
Global Convergence of a Curvilinear Search for

Non-Convex Optimization

Michael Bartholomew-Biggs∗, Salah Beddiaf and Bruce Christianson
University of Hertfordshire, Hatfield, UK

April 2022

Abstract

For a non-convex function f : Rn → R with gradient g and Hessian
H, define a step vector p(µ, x) as a function of scalar parameter µ and
position vector x by the equation (H(x) + µI)p(µ, x) = −g(x).

Under mild conditions on f , we construct criteria for selecting µ so as
to ensure that the algorithm x := x+ p(µ, x) descends to a second order
stationary point of f , and avoids saddle points.

‘Ah, you have said something
true and so untidy,’ complained
Constantine, ‘and what I said was
not quite true, but so beautifully
neat.’

Black Lamb and Grey Falcon
Rebecca West

Keywords: Nonlinear optimization; Newton-like methods; Non-convex func-
tions.

1 Introduction and Context

In this paper we consider iterative methods for unconstrained minimization of
a continuous n-variable function f(x) whose first and second derivatives are
available – that is, at any point of interest x we can compute a gradient vector
g and a Hessian matrix H. In this situation the powerful Newton method can
be used, which generates a new solution estimate x+ p using

p = −αH−1g (1)

∗matqmb@herts.ac.uk

1

where α is a positive scalar parameter determined by a line search to ensure that
f(x + p) < f(x). Essentially this amounts to taking a step along the direction
towards the stationary point of a local quadratic model of f ; and this works
well when H is positive definite and the stationary point of the local quadratic
model is a minimum. In this situation the steplength choice α = 1 is usually
acceptable1.

However if H is not positive definite then the Newton step represents a move
towards a saddle point or even a maximum; and this is unlikely to facilitate
finding a minimum of f(x), especially if the saddle point of the local quadratic
model is close to a saddle point of f , and the algorithm becomes trapped there.

A strategy that has recently been discussed in [5], [3] is to use the iteration
step obtained by solving

(H + µI)p = −g (2)

for p whenever H is non-positive definite. In this scheme, the scalar µ > −λ is
used as a search parameter, where λ is the most negative eigenvalue of H. As
µ varies, the new point x+ p(µ) will typically lie on a curvilinear path.

As explained in [5], [3] the iteration given by solving (2) can be regarded
as a trust-region approach [9] or as a gradient-flow method based on an ap-
proximation to a step along the continuous steepest descent path defined by the
differential equation

dx

dt
= −g.

Both these approaches have been extensively studied; but the work in [3] seems
to be novel in the way it employs curvilinear searches based on the parameter
µ.

The use of equation (2) in non-convex optimization was popularized by Gold-
feld, Quandt, and Trotter [11] in 1966. The first proposal to use µ as a search
parameter, in order to avoid the need for a complete eigensolution of H, seems
to have been made by Hebden [12] in 1973; more recent suggestions are due to
Brown [7] in 1986, and Behrman [6] in 1998. A different, but related, idea is
due to Higham [13], who describes a trust-region approach which is driven by
adjustment of µ on each iteration instead of adjustment of a trust region radius.

It is worth mentioning that [3] describes an algorithm based on (2) in which
the systematic adjustment of µ requires some knowledge of the eigenvalues of H.
Full knowledge of the spectrum would require us to compute the rather costly
eigensolution of the matrix H. However this potential drawback is alleviated in
a working paper [2], which shows that we only need to determine the extreme
eigenvalues of the Hessian. There are many ways to achieve this2, the approach
we use in [2] employs the power method.

Let Λ denote the most positive (or least negative) eigenvalue of H, and λ the
most negative (or least positive). Applying the power method to H gives the

1Usually, but not always: for example, the hyperbola given by f(x) = (1 + x2)1/2 with
x ∈ Rn is convex, but H−1g = (1 + x2)x, so taking α = 1 oscillates for ∥x∥ = 1 and diverges
for ∥x∥ > 1.

2See for example Chapter F02 of the NAG Toolbox at www.nag.co.uk

2

eigenvalue estimate λ̂, corresponding to whichever of Λ, λ has the larger absolute
magnitude. Applying the power method to H − λ̂I now gives the eigenvalue
estimate λ̌− λ̂, where λ̌ is the other extreme eigenvalue of H.

The chief distinctive features of the approach proposed in [2] are the use of
the power method mentioned above, and the particular way of adjusting µ to
obtain trial points, which is based on controlling the condition number of the
matrix H + µI.

Some quite extensive and encouraging computational experience with algo-
rithms based on (2) has been given in [3] and [2]. The purpose of the present
paper is to establish convergence properties of the iteration (2) when our al-
gorithm is used to choose µ. A good review of known convergence results for
iterations of this form is given by [14].

Although the subsequent sections of this paper will be concerned purely with
convergence properties of our algorithm, rather than performance, we conclude
this introduction with three remarks of a more general nature.

