Synthesis gas as a fuel for internal combustion engines in transportation

Amin Paykani a,*, Hamed Chehrmonavari a, Athanasios Tsolakis b, Terry Alger c, William F. Northrop d, Rolf D. Reitz e

a School of Physics, Engineering and Computer Science, University of Hertfordshire, Hatfield, AL10 9AB, UK
b Department of Mechanical Engineering, School of Engineering, University of Birmingham, Birmingham B15 2TT, UK
c Automotive Propulsion Systems, Powertrain Engineering Division, Southwest Research Institute, TX, USA
d Department of Mechanical Engineering, University of Minnesota, 111 Church St. SE Minneapolis, MN, 55419, USA
e Engine Research Center, University of Wisconsin-Madison, 1500 Engineering Drive, Madison, WI 53705, USA

ARTICLE INFO

Keywords:
IC engine
Syngas
Fuel reforming
Combustion
Efficiency
Emissions

ABSTRACT

The adverse environmental impact of fossil fuel combustion in engines has motivated research towards using alternative low-carbon fuels. In recent years, there has been an increased interest in studying the combustion of fuel mixtures consisting mainly of hydrogen and carbon monoxide, referred to as syngas, which can be considered as a promising fuel toward cleaner combustion technologies for power generation. This paper provides an extensive review of syngas production and application in internal combustion (IC) engines as the primary or secondary fuel. First, a brief overview of syngas as a fuel is presented, introducing the various methods for its production, focusing on its historical use and summarizing the merits and drawbacks of using syngas as a fuel. Then its physicochemical properties relevant to IC engines are reviewed, highlighting studies on the fundamental combustion characteristics, such as ignition delay time and laminar and turbulent flame speeds. The main body of the paper is devoted to reviewing the effect of syngas utilization on performance and emissions characteristics of spark ignition (SI), compression ignition (CI), homogeneous charge compression ignition (HCCI), and advanced dual-fuel engines such as reactivity-controlled compression ignition (RCCI) engines. Finally, various on-board fuel reforming techniques for syngas production and use in vehicles are reviewed as a potential route towards further increases in efficiency and decreases in emissions of IC engines. These are then related to the research reported on the behavior of syngas and its blends in IC engines. It was found that the selection of the syngas production method, choice of the base fuel for reforming, its physicochemical properties, combustion strategy, and engine combustion system and operating conditions play critical roles in dictating the potential advantages of syngas use in IC engines. The discussion of the present review paper provides valuable insights for future research on syngas as a possible fuel for IC engines for transport.

1. Introduction

Worldwide, approximately 80% of useful energy, including high-quality heat, propulsion work, and electricity, is produced by combustion-driven processes using fossil fuels. The main detriments of the application of fossil fuels in IC engines are their contribution to global warming and environmental pollution, and therefore governments are encouraging the use of zero/low-carbon fuels in power and propulsion systems for achieving energy security and meeting emissions targets [1,2]. In the coming decades, both IC engine efficiency and fuel technology must improve and contribute to achieving carbon-neutral transportation [3]. Engine technology must also use fuels that minimize greenhouse gas (GHG) emissions on a well-to-wheel basis to meet worldwide emissions legislation [4]. The next generation of cleaner fuels is governed by several important factors, including the availability of the feedstock, production efficiency and environmental impact, distribution and storage, safety issues, integration and compatibility with engines, vehicle, and transportation systems – costs, regional variations, standardization and public acceptance [5,6]. In this regard, natural gas [7,8], hydrogen [9] and ammonia [10,11] and optimized engines [12] have recently drawn much attention from engine researchers to meet the future emission standards.

Hydrogen (H2) has been considered as a viable energy carrier for fuel cells and future IC engines. The wide flammability range of hydrogen makes it suitable for engine operation over a wide range of air-fuel
mixtures, and the lean mixture operation can increase the fuel economy of the hydrogen-fueled engines. Moreover, its high diffusivity and flame speed result in a faster uniform fuel/air mixture and an improved combustion inside the cylinder [13,14]. The carbon-free structure of the hydrogen also makes it an excellent fuel for the clean and efficient operation of IC engines. Fig. 1 shows the energy density of various fuels based on lower heating values (LHV) compared to hydrogen. As can be seen, hydrogen has nearly three times the energy content of gasoline on a mass basis.

In contrast, hydrogen’s high auto-ignition temperature (858 K) necessitates the use of a spark plug or a supplementary low auto-ignition temperature fuel. On the other hand, its low ignition energy increases the propensity of phenomena like pre-ignition, backfire and knock. NOx emissions can also be increased due to the higher combustion temperatures associated with hydrogen combustion in IC engines [15]. Hydrogen can be produced in various ways to be stored in a pressurized tank on-board in a vehicle aiming at improving both combustion and aftertreatment processes [17]. The comparison of hydrogen usage in

