single black box tool which reads input models
and produces generated code; it also supplies a library ready for integration
with different development environments such as IDEs, as well as a codec
framework that facilitates the development of new input formats — as demon-
strated by our addition of org-model (cf. Chapter 7). Last but not least, via
non-structural variability, Dogen is able to support the incremental use of
features specified by the MASD Application Process (cf. Section 5.4.2.3).

9.1.5 Testing Requirements

R-17: Conformance Testing

The reference products within the MRI product line are responsible for both
declaring the available features and ensuring conformance to the declared
feature set (Section 8.2). With over go thousand LOC, these products perform
an extensive testing of Dogen'’s features that are user facing. In addition, Dogen
itself provides coverage for the remaining features, designed specifically for
its own development. Finally, a TDD approach ensures that no feature is
implemented without a corresponding change; any future changes to the code
base are validated against this large test set to ensure no feature is broken
inadvertently.

9.2 FURTHER WORK

MASD and the MRI have had a long gestation period, taking at times circuitous
paths. The present document marks the end of this difficult introductory phase,
with the conclusion of the bulk of the theoretical work, and the beginning of
what we envision as the growth phase. In this next phase of MASD’s lifecycle,
the focus will shift towards software engineering, striving for strong growth
across a fixed set of dimensions and opening avenues for engineering:

165

166

Engineering avenues

Research avenues

CONCLUSIONS

o the addition of new platforms to existing TSs;

e the addition of new facets to existing TSs, in some cases requiring new
metamodel elements in the LMM;

o the addition of new TSs such as Java, and bringing existing TSs to feature
parity;

e the increase of non-structural variability on existing archetypes.

All of these activities are characterised by a strong emphasis in software devel-
opment, and are expected to have a narrow impact on the domain architecture
described in the present manuscript (cf. Chapter 6). By implication, they have
a limited potential for research, outside experience reports. The majority of
the 800 stories captured in the product backlog fall under one or more of these
four dimensions.

Nonetheless, the product backlog does contain several lines of enquiry that
will form the basis for new research. These can be summarised as follows:

e Solving in the VMM: The geometry of physical space was designed
to allow for automated solving of valid configurations, both for trivial
scenarios —e.g. if the region of physical space for the C++ TS is disabled
this implies that all archetypes within that region are disabled — as well
as more complex ones. In particular, the introduction of dependencies
between archetypes will make it possible to determine implied configu-
ration graphs in VMM space, given an input configuration: e.g., if a user
selects facet FO for class A which has a property p of class B, that implies
that B must also enable facet F0.

e Typed test-data generators: At present our test data generation is not
intelligent; if a user creates a property of type std: :string, Dogen’s
data fountains generate trivial strings with a hard-coded prefix and a
counter that ensures uniqueness. Similarly, for integral types we rely on
counters. A more intelligent approach which is currently under analysis
is the introduction of metatypes for the data generators, and associate
typed data fountains to each metatype. For example, a primitive can be
associated with a fountain metatype of “telephone numbers”, possibly
further parameterised via non-structural variability with a country of
origin, and then be used to generate realistic phone numbers.

o Integrating LSP with MASD modeling: Following on from the work of
Rodriguez-Echeverria et al. (Rodriguez-Echeverria et al., 2018), and in
line with our objective of pervasive integration (P-2), analysis has begun
on supporting IDE-like features for modeling via the de facto standard
of LSP. In addition, LSP can also provide a route towards integrating
roundtrip engineering, which at present is a non-goal for MASD due to
its perceived complexity. The main benefit of using LSP is its agnosticism;
it is supported by a range of tooling from text editors such as Emacs to
full featured IDEs like Eclipse.

e Adding support for Ecore: Though ostensibly just another codec with
which to represent MASD input models, Ecore also acts as a gateway

9.2 FURTHER WORK 167

for the integration of MASD with the wider MDE tooling infrastructure.
Once Ecore has been integrated, many of the complex use cases which
have been externalised out of MASD — e.g. model synchronisation,
merging, querying, evolution, efc. — would be supported.

o Integration of fuzzing with modeling: Sharing some similarities with
typed test-data generators, analysis is presently underway on integrating
fuzzing platforms in each TS with generated code. Whilst this activity
has a strong engineering component, we also expect it will provide novel
approaches to the problem of integrating modeling and fuzzing.

Lastly, a word on further applications. An explicit trade-off was made as
part of the present work was to deliberately avoid any applications of MASD
outside of the MRI until we could comprehensively pass the defined fitness
function (cf. Section 5.4.2.4). We considered such work to fall under further
applications, for, in the words of Ritchie, “it’s best to confuse only one issue at
a time.” (Ritchie, 1978) (p. 22) However, having MASD applications outside Further applications
of MASD is undeniably a significant milestone, particularly with a view to
strengthening our position of MASD as a methodology for software engineers
with little to no MDE experience. So the final avenue for further work will
be to undertake the creation of an industrial grade software product, with a
complexity larger than that of the MRL

BIBLIOGRAPHY

Abrahams, David and Aleksey Gurtovoy (2004). C++ template metaprogram-
ming: concepts, tools, and techniques from Boost and beyond. Pearson Education
(cit. on p. 110).

Al Saad, Mohammad et al. (2008). “ScatterClipse: a model-driven tool-chain
for developing, testing, and prototyping wireless sensor networks”. In: Par-
allel and Distributed Processing with Applications, 2008. ISPA’08. International
Symposium on. IEEE, pp. 871-885 (cit. on p. 23).