(1) Cholesky factorization is often used both to determine if H is positive
definite and also – of necessity – to check the positive definiteness of H +µI for
an increasing sequence of µ values. The reader is entitled to wonder whether
such a simple approach to adjusting µ directly is more or less computationally
expensive than the method proposed in [3, 2], where estimating eigenvalues en-
ables us to obtain a positive definite H + µI immediately and avoid a trial and
error process involving several attempted Cholesky factorizations. The present
paper does not aim to shed any new light on this point; but the numerical expe-
rience reported in [3] shows that methods using an eigenvalue-based adjustment
of µ typically perform better than a naive implementation of Higham’s method
[13], which simply uses constant factors to increase or decrease µ.

(2) It is well-known that the power method for determining eigenvalues con-
verges slowly when the dominant eigenvalue is close in magnitude to one or
more other eigenvalues. It turns out that the algorithm which we analyse in the
present paper does not rely on particularly accurate estimates of the extreme
eigenvalues Λ and λ, and so rough (within 10%) but sufficiently accurate esti-
mates can therefore be obtained quite quickly using the power method. This
point is explored in more detail towards the end of Section 4 below.

(3) Some might object that any optimization method requiring explicit sec-
ond derivatives is unsuitable in practice for problems involving large numbers of
variables, and to add an eigenvalue calculation into the process is simply to make
a bad situation worse. While this point – like the previous two – is peripheral
to an investigation of the convergence properties of our algorithm, advances in
Automatic Differentiation [4] have considerably changed the landscape around
the issue, and we shall give this some attention in the concluding section of this
paper.

The remainder of the paper is organized as follows. In the next section we
establish some notation, motivate our algorithm by relating it to a trust-region
approach, and sketch out how our convergence proof will proceed. In Section
3 we establish a number of technical lemmas giving conditions which ensure
“sufficient” descent at each step. In Section 4 we set out our main algorithm in

3

detail and discuss its properties, including its tolerance for inaccurate eigenvalue
estimates. In Section 5 we augment the algorithm to guarantee that it does not
stall even if by chance it lands on a saddle point, and then set out our main
convergence results. In the final section we review some possibilities to exploit
further the techniques we have developed, particularly in the practical context
of large-dimensional spaces.

Useful Constants

A number of symbols make multiple appearances in the sequel. For convenience
of reference we give a list of the main ones here, together with pointers to where
they are defined:

α0 Lemma 3.2
β Algorithm 4.1

∆f,∆q Definition 2.4
eλ Lemma 5.2

η1, η2 Definition 2.4
κ0 Algorithm 4.1
κc Lemma 3.5

κmax Definition 2.3
K after Definition 2.4
λ,Λ Definition 3.4
L Lemma 5.2
M Lemma 3.1
q Lemma 2.2

2 Preliminaries

Let f be a function from Rn to R, and let x0 be a point in Rn. We assume
that f is bounded below, so that the set {f(y) : y ∈ Rn} has a lower bound.
From the given starting point x0, we seek to construct a sequence of points
xk = xk−1 + pk which converges to a local minimum of f .

The basin of descent from x0 is the set B = {y : f(y) ≤ f(x0)}. The convex
hull of B, denoted cxB, is the set of all convex combinations of points in B.

We assume that f is twice-differentiable on cxB, with gradient g and Hessian
H, and that there exists a global bound M for the largest (in absolute value)
eigenvalue of H on cxB. The assumption of a global bound M is satisfied in
particular if cxB is bounded and H is Lipschitz-continuous on it.

At the k-th stage of our algorithm, by an abuse of notation, we write
x, f, g,H for xk−1, f(xk−1), g(xk−1) and H(xk−1). For any vector s we write
∥s∥ to denote the 2-norm defined by ∥s∥2 = s · s = s2

Definition 2.1 For a scalar µ such that H+µI is positive definite, define p as
a function of µ by

(H + µI)p = −g

4

Our approach will be to search along the curve p(µ) for a suitable value of
p to use as pk. One motivation for doing this is that it is dual to a trust-region
approach, in the sense made precise by the following Lemma.

Lemma 2.2 Let q be the quadratic function defined by

q(s) = g · s+ 1

2
sTHs

so that f + q(s) is the quadratic model for f(x+ s) at x. Note that q(0) = 0.
If µ = 0 then p is the global minimizer for q. If µ > 0 then q(p) is the

minimum value of q(s) in the region {s : ∥s∥ ≤ ∥p∥}.

Proof: q(p) is the minimum value of q(s) with ∥s∥ = ∥p∥. This follows from
the standard Lagrangean formulation L(s, µ) = q(s)+µ(s2 − r2)/2 by choosing
r = ∥p∥. Inclusion of the interior follows from the fact that as µ increases, ∥p∥
decreases and q(p) increases:

d

dµ
(
1

2
p2) = p · p′ = −p(H + µI)−1p < 0

since Hp′ + µp′ + p = 0, p′ = −(H + µI)−1p ; and so

d q(p)

dµ
= g · p′ + pTHp′ = −µp · p′ > 0

qed.
In the trust-region approach both µ and p are dependent variables and the

independent variable is r, the radius of the trust region. In our curvilinear
approach, we follow [13] and take µ as the independent variable. We shall show
how to choose µ at each stage so that the algorithm xk = xk−1+p(µ) is globally
convergent.

The basic idea is that if H is very different to the value of the Hessian at
the optimum, which is the case in particular if H has directions of negative
curvature, then we want p to go far enough that q is no longer a particularly
good approximation to f , but not so far that a decrease in q ceases to predict
descent for f .