<table>
<thead>
<tr>
<th>Nomenclature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Greek</td>
<td></td>
</tr>
<tr>
<td>λ</td>
<td>Air–fuel equivalence ratio</td>
</tr>
<tr>
<td>φ</td>
<td>Fuel–air equivalence ratio</td>
</tr>
<tr>
<td>γ</td>
<td>Ratio of specific heats</td>
</tr>
<tr>
<td>θ</td>
<td>Crankshaft angle</td>
</tr>
<tr>
<td>η</td>
<td>Efficiency</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Abbreviations</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFR</td>
<td>Air fuel ratio</td>
</tr>
<tr>
<td>AHRR</td>
<td>Apparent heat release rate</td>
</tr>
<tr>
<td>AKI</td>
<td>Anti-knock index</td>
</tr>
<tr>
<td>ATDC</td>
<td>After top dead center</td>
</tr>
<tr>
<td>ATR</td>
<td>Autothermal reforming</td>
</tr>
<tr>
<td>BMEP</td>
<td>Brake mean effective pressure</td>
</tr>
<tr>
<td>BSFC</td>
<td>Brake specific fuel consumption</td>
</tr>
<tr>
<td>BTDC</td>
<td>Before top dead center</td>
</tr>
<tr>
<td>BTE</td>
<td>Brake thermal efficiency</td>
</tr>
<tr>
<td>CA</td>
<td>Crank angle</td>
</tr>
<tr>
<td>CDC</td>
<td>Conventional diesel combustion</td>
</tr>
<tr>
<td>CFD</td>
<td>Computational fluid dynamics</td>
</tr>
<tr>
<td>CFR</td>
<td>Cooperative fuel research</td>
</tr>
<tr>
<td>CHF</td>
<td>Combined heat and power</td>
</tr>
<tr>
<td>CI</td>
<td>Compression ignition</td>
</tr>
<tr>
<td>CN</td>
<td>Cetane number</td>
</tr>
<tr>
<td>CNG</td>
<td>Compressed natural gas</td>
</tr>
<tr>
<td>CO</td>
<td>Carbon monoxide</td>
</tr>
<tr>
<td>COV</td>
<td>Coefficient of variation</td>
</tr>
<tr>
<td>CR</td>
<td>Compression ratio</td>
</tr>
<tr>
<td>CRI</td>
<td>Common rail injector</td>
</tr>
<tr>
<td>D-EGR</td>
<td>Dedicated exhaust gas recirculation</td>
</tr>
<tr>
<td>DFBG</td>
<td>Dual fluidized bed gasifier</td>
</tr>
<tr>
<td>DF</td>
<td>Dual fuel</td>
</tr>
<tr>
<td>DI</td>
<td>Direct-injection</td>
</tr>
<tr>
<td>DISI</td>
<td>Direct injection spark ignition</td>
</tr>
<tr>
<td>DME</td>
<td>Dimethyl ether</td>
</tr>
<tr>
<td>DNS</td>
<td>Direct numerical simulation</td>
</tr>
<tr>
<td>EGR</td>
<td>Exhaust gas recirculation</td>
</tr>
<tr>
<td>EPA</td>
<td>Environmental protection agency</td>
</tr>
<tr>
<td>ERC</td>
<td>Engine research center</td>
</tr>
<tr>
<td>FTP</td>
<td>Federal test procedure</td>
</tr>
<tr>
<td>FT</td>
<td>Fischer–Tropsch</td>
</tr>
<tr>
<td>GA</td>
<td>Genetic algorithm</td>
</tr>
<tr>
<td>GDI</td>
<td>Gasoline direct injector</td>
</tr>
<tr>
<td>GHG</td>
<td>Greenhouse gas emissions</td>
</tr>
<tr>
<td>GIE</td>
<td>Gross indicated efficiency</td>
</tr>
<tr>
<td>GT</td>
<td>Gas turbine</td>
</tr>
<tr>
<td>GTL</td>
<td>Gas-to-liquid</td>
</tr>
<tr>
<td>HCCI</td>
<td>Homogeneous charge compression ignition</td>
</tr>
<tr>
<td>HD</td>
<td>Heavy-duty</td>
</tr>
<tr>
<td>HE</td>
<td>Hydrous ethanol</td>
</tr>
<tr>
<td>HOME</td>
<td>Honge oil and its methyl ester</td>
</tr>
<tr>
<td>HRR</td>
<td>Heat release rate</td>
</tr>
<tr>
<td>HTHR</td>
<td>High-temperature heat release</td>
</tr>
<tr>
<td>HWFET</td>
<td>Highway Fuel Economy Test</td>
</tr>
<tr>
<td>ICE</td>
<td>Internal combustion engine</td>
</tr>
<tr>
<td>IDT</td>
<td>Ignition delay time</td>
</tr>
<tr>
<td>IGCC</td>
<td>Integrated gasification combined cycle</td>
</tr>
<tr>
<td>IMEP</td>
<td>Indicated mean effective pressure</td>
</tr>
<tr>
<td>ITE</td>
<td>Indicated thermal efficiency</td>
</tr>
<tr>
<td>LFS</td>
<td>Laminar flame speed</td>
</tr>
<tr>
<td>LD</td>
<td>Light duty</td>
</tr>
<tr>
<td>LFG</td>
<td>Landfill gas</td>
</tr>
<tr>
<td>LHV</td>
<td>Lower heating value</td>
</tr>
<tr>
<td>LPG</td>
<td>Liquefied petroleum gas</td>
</tr>
<tr>
<td>MAP</td>
<td>Manifold absolute pressure</td>
</tr>
<tr>
<td>MBT</td>
<td>Maximum brake torque</td>
</tr>
<tr>
<td>MES</td>
<td>Methane enriched syngas</td>
</tr>
<tr>
<td>MFB</td>
<td>Mass fraction burned</td>
</tr>
<tr>
<td>ML</td>
<td>Machine learning</td>
</tr>
<tr>
<td>MN</td>
<td>Methane number</td>
</tr>
<tr>
<td>NIMEP</td>
<td>Net indicated mean effective pressure</td>
</tr>
<tr>
<td>NOx</td>
<td>Nitrogen oxides</td>
</tr>
<tr>
<td>NTC</td>
<td>Negative temperature coefficient</td>
</tr>
<tr>
<td>NVO</td>
<td>Negative valve overlap</td>
</tr>
<tr>
<td>PG</td>
<td>Producer gas</td>
</tr>
<tr>
<td>POX</td>
<td>Partial oxidation</td>
</tr>
<tr>
<td>PPM</td>
<td>Parts per million</td>
</tr>
<tr>
<td>PRF</td>
<td>Primary reference fuel</td>
</tr>
<tr>
<td>PRIEMER</td>
<td>Premixed mixture ignition in the end-gas region</td>
</tr>
<tr>
<td>RCCI</td>
<td>Reactivity controlled compression ignition</td>
</tr>
<tr>
<td>R-EGR</td>
<td>Reformed exhaust gas recirculation</td>
</tr>
<tr>
<td>RG</td>
<td>Reformer gas</td>
</tr>
<tr>
<td>RMG</td>
<td>Reformed methanol gas</td>
</tr>
<tr>
<td>RON</td>
<td>Research octane number</td>
</tr>
<tr>
<td>SAC</td>
<td>Superadiabatic combustion</td>
</tr>
<tr>
<td>SAE</td>
<td>Society of Automotive Engineers</td>
</tr>
<tr>
<td>SEC</td>
<td>Specific energy consumption</td>
</tr>
<tr>
<td>SI</td>
<td>Spark ignition</td>
</tr>
<tr>
<td>SMR</td>
<td>Steam methane reforming</td>
</tr>
<tr>
<td>SOC</td>
<td>Start of combustion</td>
</tr>
<tr>
<td>Syngas</td>
<td>Synthesis gas</td>
</tr>
<tr>
<td>SZM</td>
<td>Single zone model</td>
</tr>
<tr>
<td>SwRI</td>
<td>Southwest Research Institute</td>
</tr>
<tr>
<td>TCR</td>
<td>Thermochemical recuperation</td>
</tr>
<tr>
<td>TFR</td>
<td>Thermochemical fuel reforming</td>
</tr>
<tr>
<td>TFS</td>
<td>Turbulent flame speed</td>
</tr>
<tr>
<td>THC</td>
<td>Total hydrocarbons</td>
</tr>
<tr>
<td>TIDR</td>
<td>Total inert dilution ratio</td>
</tr>
<tr>
<td>TWC</td>
<td>Three-way catalyst</td>
</tr>
<tr>
<td>UHC</td>
<td>Unburned hydrocarbons</td>
</tr>
<tr>
<td>WGS</td>
<td>Water–gas shift</td>
</tr>
<tr>
<td>WHR</td>
<td>Waste heat recovery</td>
</tr>
<tr>
<td>WOT</td>
<td>Wide-open throttle</td>
</tr>
</tbody>
</table>
vehicles through on-board hydrogen production, hydrogen storage, and stationary power generation systems is summarized in Table 1. The low ignition energy and volumetric energy density make storage of hydrogen on-board a challenging task [18,19]. Hydrogen as a low-density fuel needs to be compressed at high-pressure tanks (350–700 bar) to allow an adequate driving range of more than 500 km with safety and cost to be the main challenging issues. Difficulties involved in the storage and transport of hydrogen still present barriers to the commercial use of hydrogen as a secondary or a main fuel for IC engines [19,20]. However, hydrogen is currently viewed as the most promising clean energy carrier of the future, and the hydrogen infrastructure is now rapidly expanding in many counties, both in the EU and outside. This has sparked research interest in the energy conversion technologies, particularly fuel cells that are capable of using hydrogen as the fuel [21].