Ambler, Scott W (2007). “Agile Model driven development (AMDD)”. In:
XOOTIC MAGAZINE, February (cit. on p. 26).

Ameller, David et al. (2017). “Towards continuous software release planning”.
In: 2017 IEEE 24th International Conference on Software Analysis, Evolution and
Reengineering (SANER). IEEE, pp. 402-406 (cit. on p. 10).

Andolfato, Luigi et al. (2014). “Experiences in Applying Model Driven En-
gineering to the Telescope and Instrument Control System Domain”. In:
International Conference on Model Driven Engineering Languages and Systems.
Springer, pp. 403—419 (cit. on pp. 3, 31, 41).

Andreessen, Marc (2011). “Why software is eating the world”. In: Wall Street
Journal 20.2011, p. C2 (cit. on p. 10).

Arlow, Jim, Wolfgang Emmerich, and John Quinn (1998). “Literate mod-
elling—capturing business knowledge with the uml”. In: International Con-
ference on the Unified Modeling Language. Springer, pp. 189-199 (cit. on p. 127).

Arlow, Jim and Ila Neustadt (2004). Enterprise patterns and MDA: building
better software with archetype patterns and UML. Addison-Wesley Professional
(cit. on pp. 127, 128).

Asadi, Mohsen and Raman Ramsin (2008). “MDA-based methodologies: an
analytical survey”. In: European Conference on Model Driven Architecture-
Foundations and Applications. Springer, pp. 419-431 (cit. on pp. 16, 17).

Badreddin, Omar Bahy, Andrew Forward, and Timothy C Lethbridge (2012).
“Model oriented programming: an empirical study of comprehension.” In:
CASCON. Vol. 12, pp- 73-86 (cit. on p. 11).

Badreddin, Omar and Timothy C Lethbridge (2013). “Model oriented pro-
gramming: bridging the code-model divide”. In: Proceedings of the 5th Inter-
national Workshop on Modeling in Software Engineering. IEEE Press, pp. 69—75
(cit. on p. 128).

Batory, Don (2005). “Feature models, grammars, and propositional formulas”.
In: International Conference on Software Product Lines. Springer, pp. 7—20 (cit.
on p. 118).

Beck, Kent et al. (2001). “Manifesto for agile software development”. In: (cit.
on pp. 10, 64).

Bell, Alex E (2004). “Death by UML fever”. In: Queue 2.1, p. 72 (cit. on p. 33).

Berdonosov, Victor and Elena Redkolis (2011). “TRIZ-fractality of computer-
aided software engineering systems”. In: Procedia Engineering 9, pp. 199-213
(cit. on p. 12).

Beyer, Betsy et al. (2016). Site Reliability Engineering: How Google Runs Production
Systems. ” O'Reilly Media, Inc.” (cit. on p. 10).

170

BIBLIOGRAPHY

Bézivin, Jean (2003). “MDA: From hype to hope, and reality”. In: The 6th
International Conference on the Unified Modeling Language (cit. on pp. 20, 33).

— (2005). “On the unification power of models”. In: Software & Systems Model-
ing 4.2, pp. 171-188 (cit. on pp. 3, 17).

Biermann, Alan W (1985). “Automatic programming: A tutorial on formal
methodologies”. In: Journal of Symbolic Computation 1.2, pp. 119—142 (cit. on
p- 11).

Boilerplate text (2021). Boilerplate text — Wikipedia, The Free Encyclopedia. [On-
line; accessed 26-June-2021]. URL: https://en.wikipedia . org/wiki/
Boilerplate text (cit. on p. 84).

Booch, Grady, James Rumbaugh, and Ivar Jacobson (Jan. 1999). Unified Model-
ing Language User Guide, The (2nd Edition) (Addison-Wesley Object Technology
Series). Vol. 10. 1sBN: 0321267974 (cit. on p. 58).

Booch, Grady et al. (2004). “An MDA manifesto”. In: Business Process Trend-
s/MDA Journal (cit. on pp. 17, 20, 57).

Boris Kolpackov (2021). The build2 Toolchain Introduction. [Online; accessed
o7-]uly—2021]. URL: https://build2.0org/build2-toolchain/doc/build2-
toolchain-intro.xhtml (cit. on p. 95).

Bosch, Jan et al. (2001). “Variability issues in software product lines”. In: Inter-
national Workshop on Software Product-Family Engineering. Springer, pp. 13—21
(cit. on p. 65).

Bou Ghantous, G and Asif Gill (2017). “DevOps: Concepts, practices, tools,
benefits and challenges”. In: PACIS2017 (cit. on p. 10).

Brambilla, Marco, Jordi Cabot, and Manuel Wimmer (2012). Model-driven
software engineering in practice. Vol. 1. 1. Morgan & Claypool Publishers,
pp- 1—182 (cit. on pp. 15, 16, 19, 34).

Brooks, Frederick P (1974). “The mythical man-month”. In: Datamation 20.12,
PP 44-52 (cit. on pp. 29, 140).

Capra, Eugenio, Chiara Francalanci, and Francesco Merlo (2008). “An empiri-
cal study on the relationship between software design quality, development
effort and governance in open source projects”. In: IEEE Transactions on
Software Engineering 34.6, pp. 765—782 (cit. on p. 63).