Definition 2.3 We say that H+µI is well-conditioned if the condition number
of H + µI is less than some global parameter κmax.

Definition 2.4 Let η1, η2 be global parameters with 1 > η1 > η2 > 0. Define

∆q = q(0)− q(p), ∆f = f(x)− f(x+ p).

We say that µ is big enough if H + µI is positive definite and well-conditioned,
and

∆f ≥ η2∆q.

Similarly, we say that µ is small enough if H + µI is positive definite and well-
conditioned, and

∆f ≤ η1∆q

5

Typically we pick values such as η1 = 0.9, η2 = 0.1
We shall show that, under suitable conditions on µ, we have ∆f ≥ K∥g∥2

for some global constant K. From this and the assumption that f is bounded
below it follows that, for any ε, repeatedly replacing x by x+ p eventually gives
∥g∥ < ε.

We prove this condition on ∆f in two pieces: we show how to choose µ to
(i) bound ∆q below by a fixed multiple of g2, and to (ii) ensure in addition that
∆f is bounded below by a fixed multiple of ∆q.

Achieving the second condition (ii) is a straightforward matter of increasing
µ. Increasing µ decreases ∥p∥ arbitrarily, and for short enough p the quadratic
model is (by definition) accurate to o(p2). If H + µI is not well-conditioned, or
if H +µI is not positive definite, the value of µ can also be increased until it is.

However ensuring the first condition (i) under the constraint of the second is
more delicate, and in the next section we shall explore some suitable approaches
for achieving this.

3 Bounding ∆q below by Kg2

Now we look at some conditions under which ∆q is bounded below by a global
multiple of g2.

Lemma 3.1 Suppose H is positive definite and well-conditioned, and µ = 0.
Then

∆q ≥ g2

2M

where M is a global bound for the largest (in absolute value) eigenvalue of H(y)
on cxB, the convex hull of the basin of descent from x0.

Proof: p is the global minimizer of q, so q(p) ≤ q(−αg) for any α. But q(−αg)
is a parabola in α, with

q(−αg) = −αg2 +
1

2
α2gTHg =

1

2
gTHg

[(
α− g2

gTHg

)2

−
(

g2

gTHg

)2
]

=
1

2
gTHg

[
(α− α0)

2 − α2
0

]
where α0 = g2/gTHg. In particular putting α = α0 gives the perfect steepest
descent step −α0g, and we have

∆q ≥ −q(−α0g) =
1

2
α2
0g

THg =
g4

2gTHg
≥ g2

2M

since 0 < gTHg ≤ M∥g∥2.
qed.

6

Lemma 3.2 Suppose H has negative eigenvalues or is ill-conditioned, but that
H + µI is positive definite and well-conditioned.

Suppose that gTHg ̸= 0, and define α0 = g2/gTHg. Suppose that p is at
least as long as the perfect steepest descent step, i.e. that ∥p∥ ≥ |α0|∥g∥.

Then ∆q is bounded below just as in Lemma 3.1.

Proof: By assumption, −|α0|g lies in the region for which p minimizes q, so
∆q ≥ −q(−|α0|g). If gTHg > 0 then we can proceed exactly as in Lemma 1. If
gTHg < 0 then we have

q(−|α0|g) =
1

2
gTHg

[
(|α0| − α0)

2 − α2
0

]
=

3

2
(gTHg)α2

0 =
−3g4

2|gTHg|.

But |gTHg| ≤ Mg2 and so

∆q ≥ −q(−|α0|g) =
3g2

2
· g2

|gTHg|
>

g2

2M

as required.
qed.

Lemma 3.3 Suppose (as in Lemma 3.2) that H has negative eigenvalues or is
ill-conditioned, but H + µI is positive definite and well-conditioned.

Suppose that either gTHg = 0, or else that gTHg ̸= 0 and ∥p∥ < |α0|∥g∥
where (as usual) α0 = g2/gTHg.

Then

∆q ≥ 1

2
∥g∥∥p∥

Proof: Let ζ = ∥p∥/∥g∥. If gTHg = 0 then since p minimizes q(s) for ∥s∥ = ∥p∥
we have ∆q ≥ −q(−ζg) = ζg2 = ∥p∥∥g∥.

If gTHg < 0 then ∆q ≥ −q(−ζg) = ζg2 − ζ2gTHg/2 ≥ ζg2 = ∥p∥∥g∥.
If gTHg > 0 then q(−αg) is convex in α, and 0 < ζ < α0, so q(−ζg) lies

below the straight line interpolating between q(0) and q(−α0g). This means
that

q(−ζg) ≤ ζ

α0
q(−α0g)

To see this formally, observe that ζ < α0 by assumption on p, and gTHg > 0,
so

α0q(−ζg) = α0(−ζg2 +
1

2
ζ2gTHg) = −α0ζg

2 +
1

2
α0ζ

2gTHg

< −α0ζg
2 +

1

2
α2
0ζg

THg = ζ(−α0g
2 +

1

2
α2
0g

THg) = ζq(−α0g).