While the merits of operating IC engines with varying concentrations of hydrogen have been well documented [25], the key challenges remain unresolved, including practical approaches to hydrogen production without sacrificing system efficiency and/or sufficiently addressing its adverse combustion properties [26]. Syngas is considered an intermediate step in the transition from carbon-based fuels to H₂-based fuels, since it is composed mainly of hydrogen (H₂) and carbon monoxide (CO). In IC engines, using syngas produced from on-board stored liquid fuels on vehicles can mitigate many of the hydrogen storage and combustion challenges [27–31], and this will be extensively discussed in the upcoming sections.

1.1. What is syngas?

Syngas (an abbreviation for synthesis gas) can be derived by gasification processes from natural gas, heavy oil, biomass, and coal (carbon-containing fuels) for stationary application or by chemical processes from liquid and gaseous fuels for vehicular application, in which a complex and long-chain molecule converts to simpler molecules including H₂ (hydrogen), CO (carbon monoxide), and CH₄ (methane). CO₂ (carbon dioxide), H₂O (water vapor), and N₂ (nitrogen). Based on the process adopted and the type of feedstock used, end-products as a form of syngas will have varying compositions and heating values, thus different terms such as “town gas”, “wood gas”, “water gas”, “producer gas”, “reformer gas”, “power gas”, and etc. have been used in the literature. A possible range for the volumetric composition of syngas is shown in Table 2, indicating that it is comprised mainly of H₂ and CO. The preferred composition generally depends upon the purpose of syngas usage, feedstock, and production cost. For example, if the goal is hydrogen production by a biomass gasification process, much more cost and effort are needed for adequate purification than the reaction reforming process.

Syngas can also be produced through fuel reforming with steam and/or air using compact systems that can be located on-board a vehicle [27,33,34]. External on-board and in-cylinder fuel reforming techniques have been identified as possible pathways to produce syngas on-board in IC engines to improve efficiency and emissions [33]. The details of on-board fuel reforming and syngas production will be covered in section 4.

1.2. Syngas applications

Syngas can be used as an intermediate to create other attractive clean fuels such as ammonia (NH₃), dimethyl ether (DME), and methanol (CH₃OH) [35–39]. Another use of syngas is as a primary chemical building block in petrochemical and refining processes [40]. Syngas can be used in many different applications, including:

- Power generation in existing coal power plants [22]
- Combined heat and power (CHP) plants [41]
- Integrated gasification combined cycles (IGCC) [42]
- Fuel cells [43–46]
- Production of transportation fuels from gas-to-liquid (GTL) processes [47]
- Gas turbines [48–50]
- Directly as the primary or secondary fuel in IC engines [51]

Table 1

Comparison of hydrogen usage in vehicles through on-board hydrogen production, hydrogen storage, and stationary power generation systems [22–24].

<table>
<thead>
<tr>
<th>Transportation (on-board in vehicles)</th>
<th>Transportation (storage in vehicles)</th>
<th>Stationary power generation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ability to operate on H₂ partly</td>
<td>Ability to operate on 100% H₂</td>
<td>Ability to operate on 100% H₂</td>
</tr>
<tr>
<td>More complicated design</td>
<td>Simple design</td>
<td>Simple design</td>
</tr>
<tr>
<td>Less space required</td>
<td>More space required</td>
<td>No space problem</td>
</tr>
<tr>
<td>Few safety concerns</td>
<td>Serious safety</td>
<td>No safety problem</td>
</tr>
<tr>
<td>Challenge with the catalyst</td>
<td>Challenge with the catalyst</td>
<td>Hydrogen can be produced</td>
</tr>
<tr>
<td>activation under a wide range of</td>
<td>activation under a wide range of</td>
<td>or can be used from the</td>
</tr>
<tr>
<td>temperature and reactants changes</td>
<td>temperature and reactants changes</td>
<td>storage system</td>
</tr>
<tr>
<td>Moderate cost</td>
<td>Highest cost</td>
<td>Lowest cost</td>
</tr>
<tr>
<td>Fast response during transient</td>
<td>Fast response during transient</td>
<td>Aesthetic issues are not</td>
</tr>
<tr>
<td>operation is a challenge</td>
<td>operation is a challenge</td>
<td>important</td>
</tr>
<tr>
<td>Aesthetic issues</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2

A possible range for syngas composition on a volume percent basis [29,32].