Clark, Tony and Pierre-Alain Muller (2012). “Exploiting model driven technol-
ogy: a tale of two startups”. In: Software & Systems Modeling 11.4, pp. 481-493
(cit. on pp. 31, 33, 38, 40, 41, 60).

Clauf3, Matthias (2001). “Generic modeling using UML extensions for variabil-
ity”. In: Workshop on Domain Specific Visual Languages at OOPSLA. Vol. 2001
(cit. on p. 116).

Coad, Peter, Jeff de Luca, and Eric Lefebvre (1999). Java modeling color with
UML: Enterprise components and process with Cdrom. Prentice Hall PTR (cit. on
p-97)-

Colby Pike (2018). Project Layout - Survey Results and Updates. [Online; accessed
o7-]uly—2021]. URL: https://vector-of-bool.github.i0/2018/09/16/
layout-survey.html (cit. on p. 95).

— (2021). The Pitchfork Layout (PFL). [Online; accessed oy-July-2021]. URL:
https://api. csswg.org/bikeshed/ ?force=1&url=https:// raw.
githubusercontent . com/vector-of -bool/pitchfork/develop/data/
spec.bs (cit. on p. 95).

Concept map (2021). Concept map — Wikipedia, The Free Encyclopedia. [Online;
accessed 27-June-2021]. URL: https://en.wikipedia.org/wiki/Concept
map (cit. on p. 129).

https://en.wikipedia.org/wiki/Boilerplate_text
https://en.wikipedia.org/wiki/Boilerplate_text
https://build2.org/build2-toolchain/doc/build2-toolchain-intro.xhtml
https://build2.org/build2-toolchain/doc/build2-toolchain-intro.xhtml
https://vector-of-bool.github.io/2018/09/16/layout-survey.html
https://vector-of-bool.github.io/2018/09/16/layout-survey.html
https://api.csswg.org/bikeshed/?force=1&url=https://raw.githubusercontent.com/vector-of-bool/pitchfork/develop/data/spec.bs
https://api.csswg.org/bikeshed/?force=1&url=https://raw.githubusercontent.com/vector-of-bool/pitchfork/develop/data/spec.bs
https://api.csswg.org/bikeshed/?force=1&url=https://raw.githubusercontent.com/vector-of-bool/pitchfork/develop/data/spec.bs
https://en.wikipedia.org/wiki/Concept_map
https://en.wikipedia.org/wiki/Concept_map

BIBLIOGRAPHY

Cook, Steve (2006). “Object technology - a grand narrative?” In: European
Conference on Object-Oriented Programming. Springer, pp. 174-179 (cit. on
p- 39)-

Craveiro, Marco (2021a). Dogen v1.0.30, “Estddio Joaquim Morais”. URL: https:
//github.com/MASD-Project/dogen/releases/tag/vl.0.30 (visited on
08/27/2021) (cit. on p. 127).

— (2021b). “Experience Report of Industrial Adoption of Model Driven Devel-
opment in the Financial Sector”. In: por: 10.5281/zenodo.5767247 (cit. on
Pp- 22-25, 30, 31, 39, 41, 43, 44, 47, 48, 57, 62, 142).

— (2021c). Notes on Model Driven Engineering. Zenodo. por: 10.5281/zenodo.
5789846 (cit. on pp. 3, 4, 14, 15, 17-19, 21, 23-26, 30, 38, 47-50, 57, 59, 61, 65,
66,73,74,78,79, 83, 85,102, 103, 115, 140, 143, 148, 158).

— (2021d). “Survey of Special Purpose Code Generators”. In: por: 10.5281/
zenodo.5790875 (cit. on pp. 39, 40, 47, 51, 52, 60, 61, 71, 85, 88, 96, 104, 142).

Crowston, Kevin et al. (2012). “Free/Libre open-source software development:
What we know and what we do not know”. In: ACM Computing Surveys
(CSUR) 44.2, p. 7 (cit. on p. 63).

Cuesta, César Cuevas (2016). “Metaherramientas MDE para el disefio de
entornos de desarrollo de sistemas distribuidos de tiempo real”. PhD thesis.
Universidad de Cantabria (cit. on p. 15).

Cunningham, Ward (1992). “The WyCash portfolio management system”. In:
ACM SIGPLAN OOPS Messenger 4.2, pp- 29—30 (cit. on p. 24).

Czarnecki, Krzysztof (1998). Generative programming: Principles and techniques
of software engineering based on automated configuration and fragment-based
component models. Computer Science Department, Technical University of
Ilmenau (cit. on pp. 14, 22).

Czarnecki, Krzysztof, Simon Helsen, and Ulrich Eisenecker (2005). “Formaliz-
ing cardinality-based feature models and their specialization”. In: Software
process: Improvement and practice 10.1, pp. 7—29 (cit. on p. 14).

Czarnecki, Krzysztof and Andrzej Wasowski (2007). “Feature diagrams and
logics: There and back again”. In: Software Product Line Conference, 2007.
SPLC 2007. 11th International. IEEE, pp. 23—34 (cit. on p. 118).

Czarnecki, Krzysztof et al. (2000). “Generative programming and active li-
braries”. In: Generic Programming. Springer, pp. 25-39 (cit. on p. 14).

Davis, James (2003). “GME: the Generic Modeling Environment”. In: Compan-
ion of the 18th annual ACM SIGPLAN conference on Object-oriented programming,
systems, languages, and applications. ACM, pp. 82-83 (cit. on p. 63).