Now α0 = g2/gTHg and q(−α0g) = −g4/(2gTHg) = −α0g
2/2 (from the proof

of Lemma 3.1), so

ζ

α0
q(−α0g) = −1

2
ζg2 = −1

2
∥p∥∥g∥,

so ∆q = −q(p) ≥ −q(−ζg) ≥ 1
2∥p∥∥g∥.

qed.

7

Definition 3.4 Let Λ be the most positive (or least negative) eigenvalue of H,
and let λ be the most negative (or least positive). Then for µ > −λ we have

Λ + µ

λ+ µ
= κ

where κ is the condition number for H + µI.

Lemma 3.5 Suppose (as previously) that H has negative eigenvalues or is ill-
conditioned, but H + µI is positive definite and well-conditioned.

Suppose (as in Lemma 3.3) that gTHg = 0 or that ∥p∥ < |α0|∥g∥.
Suppose that κ ≥ κc, where κc is a global parameter with 1 < κc < κmax.
In this case we have

∆q ≥ κc − 1

κc
· g2

4M

Proof: Definition 3.4 gives

κ− 1 =
Λ− λ

λ+ µ
; µ = −λ+

Λ− λ

κ− 1
; Λ + µ =

κ

κ− 1
(Λ− λ)

and p = −(H + µI)−1g, so

∥p∥ ≥ ∥g∥
Λ + µ

=
κ− 1

κ
· ∥g∥
Λ− λ

now Λ− λ ≤ 2M , thus by Lemma 3.3

∆q ≥ 1

2
∥p∥∥g∥ ≥ κ− 1

4κM
g2.

We have κ ≥ κc, so 1− 1/κ ≥ 1− 1/κc

q.e.d.

For example, if we take κc = 2 then (κc − 1)/κc = 1/2 and ∆q ≥ g2/8M .
For our final result in this section, we show that the quadratic model for f

only starts to break down when ∆q is sufficiently large in terms of g2.

Lemma 3.6 Suppose (once again) that H has negative eigenvalues or is ill-
conditioned, but H + µI is positive definite and well-conditioned.

Suppose (as in Lemmas 3.3 and 3.5) that gTHg = 0 or that ∥p∥ < |α0|∥g∥.
Suppose that µ is small enough, so that ∆f ≤ η1∆q, where 0 < η1 < 1 is a

global constant.
Then we have

∆q ≥ 1− η1
4M

∥g∥2.

Proof: ∆f ≤ η1∆q implies

(1− η1)∆q ≤ ∆q −∆f,

8

and by the second mean value theorem, for some 0 < θ < 1,

−∆f = f(x+ p)− f(x) = p · g + 1

2
pTHθp

where Hθ = H(x+ θp). This gives

(1−η1)∆q ≤ ∆q−∆f = p·g+1

2
pTHθp−p·g− 1

2
pTHp =

1

2
pT (Hθ−H)p ≤ Mp2

whence
1

1− η1
Mp2 ≥ ∆q ≥ 1

2
∥p∥∥g∥

by Lemma 3.3. It follows that ∥p∥ ≥ ∥g∥(1− η1)/2M and so

∆q ≥ 1

2
∥p∥∥g∥ ≥ 1− η1

4M
∥g∥2

qed.

4 Choosing µ

Now we describe our strategy for choosing µ along the lines laid out in [2], and
show that this strategy ensures global convergence.

We begin by setting out the algorithm, and then walk through its properties.
In the algorithm, κ0 is an initial trial value for the condition number of H+µI,
with κc ≤ κ0 < κmax ; β is a (fixed) interpolation constant with 0 < β < 1 ;
and whenever we set a new value for µ, we calculate the corresponding values
for p,∆q, and ∆f .

Algorithm 4.1 Choosing µ.

if H is positive definite

if Λ/λ > κmax

set µb := −λ+ (Λ− λ)/(κmax − 1)
else

set µb := 0
endif

set oktoreducemu := false

else

if Λ > λ
set µb := −λ+ (Λ− λ)/(κ0 − 1)

else

set µb := −λ+ 1
endif

set oktoreducemu := true

endif

9

if µb is big enough and oktoreducemu

set κb := (Λ + µb)/(λ+ µb)
while κb ≤ κmax and µb is not small enough

set µa := µb

set µb := β(µa + λ)− λ
set κb := (Λ + µb)/(λ+ µb)

endwhile

if κb > κmax or µb is not big enough

accept µa

else

accept µb

endif

else

while µb is not big enough

set µa := µb

set µb := (µa + λ)/β − λ
endwhile

accept µb

endif

If H is positive definite and well conditioned, and µ = 0 is big enough,
then we take p to be the Newton step. In this case ∆f meets the termination
condition ∆f ≥ Kg2 for a global constant K, by Lemma 3.1 and the definition
of big enough. Otherwise, we have the more problematic case that H is not
positive definite, or is not well-conditioned, or the Newton step is too long to
give quadratic descent. In all these cases, the remedy is to choose a suitable
positive value of µ. Apart from one edge case, our algorithm for adjusting µ
can be interpreted as systematically inflating or deflating the condition number
κ of H + µI.

This (slightly annoying) edge case occurs when λ = Λ, all the eigenvalues
of H are equal, κ = 1 for all candidate values of µ, H is a multiple of the
identity matrix, and p, which minimizes q(s), is a vector in the direction −g.
Our algorithm still works perfectly well in this case, but the “curvilinear search”
degenerates to gradient descent.

