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ABSTRACT
The mortality problem for a given dynamical system S consists of

determining whether every trajectory of S eventually halts. In this

work, we show that this problem is decidable for the class of piece-

wise constant derivative systems on two-dimensional manifolds,

also called surfaces (PCD2m ). Two closely related open problems

are point-to-point and edge-to-edge reachability for PCD2m .

Building on our technique to establish decidability of mortality

for PCD2m , we show that the edge-to-edge reachability problem

for these systems is also decidable. In this way we solve the edge-to-

edge reachability case of an open problem due to Asarin, Mysore,

Pnueli and Schneider [4]. This implies that the interval-to-interval

version of the classical open problem of reachability for regular

piecewise affine maps (PAMs) is also decidable. In other words,

point-to-point reachability for regular PAMs can be effectively

approximated with arbitrarily precision.
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1 INTRODUCTION
A trajectory of a dynamical system is said to be mortal if it halts
in a finite number of steps. On the other hand, such a trajectory is

said to be immortal if it never stops. One of the most fundamental

computational problems in dynamical system theory is themortality
problem [8], which in general terms, can be stated as follows: Given

the specification of a dynamical system S , is it the case that all

trajectories in S are mortal?
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The mortality problem is relevant to the field of program termi-

nation, and it has been studied in different contexts and in different

variants [10, 11, 23]. It may also be regarded as a generalisation

of the halting problem to the realm of dynamical systems. The

noted result from Blondel et al. states that mortality is undecidable

for piecewise affine functions on a plane [11], and identifying sub-

classes of dynamical systems for which it becomes decidable has

attracted the attention of the community [9, 11].

Closely related to mortality is the reachability problem: does exist

a trajectory starting at a given initial state which evolves to reach

a given final state [1]. The reachability problem is undecidable in

general, and it is only decidable for a limited number of classes of

dynamical systems [12].

In their seminal paper, Asarin et al. aimed at understanding what

is the simplest class of hybrid systems for which reachability is un-

decidable. They considered hybrid systems with one, two and three

dimensions that span the boundary between decidability and unde-

cidability for the reachability problem [4]. In particular, they studied

piecewise constant derivative systems (PCDs) on two-dimensional

manifolds and showed that these systems are equivalent with re-

spect to reachability to regular one-dimensional piecewise affine
maps. That is, it is an important open problem to determine whether

reachability is decidable for both systems [4, 14, 15].

In this work we consider piecewise constant derivative systems

on two-dimensional manifolds, also called surfaces, and we use

the abbreviation PCD2m to denote such systems. The first result

of this work (Theorem 3.1) is decidability of the mortality problem

for PCD2m systems.

In the context of PCD2m , reachability comes into two flavours:

point-to-point reachability and edge-to-edge reachability. Building

on the new technique we developed to establish decidability of

mortality for PCD2m , we show that the edge-to-edge reachability

problem for these systems is also decidable (Theorem 4.2). In this

way we solve the edge-to-edge reachability case of an open problem

due to Asarin, Mysore, Pnueli and Schneider [4]. Previously, this

problem was only known to be decidable under certain restrictions

[21].

Decidability of reachability for one-dimensional PAMs is a long-

standing open problem, and that is why these systems are often

used as the reference model to demonstrate the openness of the

reachability query [4, 13, 15]. We extend our results further and

show that the interval-to-interval version of the reachability prob-

lem is decidable for regular PAMs (Theorem 5.4). This way the

point-to-point reachability problem for these systems can be effec-

tively approximated with arbitrarily precision.

The approaches for proving decidability of reachability often rely

on the topological properties of the systems under consideration.

https://doi.org/10.1145/3501710.3519529
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Thus, the proof of decidability of reachability for PCDs on a plane

proposed in [16] is based on the Jordan curve theorem for R2 which
states that every non-self-crossing closed curve divides the plane

into an ‘interior’ region bounded by the curve and an ‘exterior’

region containing all other points of R2, so that every continuous

path connecting a point of one region to a point of the other in-

tersects with that curve somewhere. As a result, each trajectory in

such a system eventually forms a simple cycle of border edges. As

Jordan’s theorem is not applicable to manifolds, we use topological

properties of trajectories on surfaces that allow decomposing them

into maximal connected components consisting of trajectories with

similar behaviour [3, 17].

Now the main contributions of the paper can be summarised as

follows:

(1) The results in [21] concern with regular PCD2m systems on

orientable manifolds. The restriction on regularity of the system

is strong as it assumes that trajectories never stop. In our work

we remove it and prove our results for general PCD2m systems on

orientable and non-orientable manifolds.

(2) Our first main result (Theorem 3.1) states that the mortality

problem for PCD2m systems is decidable. This theorem is proved

by reducing the mortality problem for a given PCD2m system H
to a case analysis of the behaviour of trajectories in a regular

PCD2m system H ′
. This reduction is new and rely on two main

technical contributions: First, the technique of immortalisation of a

trajectory introduced in Sections 3.3 and 3.4; second, a technique

to analyse how (possibly mortal) trajectories in the original PCD

system H are reflected into the types of immortal trajectories of

the PCD system H ′
(Section 3.5). Our result relies on Lemma 3.12,

which describes structural properties of Rauzy graphs associated

with regular PCD2m systems on arbitrary 2-dimensional manifolds

(a similar lemma in [21] was stated for the case of orientable mani-

folds).

(3) Building on our technique to establish decidability of mortal-

ity for PCD2m , we show that the edge-to-edge reachability problem

for these systems is also decidable.

(4) Finally, decidability of edge-to-edge reachability implies that

the interval-to-interval version of the classical open problem of

reachability for regular piecewise affine maps (PAMs) is also decid-

able. In other words, point-to-point reachability for regular PAMs

can be effectively approximated with arbitrarily precision.

The study of the computational complexity of our algorithms

for deciding reachability and mortality problems is left to future

research. We would like to note that so far, the complexity of these

problems has received less attention of the community than the

fundamental issue of their decidability. However, some work has

been done in this direction [8]. This also includes the results show-

ing that region-to-region reachability for bounded time leads to

NP-complete or co-NP-complete problems for decidable variants of

PAMs starting from dimension two [7].

While the aim of the paper is to contribute to better understand-

ing the boundary between decidable and undecidable systems, it is

worth mentioning that systems on manifolds have important prac-

tical applications. Areas where surfaces arise include among others

biological systems (modelling processes on cell membranes [20]),

robotics (the configuration space of a robotic arm) and learning

algorithms (finding a low-dimensional parameterization of high-

dimensional data [25]).