Dedehayir, Ozgur and Martin Steinert (2016). “The hype cycle model: A review
and future directions”. In: Technological Forecasting and Social Change 108,
pp- 28—41 (cit. on p. 34).

Del Gaudio, Rosa and Anténio Branco (2009). “Language independent sys-
tem for definition extraction: First results using learning algorithms”. In:
Proceedings of the 1st Workshop on Definition Extraction. Association for Com-
putational Linguistics, pp. 33-39 (cit. on p. 80).

Derby, Esther, Diana Larsen, and Ken Schwaber (2006). Agile retrospectives:
Making good teams great. Pragmatic Bookshelf (cit. on p. 143).

Escott, Eban et al. (2011a). “Architecture-centric model-driven web engineer-
ing”. In: 2011 18th Asia-Pacific Software Engineering Conference. IEEE, pp. 106—
113 (cit. on p. 23).

Escott, Eban et al. (2011b). “Model-driven web form validation with UML and
OCL". In: International Conference on Web Engineering. Springer, pp. 223-235
(cit. on p. 23).

171

https://github.com/MASD-Project/dogen/releases/tag/v1.0.30
https://github.com/MASD-Project/dogen/releases/tag/v1.0.30
https://doi.org/10.5281/zenodo.5767247
https://doi.org/10.5281/zenodo.5789846
https://doi.org/10.5281/zenodo.5789846
https://doi.org/10.5281/zenodo.5790875
https://doi.org/10.5281/zenodo.5790875

172

BIBLIOGRAPHY

Evans, Eric (2004). Domain-driven design : tackling complexity in the heart of
software. Addison-Wesley. 1sBN: 0321125215 9780321125217 (cit. on pp. 66,
77)-

Exchange, Stack (2018). Stack Exchange Users. urL: https://stackexchange.
com/sites?view=list#users (visited on 08/12/2018) (cit. on p. 36).

Eysholdt, Moritz and Heiko Behrens (2010). “Xtext: implement your language
faster than the quick and dirty way”. In: Proceedings of the ACM international
conference companion on Object oriented programming systems languages and
applications companion. ACM, pp. 307-309 (cit. on p. 24).

Feitelson, Dror G, Eitan Frachtenberg, and Kent L Beck (2013). “Development
and deployment at facebook”. In: IEEE Internet Computing 17.4, pp. 8-17
(cit. on p. 9).

Fisher, Alan S and Alan S Fisher (1988). CASE: using software development tools.
Vol. 2. Wiley New York (cit. on pp. 9, 11-13).

France, Robert B et al. (2006). “Model-driven development using UML 2.0:
promises and pitfalls”. In: Computer 39.2, pp. 59-66 (cit. on p. 33).

France, Robert (2008). “Fair treatment of evaluations in reviews”. In: Software
and Systems Modeling 7.3, pp. 253—254 (cit. on p. 32).

France, Robert and Bernhard Rumpe (2007). “Model-driven development of
complex software: A research roadmap”. In: 2007 Future of Software Engi-
neering. IEEE Computer Society, pp. 37-54 (cit. on pp. 20, 39, 44, 75, 163).

Gonziélez, AS, DS Ruiz, and GM Perez (2010). “Emf4cpp: a c++ ecore im-
plementation”. In: DSDM 2010-Desarrollo de Software Dirigido por Modelos,
Jornadas de Ingenieria del Software y Bases de Datos (JISBD 2010), Valencia,
Spain (cit. on p. 145).

Greifenberg, Timo et al. (2015a). “A comparison of mechanisms for integrat-
ing handwritten and generated code for object-oriented programming lan-
guages”. In: Model-Driven Engineering and Software Development (MODEL-
SWARD), 2015 3rd International Conference on. IEEE, pp. 74-85 (cit. on pp. 23,
94).

Greifenberg, Timo et al. (2015b). “Integration of handwritten and generated
object-oriented code”. In: International Conference on Model-Driven Engineer-
ing and Software Development. Springer, pp. 112—132 (cit. on pp. 23, 94).

Grobher, Iris and Markus Voelter (2007). “Expressing feature-based variability
in structural models”. In: In Workshop on Managing Variability for Software
Product Lines. Citeseer (cit. on pp. 65, 83, 85).

— (2009). “Aspect-oriented model-driven software product line engineering”.
In: Transactions on aspect-oriented software development VI. Springer, pp. 111—
152 (cit. on pp. 83, 85).

Group, Object Management (2014). MDA Guide Version 2.0 (cit. on pp. 17, 18,
33)-

Harrison, Warren (2006). “Eating your own dog food”. In: IEEE Software 23.3,
pp- 57 (cit. on p. 73).

Hebenstreit, Gernot (2007). “Defining patterns in translation studies: Revisit-
ing two classics of German Translationswissenschaft”. In: Target. International
Journal of Translation Studies 19.2, pp. 197—215 (cit. on p. 80).

Herardian, Ron, Forrest Marshall, and N Hunter Prendergast (n.d.). “Basil
Policy-as-code Platform”. In: () (cit. on p. 10).