If H is positive definite but not well-conditioned, we choose µ so as to reduce
the condition number of H + µI to κmax. Here we use the fact, given at the
start of the proof of Lemma 3.5, that

µ+ λ =
Λ− λ

κ− 1
.

If H is not positive definite, we use the same trick to choose µ so that H+µI
has condition number κ0, where κ0 is a trial value with κc ≤ κ0 < κmax. (In
the edge case, we rather arbitrarily set H + µI to be the identity.) Ideally, in
the non-convex case, we seek a value of µ for which

η1∆q ≥ ∆f ≥ η2∆q.

10

The first condition with η1 says that µ is small enough (and p is long enough)
that the quadratic model is starting to break down, and the second condition
with η2 says that µ is big enough (and p is short enough) to ensure that there
is sufficient descent for f relative to that of the quadratic model q.

If both conditions are met then the step ∆f meets the termination condi-
tion ∆f ≥ Kg2 either by Lemma 3.2 or by Lemma 3.6. It’s not an issue for
termination if µ is not small enough, as any step with κ ≥ κc for which µ is
big enough will suffice, by Lemmas 3.2 and 3.5, and in the edge case we have
∆q ≥ g2 anyway.

However, when H is not positive definite, and µ is big enough but not small
enough, it is worth extrapolating, i.e. seeing if we can get a longer step with
better descent by choosing a smaller value of µ, which corresponds to increasing
κ. We extrapolate by multiplying µ + λ by β for some global constant β with
0 < β < 1. From Definition 3.4 and the proof of Lemma 3.5, this corresponds
to dividing κ− 1 by β, because

κb − 1 =
Λ− λ

µb + λ
=

Λ− λ

β(µa + λ)
=

κa − 1

β
.

Eventually one of two things will happen: either we reach a value of µ that
is small enough, or we reach the conditioning limit κmax. In the second case
we stop and accept the previous step; in the first case we accept the most
recent value of µ that was big enough, which will always be one of the final two
values. This is because any value of µ for which H + µI is positive definite and
well-conditioned is either big enough, or small enough, or both.

The other case in which we need to adjust µ is where the initial value for µ
is not big enough. In this case we interpolate in order to increase µ and obtain
a shorter step. We don’t extrapolate when H is positive definite, as that would
result in negative values for µ, but we interpolate whenever µ is not big enough,
regardless of whether or not H is positive definite. We interpolate by dividing
µ + λ by β, which corresponds to multiplying κ − 1 by β, and we repeat this
until µb is big enough.

However, once κ < κc and p is shorter than the perfect steepest descent step,
we are relying on Lemma 3.6 for the termination condition, which means that
we need a value of µ that is small enough as well as one that is big enough.
What should we do if µa is not big enough, but µb is not small enough? This
happens when

∆fa < η2∆qa but ∆fb > η1∆qb.

By continuity there must be a value µ between µa and µb with

η1∆q ≥ ∆f ≥ η2∆q

but we do not need to find it: instead we can just take x+ pb as the new point.
We prove this next.

Lemma 4.2 If µa is not big enough and µb is not small enough, then we can
accept the step pb.

11

Proof: H + µbI is certainly well-conditioned and positive definite. If gTHg ̸= 0
and ∥pb∥ > |α0|∥g∥, the length of the perfect steepest descent step, then we
could just accept pb anyway, by Lemma 3.2. Similarly, if the condition number
κb of H + µbI were greater than κc then we could accept pb by Lemma 3.5. So
we can assume µb + Λ < κc(µb + λ).

Now we have:

q(p) = g · p+ 1

2
pTHp =

1

2
g · p− 1

2
µp2

since g + (H + µI)p = 0 so g · p+ pTHp+ µp2 = 0. Thus

∆qa =
1

2
gT (H + µaI)

−1g +
1

2
µag

T (H + µaI)
−2g

≤ 1

2

g2

µa + λ
+

µa

2

g2

(µa + λ)2
=

g2

2
· 2µa + λ

(µa + λ)2

similarly

∆qb =
1

2
gT (H + µbI)

−1g +
1

2
µbg

T (H + µbI)
−2g ≥ g2

2
· 2µb + Λ

(µb + Λ)2

so
∆qb
∆qa

≥ 2µb + Λ

2µa + λ
·
[
µa + λ

µb + Λ

]2
≥ β2

κ2
c

because µb > µa; Λ ≥ λ;µa + λ = β(µb + λ); and µb + Λ ≤ κc(µb + λ). Since
∆fb > η1∆qb by assumption, we have

∆fb >
η1β

2

κ2
c

∆qa

Now if gTHg ̸= 0 and pa is longer than the perfect steepest descent step, then
we have ∆qa > g2/2M just as in Lemma 3.2. Otherwise by Lemma 3.3 we
have ∆qa > 1

2∥pa∥∥g∥, and since ∆fa < η2∆qa by assumption, the argument of
Lemma 3.6 with η2 in place of η1 gives

1

1− η2
Mp2a ≥ ∆qa ≥ 1

2
∥pa∥∥g∥.