The rest of the paper is organised as follows. In Section 2 we

introduce preliminaries. In Section 3 and Section 4 we prove decid-

ability of mortality and edge-to-edge reachability for PCD2m sys-

tems. In Section 5 we show that the interval-to-interval reachability

is decidable for regular one-dimensional PAMs. Section 6 contains

concluding remarks.

2 PRELIMINARIES
In this section, we define the notion of two-dimensional piecewise

constant derivative systems following closely the notation used

in [16]. Later on, we will generalise this notion to the context of

closed surfaces and then prove our main results.

2.1 Definitions
We write R2 to denote the 2-dimensional Euclidean space. Points in
R2 are denoted by bold letters such as ®x or ®y. An open half-space in
R2 is the set of points ®x ∈ R2 satisfying some linear inequality of

the form ®a · ®x + ®b < 0, for some rational vectors ®a and
®b. A convex

open polygonal set p is the intersection of a finite number of open

half-spaces.

Given a set X ⊆ R2, we let cl(X) denote the topological closure of
X, and let int(X) denote the interior1 of X. That is to say, the set of

points ®x ∈ X such that for some ε > 0, the ε-neighbourhood Nε (®x)
of ®x is contained in X. The boundary of a convex open polygonal

set p is defined as bd(p) = cl(p)\p.
A finite polygonal partition of a setX ⊆ R2 is a set P = {p1, . . . ,pk }

of convex open polygonal sets, called regions, such that: (1) pi , �

for each 1 ≤ i ≤ k ; (2) pi ∩ pj = � for each 1 ≤ i, j ≤ k such that

i , j; (3)
⋃k
i=1 cl(pi ) = X.

An edge of P is a set of the form e = int(cl(pi ) ∩ cl(pj )) for some

pi ,pj ∈ P with i , j, and int(cl(pi ) ∩ cl(pj )) , �.

For a line segment e on the plane we denote by int(e) its relative
interior, that is e without its endpoints.

We let E(P) denote the set of edges of P. A vertex of P is a singleton
of the form v = cl(ei ) ∩ cl(ej ), where ei , ej ∈ E(P) with i , j, and
cl(ei ) ∩ cl(ej ) , �.

We let V(P) denote the set of vertices of P. We say that Bd(P) =
E(P) ∪ V(P) is the set of border elements of P. We note that the set

P ∪ Bd(P) forms a partition of X.
We say that P is a triangulation if |V(p) ∩ cl(p)| = 3 for every

p ∈ P.
We define the border elements of a region p ∈ P as

Bd(p) = {b ∈ Bd(P) | b ⊆ cl(p)}.

Finally, we let bd(P) =
⋃
p∈P bd(p) be the set of border points of

P, where bd(p) is the boundary of p defined above.

2.2 Piecewise Constant Derivative Systems on a
Plane

A 2-dimensional piecewise constant derivative system (2-PCD) is
defined as a finite set of regions, together with a map that associates

1
Note that for a line segment e on the plane we use int(e) to denote its relative interior,
that is e without its endpoints.
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a constant vector field to each region, and amap that specifies which

boundary elements belong to each region.

We note that each boundary element is assigned to a unique

region. Since the vector field associated to each region is constant,

this field can be specified by a single vector in R2. Intuitively, the
vector associated to each region specifies the direction a particle

would follow when entering the region from one of its borders.

Definition 2.1 (2-PCD). A two-dimensional piecewise constant

derivative system (2-PCD) is a tripleH = (P,φ,ψ )where P is a finite

polygonal partition of R2, φ : P → R2 is a function that assigns

a vector φ(p) in R2 to each region p ∈ P, and ψ : Bd(P) → P is a

function such that e ⊆ cl(ψ (e)) for every e ∈ Bd(P).

LetH = (P,φ,ψ ) be a 2-PCD, andp ∈ P be a region and e ∈ Bd(p)
be an edge of p. We say that e is an input edge for p if for any x ∈ e
there is some t > 0 such that x + t · φ(p) ∈ p. We say that e is an
output edge for p if for each x ∈ e , there exists some t < 0 such that

x + t · φ(p) ∈ p.
Let ®x = cl(e) ∩ cl(e ′) for some edges e, e ′ ∈ Bd(p). We say that ®x

is an input vertex for p if both e, e ′ are input edges for p; we say that
®x is an output vertex for p if both e, e ′ are output edges for p. Finally,
we say that ®x is neutral, if it is neither an input nor an output edge

for p.
We denote by In(p) ⊆ Bd(p) andOut(p) ⊆ Bd(p) the sets of input

and output border elements (edges and vertices) of p respectively.

Definition 2.2 (Step). Let H = (P,φ,ψ ) be a 2-PCD, and ®x and ®x ′

be two distinct points in R2. We say that the pair (®x , ®x ′) is a step if
there is a region p ∈ P and a t > 0 such that the following holds: (1)

®x ′ = ®x + t · φ(p); (2) ®x ∈ e, ®x ′ ∈ e ′ such that ψ (e) = ψ (e ′) = p; (3)
®x ′′ = ®x + t ′ · φ(p) ∈ int(p) for each 0 < t ′ < t .

Intuitively, (®x , ®x ′) is a step if ®x and ®x ′ are points in the border of

some region p and the line by ®x and ®x ′ is fully contained in p.

Definition 2.3 (Trajectory). Let ®x0 be a point in bd(P), and let

ℓ ∈ N. A trajectory of length ℓ rooted at ®x0 is a sequence τ ℓ
®x0
=

®x0 ®x1 . . . ®xℓ where for each i ∈ {1, . . . , ℓ}, (®xi , ®xi+1) is a step in H.

Example 2.4. Now we consider a simple 2-PCD H = (P,φ,ψ )
depicted in Figure 1.

a b c d

e f д h

ij k l m

o p r s

(a)

a b c d

e f д h

ij k l m

o p r s

(b)

Figure 1: (a) An example of a 2-PCD with eight regions. (b)
An example of a trajectory of size four. Each arrow corre-
sponds to a step.

The polygonal partition P consists of eight regions, and each

region is assigned some dynamics as it is shown in Figure 1(a). The

set V(P) consists of seventeen vertices labelled from a to s . The set
E(P) includes twenty four edges. And finally, the functionψ assigns

an element of the set Bd(P) = V(P) ∪ E(P) to a region. An example

of a trajectory of length 4 is show in Figure 1(b).

Note that for each point ®x0, and each ℓ ∈ N, such a trajectory is

unique. Furthermore, we say that a point ®xf ∈ bd(P) is reachable
from ®x0 if ®xf belongs to the trajectory τ ®x0 .

Next, we define the notion of signature of a trajectory. Similar

definitions have been considered in [6].