Hutchinson, John, Mark Rouncefield, and Jon Whittle (2011). “Model-driven
engineering practices in industry”. In: Proceedings of the 33rd International
Conference on Software Engineering. ACM, pp. 633-642 (cit. on pp. 30, 31, 85).

https://stackexchange.com/sites?view=list#users
https://stackexchange.com/sites?view=list#users

BIBLIOGRAPHY

Hutchinson, John et al. (2011). “Empirical assessment of MDE in industry”.
In: Software Engineering (ICSE), 2011 33rd International Conference on. IEEE,
Pp- 471480 (cit. on pp. 3, 30, 38).

“IEEE Standard for Information Technology—Portable Operating System In-
terface (POSIX(TM)) Base Specifications, Issue 7” (2018). In: IEEE Std
1003.1-2017 (Revision of IEEE Std 1003.1-2008), pp. 1-3951. por: 10. 1109/
IEEESTD.2018.8277153 (cit. on p. 86).

ISO (n.d.). ISO/IEC 14882:2020(E) Information technology — Programming lan-
guages — C++ (cit. on p. 88).

ISO (2011). C11 Standard. ISO/IEC 9899:2011. URL: /bib/is0/C11/n1570.pdf
(cit. on p. 90).

Jager, Sven et al. (2016). “An EMF-like UML generator for C++". In: 2016 4th
International Conference on Model-Driven Engineering and Software Development
(MODELSWARD). IEEE, pp. 309-316 (cit. on p. 145).

Jones, Capers (1994). “Software metrics: good, bad and missing”. In: Computer
27.9, pp. 98-100 (cit. on p. 9).

Jorges, Sven (2013). Construction and evolution of code generators: A model-driven
and service-oriented approach. Vol. 7747. Springer (cit. on pp. 11-13, 15, 16).

Jouault, Frédéric et al. (2008). “ATL: A model transformation tool”. In: Science
of computer programming 72.1-2, pp. 31—39 (cit. on p. 18).

Kevlin Henney (2021). Exceptional Naming. [Online; accessed 27-June-2021].

URL: https://kevlinhenney.medium.com/exceptional-naming-6e3c8f5bffac

(cit. on p. 108).

Knuth, Donald Ervin (1984). “Literate programming”. In: The computer journal
27.2, pp. 97-111 (cit. on pp. 125, 128).

Kottemann, Jeffrey E and Benn R Konsynski (1984). “Dynamic Metasystems
for Information Systems Development.” In: ICIS, p. 14 (cit. on p. 87).

Lakos, John (1996). Large-scale C++ software design. Vol. 1. Addison-Wesley
Reading (cit. on p. 58).

— (2019). Large-Scale C++ Volume I: Process and Architecture. Addison-Wesley
Professional (cit. on pp. 58, 77).

Lee, Gwendolyn K and Robert E Cole (2003). “From a firm-based to a community-

based model of knowledge creation: The case of the Linux kernel develop-
ment”. In: Organization science 14.6, pp. 633-649 (cit. on p. 63).

Lemma, Remo and Michele Lanza (2013). “Co-evolution as the key for live pro-
gramming”. In: 2013 1st International Workshop on Live Programming (LIVE).
IEEE, pp. 9—10 (cit. on p. 142).

Lewis, Bil, Daniel LaLiberte, Richard Stallman, et al. (1993). GNU Emacs Lisp
Reference Manual. Free Software Foundation (cit. on p. 130).

Linden, Alexander and Jackie Fenn (2003). “Understanding Gartner’s hype
cycles”. In: Strategic Analysis Report N° R-20-1971. Gartner, Inc (cit. on p. 34).

Lions, John (1996). “A Commentary on UNIX 6th Edition with Source Code”.
In: Peer-To-Peer Communications (cit. on p. 9).

Lundell, Bjorn et al. (2006). “UML model interchange in heterogeneous tool
environments: an analysis of adoptions of XMI 2”. In: International Conference
on Model Driven Engineering Languages and Systems. Springer, pp. 619—630
(cit. on pp. 43, 44).

Manset, David et al. (2006). “A formal architecture-centric model-driven ap-
proach for the automatic generation of grid applications”. In: arXiv preprint
cs/0601118 (cit. on p. 23).

Marco Craveiro (2018). The Refactoring Quagmire. [Online; accessed 27-June-
2021]. URL: https://mcraveiro . blogspot.com/2018/01/nerd - food -
refactoring-quagmire.html (cit. on p. 144).

173

https://doi.org/10.1109/IEEESTD.2018.8277153
https://doi.org/10.1109/IEEESTD.2018.8277153
/bib/iso/C11/n1570.pdf
https://kevlinhenney.medium.com/exceptional-naming-6e3c8f5bffac
https://mcraveiro.blogspot.com/2018/01/nerd-food-refactoring-quagmire.html
https://mcraveiro.blogspot.com/2018/01/nerd-food-refactoring-quagmire.html

174 BIBLIOGRAPHY

Marco Craveiro (2021). Marco Craveiro YouTube Channel. [Online; accessed 27-
June-2021]. urL: https://www.youtube.com/channel/UCZLcCjq0G1VmbSToAJAf2mA
(cit. on p. 144).

Markup language (2021). Markup language — Wikipedia, The Free Encyclopedia.
[Online; accessed 27-June-2021]. urL: https://en.wikipedia.org/wiki/
Markup_language (cit. on p. 129).

Maven Project (2021). Introduction to the Standard Directory Layout. [Online; ac-
cessed 07-July-2021]. URL: https://maven.apache.org/guides/introduction/
introduction-to-the-standard-directory-layout.html (cit. on p. 95).