<table>
<thead>
<tr>
<th>Species</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂</td>
<td>8.6</td>
<td>61.9</td>
</tr>
<tr>
<td>CO</td>
<td>22.3</td>
<td>55.4</td>
</tr>
<tr>
<td>CH₄</td>
<td>0.0</td>
<td>8.2</td>
</tr>
<tr>
<td>CO₂</td>
<td>1.6</td>
<td>30.0</td>
</tr>
<tr>
<td>N₂+Ar</td>
<td>0.2</td>
<td>49.3</td>
</tr>
<tr>
<td>H₂O</td>
<td>39.8</td>
<td></td>
</tr>
<tr>
<td>H₂/CO</td>
<td>0.33</td>
<td>2.36</td>
</tr>
<tr>
<td>LHV (MJ/m³)</td>
<td>5.02</td>
<td>12.57</td>
</tr>
</tbody>
</table>

* The broad experimental studies of syngas-fed IC engines reviewed in sections 3 and 4 have been performed with simulated syngas whose H₂/CO ratio can go beyond this value, i.e., H₂/CO: 3/1 (by vol.).
1.3. Syngas production methods

Solid fuel (coal, biomass, wastes) feedstocks are sources for syngas production \cite{52,53} by traditional gasification methods \cite{54,55}. Also, liquid and gaseous feedstocks can be converted to syngas by non-gasification methods \cite{56} that comprise one or a chain of reforming processes using the catalysts; such processes are expected to be viable in-situ methods of syngas production for automotive engines. In this section, only a brief review of different syngas production methods is presented since several comprehensive review papers \cite{57,58} explain them in detail and emphasize the IC engine operation with gasification fuel \cite{59,60} and non-gasification fuel \cite{33}.

1.3.1. Gasification processes

Biomass gasification converts a solid fuel into syngas which can be burnt in stationary gas turbines and IC engines. Gasification is a thermochemical process that converts a solid hydrocarbon feedstock like coal, petroleum coke, refinery residuals, biomass, and municipal solid waste, into syngas without consuming a large part of its heating value \cite{58}. In gasification, the carbon-containing feedstock reacts with a gasifying agent like oxygen, steam, and air, which breaks down the mixture into syngas, as illustrated in Fig. 2 \cite{54,57,61,62}. The type and design of the gasifier, gasification temperature, type and flow rates of the feedstock and oxidizing agents, and type and amount of catalysts \cite{63}, are the main parameters in influencing the gasification process and syngas production \cite{64-70}. Oxygen as the gasifying agent produces syngas called “medium syngas,” and if air is used, then it is called “producer gas” \cite{71}; the following sub-section will clarify the terms used in the rest of the paper. Using gasification methods, in addition to H2 and CO, other typical products including H2O, CO2, CH4, unwanted tars, small amounts of NH3, and H2S are also produced. The relative amount of each species depends on the feedstock and the gasification process \cite{57}. Modeling approaches for biomass gasification have been extensively reviewed in \cite{72}.

For syngas production, a typical solid fuel gasification system coupled to spark ignition and dual-fuel diesel engines is illustrated in Fig. 3 \cite{73}. The system includes a gasifier, a gas clean-up and cooling system, a gas mixer, a starting blower, and the engine. The engine draws air from the gasifier during the intake stroke, through the cleaning system, and from the gas mixer where air is combined with the syngas \cite{74}. For example, Marculescu et al. \cite{80} used food processing industry waste for energy conversion, using gasification and an IC engine for power generation. The biomass used consisted of bones and meat residues sampled directly from the industrial line, characterized by high water content, about 42% in mass, and potential health risks. They reported that syngas with a composition of 19.1%CO, 17%H2, and 1.6% CH4 was produced.

New gasification concepts such as dual fluidized bed gasifiers (DFBG) \cite{76}, plasma gasification \cite{77-80}, and supercritical water gasification \cite{81,82}, have demonstrated the potential to improve syngas quality from biomass gasification. However, they are not of significant interest at present, and are more applicable for stationary power generation. Moreover, wood and solid fuels seem to be not effective for transport applications due to their low energy density. A further analysis on this topic is presented in section 3.

1.3.2. Non-gasification processes

Non-gasification processes include catalytic fuel reforming, where the parent fuel reacts with steam and/or oxygen in a heterogeneous process to produce syngas \cite{27,83}; and non-catalytic processes like plasma-assisted reforming \cite{84}. The three main global reactions in fuel reforming are partial oxidation (POX), steam reforming (SR), and auto-thermal reforming (ATR) \cite{47,85}, which will be explained in the following.

When a mixture of sub-stoichiometric oxygen and feedstock reacts to produce syngas, this self-sustaining chemical reaction is called “partial oxidation (POX).” It is an exothermic reaction. The complete combustion reaction forming CO2 is restricted due to insufficient O2 in the reactants \cite{86,87}. In endothermic steam reforming (SR), a high-temperature mixture of fuel and steam is sent through a bed of catalyst. The heat required to drive the endothermic reaction is provided externally (e.g., electric heaters or combustion of fuel). The syngas stream from the steam reforming can then flow to a water gas shift (WGS) reactor, where additional steam converts CO to CO2 and generates additional H2 \cite{88-91}.

When both the POX and SR reforming reactions are combined in a single reactor, it is called autothermal reforming (ATR). Industrially, the ATR reactor is implemented in a refractory-lined pressure vessel with a combustion chamber, burner, and catalyst bed. In this reactor, a sub-stoichiometric environment oxidizes fuel, natural gas in most cases, with O2. In the ATR reaction, POX provides heat for later SR reactions, thus controlling the exit temperature of the reactor. Endothermic dry reforming (DR) where the CO2 is reacting with hydrocarbons feedstock to create H2 and CO can also be employed \cite{92-95}. The advantages and
Fig. 3. a) Syngas production system for an SI engine (Reprinted from [73] with permission of Elsevier); b) diagram of the entrained-flow gasifier for power generation on dual-fuel diesel engine (Reprinted from [75] with permission of Elsevier).
disadvantages of these processes and the corresponding chemical reactions are summarized in Table 3 as main reforming reactions and in Table 4 as side reactions that may occur. These fuel reforming processes have been proposed for on-board hydrogen-rich gas production in vehicular applications, discussed in detail in section 4. Note that the goal is high hydrogen content; therefore, understanding the nature of these reactions aids us in deciding which reactions should participate in reforming processes within a designed reactor and which ones to avoid.