Definition 2.5 (Signature). Let H = (P,φ,ψ ) be a 2-PCD system,

®x0 be a point in bd(P), and τ ℓ
®x0
= ®x0 ®x1 . . . ®xℓ be the trajectory of

size ℓ rooted at ®x0. The signature of τ ℓ
®x0

is the sequence σ ℓ
®x0
=

b0,b1, . . . ,bℓ where for each i ∈ {0, 1, . . . , ℓ}, bi ∈ Bd(P) is the
unique border element (edge or vertex) containing ®xi .

In other words, the signature of a trajectory is the sequence of

border elements (vertices or edges) visited by that trajectory.

Given a finite set S , a simple path in S is a finite sequence r =
e1e2 . . . ek , for some k ≥ 1, where for each i ∈ {1, . . . ,k}, ei ∈ S
and ei , ej for i , j. We let last(r ) = ek be the last element of r . A
simple cycle in S is a sequence of the form

s = e0e1e2 . . . ek ,

for some k ≥ 1, such that e1e2 . . . ek is a simple path and ek = e0.
It has been shown in [6] that for each point ®x0, the signature of

the trajectory of size ℓ rooted at a point ®x0 can be decomposed, in

a unique way, as a sequence of the form

σ ℓ
®x0
= r1s

k1
1
r2 . . . rns

kn
n rn+1,

where for each i ∈ {1, . . . ,n + 1}, ri is a simple path, and for each

i ∈ {1, . . . ,n}, ki ∈ N, the concatenation last(ri )si is a simple cycle.

The signature type of σ ℓ
®x0
is defined as the sequence

typeℓ
®x0
= r1s1r2s2 . . . rnsnrn+1.

Even though a 2-PCD system H may admit infinitely many sig-

natures corresponding to infinitely many trajectories, one can show

that the number of signature types occurring in such a 2-PCD sys-

tem is always finite.

Theorem 2.6 ([6]). For each 2-PCD system H = (P,φ,ψ ), there is
only a finite number of signature types corresponding to trajectories
in H.

We note that Theorem 2.6 will be used crucially in the analysis

of the behaviour of trajectories in PCD systems on closed surfaces.

2.3 Mortality and Reachability Problems
Given a 2-PCD system H = (P,φ,ψ ), we say that H is immortal if
there is at least one point ®x0 ∈ bd(P) such that the trajectory τ ®x0
rooted at ®x0 is infinite

2
. Otherwise, if no such point ®x0 exists, we

say that H is mortal.
In this work, we are interested in the mortality and reachability

problems as defined below.

Definition 2.7 (Mortality and Reachability Problems).

2
By an infinite trajectory we mean a trajectory that has infinite size.
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• Mortality: Given a 2-PCD system H = (P,φ,ψ ), determine

whether H is mortal.

• Point-to-Point Reachability: Given a 2-PCD system H =
(P,φ,ψ ), and points ®x0, ®xf ∈ bd(P), determine whether ®xf is

reachable from ®x0.
• Edge-to-Edge Reachability: Given a 2-PCD system H =
(P,φ,ψ ), an initial edge e0 ∈ E(P) and a final edge ef ∈ E(p),
determine whether some point ®xf ∈ ef is reachable from

some point in ®x0 ∈ e0.

2.4 Piecewise Constant Derivative Systems on
Surfaces

A surface (or a two-dimensional manifold) S is a compact triangu-

lable space for which in addition the following holds:

(1) Each edge is identified with exactly one other edge;

(2) The triangles identified at each vertex can always be ar-

ranged in a cycle T1,T2, . . . ,Tk ,T1 so that adjacent triangles

are identified along an edge.

Typical examples of closed surfaces are the sphere, the torus, the

connected sum of tori, the Klein bottle and the projective plane.

Typical examples of surfaces with boundary are the cylinder and

the Möbius strip.

From the computational point of view, we assume that triangu-

lated surfaces are specified by a list of vertices, whose coordinates

are assumed to be rational numbers, a list of triples of vertices,

defining the triangles, and a list of pairs of identified edges.

(a) (b)

Figure 2: Representation of a triangulated torus: (a) inR3; (b)
as a surface

A PCD H = (P,φ,ψ ) on a closed triangulated surface S is defined

analogously to the definition of a PCD on a plane. Following the

terminology used in [4], we call such systems PCD2m systems.

In this work, we only consider systems with deterministic be-

haviour. This is achieved by restricting certain dynamics. We follow

the convention used in [4], and require that each vertex can only

be the input of at most one region, and that the flow vector in each

region cannot be parallel to one of its edges (Figure 3(a)).

Regular PCD2m systems introduced in [21] forbid two additional

types of dynamics when compared with general PCD2m systems

to ensure that trajectories do not stop (Figure 3(b)).

Furthermore, we would like to note that the types of forbidden

dynamics as it is depicted in Figure 3(a) mean that each region

(a) (b)

Figure 3: (a) Two types of dynamics forbidden in PCD2m :
branching at a vertex and flow vector parallel to an edge;
(b) Two types of dynamics forbidden in PCDr2m

(triangle) has either two input edges and one output edge (a two-to-

one region); or one input edge and two output edges (a one-to-two

region) (Figure 4).

(a) (b)

Figure 4: (a) Two input edges and one output edge; (b) and
one input edge and two output edges

Definition 2.8 (PCDr2m ). We say that a PCD2m system H =
(P,φ,ψ ) is regular if for any p,p′ ∈ P such that Bd(p) ∩ Bd(p′) , ∅

exactly one of the following holds for any b ∈ Bd(p) ∩ Bd(p′):

(1) b ∈ In(p) and b ∈ Out(p′);
(2) b ∈ Out(p) and b ∈ In(p′).

For brevity, we refer to regular PCD2m systems as PCDr2m sys-
tems.We note that all trajectories in PCDr2m systems are immortal.

Nevertheless by analysing the behaviour of these immortal trajec-

tories in PCDr2m systems we will be able to infer properties of

trajectories in general PCD2m systems.

3 DECIDING MORTALITY FOR PCD SYSTEMS
ON SURFACES

In this section, we will prove the first result of this work (Theorem

3.1), which states that the mortality problem for PCD2m systems is

decidable.

Our proof will follow from a reformulation of the problem of

determining the existence of immortal trajectories in such a system

H into a case analysis about the behaviour of trajectories in a suitable

PCDr2m system H′
. We note that all trajectories in H′

are guar-

anteed to be immortal. Nevertheless, the behaviour of each such

an immortal trajectory in H′
carries information about whether

it originates from some mortal or some immortal trajectory in the

original PCD2m system H.

Theorem 3.1. The mortality problem is decidable for PCD2m sys-
tems.