It follows that ∥pa∥ ≥ ∥g∥(1− η2)/2M and so

∆qa ≥ 1

2
∥pa∥∥g∥ ≥ 1− η2

4M
∥g∥2

In either case the previous inequality for ∆fb in terms of ∆qa now gives

∆fb >
η1β

2

κ2
c

· 1− η2
4M

∥g∥2

so ∆fb is bounded below by Kg2 for a suitable global constant K.

12

qed.

Algorithm 4.1 requires values to be provided for Λ and λ. Fortunately it turns
out, as far as our proof of convergence is concerned, that even very rough ap-
proximations to the extreme eigenvalues suffice, and we end this section with a
discussion showing why this is so. We start with a Lemma.

Lemma 4.3 Let Λ̃, λ̃ be estimates of Λ, λ satisfying

0 < Λ− λ ≤ Λ̃− λ̃ ≤ 1.33(Λ− λ) ; 0 ≤ λ− λ̃ ≤ 0.33(Λ− λ).

Assume that κ0 ≥ 3 and define µ by

µ = −λ̃+
Λ̃− λ̃

κ0 − 1
.

Then H + µI is positive definite and well-conditioned, with condition number κ
satisfying 2 ≤ κ ≤ κ0.

Proof: λ ≥ λ̃ so (unless we are in the edge case Λ = λ), µ + λ ≥ µ + λ̃ =
(Λ̃− λ̃)/(κ0 − 1) > 0, so H + µI is certainly positive definite, and

κ− 1 =
Λ− λ

µ+ λ
≤ Λ̃− λ̃

µ+ λ̃
= κ0 − 1

using Definition 3.4 for the first equality. It remains to show that µ+λ ≤ Λ−λ.
But

µ+ λ = µ+ λ̃+ (λ− λ̃) =
Λ̃− λ̃

κ0 − 1
+ (λ− λ̃) ≤ (Λ− λ)

(
1.33

κ0 − 1
+ 0.33

)
and κ0 ≥ 3.
qed.

Algorithm 4.1 does not require extrapolation: for correctness it is enough
that our initial trial value for µ give a condition number κ for H + µI that lies
between κc and κmax, and (as remarked after Lemma 3.5) we may take κc = 2.
It follows that eigenvalue estimates that satisfy the conditions of Lemma 4.3
suffice to ensure convergence for Algorithm 4.1.

In the approach described in [2], the power method is first applied to H to
estimate whichever of Λ and λ has the larger absolute value, and then to H−ΛI
(or H−λI) to estimate Λ−λ and thence the smaller eigenvalue. Let us suppose
that we converge our power estimates until they are at least 91% of the quantity
being estimated, and then round them up, i.e. away from zero, by ten percent.

If H is indefinite, then Λ−λ > max |Λ|, |λ|. In this case our estimates satisfy
the conditions of Lemma 4.3, with Λ̃− λ̃ ≤ 1.21 (Λ− λ) ;λ− λ̃ ≤ 0.11 (Λ− λ).
(The extra 1% is due to a compound error in the estimated value of an endpoint.)

If H is negative definite and has a condition number greater than 2.0, then
2Λ > λ so 2(Λ−λ) > −λ. In this case the same argument avails, with coefficients
of 1.32 and 0.20 respectively.

13

We can reduce the remaining case, where |Λ| > Λ − λ, to the indefinite
case by adding a suitable multiple of the identity to H, and starting the power
method again. But here H is very well conditioned (condition number less than
2), so as observed earlier we lose little by taking p = −g as our initial guess,
and this alternative approach also allows our convergence proof to go through.

The power method is quite efficient at obtaining estimates of a dominant
eigenvalue to within ten percent: eigencomponents for eigenvalues less than
91% of the dominant value die rapidly away, and eigenvalues within 10% of the
dominant value are simply rounded up into the estimate.

Of course, we may desire to exploit more accurate eigenvalue estimates for
performance reasons, and apply techniques such as Aitken acceleration [1, 10];
but for the purpose of establishing convergence, which is our concern in this
paper, the crude estimates discussed here suffice.

5 Avoiding Saddle Points

Algorithm 4.1 tends to keep away from saddle points, because it includes down-
hill components along directions of negative curvature. But we are deliberately
trying to choose a step p that is long enough for the Hessian to change dramat-
ically, and so we may find ourselves moving onto a saddle point by sheer bad
luck.

In this case g = 0, and the constrained minimum of q(s) = sTHs/2 subject
to ∥s∥ = r is p = reλ, where eλ is a unit eigenvector for the eigenvalue λ. In
terms of a solution to (H + µI)p = −g this corresponds to the positive semi-
definite case (H − λI)p = 0 with µ = −λ and g = 0.

In this case we can perform a more conventional line search along the line
reλ in order to obtain sufficient descent to ensure eventual convergence to a
local minimum. We next give the algorithm for this line search, and then prove
that it has the required properties.

In the algorithm below, whenever we set a new value for r, we put p = reλ
and calculate the corresponding values for ∆q and ∆f .