1.3.3. Syngas as an IC engine fuel

Syngas as an IC engine fuel can be utilized in power generation and transportation, produced mainly by gasification and reforming processes, respectively. As mentioned above, syngas names would be different based on composition and LHV, while the terminology we use throughout the current work can be seen in Fig. 4, taken from IC engine-relevant published works. It is worth noting that the figure does not encompass all viable routes for syngas production.

As seen in the first row of Fig. 4, producer gas (PG) or low heating value (LHV) fuel [59] is a gasification product with low LHV due to using air as the gasifying agent and, therefore, the presence of high N\textsubscript{2} content in products. With steam or oxygen or a combination of both utilized as the gasifying agent, the gasification product can be upgraded to fuel with a medium LHV. In general, the gasification process suffers from low thermal efficiencies (~ < 50\%) due to the extra step of vaporizing the moisture contained in biomass and then from tar in the products [101]. Noting that in addition to gas constituents, tar and residue co-exist in the end-product of gasification, but their amounts reduce as high-temperature steam reforming is employed, as seen in Fig. 5. Thus, gasification fuel presumably creates concerns of NOx emissions (due to probably high N\textsubscript{2} content) and deposit formation in the combustion chamber, which should be considered when this fuel is being used as an IC engine fuel. Several IC engine related studies, particularly with SI engines, with gasification fuels have been investigated so far, which will be discussed in section 3.

In the second row of Fig. 5, reformate or reformer gas (RG) is a reforming reaction product, which often has high H\textsubscript{2} and CO contents with negligible N\textsubscript{2} and high heating value. RG can be economically produced with in-situ methods, which will be discussed partially in section 3 (sub-sections of 3.2.2, and 3.3) and comprehensively in section 4 (on-board fuel reforming technologies).

The overall purpose of using syngas as a primary or secondary IC engine fuel is to benefit from renewable energy sources and clean power conversion technologies without scarifying efficiency, power derating, and pollutant emission formation of engines fueled with syngas [102, 103]. However, its advantages are dependent on the physicochemical properties of syngas (i.e., the amount of CO and H\textsubscript{2}) (see section 2), the type of combustion engine (see section 3), and the fuel reforming technique used for on-board syngas production (see section 4).

1.4. Historical use of syngas as an engine fuel

The first application of syngas in vehicles was reported in the 1920s when German engineer Georges Imbert developed a wood gas generator for automobile use [104]. The gases were cleaned and dried, and then fed into the vehicle’s combustion engine. Later, during World War II, shortages of petroleum fuels led to further development of wood gas vehicles [105,106]. By 1945 syngas was used for trucks, buses, agriculture, energy generation, and industrial machinery. After the end of World War II, the application of syngas was changed to integrated gasification combined cycles (IGCC) for stationary power generation. This could be due to less interest in syngas usage in IC engines related to the sharp drop in global oil price and intensified ambitions towards high power engines by increasing the anti-knock index (AKI) of gasoline fuel. The 1950s and 1960s are recalled as the “Power Wars” age [107]. The potential of syngas production and application in a low compression ratio SI engine fueled with a syngas-methane mixture was studied in 1956 by Szezich [108]. Later, further interest in biomass-based fuel application in engines was sparked by the oil crisis in the mid-1970s [109]. Simultaneously, in response to the oil price shocks, US Congress passed the first national standards for tailpipe-out emissions to increase miles per gallon (mpg) of passenger vehicles within ten years [110], which was the onset of adopting further stringent regulations for oil-based fuels. As already mentioned, by that time, syngas use was mainly limited to IGCC for stationary power generation [40,111,112], and as an intermediate to produce other biofuels [113,114].

On the other hand, fuel reforming has been used for producing syngas industrially for more than 70 years [115], but the concept of compact on-board reforming for engine applications dates back to the 1970s [116]. Investigations carried out in 1973–1975 in the US with a Chevrolet car with an engine equipped with a syngas generator demonstrated a decrease in petrol consumption by 26\% when driving according to the Federal Drive Cycle CVS-3 [117]. On-board fuel reforming was first practically applied to a carbureted gasoline engine through a project named “Boston Reformed Fuel Car” by Newkirk and Abel [118], which had an on-board non-catalytic system operated at higher than T = 1100 ◦C for the steam reforming reactions of gasoline.

Martin [119] at the University of Arizona demonstrated a better concept of this project using a catalyst to reduce the temperature of the steam reforming of gasoline to around T = 620 ◦C. In the meantime, Houseman and Cerini [120] from the Jet Propulsion Laboratory (JPL) evaluated on-board hydrogen generation by adding partial oxidation reforming to steam reforming along with the catalyst to perform the whole reforming process for both hydrocarbon and alcohol feedstocks fueled SI engine. A series of works from Lindström and Sjöström [121–123] at the Royal Institute of Technology (Sweden) was seemingly the first investigation on directly using the recirculated exhaust gases as the primary heat supplier for driving the endothermic reactions of the steam reforming process and as species that can participate in the reforming process. At the University of Birmingham, Jones [124,125] evaluated the feasibility of this concept as exhaust-gas reforming in more detail by incorporating the exhaust gases and using the entire fuel feedstock in the reforming process. For more reading on this topic, there are two notable reviews in the literature [126,127], and additional discussions are provided in section 4.

The development of syngas-fueled IC engines was not commercialized because of the low lifespan of the catalysts and tightening of NOx emission standards. However, research on syngas as a potential fuel for IC engines in transportation has gained much interest in recent decades with advances in catalysts and the potential for on-board generation through waste heat recovery (WHR). An average of 30\% substitution of fossil fuels by syngas has been proposed, based on extrapolating from the current EU Directives [128,129]. For further information, several review papers [27,51,59] and a book chapter [29] have been published on the historical and trends of syngas for power generation.

1.5. Scope and structure of the current review

There are many studies in the literature on the use of syngas in different types of IC engines, and it has been shown that syngas can be used as a renewable and alternative low-carbon fuel for both spark ignition (SI) and compression ignition (CI) engines [130–133]. However, there are still numerous subjects such as on-board syngas production and application in advanced combustion strategies that require further investigation and review. This work is focused on determining syngas’ potential as a renewable IC engine fuel in transportation. To do this:

- Section 2 presents the fundamental physicochemical characteristics of syngas, which ultimately help us perceive the combustion behavior of syngas as an IC engine fuel under engine-relevant conditions. Due to the composition variability of syngas, various H\textsubscript{2}/CO...
Other side reforming reactions that may take place \[99,100\].