McBreen, Pete (2002). Software craftsmanship: The new imperative. Addison-
Wesley Professional (cit. on p. 31).

Melia, Santiago et al. (2016). “Comparison of a textual versus a graphical
notation for the maintainability of MDE domain models: an empirical pilot
study”. In: Software Quality Journal 24.3, pp. 709—735 (cit. on p. 11).

Mellor, Stephen J (2004). “Agile mda”. In: MDA Journal, www. bptrends. com
June (cit. on pp. 19, 79).

Mellor, Stephen J, Marc Balcer, and Ivar Foreword By-Jacoboson (2002). Ex-
ecutable UML: A foundation for model-driven architectures. Addison-Wesley
Longman Publishing Co., Inc. (cit. on p. 128).

Meyer, Bertrand (1988). Object-oriented software construction. Vol. 2. Prentice
hall New York (cit. on p. 24).

Microsoft (2021). Organize your project to support both NET Framework and .NET.
[Online; accessed oy-July-2021]. ure: https://docs.microsoft.com/en-
us/dotnet/core/porting/project-structure (cit. on p. 95).

Mohagheghi, Parastoo and Vegard Dehlen (2008). “Where is the proof? A
review of experiences from applying MDE in industry”. In: European Con-
ference on Model Driven Architecture-Foundations and Applications. Springer,
PP- 432-443 (cit. on pp. 3, 31, 38, 39, 42, 43).

Morris, K (2016). “Infrastructure as Code: Managing Servers in the Cloud,
OReilly Media”. In: Inc, Sebastopol, CA (cit. on p. 10).

Mussbacher, Gunter et al. (2014). “The relevance of model-driven engineering
thirty years from now”. In: International Conference on Model Driven Engi-
neering Languages and Systems. Springer, pp. 183—200 (cit. on pp. 33, 47,
75)-

Nim Project (2022a). Nim Manual. [Online; accessed 12-January-2022]. URL:
https://nim-lang.org/docs/manual.html#types-distinct-type (cit. on
p. 109).

— (2022b). Nim Programming Language Homepage. [Online; accessed 12-January-
2022]. urL: https://nim-lang.org/ (cit. on p. 109).

OLIVEIRA, Thiago Aratjo Silva de (2011). “Geragdo de c6digo estrutural
implantdvel em nuvens a partir de modelos de componentes independentes
de plataforma”. MA thesis. Universidade Federal de Pernambuco (cit. on
p-15).

OMG, Object Management Group (2008). “MOF Model to Text Transformation
Language 1.0 Specification”. In: Final Adopted Specification (January 2008)
(cit. on p. 18).

- (2012). “Common Object Request Broker Architecture 3.3 Specification”.
In: Final Adopted Specification (October 2012) (cit. on p. 17).

— (2016). “Meta Object Facility (MOF) 2.5.1 Specification”. In: Final Adopted
Specification (November 2016) (cit. on p. 16).

- (2017a). “MOF Query/View/Transformation (QVT) 1.3 Specification”. In:
Final Adopted Specification (June 2016) (cit. on p. 16).

https://www.youtube.com/channel/UCZLcCjqOG1VmbSfoAJAf2mA
https://en.wikipedia.org/wiki/Markup_language
https://en.wikipedia.org/wiki/Markup_language
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://docs.microsoft.com/en-us/dotnet/core/porting/project-structure
https://docs.microsoft.com/en-us/dotnet/core/porting/project-structure
https://nim-lang.org/docs/manual.html#types-distinct-type
https://nim-lang.org/

BIBLIOGRAPHY

— (2017b). “Unified Modeling Language (UML) 2.5.1 Specification”. In: Final
Adopted Specification (December 2017) (cit. on p. 16).

Oldevik, Jon et al. (2005). “Toward standardised model to text transforma-
tions”. In: European Conference on Model Driven Architecture-Foundations and
Applications. Springer, pp. 239—253 (cit. on p. 18).

Org Syntax (2021). Org Syntax — Org-mode project. [Online; accessed 27-June-
2021]. URL: https://orgmode.org/worg/dev/org-syntax.html (cit. on
p. 130).

Overflow, Stack (2018). What are tags, and how should I use them? URL: https:
/ / stackoverflow . com/help/tagging (visited on 08/12/2018) (cit. on
p- 36).

Paige, Richard F and Déniel Varré (2012). “Lessons learned from building
model-driven development tools”. In: Software & Systems Modeling 11.4,
Pp- 527-539 (cit. on pp. 3, 31, 41, 43).

Petre, Marian (1995). “Why looking isn’t always seeing: readership skills and
graphical programming”. In: Communications of the ACM 38.6, pp. 33—44
(cit. on p. 11).

— (2013). “UML in practice”. In: Proceedings of the 2013 International Conference
on Software Engineering. IEEE Press, pp. 722—731 (cit. on p. 37).

Piefel, Michael and Toby Neumann (2006). “A Code Generation Metamodel
for ULF-Ware”. In: (cit. on pp. 105, 106, 139).

Possompes, Thibaut et al. (2010). “A UML Profile for Feature Diagrams: Initi-
ating a Model Driven Engineering Approach for Software Product Lines”.
In: Journée Lignes de Produits, pp. 59—70 (cit. on p. 116).

Possompes, Thibaut et al. (2011). “Design of a UML profile for feature dia-
grams and its tooling implementation”. In: Software Engineering & Knowledge
Engineering, pp. 693-698 (cit. on p. 116).