Wededicate the remainder of this section to the proof of Theorem

3.1 which consists of several steps, where each step is dealt with in

a separate subsection. A road-map for these steps is as follows.
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(1) In Section 3.1 we state a theorem that classifies regions in

the underlying manifold of a regular piecewise constant

derivative system into three types according to the behaviour

of trajectories in the respective region. The theorem is a

special case of the results due to Aranson [3] and Mayer

[17].

(2) In Section 3.2 we provide the definition of Rauzy graphs

and show how they can be used to analyse the behaviour of

regular PCD systems on closed surfaces.

(3) In Section 3.3 we introduce a new technique to transform a

given PCD2m system H into a PCDr2m H ′
. It is important

to note that while all trajectories in H ′
are immortal, the

behaviour of each such trajectory can be used to determine

whether it arises from a mortal or an immortal trajectory in

the original system H .

(4) In Section 3.5 we finally provide a proof of Theorem 3.1.

3.1 Trajectories on Closed Surfaces
A closed surface can be decomposed under certain conditions into

maximal connected components consisting of trajectories with

similar behaviour [3, 17]. Before stating a formal decomposition

theorem, we define three types of trajectory: closed, dense, and
orbital stable.

Definition 3.2 (Closed trajectory). A trajectory τ ®x0 = ®x0 ®x1 ®x2 . . .

is called closed if there is an i > 0 such that ®x0 = ®xi .

Let e be an edge of a piecewise constant derivative system. A

sub-edge of e is a connected subset of e that is not a singleton point.

Definition 3.3 (Dense trajectory). A trajectory τ ®x0 is called dense
on a set of sub-edges e1, . . . , ek if for each i ∈ {1, . . . ,k}, and each

e ′i ⊆ ei , there is some ®x ′
0
∈ e ′i such that ®x ′

0
is reachable from ®x0.

Below, we give a formal definition of the notion of an orbital

stable trajectory. Intuitively, a trajectory τ ®x0 is orbital stable if each
trajectory τ ®y0 initiating closely enough to τ ®x0 remains close to τ ®x0 .

Definition 3.4 (Orbital stable trajectory). A trajectory τ ®x0 is called
orbital stable if for any ε > 0 there exists δ > 0 such that for each

®y0 in the δ -neighbourhood of τ ®x0 , the trajectory τ ®y0 is contained in

the ε-neighbourhood of τ ®x0 .

A classical result from Mayer states that a closed orientable sur-

face of arbitrary genus can be decomposed into components, where

trajectories are either closed, or orbital stable, or dense (Theorem

IX of [17]). Furthermore, these regions are separated by closed tra-

jectories called separatrices. This result was extended by Aranson

to the context of non-orientable manifolds (Theorem 4 of [3]). For

completeness, we state both theorems below as Theorems 3.5 and

3.6. Subsequently, we state a combined version of these theorems

restricted to the context of PCDr2m (Theorem 3.7).

Mayer’s and Aranson’s theorems are stated in a more general

context, where a dynamical system on a manifoldM is defined by a

finite cover {r1, . . . , rm } ofM , where each ri is a region homeomor-

phic to the unit disc. Each such region ri has its own coordinate

system (ui ,vi ). Additionally, we let the dynamics in each ri be
defined by differential equations

dui
dt
= U (ui ,vi ) and

dvi
dt
= V (ui ,vi ) (1)

satisfying the following properties:

(a) The right-hand sides of the equations in (1) satisfy the con-

ditions of the Cauchy theorem
3
and become zero only at a

finite number of points.

(b) Given two overlapping regions ri and r j , the transformation

from the coordinate system for ri to the coordinate system

of r j is done by a continuous function f : R2 → R2 with
continuous derivatives and non-zero Jacobian.

At points common to two or more areas, the transition from

one system of equations to another system of equations is

accomplished by transforming one coordinate system into

another coordinate system.

(a) The right-hand sides of the system of equations (1) are func-

tions of class C1
(or more precisely, Cr−1 for r ≥ 2) or of

analytic class. That is the functions must be differentiable,

and hence continuous.

(b) At points common to two or more areas, the transition from

one system of equations to another system of equations is

accomplished by transforming one coordinate system into

another coordinate system.

Transition from one coordinate system to another at common

points is accomplished by a function of classC1
or of analytic

class with nonzero Jacobian.

Theorem 3.5 (for orientable manifolds) and Theorem 3.6 (for

non-orientable manifolds) below show that any two-dimensional

manifold can be decomposed into dynamical components contain-

ing trajectories which are equivalent topologically.

Theorem 3.5 (Mayer, [17]). Let Sд be a dynamical system on a
closed two-dimensional orientable manifold of genus д. Then Sд is a
disjoint union of a finite number of areasM1, . . . ,Mk (referred later
as dynamical components/cells) of the following types:

(1) Type A: Any trajectory inside the area is orbital stable and
non-closed. Furthermore, all the trajectories have the same set
of limit points; the area is flat and at most 2-connected;

(2) Type B: Any trajectory inside the area is closed; the area is
either flat and at most 2-connected or equals to the whole
manifold in case of д = 1 (only for a torus);

(3) Type C: Any trajectory inside the area is everywhere dense;
the area is not flat and the number of areas of this type does
not exceed д.

All other trajectories, called separatrices, form boundaries be-
tween the areas of the above types.

Theorem 3.6 (Aranson, [3]). Let Sд be a dynamical system on
a closed two-dimensional non-orientable manifold of genus д. Then
Sд is a disjoint union of a finite number of areasM1, . . . ,Mk , each of
them having one of the following types:

(1) Type A: Any trajectory inside the area is orbital stable and
non-closed. Furthermore, all the trajectories have the same set
of limit points; the area is flat and at most 2-connected;

(2) Type B: Any trajectory inside the area is closed; the area is
either flat and at most 2-connected or is homeomorphic to
Möbius strip or equals to the whole manifold (Kleine bottle) in
case of д = 2;

3
Existence and uniqueness theorem that gives conditions under which an initial value

problem has a unique solution.
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(3) Type C: Any trajectory inside the area is everywhere dense;
the area is not flat and not homeomorphic to Mobius strip. The

number of areas of this type does not exceed
[
д−1
2

]
.

All other trajectories form boundaries between the areas of the
above types.

Both, Mayer’s and Aranson’s theorems, hold for a much wider

class of dynamical systems than the ones we consider in this work.

Indeed, PCDr2m systems straightforwardly satisfy Conditions (a)

and (b) for both types of surfaces, orientable and non-orientable, as

justified below.

(a) Condition (a) is satisfied for both types of surfaces, orientable

and non-orientable, since by definition of PCDr2m the trajec-

tory inside each region is linear, and therefore the derivatives

dui/dt and dvi/dt in Equation (1) are constants, and there-

fore continuous in their domains (regions).