Table 3

<table>
<thead>
<tr>
<th>Reforming process</th>
<th>Chemical formula</th>
<th>Enthalpy of reaction (kJ mole(^{-1}))</th>
<th>Characteristics</th>
<th>Advantages</th>
<th>Disadvantage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steam Reforming (SR)</td>
<td>(C\text{H}_x + \frac{x}{2}\text{H}_2\text{O} \rightarrow x\text{CO} + \left(\frac{x}{2} + \frac{y}{2}\right)\text{H}_2)</td>
<td>(\Delta h = +1259)</td>
<td>Endothermic</td>
<td>Highest H(_2) generation (H(_2)/CO = 3:1 by vol.)</td>
<td>Highly endothermic</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Low rate of hydrogen production</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Need significant quantity of water</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Complex system regarding working in high temperature</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Careful thermal management (S/C ratio control)</td>
<td></td>
</tr>
<tr>
<td>Partial Oxidation Reforming (POX)</td>
<td>(C\text{H}_y + \frac{y}{2}\text{O}_2 \rightarrow x\text{CO} + \frac{y}{2}\text{H}_2)</td>
<td>(\Delta h = -676)</td>
<td>Exothermic</td>
<td>Simple system (absence of external heat and water) and compactness</td>
<td>Less fuel flexibility (only certain fuel)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Rapid start</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fast response to temperature and reactant changes</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Non have thermal management issue</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>High fuel-type flexibility</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Simple System (lack of water and external heat requirements)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Compact</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fast to start</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H(_2) and CO selectivity is small, because the device uses two different catalyst types</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>During load changes and start-up, careful control system is required to balance SR and POX</td>
<td></td>
</tr>
<tr>
<td>Autothermal Reforming (ATR)</td>
<td>(C\text{H}_y + \frac{y}{2}\text{H}_2\text{O} + \left(\frac{x}{4} + \frac{y}{2}\right)\text{O}_2 \rightarrow x\text{CO} + \frac{y}{2}\text{H}_2\text{O})</td>
<td>Combination of exothermic and endothermic (thermally neutral)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 With assuming that fuel is n-octane, and reactants and products are both at 273.15 K and 1 bar.

Table 4

Other side reforming reactions that may take place \[99,100\].

<table>
<thead>
<tr>
<th>Reforming process</th>
<th>Reaction</th>
<th>Enthalpy of reaction (kJ mole(^{-1}))</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry reforming (DR)</td>
<td>(C\text{H}_x + x\text{CO}_2 \rightarrow 2x\text{CO} + \frac{x}{2}\text{H}_2)</td>
<td>(\Delta h = +1588)</td>
<td>Lower H(_2) yield than SR (H(_2)/CO = 1:1 by vol.). Likely to happen at high temperature and low pressure.</td>
</tr>
<tr>
<td>Combustion (complete oxidation)</td>
<td>(C\text{H}_y + \left(\frac{x}{4} + \frac{y}{2}\right)\text{O}_2 \rightarrow x\text{CO}_2 + \frac{y}{2}\text{H}_2\text{O})</td>
<td>(\Delta h = -5116)</td>
<td>If enough O(_2) is available.</td>
</tr>
<tr>
<td>Water-gas shift (WGS)</td>
<td>(\text{CO} + \text{H}_2\text{O} \rightarrow \text{CO}_2 + \text{H}_2)</td>
<td>(\Delta h = -41)</td>
<td>A route to CO purification and thus increased H(_2) yield at low temperatures.</td>
</tr>
<tr>
<td>Methanation 1</td>
<td>(\text{CO} + 3\text{H}_2 \rightarrow \text{CH}_4 + \text{H}_2\text{O})</td>
<td>(\Delta h = -206)</td>
<td>H(_2) will be consumed to increase CH(_4) yield.</td>
</tr>
<tr>
<td>Methanation 2</td>
<td>(\text{CO}_2 + 4\text{H}_2 \rightarrow 2\text{CH}_4 + 2\text{H}_2\text{O})</td>
<td>(\Delta h = -165)</td>
<td></td>
</tr>
<tr>
<td>Boudouard</td>
<td>(2\text{CO} \rightarrow \text{CO}_2 + \text{C})</td>
<td>(\Delta h = -172)</td>
<td>Undesired reaction in catalytic reforming</td>
</tr>
<tr>
<td>Thermal Decomposition</td>
<td>(\text{C}x\text{H}{y\text{H}} \rightarrow \text{CH}_4 + \text{C}x\text{H}{y\text{H}})</td>
<td>Endothermic</td>
<td>May occur on the catalyst and increase CH(_4) yield.</td>
</tr>
<tr>
<td>Hydrogenolysis</td>
<td>(\text{C}x\text{H}{y\text{H}} + \frac{y}{2}\text{H}_2 \rightarrow \text{CH}_4 + \text{C}x\text{H}{y\text{H}})</td>
<td>Exothermic</td>
<td>May occur on the catalyst and increase CH(_4) yield.</td>
</tr>
</tbody>
</table>

1 Assuming that the fuel is n-octane, and reactants and products are both at 273.15 K and 1 bar.

Fig. 4. Syngas terminology used in the current review paper.
mixtures are considered in the first place, then the effects of diluents are discussed.

- To better understand the effects of syngas on combustion, emissions, performance of IC engines with conventional and advanced combustion strategies, section 3 reviews the syngas application in SI, HCCI and dual-fuel engines. In SI engine section, the power generation applications of the syngas-fueled engines are also included.

- The transition from syngas as an IC engine fuel to syngas as a transportation fuel requires producing and carrying the syngas onboard a vehicle, such that both fuel economy and engine efficiency can increase. We discuss all proposed on-board fuel reforming technologies compatible with IC engine in section 4 to achieve these goals, especially paying attention to waste heat recovery (WHR) from engine exhaust.

- The final section represents the summary and demonstrates suggestions to make a feasible future for syngas as a transportation fuel.