Potvin, Rachel and Josh Levenberg (2016). “Why Google stores billions of
lines of code in a single repository”. In: Communications of the ACM 59.7,
pp- 78-87 (cit. on p. 9).

Preston-Werner, Tom (2018). “Semantic Versioning 2.0.0”. In: URL: http://
semver.org (visited on 08/12/2018) (cit. on p. 68).

Productionisation (2021). Productionisation — Wikipedia, The Free Encyclopedia.
[Online; accessed 27-June-2021]. urL: https://en.wikipedia.org/wiki/
Productionisation (cit. on p. 141).

Raymond, Eric S (2003). The art of Unix programming. Addison-Wesley Profes-
sional (cit. on pp. 10, 11).

Renz, Patrick S (2007). Project governance: implementing corporate governance and
business ethics in nonprofit organizations. Springer Science & Business Media
(cit. on p. 63).

Ritchie, Dennis M (1978). “The C Programming Language”. In: (cit. on p. 167).

Rodriguez-Echeverria, Roberto et al. (2018). “Towards a language server
protocol infrastructure for graphical modeling”. In: Proceedings of the 21th
ACM/IEEE International Conference on Model Driven Engineering Languages
and Systems, pp. 370—-380 (cit. on p. 166).

Rolland, Colette, Naveen Prakash, and Adolphe Benjamen (1999). “A multi-
model view of process modelling”. In: Requirements engineering 4.4, pp. 169—
187 (cit. on p. 73).

Rompf, Tiark et al. (2015). “Go meta! A case for generative programming
and dsls in performance critical systems”. In: 1st Summit on Advances in
Programming Languages (SNAPL 2015) 32, pp. 238—261 (cit. on p. 14).

Rothenberg, Jeff et al. (1989). “The nature of modeling”. In: in Artificial Intelli-
gence, Simulation and Modeling (cit. on p. 74).

175

https://orgmode.org/worg/dev/org-syntax.html
https://stackoverflow.com/help/tagging
https://stackoverflow.com/help/tagging
http://semver.org
http://semver.org
https://en.wikipedia.org/wiki/Productionisation
https://en.wikipedia.org/wiki/Productionisation

176 BIBLIOGRAPHY

Sanchez-Gordén, Mary and Ricardo Colomo-Palacios (2018). “Characterizing
DevOps culture: a systematic literature review”. In: International Conference
on Software Process Improvement and Capability Determination. Springer, pp. 3—
15 (cit. on p. 10).

Schulte, Eric et al. (2012). “A multi-language computing environment for
literate programming and reproducible research”. In: Journal of Statistical
Software 46.3, pp. 1-24 (cit. on pp. 129, 130).

Shirtz, Dov, Michael Kazakov, and Yael Shaham-Gafni (2007). “Adopting
model driven development in a large financial organization”. In: European
Conference on Model Driven Architecture-Foundations and Applications. Springer,
pp. 172-183 (cit. on pp. 3, 31).

Single-responsibility principle (2021). Single-responsibility principle— Wikipedia,
The Free Encyclopedia. [Online; accessed 27-June-2021]. UrL: https://en.
wikipedia.org/wiki/Single-responsibility principle (cit. on p. 86).

Stallman, Richard M (1981). “EMACS the extensible, customizable self-documenting
display editor”. In: Proceedings of the ACM SIGPLAN SIGOA symposium on
Text manipulation, pp. 147-156 (cit. on p. 130).

Stallworth Williams, Linda (2008). “The mission statement: A corporate re-
porting tool with a past, present, and future”. In: The Journal of Business
Communication (1973) 45.2, pp- 94-119 (cit. on p. 59).

Staron, Miroslaw et al. (2015). “Classifying obstructive and nonobstructive
code clones of Type I using simplified classification scheme: a case study”.
In: Advances in Software Engineering 2015, p. 5 (cit. on p. 22).

Steinberg, Dave et al. (2008). EMF: eclipse modeling framework. Pearson Educa-
tion (cit. on pp. 19, 63).

Steinberg, David et al. (2009). EMF: Eclipse Modeling Framework 2.0. 2nd.
Addison-Wesley Professional (cit. on p. 19).

Stengel, Richard (2010). Mandela’s Way: Lessons in Life. Random House (cit. on
p. ix).

Stevens, Perdita and Rob Pooley (1999). Using UML: software engineering with
objects and components. Addison-Wesley Longman Publishing Co., Inc. (cit.
on p. 58).

TIOBE, I (2021). “Tiobe Index”. In: Retrieved from Tiobe Index: https:/ /wwuw.
tiobe. com /tiobe-index (cit. on p. 34).

Thomas, Dave (2004). “MDA: Revenge of the Modelers or UML Utopia?” In:
IEEE software 21.3, pp. 15—17 (cit. on pp. 20, 33).

Torchiano, Marco et al. (2012). “Benefits from modelling and MDD adoption:
expectations and achievements”. In: Proceedings of the Second Edition of the In-
ternational Workshop on Experiences and Empirical Studies in Software Modelling.
ACM, p. 1 (cit. on pp. 3, 30, 34).

Tufte, Edward R, Nora Hillman Goeler, and Richard Benson (1990). Envisioning
information. Vol. 2. Graphics press Cheshire, CT (cit. on p. 97).