(b) Condition (b) is satisfied for both types of surfaces, orientable

and non-orientable, because the following holds.

• The manifold is covered by planar regions whose closures

may intersect either on an interval or on a point.

• For each of these planar regions, we may use a Cartesian

coordinate system by choosing two perpendicular lines

and by setting the coordinate of each point as the pair of

distances to these lines. In this way, if two regions intersect

in an interval or in a point, then the conversion from the

coordinate system of one of the regions to the coordinate

system of the other region can be done by a linear function,

and therefore continuous with non-zero Jacobian.

Note that due to possible sharp edges on its surface, aPCDr2m sys-

tem is not necessary a smooth manifold. Nevertheless, we can still

consider such systems as a special case of the systems defined by

Mayer and Aranson as the requirement here for each function is

to be continuous in its domain. Besides, edges can be smoothed

without affecting the behaviour of trajectories as in dimensions up

to three, topological and smooth manifolds coincide [2, 24].

Now given the above, Theorems 3.5 and Theorem 3.6 can be

restated in the context of PCDr2m in the following simplified way.

Theorem 3.7. A PCDr2m on a closed surface of genus д, is a
disjoint union of a finite number of areas (dynamical components/cells)
C1, . . . ,Ck , each of which has one of the following types:

(1) Type A: Any trajectory inside the area is orbital stable and
non-closed. Furthermore, the area is planar.

(2) Type B: Any trajectory inside the area is closed.
(3) Type C: Any trajectory inside the area is everywhere dense.
All other trajectories, are called separatrices. These are closed

trajectories that form boundaries between the areas of the above types.

It is interesting to note that intuitively, a Type A area is equiva-

lent to a 2-PCD system (on a plane), for which point-to-point and

edge-to-edge reachability are known to be decidable [16]. We note

that since the number of regions C1, ...,Ck in a PCDr2m system is

finite, the number of separatrices is also finite.

3.2 Rauzy Graphs and Regular PCD Systems
In this section, we recall the classic definition of a Rauzy graph of

power k of a factorial prolongable formal language [19].

An alphabet is any finite non-empty set A. We may refer to the

elements of such an alphabet as letters. We let A∗
denote the set

of all finite words constructed with letters from A. Given a word

w ∈ A∗
, we let Letters(w) be the set of letters occurring in w . A

language over A is a subset L ⊆ A∗. Below, we define the notions of
factorial and prolongable languages.

Definition 3.8 (Factorial language). A language L over an alpha-

bet A is factorial if u0u1 . . .un ∈ L implies u1u2 . . .un ∈ L and

u0u1 . . .un−1 ∈ L for arbitrary u0, . . . ,un ∈ A.

Definition 3.9 (Prolongable language). A language L over an al-

phabet A is prolongable if for any u ∈ L there exist a,b ∈ A such

that au ∈ L and ub ∈ L.

Given a factorial prolongable language L over A and a positive

integer k ∈ N, the k-th power Rauzy graph for L is the directed

graph whose vertices are the words of L of size k , and whose arcs

are pairs (u,v) of strings of size k with the property that there exists

a wordw in L of size k + 1 which has u as a prefix and v as a suffix.

A more precise definition is given below.

Definition 3.10 (Rauzy graph). Let L be a factorial and prolongable
language over an alphabet A, and let k ≥ 1. The k-th power Rauzy

graph for L is the directed graph Rk (L) = (Vk , Ek ) defined as fol-

lows:

(1) Vk = {w ∈ L | |w | = k};
(2) For any vertices u = u1u2 . . .uk ∈ Vk and v = v1v2 . . .vk ∈

Vk there is an edge (u,v) ∈ Ek if and only if u2 = v1,u3 =
v2, . . . ,uk = vk−1 and u1u2 . . .ukvk ∈ L.

Given a 2-PCD2m system H = (P,φ,ψ ), we let L(H) be the set
of signatures of finite trajectories in H. We note that L(H) is the
language of H over the alphabet Bd(P).

Proposition 3.11. Let H = (P,φ,ψ ) be a PCDr2m system. Then
L(H) is a factorial and prolongable language over the alphabet Bd(P).

Proof. Let τ r
®x0
= ®x0 ®x1...®xr be a trajectory in H. Since H is a

PCDr2m system, there are points ®x ′
0
and ®xr+1 such that both ®x ′

0
τ r
®x0

and τ r
®x0
®xr+1 are trajectories in H. Now, we also have that τ r−1

®x0
is a

prefix of τ r
®x0
and that τ r−1

®x1
is a suffix of τ r

®x0
. This shows that L(H) is

prolongable and factorial. □

Since the language of L(H) of any PCDr2m system H is factorial

and prolongable, for each k ≥ 1, the k-th power Rauzy graph of

L(H) is well defined. The following lemma describes some struc-

tural properties of Rauzy graphs associated with a PCDr2m system.

The dynamical cells mentioned in Lemma 3.12 are the same ones

mentioned in Theorem 3.7.

Lemma 3.12. Let H = (P,φ,ψ ) be a PCDr2m system with n
dynamic cells, and let L be the language of H over the alphabet
A = Bd(P). Then there is some s ∈ N such that for each i ⩾ s ,
the Rauzy graph Ri (L) consists of k ⩾ n disconnected components
K i
1
= (Vi

1
, Ei

1
), . . . ,K i

k = (Vik , E
i
k ) such that for each j ∈ {1, . . . ,k},

at least one of the following conditions holds for each component
K i
j = (Vij , E

i
j ), 1 ⩽ j ⩽ k :

(1) There is a subset S ⊆ A such that each wordw ∈ Vij consists
of all letters of S .
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(2) There exists s ′, with i ⩾ s > s ′, such that the set of signature
types of words in Vij equals the set of signature types of words

in some component of the graph Rs
′

(L).

Proof sketch. Intuitively, each component of the Rauzy graph

Ri (L) corresponds to a dynamic cell as specified in Theorem 3.7.

A component satisfying Condition 1 of the lemma corresponds to

a cell of type B or C, while a component satisfying Condition 2

corresponds to a dynamic cell of type A.

If the component corresponds to a dynamic cell of type B, then

every trajectory in this cell is closed, and therefore the trajectory

is periodic. This means that each edge occurring in this trajectory

will reach each other letter occurring in the trajectory.

If V i
j corresponds to a dynamic cell of type C , then trajectories

are dense, and therefore each letter will reach each other letter in at

most r steps for some finite r (Lemma 1 on the uniformity condition
in [21]).