2. Fundamentals

2.1. Physicochemical properties of syngas relevant to engines

Table 5 lists the physicochemical properties of typical syngas mixtures compared to hydrogen, methane, biogas, and conventional fossil fuels. It is apparent that syngas has the highest laminar flame speed and widest flammability limits amongst all fuels after hydrogen, making it beneficial for application as a secondary fuel in IC engines, especially at low engine loads. It means that a wide range of stable operation (from rich to lean) could be achieved with syngas fuel, especially promoting the ultra-lean combustion in spark-ignition engines. The volumetric energy content is the main parameter determining the fuel injection system design and required storage tank for vehicular applications [134].

Although there is no available data for the minimum ignition energy of syngas mixtures, it can be concluded that the high hydrogen content in syngas could facilitate cold start and guarantee rapid ignition [135], considering the unwanted ignitions, specifically pre-ignition and backfire (see sub-section 3.1.1). A scarcity in data has also continued for the quenching distance, and a lower value means a more complete combustion [136], but with a higher heat transfer losses.

Detailed combustion characteristics of syngas mixtures for gas turbine engine-relevant conditions have already been reviewed by Lee et al. [137] and Jithin et al. [138]. In the following section, characteristics of the ignition delay times, laminar and turbulent flame speeds of syngas mixtures under engine-relevant conditions are reviewed and discussed with a focus on those aspects which have not been addressed carefully in previous reviews.

Table 5

Physicochemical properties of a typical syngas mixtures compared to other fuels [59,139-143].

<table>
<thead>
<tr>
<th>Properties</th>
<th>Syn1</th>
<th>Syn2</th>
<th>Syn3</th>
<th>Syn4</th>
<th>Syn5</th>
<th>Biogas</th>
<th>Hydrogen</th>
<th>Carbon monoxide</th>
<th>Methane</th>
<th>Gasoline</th>
<th>Diesel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density [kg/m³]</td>
<td>0.54</td>
<td>0.67</td>
<td>0.68</td>
<td>1.05</td>
<td>1.04</td>
<td>1.11</td>
<td>0.0824</td>
<td>1.145</td>
<td>0.656</td>
<td>719.7</td>
<td>832</td>
</tr>
<tr>
<td>Molecular weight [kg/kmol]</td>
<td>13.91</td>
<td>15</td>
<td>15.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stoichiometric air/fuel ratio [kg/kg]</td>
<td>5.3</td>
<td>4.58</td>
<td>7.23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flammability limits [vol.% in air]</td>
<td>24.60</td>
<td>6.06</td>
<td>5.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flammability limit [ϕ]</td>
<td>0.2-7.2</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autoignition temperature [K]</td>
<td>980</td>
<td>873-923</td>
<td>873-923</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum ignition energy [mJ]</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laminar flame speed [m/s]</td>
<td>1.0</td>
<td>1.8</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adiabatic flame temperature [K]</td>
<td>2584</td>
<td>2385</td>
<td>2400</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quenching distance [mm]</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower heating value [MJ/kg]</td>
<td>15.7</td>
<td>17.54</td>
<td>24.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volumetric energy content [MJ/m³]</td>
<td>8.47</td>
<td>11.75</td>
<td>16.59</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2 at NTP: normal temperature (T=298.15 K) and pressure (p=1 bar).
3 at ϕ=1 (stoichiometry).
4 A typical reformate, + A typical producer gas.
2.2. Ignition delay time (IDT)

The ignition delay times, IDTs, of syngas mixtures were measured in earlier studies mostly using a shock-tube apparatus confined to low pressure (up to 2.2 bar) and low-to-high temperature (up to 2850 K) conditions, which are less applicable to typical gas turbines and IC engines operating conditions [144–150]. The emergence of advanced integrated system technologies like syngas-fired IGCC as an alternative to conventional coal-fired power plants, together with reported discrepancies between measurements and reaction model predictions of IDTs of syngas mixtures (see Fig. 6), has provoked researchers to reproduce experimental measurements and refine the reaction kinetics for syngas oxidation at higher pressures and temperatures [151,152]. Thus, some later studies were conducted using rapid compression machines (RCM) [152–154] and shock-tubes [155,156] at higher pressures, suggesting the observed discrepancies between measured and calculated IDTs at these pressures are due to not considering the overall activation energy correctly, $\text{HO}_2/\text{H}_2\text{O}_2$ chemistry dominance in the chain-propagation regime, and particularly the role of $\text{CO} + \text{HO}_2 = \text{CO}_2 + \text{OH}$ reaction. Those works were completely reviewed in [157,158].

Recently, in order to justify the observed discrepancies, Mansfield and Wooldridge [159] indicated two distinct ignition behaviors attributed to the strong (or spontaneous ignition which is referred to as spatially homogeneous ignition) and mild ignition (or deflagration ignition which is characterized by the onset of localized reaction sites) for a syngas, with a molar ratio of $\text{H}_2/\text{CO} = 0.7$, mixed with air ($\text{O}_2$/inert gas molar ratio = 1/3.76) at $\phi = 0.1$ and $p = 20.2$ bar (Reprinted from [156] with permission of Elsevier).

As mentioned earlier, a review by Lee [137] evaluated IDTs of syngas mixtures at different H_2/CO ratios with different pressures ranging from 1.6 to 49 atm, by collecting data from Krejci et al. [161,162], Mathieu et al. [163], Vasu et al. [164], Keromnes et al. [165], Gersen et al. [166], and Mittal et al. [152], as shown in Fig. 8. Relying on this review and related works, the effects of various parameters on IDTs of syngas mixtures are summarized below:

Temperature and equivalence ratio (ϕ) effects:
While increasing the temperature shortens the IDT substantially, the IDT of the various compositions of H_2/CO syngas at lean equivalence ratios (ϕ) has a decreasing trend, but only at higher pressures, e.g., 49 atm, as seen in Fig. 8(h). Conversely, at lower pressures, e.g., 7.9 atm, the IDTs can have an increasing trend by reducing the ϕ, which is the case of Fig. 8(b).