Vlissides, John et al. (1995). “Design patterns: Elements of reusable object-
oriented software”. In: Reading: Addison-Wesley 49.120, p. 11 (cit. on pp. 82,
109).

Vogel, Peter (2010). Practical code generation in. NET: covering Visual Studio 2005,
2008, and 2010. Addison-Wesley Professional (cit. on p. 24).

Volter, Markus (2009). “MD* Best Practices”. In: Journal of Object Technology 8,
pp- 79-102 (cit. on pp. 20, 32).

Volter, Markus et al. (2013). Model-driven software development: technology, engi-
neering, management. John Wiley & Sons (cit. on pp. 15, 21—23).

Waskom, Michael L (2021). “Seaborn: statistical data visualization”. In: Journal
of Open Source Software 6.60, p. 3021 (cit. on p. 97).

https://en.wikipedia.org/wiki/Single-responsibility_principle
https://en.wikipedia.org/wiki/Single-responsibility_principle

BIBLIOGRAPHY

Whittle, Jon, John Hutchinson, and Mark Rouncefield (2014). “The state of
practice in model-driven engineering”. In: IEEE software 31.3, pp. 79-85
(cit. on pp. 37, 44).

Whittle, Jon et al. (2013). “Industrial adoption of model-driven engineering:
Are the tools really the problem?” In: International Conference on Model Driven
Engineering Languages and Systems. Springer, pp. 1-17 (cit. on p. 39).

- (2017). “A taxonomy of tool-related issues affecting the adoption of model-
driven engineering”. In: Software & Systems Modeling 16.2, pp. 313—-331 (cit.
on pp. 39-42).

Zettelkasten (2021). Zettelkasten — Wikipedia, The Free Encyclopedia. [Online; ac-

cessed 27-June-2021]. UrL: https://en.wikipedia.org/wiki/Zettelkasten
(cit. on p. 129).

177

https://en.wikipedia.org/wiki/Zettelkasten

MASD

Model Assisted Software Development

	Colophon
	Dedication
	Abstract
	Acknowledgements

	Motivation
	Introduction
	Audience
	Conventions
	Research Questions
	Contributions
	Organisation

	State of the Art in Code Generation
	The Importance of Code Generation
	Historical Approaches to Code Generation
	Computer Aided Software Engineering (CASE)
	Generative Programming

	Model Driven Engineering (MDE)
	What is Model-Driven Engineering
	Model Driven Architecture (MDA)
	Architecture-Centric MDSD (AC-MDSD)

	The State of MDE Adoption
	Limitations
	Intrinsic Limitations to MDE
	Adoption Literature Limitations

	How Widely Adopted is MDE?
	Analysis of Evidence at a Macro-Scale
	Analysis of Evidence at a Micro-Scale
	Discussion

	Empirical Analysis of Adoption Literature
	Technical Factors
	Internal Organisational Factors
	External Organisational Factors
	Social Factors

	Discussion

	Requirements
	Theoretical Framework Requirements
	Well-Defined Purpose
	Well-Defined Identity
	Well-defined Target Audience
	Well-defined Domain Architecture
	Cater for Evolution
	SDM Integration
	Clear Governance Model
	Support for PIMs and PSMs
	Support for PDMs
	Limited Support for Variant Management and Product Lines
	Extensible Catalogue of Schematic and Repetitive Code

	Tooling Requirements
	"End-to-End" Solution
	Prioritise Black-Boxing
	Clear Separation of End-users and Tool Developers
	Prioritise Tooling Integration
	Support Incremental Use of Features
	Conformance Testing

	Methodology and Components
	The MASD Methodology
	Motivation for a new SDM
	Philosophy
	Vision
	Mission Statement
	Core Values
	First Principle: Focus Narrowly
	Second Principle: Integrate Pervasively
	Third Principle: Evolve Gradually
	Fourth Principle: Govern Openly
	Fifth Principle: Standardise Judiciously
	Sixth Principle: Assist and Guide

	Modeling Conventions
	Processes and Actors
	Actors
	MASD Maintainer
	MASD Developer
	MASD User

	Processes
	MRI Development Process
	MSS Development Process
	MASD Application Process
	MASD Composite Process

	Comparison with Other Approaches

	Domain Architecture
	Physical Domain
	Physical Analysis and Design
	Physical Modeling Process
	Taxonomy of Functions of Input Variability
	File Artefacts
	Taxonomy
	Morphology
	Relations

	Folder Artefacts
	Taxonomy
	Input Variability
	Examples

	The Physical Metamodel
	Platforms and Cartridges

	Logical Domain
	Composition
	Projections

	Variability Domain
	Approach
	The Variability Metamodel
	The Variability Model

	The Logical-Physical Space

	Application
	Literate Modeling with org-model
	Motivation
	Literature Review
	Overview of org-mode
	Creating the org-mode codec
	Evaluation
	Application Evaluation
	Meta-application Evaluation

	MASD Reference Implementation
	Dogen
	Historical Context
	Requirements
	Software Development Methodology
	Architecture
	Stitch
	Basic Usage

	Reference Products
	C++ Reference Product
	C# Reference Product

	Evaluation
	Application Evaluation
	Meta-application Evaluation

	Outlook
	Conclusions
	MASD Requirements Revisited
	Identity Related Requirements
	Process and Integration Requirements
	Modeling Requirements
	Tooling Requirements
	Testing Requirements

	Further Work