Finally, if a component corresponds to a cell of type A, then this

dynamic cell is homeomorphic to the disc. Therefore, by Theorem

2.6 the set of signature types of trajectories in this region is finite.

□

We note that Lemma 3.12 is a generalisation of the lemma that

was proved in [21] for PCDr2m systems on orientable closed sur-

faces and based on Mayer’s classification of trajectories on ori-

entable closed surfaces [17]. Here we state it for a more general

case that includes both orientable and non-orientable closed sur-

faces if we take into account the results due to Aranson [3].

3.3 Immortalisation of a Trajectory at an Edge
For any point ®x in the polygonal partition of a PCDr2m system,

the trajectory τ ®x is immortal. Additionally, any such trajectory is

left-extendable, meaning that there is always a point ®x ′ such that

τ ′
®x =

®x ′τ ®x . In other words, any trajectory can be extended by adding

one step at its beginning. On the other hand, in general PCD2m sys-

tems, trajectories may be finite, and may be not left-extendable. In

this section we introduce a new technique for immortalisation of

trajectories of general PCD2m systems.

In order to map trajectories in a PCD2m system that are either

finite or not left-extendable to trajectories in a PCDr2m system, we

will use the notions of attractors and distractors, which are defined

below.

Definition 3.13 (Attractor). Given a PCD2m system H = (P,φ,ψ ),
we say that a set of regions p1, . . . ,pk ∈ P, where k ⩾ 3, is an

attractor if for each ®x ∈
⋃k
i=1 bd(pi ) there is an ®x ′ ∈

⋃k
i=1 bd(pi )

such that (®x , ®x ′) is a step.

Definition 3.14 (Distractor). Given a PCD2m systemH = (P,φ,ψ ),
we say that a set of regions p1, . . . ,pk ∈ P, where k ⩾ 3, is a

distractor if for each ®x ∈
⋃k
i=1 bd(pi ) there is an ®x ′ ∈

⋃k
i=1 bd(pi )

such that (®x ′, ®x) is a step.

We note that the only reason for the existence of a finite trajec-

tory in a PCD2m system is the existence of a pair of regions p and

p′ sharing a common boundary edge e that is an output edge of

both regions (Figure 5(a)). We say that e is a clashing edge.

®v0

®v1

®v2

®v3

®c0 ®c1

(a)

®v0

®v1

®v2

®v3

®w1 ®w0

®w2

(b)

Figure 5: (a) The clashing edge (®v1, ®v3); (b) replacing the clash-
ing edge (®v1, ®v3) by an attractor

On the other hand, the only reason for the existence of a trajec-

tory that is not left-extendable is the existence of a pair of regions

p and p′ having a common boundary edge e such that e is an input

edge of both regions (Figure 6(a)). We say that e is a diverging edge.

®v0

®v1

®v2

®v3

®c0 ®c1

(a)

®v0

®v1

®v2

®v3

®w1 ®w0

®w2

(b)

Figure 6: (a) The diverging edge (®v1, ®v3); (b) replacing the di-
verging edge (®v1, ®v3) by a distractor

Given a PCD2m system H = (P,φ,ψ ), the immortalisation of H
is the system H′ = (P′,φ ′,ψ ′) obtained from H by replacing each

clashing edge by a suitable attractor consisting of four regions,

and each diverging edge by a suitable distractor consisting of four

regions. We illustrate these constructions in Figures 5 and 6.

In Figure 5(b), the clashing edge ®v1 ®v3 is a common boundary of

the regions ®v0 ®v1 ®v3 and ®v2 ®v1 ®v3. The edge ®v1 ®v3 is then replaced by an
attractor consisting of four regions △ ®w1 ®v1 ®w0, △ ®w0 ®v1 ®w2, △ ®w0 ®w2 ®v3,
and △ ®w1 ®w0 ®v3 with dynamics of type two-to-one, meaning that in

each of these four regions there are two input edges and one output

edge.

In Figure 6(b), the diverging edge ®v1 ®v3 is a common boundary of

the regions ®v0 ®v1 ®v3 and ®v2 ®v1 ®v3. The edge ®v1 ®v3 is then replaced by a

distractor consisting of four regions △ ®w1 ®v1 ®w0, △ ®w0 ®v1 ®w2, △ ®w0 ®w2 ®v3,
and △ ®w1 ®w0 ®v3 with dynamics of type one-to-two, meaning that in

each of these four regions there is one input edge and two output

edges.

A more formal construction of H′
is given below. Let Rad(H) =

Ra(H) ∪ Rd(H), where the sets Ra(H) ⊆ P × P and Rd(H) ⊆ P × P
are defined as follows:

(1) Ra(H) = {(p,p′) ∈ P×P | ∃e ∈ E(P) : e ∈ Out(p)∩Out(p′)};
and

(2) Rd(H) = {(p,p′) ∈ P × P | ∃e ∈ E(P) : e ∈ In(p) ∩ In(p′)}.

Let (p1,p2) ∈ Rad(H) be a pair of regions with dynamics defined

by vectors φ(p1) = ®c1 and φ(p2) = ®c2, such as depicted in Figure 6(a).
For simplicity, we let p1 = △®v0 ®v1 ®v2 be the region defined by the

vertices ®v0, ®v1, and ®v3; and p2 = △®v1 ®v2 ®v3 be the triangle defined
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by the vertices ®v1, ®v2, and ®v3. To construct P′, we subpartition each

such pair (p1,p2) ∈ Rad by adding a quadrilateral ®v1 ®w1 ®v3 ®w2 such

that

(1) ®w1 ∈ p1 and ®w2 ∈ p2;
(2) The segment between ®w1 and ®w2 is not parallel to any of the

vectors ®c1 and ®c2;
(3) ®w0 is the intersection of the segments between ®v1 and ®v3

and between ®w1 and ®w2.

We define the function φ ′ assigning the vector associated with

each region in P′ as follows:
(1) If for p′ ∈ P′ there is p ∈ P such that p′ = p then φ ′(p′) =

φ(p).
(2) If (p1,p2) ∈ Ra, we create an attractor by assigning to all four

regions △ ®w1 ®v1 ®w0, △ ®w0 ®v1 ®w2, △ ®w0 ®w2 ®v3, and △ ®w1 ®w0 ®v3 the

dynamics of type two-to-one to ensure that every trajectory

is spiralling in, towards the point ®w0 and therefore stays

inside the union of the above regions.

(3) If (p1,p2) ∈ Rd, we create a distractor by assigning to all four
regions △ ®w1 ®v1 ®w0, △ ®w0 ®v1 ®w2, △ ®w0 ®w2 ®v3, and △ ®w1 ®w0 ®v3 the

dynamics of type one-to-two to ensure that every trajectory

is spiralling out and eventually leaves the union of the above

regions.