Algorithm 5.1 Choosing r.

set ra := 1, rb := 1
while η1∆qb < ∆fb

set ra := rb
set rb := ra/β

endwhile

while ∆fa < η2∆qa
set rb := ra
set ra := βrb

endwhile

accept pa

14

The analysis of this algorithm is similar to that of Algorithm 3 in [8]. The first
while loop must terminate because f is bounded below and λ is negative. The
second must terminate because f is twice-differentiable. If the first precondition
is true then the second is false, so we have the post-condition that rb satisfies
the condition with η1 and ra that with η2, and either rb = ra or βrb = ra. Just
as in Algorithm 4.1, we do not insist on finding a single step that satisfies both
conditions, and at most one of the while loops will be performed.

Lemma 5.2 Assume that λ < 0 and that eλ is a unit eigenvector of H corre-
sponding to λ, with g · eλ ≤ 0. (If g · eλ > 0 then swap eλ for −eλ.)

Assume that H is Lipschitz-continuous on the convex hull of the basin of
descent, with Lipschitz constant L.

Then at the end of Algorithm 5.1 we have ∆fa ≥ K2(−λ)3 for some global
constant K2.

Proof: Define d(r) = f(x+ reλ)− f(x). Then d′(r) = eλ · g(x+ reλ), and

d′′(r) = eTλH(x+ reλ)eλ = eTλHeλ + eTλ (H(x+ reλ)−H)eλ ≤ λ+ Lr

Hence, writing d1 for g · eλ, we have

d′(r) ≤ d1 + λr + Lr2/2, so d(r) ≤ d1r + λr2/2 + Lr3/6.

But η1∆qb ≥ ∆fb, and ∆qb = −d1rb − λr2b/2;∆fb = −d(rb) ≥ ∆qb − Lr3b/6, so

(1− η1)∆qb ≤ ∆qb −∆fb ≤
1

6
Lr3b

and d1 ≤ 0 so
(−λ)r2b/2 ≤ −d1rb + (−λ)r2b/2 = ∆qb

whence
1

6
Lr3b ≥ 1

2
(1− η1)(−λ)r2b

and rb > 0 so rb ≥ 3(1− η1)(−λ)/L, whence

ra ≥ 3β
(1− η1)(−λ)

L

Since ∆fa ≥ η2∆qa and ∆qa ≥ (−λ)r2a/2, we have ∆fa ≥ η2(−λ)r2a/2, whence

∆fa ≥ 9β2η2(1− η1)
2

2L2
(−λ)3.

qed.
Putting all these pieces together gives the following:

Theorem 5.3 Let f be twice-differentiable with uniformly bounded Hessian on
the convex hull of the basin of descent from x0, and choose the sequence xk

15

using Algorithm 4.1. Then for any ε > 0, we have that ∥gk∥ ≥ ε for only a
finite number of values of k.

If the Hessian is Lipschitz continuous on the convex hull of the basin of
descent, and we use Algorithm 5.1 to choose the next point whenever ∥gk∥ < ε,
then λk ≤ −ε for only a finite number of values of k. Therefore eventually we
will come to an k with ∥gk∥ < ε and Hk + εI positive definite.

Theorem 5.4 Let f be twice-differentiable with Lipschitz continuous Hessian
on the convex hull of the basin of descent from x0, pick ε > 0, and define the
sequence xk as follows:
if ∥gk−1∥ ≥ ε use Algorithm 4.1 to choose xk;
if ∥gk−1∥ < ε and λk−1 ≤ −ε use Algorithm 5.1 to choose xk;
if ∥gk−1∥ < ε and λk−1 > −ε replace ε by ε/2 and test again.

If the basin of descent is bounded then, by compactness and the previous
Theorem, a subsequence of xk converges to a second order stationary point x∗
for f , ie a point where ∥g∗∥ = 0 and H∗ is at least positive semidefinite. (Alter-
natively, the sequence xk may terminate at such a point after a finite number
of steps.) If H∗ is positive definite, then the entire sequence xk converges to x∗,
and x∗ is a local minimum.

This is about the best that we can hope for from a purely local second-order
method: for example, if f(x) = x4 + x3 and x0 = 1.5, then the Newton method
converges to the point of inflection at x = 0, rather than to the second order
minimum at x = −0.75.

6 Further Developments

The positive semidefinite case (H − λI)p = −g is also of potential interest,
primarily from a performance point of view, when we find ourselves on a ridge
leading down to a saddle point. This can occur when g is significantly non-zero,
but g · eλ ≈ 0.

For example, if q(u, v) = u2−2u−v2, g = (−2, 0), H = ((2, 0), (0,−2)), then
q has a saddle point at (1, 0) but for any µ > 2 we have ∥p∥ < 1/4. However,
adding a multiple of eλ to such a value of p allows us to fall off the ridge, and
potentially move further at the next step.

It is therefore worth pointing out that our termination proof does not require
us to accept the step p. Provided µ is chosen so that ∆q is bounded below
by a global multiple of g2, it suffices for termination to accept any new value
xk = x+ s for x for which f(x)− f(x+ s) > η2∆q.

In the case where g is significantly non-zero, but eλ is nearly orthogonal to
the solution p given by Algorithm 4.1, we can improve performance without
affecting termination by adding to p a component in the direction of eλ, so as
to further reduce f .