(4) To each of the new regions p′
1
= △®v0 ®v1 ®w1, p

′
2
= △®v1 ®v2 ®w2,

p′
3
= △ ®w2 ®v2 ®v3, p

′
4
= △®v0 ®w1 ®v3, we assign the same vector

field as in the region of P it is a subset of.

To define the function ψ ′
, we assign the new border elements

®w1, ®w2, e
′
1
= (®v1, ®w1), e

′
2
= (®v1, ®w2), e

′
3
= ( ®w2, ®v3), e

′
4
= ( ®w1, ®v3) to

the regions as follows:

(1) We assign the new vertex ®w1 to any of the regions p′
1
,p′

4
,

and ®w2 to any of the regions p′
2
,p′

3
.

(2) ψ ′(e ′i ) = p
′
i , 1 ⩽ i ⩽ 4.

By construction, Rad(H′) = ∅, and, hence, H′
is a PCDr2m .

3.4 Immortalisation of a Trajectory at a
Boundary

Now we extend the technique introduced in Section 3.3 to define

the immortalisation of trajectories at a boundary (for surfaces with

boundary).

Given a PCD2m system H = (P,φ,ψ ), the immortalisation of H
is the system H′ = (P′,φ ′,ψ ′) obtained from H by replacing each

boundary by a set of attractors and distractors as described above.

We illustrate this construction in Figure 7.

(a) (b)

Figure 7: (a) A boundary; (b) the boundary replaced by a set
of attractors and distructors

The rest of the ‘interior’ region of the border is homeomorphic

to the disc, and it can be replaced by a 2-PCD system H′
with

trajectories of type A as defined in Theorem 3.7. By construction,

H′
is a PCDr2m .

It is worth mentioning here that the cylinder is equivalent to a

sphere with two disks removed, while the Möbius strip can be seen

as a projective plane with a disk removed.

3.5 Proof of Theorem 3.1
Finally, we are in the position to prove our first result on decidability

of mortality for PCD2m systems stated in Theorem 3.1.

Proof of Theorem 3.1. Let H = (P,φ,ψ ) be a PCD2m system

and H′ = (P′,φ ′,ψ ′) be the immortalisation of H obtained accord-

ing to the constructions given in Section 3.3 and Section 3.4. Note

that H′
is a PCDr2m .

Let L be the language of H over the alphabet A = Bd(P), and
L′ be the language of H′

over the alphabet A′ = Bd(P′). Then by

Lemma 3.12, there is some s ∈ N, and some k ⩾ n such that the

Rauzy graph Rs (L′) consists of strongly connected components

{Ks
j = (Vsj , E

s
j )}j ∈{1, ...,k } such that at least one of the following

conditions hold for each component Kj :

(1) There is a subset S ⊆ A′
such that for each word w ∈ Vsj ,

Letters(w) = S .
(2) There is an s ′ < s such that the set of signature types of Vsj

is equal to the set of signature types of the vertices of some

component of Rs
′

(L′).
Let n be the number of dynamic cells of H′

. Our reasoning below

takes into consideration the following observations:

(a) Attractors in H′
give rise to orbital stable trajectories con-

verging to a point. In Figure 5(a), the point of convergence is

illustrated by ®w0. Note that such a trajectory evolves in a spi-

ral, always getting closer to ®w0 but never actually reaching

it. These trajectories correspond to the halting trajectories

in H.
(b) For each point ®x , τ ®x is closed (dense respectively) and has

type T in H if and only if τ ®x is closed (dense respectively)

and has type T in H′
.

Let kA, kB , and kC be the number of components in Rs (L′) corre-
sponding to dynamic cells of types A, B and C respectively, and kS
be the number of components in Rs (L′) corresponding to separatri-
ces. Then kA + kB + kC + kS = k , where k > 0. Now we consider

the following cases:

(i) Let kB > 0 or kS > 0. Then there exists a closed trajectory

τ ′
®x ′
0

in H′
, and a closed trajectory τ ®x0 in H such that type′

®x ′
0

=

type®x0 with ®x ′
0
= ®x0.

All closed trajectories are trivially immortal. Hence, H is

immortal.

(ii) Let kC > 0. Then there is a dense trajectory τ ′
®x ′
0

in H′
. By

construction, there is a dense trajectory τ ®x0 in H such that

type′
®x ′
0

= type®x0 with ®x ′
0
= ®x0. All dense trajectories are

immortal by definition (they have infinite length to be able

to reach infinitely many states within the dynamical cell).

Hence, H is immortal.

(iii) Let kB = kC = kS = 0. Then kA > 0, and H′
has dy-

namic cells CA
1
, . . . ,CA

kA
of type A with orbital stable tra-

jectories. By Theorem 3.7, each of these dynamic cells is
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planar, and, hence, it is a 2-PCD. Then by Theorem 2.6 there

is a finite number r of signature types corresponding to

the trajectories in all these components. By Corollary 5 in

[16], the signature type of such a trajectory has the form

σ i = bi
0
. . .bili

(bili+1
. . .bili+mi

)ω .

Let Σa ⊆ Σ′ be the alphabet of attractors. If for any signature
type σ i over Σa , there is bij ∈ σ i such that bij ∈ Σa then

each corresponding trajectory of H halts, and, therefore, H
is mortal. Otherwise it is immortal.

□

4 DECIDING EDGE-TO-EDGE REACHABILITY
FOR PCD SYSTEMS ON SURFACES

It has been shown in [21] that edge-to-edge reachability is decid-

able for regular piecewise constant derivative systems on closed

orientable two-dimensional manifolds.

Theorem 4.1 ([21]). The edge-to-edge reachability problem is
decidable for PCDr2m systems.

In this section we show that edge-to-edge reachability is decid-

able for PCD2m systems by removing both the regularity restriction

on PCD systems on surfaces on the one hand and the requirements

on the manifolds such as boundary and orientation on the other

hand. This solves the edge-to-edge reachability version of an open

problem from [4].

Theorem 4.2. The edge-to-edge reachability problem is decidable
for PCD2m systems.

Proof. LetH = (P,φ,ψ ) be a PCD2m and the reachability task is

given by the edges e0, ef ∈ E(P), where e0 is the initial edge and ef is
the final edge. Let PCDr2m H′ = (P′,φ ′,ψ ′) be the immortalisation

of H as defined in Section 3.3.

We define edges ei
0
, e
j
f , where i ∈ {1, 2} and j ∈ {1, 4} (as de-

picted in Figure 8). Then ef is reachable from e0 in H if and only if

e
j
f is reachable from ei

0
in H′

for some i, j.