We have shown that under mild conditions, an algorithm using the iteration
x := x + p with p satisfying (H + µI)p = −g will converge for suitable values
of µ. It is worth adding the comment that in the case where the algorithm

16

converges to a local minimum x∗ of f(x) at which H(x∗) is positive definite,
there will be a convex region around x∗ in which the choice µ = 0 will be made,
and then the algorithm becomes the classic Newton step, given by Hp = −g. It
is well-known that Newton’s method has an ultimately quadratic convergence
rate which is therefore inherited by our approach. One could propose a hybrid
algorithm which only uses µ > 0 when H is non-positive-definite, and reverts to
the Newton step with a classical line-search otherwise. In this hybrid algorithm
the (more expensive) curvilinear search is only employed in regions where f(x)
is non-convex. Numerical experiments in [2] show that this hybrid approach can
be computationally more efficient. Proof of convergence of the hybrid approach
is a straightforward combination of the results in the previous sections with the
well-known properties of conventional Newton.

In this paper we are completely agnostic about how the linear equations
(H+µI)p = −g are solved. For small to medium-dimension problems, a popular
strategy is to use the Cholesky factorization to solve the equations for p, and
at the same time to verify that H + µI really is positive definite. When n
is very large, we advocate an approach using Truncated Newton (see below).
Whatever method is used to solve the linear equations, Algorithm 4.1 generates
an appropriate sequence of trial points, and specifies the relevant acceptance
criterion.

An objection can be made that methods using explicit second derivatives are
inappropriate in practice for problems with very large numbers of independent
variables. We claim that the approach analysed here is nevertheless of general
value, since a closer understanding of how best to transit through regions of non-
convexity when the Hessian is available may also offer ideas on how to proceed
in such regions when using other methods.

However it is also worth making the point that our approach does not require
an explicit decomposition, or even representation, of the full Hessian H: we
require values only for the extreme eigenvalues Λ and λ and, as we have seen,
even very rough estimates of them suffice.

The techniques of Automatic Differentiation [4] allow complete directional
second derivatives of the form Hs to be evaluated, for arbitrary s, at the com-
putational cost of a few evaluations of f . This allows λ and Λ to be obtained
cheaply, to adequate accuracy, by using the power method, and thus for µ to be
chosen so as to ensure that H+µI is well-conditioned. This conditioning in turn
allows rapid approximation to the solution p of the equation (H + µI)p = −g
using the Truncated Newton method, which requires only vector-Hessian prod-
ucts of the form Hs. Algorithm 4.1 can thus be applied at a low computational
cost even when x has very large dimension.

Conflict of Interest

The authors declare that they have no conflict of interest.

17

Data Sharing

Data sharing is not applicable to this article, as no datasets were generated or
analysed during the current study.

References

[1] A. C. Aitken, Studies in Practical Mathematics II: The Evaluation of Latent
Roots and Latent Vectors of a Matrix. Proceedings of the Royal Society of
Edinburgh, 57, 269–304, 1937.

[2] Michael Bartholomew-Biggs, Salah Beddiaf and Bruce Christianson. Fur-
ther developments of methods for traversing regions of non-convexity in
optimization problems. Optimization Online 8306, 2021.

[3] Michael Bartholomew-Biggs, Salah Beddiaf, and Bruce Christianson. Com-
parison of methods for traversing regions of non-convexity in optimization
problems. Numerical Algorithms 85(2), 1–23, 2019.

[4] M. Bartholomew-Biggs, S. Brown, B. Christianson, and L. Dixon. Auto-
matic Differentiation of algorithms. Journal of Computational and Applied
Mathematics, 124 (1-2), 171–190, 2000.

[5] Salah Beddiaf. Continuous Steepest Descent Path for Traversing Non-
Convex Regions. PhD thesis, University of Hertfordshire UK, 2016.

[6] W. Behrman, An Efficient Gradient Flow Method for Unconstrained Opti-
mization, PhD Thesis, Stanford University, 1998.

[7] A.A. Brown, Optimization Methods involving the Solution of Ordinary
Differential equations, PhD Thesis, Hatfield Polytechnic, 1986.

[8] Bruce Christianson. Global Convergence using De-linked Goldstein or
Wolfe Linesearch Conditions. Advanced Modeling and Optimization, 11(1),
25–31, 2009.

[9] A.R. Conn, N.I.M. Gould, and P.T. Toint. Trust Region Methods. In: MPS-
SIAM Series on Optimization, Philadelphia(2000).

[10] I.J.D. Craig and A.D. Sneyd, The Acceleration of Matrix Power Methods
by Cyclic Variations of the Shift Parameter, Computers & Mathematics
with Applications, 17(7), 1149–1159, 1989.

[11] S.M. Goldfeld, R.E. Quandt, and H.F. Trotter, Maximization by Quadratc
Hill Climbing, Econometrica, 34, 541–551, 1966.

[12] M. D. Hebden, An algorithm for minimization using exact second deriva-
tives, Atomic Energy Research Establishment report TP515, Harwell, Eng-
land, 1973.

18

[13] D.J. Higham, Trust-region Algorithms and Time step selection, SIAM Jour-
nal on Numerical Analysis, 37(1), 194–210, 1999.

[14] Mohammadreza Samadi. Efficient Trust Region Methods for Nonconvex
Optimization. PhD thesis, Lehigh University, Bethlehem Pennsylvania,
2019.

19