Since from Theorem 4.1, edge-to-edge reachability is decidable

for PCDr2m systems, our reduction implies that edge-to-edge reach-

ability is decidable in for PCD2m systems as well.

We use below the sets Ra(H) ⊆ P× P and Rd(H) ⊆ P× P defined

in Section 3.3 as follows:

(1) Ra(H) = {(p,p′) ∈ P×P | ∃e ∈ E(P) : e ∈ Out(p)∩Out(p′)};
and

(2) Rd(H) = {(p,p′) ∈ P × P | ∃e ∈ E(P) : e ∈ In(p) ∩ In(p′)}.

Nowwe only need to consider the cases (p1,p2) ∈ Ra(H)∪Rd(H).
Let e = (®v1, ®v3) ∈ E(P) be either the initial edge e0 or the final

edge ef , and let (®v1, ®v3) = cl(p1) ∩ cl(p2) for some regions p1,p2.

(1) Let (p1,p2) ∈ Ra. If ef = (®v1, ®v3) then the reachability task

in H is replaced by four reachability tasks in H′
with the

final edges are e1f , e
2

f , e
3

f , e
4

f ∈ E(P′). See Figure 8(a) for an
example.

(2) Let (p1,p2) ∈ Rd. If e0 = (®v1, ®v3) ∈ E(p1) then we replace

the reachability task for H with two reachability tasks with

the initial edges e1
0
, e2

0
(depicted with the solid line in Figure

8(b)). If e0 = (®v1, ®v3) ∈ E(p2) then we replace the reachability

task for H with two reachability tasks with the initial edges

e2
0
, e3

0
(depicted with the dotted line in Figure 8(b)).

®v0

®v1

®v2

®v3

p1 p2

(a)

®v0

®v1

®v2

®v3

®v0

®v1

®v2

®v3

p1 p2

(b)

®v0

®v1

®v2

®v3

Figure 8: A reachability task for H′ = (P′,φ ′): (a) ef = (®v1, ®v3);
(b) e0 = (®v1, ®v3) ∈ E(p1)

We deal with attractors and distractors at boundary (for sur-

faces with boundary) in a similar way. Intuitively, in order to

check reachability on H′
, it is sufficient to build a finite sequence

R1(L′), . . . ,Rtstop (L′) of Rauzy graphs, where L′ is the language
of H ′

and tstop is defined by Lemma 3.12. An edge ef ∈ E′(P) is
reachable from an edge e0 ∈ E′(P) if and only if Rtstop (L′) contains
a component with a vertex labelled by a word (. . . e0 . . . ef . . . ).

By Theorem 4.1, edge-to-edge reachability is decidable for H′
as

it is a PCDr2m . It is also decidable for a PCD2m H by construction.

□

5 DECIDING INTERVAL-TO-INTERVAL
REACHABILITY FOR REGULAR PAM

Decidability of reachability for one-dimensional piecewise affine

maps (PAMs) is a long-standing open problem, even for the case

when it is made of only two intervals [13]. In this section we extend

our results further and show that the interval-to-interval version of

the reachability problem for the class of regular one-dimensional

PAMs is also decidable.

A rational interval is a subset of R of one of the following forms:

[®x , ®y], [®x , ®y), (®x , ®y], (®x , ®y), (−∞, ®y], (−∞, ®y), [®x ,∞), (®x ,∞), where

®x , ®y ∈ Q such that ®x ≤ ®y.

Definition 5.1 (PAM). Let Ii be a finite set of disjoint rational

intervals. Then f : R → R is a one-dimensional piecewise affine

map (PAM), if f is of the form f (®x) = ai ®x + bi , where ®x ∈ Ii . An
example of a simple one-dimensional PAM is given in Figure 9.

®x

f ( ®x )

®x0 ®x1 ®x2

Figure 9: An example of a PAM, where the sequence ®x0, ®x1, ®x2
is a trajectory

In the point-to-point reachability problem for PAMs, we are

given points ®x0 and ®xr and the goal is to determine whether there is

a sequence of points ®x0, ®x1, . . . ®xr such that for each i ∈ {1, . . . , r },
®xi = f (®xi−1). In the interval-to-interval reachability problem we
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are given sub-intervals I1 and I2 of the domain of f , and the goal

is to determine whether some point in I2 is reachable from some

point in I1.

Definition 5.2 (Regular PAMs [4, 5]). A one-dimensional PAM f
defined on a compact domain D(f ) is regular if it is injective almost

everywhere. That is, f is injective except a finite number of points.

The following theorem states that PCD2m systems and regular

PAMs are equivalent when it comes to reachability problems.

Theorem 5.3 ([4]). The point-to-point (interval-to-interval) reach-
ability problem for regular PAMs can be reduced to the point-to-point
(edge-to-edge) reachability problem for PCD2m systems, and vice
versa.

The following theorem is a corollary of Theorems 4.2 and 5.3.

Theorem 5.4. The interval-to-interval reachability is decidable
for regular PAMs.

6 CONCLUSIONS
In this work, we showed that mortality is decidable for piecewise

constant derivative systems on surfaces (Theorem 3.1). We also

showed that the edge-to-edge reachability problem is decidable for

such systems (Theorem 4.2), settling in this way a problem that

had been open since [4, 22]. An implication of this latter result is

decidability of the interval-to-interval version of reachability for

regular piecewise affine maps (Theorem 5.4).

Devising approximate reachability algorithms for classes of dy-

namical systems where point-to-point reachability is undecidable

(or unknown to be decidable) is an interesting line of research [18].

In practical situations, it is often enough to consider an approxi-

mate version of the reachability problem, where instead of asking

if a point ®xf is reachable from a point ®x0, we ask if a point in an

arbitrarily small neighbourhood of ®xf is reachable from a point in

an arbitrarily small neighbourhood of ®x0.
Determining whether point-to-point reachability for PAMs is

decidable is a long-standing open problem [13]. Nevertheless, we

have shown that approximate reachability for regular PAMs is

decidable (Theorem 5.4), since for each ε > 0, the ε-neighborhood
of a point in the domain of a PAM is an interval. That is, to consider

an approximate version of the reachability problem, instead of

asking if a point xf is reachable from a point x0, we can ask if a

point in an arbitrarily small neighbourhood of xf is reachable from

a point in an arbitrarily small neighbourhood of x0. Hence, edge-to-
edge reachability implies decidability of approximate reachability

for regular PAMs.

Our work leaves open some immediate questions. One of them

is a long-standing problem of point-to-point reachability for one-

dimensional (regular) PAMs [13]. The study of the computational

complexity of our algorithms for deciding reachability andmortality

problems is also left to future research.
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