Pressure effect:
The influence of pressure on IDT of 50:50 H_2/CO at $\phi = 1.6$, and at $p = 8$, 12, and 32 atm are shown in Fig. 9 (left). The complex behavior of IDT can be seen with altering pressure at different temperature regions. At high temperatures (>1250 K), higher pressures significantly shorten the IDT, while at intermediate temperatures (1110 K < T < 1250 K), increasing pressure from 1.6 to 32 atm exhibits a mild decreasing and even increasing decreasing trend for IDT, which implies that a competition effect may exist. Actually, this was attributed to the pressure dependence of H_2 ignition [165], which is the competition between the...
chain branching reaction (H + O₂ → O + OH) that dominates in the high-temperature region, and the pressure-dependent propagation reaction (H + O₂(+M) → HO₂(+M)) that dominates in the low-temperature region. Moreover, the latter reaction is more favorable at high pressures and is also pressure-dependent, inhibiting the chain branching and resulting in longer IDT at elevated pressures, as seen in Fig. 9 (right).

CO effect:
Though the H₂-chemistry is dominant at low CO content, the CO has an inhibiting effect on the IDTs of H₂/CO fuel due to the decrease in activation energy. Lower activation energy can be detected in the high-temperature region, followed by a very steep increase at around T = 1000 K. The inhibition effect is much more prominent as pressure increases from ~15 to 30 bar; that is, the CO oxidation is retarded by increasing pressure. Beyond p = 30 bar, the incremental variation in the inhibiting effect would be trivial. These mentioned trends can be seen in the labeled pictures of (a), (c), (e), and (g) in Fig. 8. For high H₂ concentration (i.e., CO < 60%), adding CO to H₂ did not lead to a significant increase in IDT, as shown by Gersen et al. [166] (see Fig. 8 (a)). Further discussions regarding the CO’s inhibiting effect have been reported in [152,166].

CH₄ effect:
Under engine-relevant conditions, it has been reported [167–169] that the addition of H₂ has ignition-promoting effect in CH₄ mixtures, with substantially reduced IDT by replacing CH₄ with a 50% mole fraction of H₂, particularly at higher temperatures. For the purpose of IDT measurement in CH₄/H₂/CO/oxidizer mixtures, Gersen et al. [166] carried out experiments and calculations at ϕ = 0.5 and 1, p = 20-80 bar, and T = 900-1100 K conditions using an RCM and the SENKIN code [170]. With the addition of CH₄ (> 50% by mole fraction) to the H₂/CO-oxidizer mixture, CO, with low mole fraction (≤ 30%), had no inhibiting effect on either IDTs of CH₄/H₂/CO or CH₄/CO, while CH₄ had this effect, particularly at high temperatures, as illustrated in Fig. 10 (a). In contrast to CO, CH₄ with an even low mole fraction (~ 6%) in the...
fuel showed an ignition-inhibiting effect due to OH consumption by
\[
\text{CH}_4 + \text{OH} = \text{CH}_3 + \text{H}_2\text{O},
\]
as can be seen from Fig. 10 (b); noting that the ignition stage is depicted as a two-step ignition process, i.e., \(\tau_{\text{ign1}}\) and \(\tau_{\text{ign2}}\), due to the presence of two separate regions of fast pressure increase on the recorded pressure-time history plot. This behavior has not been explicitly reported before [171] for syngas fuel mixtures. The experimental works measuring IDTs of syngas mixtures under engine-relevant conditions are summarized in Table 6.

There have been several correlations proposed in the literature for IDT calculation, which can provide a means to estimate syngas ignition properties in a simplified form, where detailed kinetic models are computationally expensive. Walton et al. [154] performed ignition studies of simulated syngas mixtures of \(\text{H}_2\), \(\text{CO}\), \(\text{O}_2\), \(\text{N}_2\), and \(\text{CO}_2\) in an RCM. The IDT data spanned pressures between \(p = 7.1-26.7\) bar, temperatures from \(T = 855-1051\) K, equivalence ratios from \(\phi = 0.1-1.0\), oxygen mole fractions from 15% to 20% and \(\text{H}_2\text{-CO}\) ratios from 0.25 to 4.0 (molar basis). Regression analysis yielded the following best-fit to the data set:

\[
\tau_{\text{ign}} = 3.7 \times 10^{-6} p^{-0.3} \phi^{-0.4} x_{\text{O}_2}^{-0.4} \exp\left(\frac{12500}{RT}\right)
\]

In this correlation, \(\tau_{\text{ign}}\) denotes the ignition delay time [ms], \(p\) pressure [bar], \(T\) temperature [K], \(\phi\) the equivalence ratio, and \(x_{\text{O}_2}\) the oxygen mole fraction. The experimental data were also in good agreement with model predictions based on the detailed mechanism proposed by Davis [151].

As a final note, it is also important to study ignition delay times of syngas blended with other gases such as \(\text{CO}_2\) and \(\text{H}_2\text{O}\), since syngas is not suitable as a sole fuel for some type of IC engines (as will be discussed in section 3). The effects of diluents like \(\text{H}_2\text{O}\) [163,173], \(\text{CO}_2\) (negligible) [163], impurities (e.g., trimethylsilanol) [171] and \(\text{NH}_3\) (negligible) [163] on IDT of syngas mixtures have been studied in only a few studies. It was suggested that \(\text{H}_2\text{O}\) has contradictory impacts on the IDTs under various pressures, increasing IDT at high pressures as
HO$_2$/H$_2$O reactions become more profound, thereby increasing the reactivity of the mixture [173]. Although substantial progress has been obtained in our awareness of IDT for H$_2$/CO syngas, there are still few studies to achieve a general description for a representative H$_2$/CO/diluents/(possible) impurities syngas under engine-relevant conditions.

2.3. Methane number (MN)

In the IC engine community, to isolate the knock propensity of the fuel from the specific engine design and condition, a practical measure was required to indicate the ability of a fuel to resist knock [174]. Due to this, octane number is defined, and some octane rating methods like the motor octane number (MON) have been established by ASTM for liquid fuels based on primary reference fuel blends, in which iso-octane-like fuel is assigned with ON (or MON) of 100 and n-heptane-like fuel with ON (or MON) of 0; which means fuels with high MON resist auto-igniting more than those with low MON. Extending this concept to gaseous fuels leads to the so-called methane number (MN), taken from the work done for the Austrian AVL Company through 1964-1969 [175]. The system rating of MN employs a reference fuel blend of methane and hydrogen, by which methane and hydrogen are given to MN of 100 and zero, respectively. CH$_4$/CO$_2$ mixtures were also considered as reference mixtures for MN beyond 100, defining 100 plus the volume of existing CO$_2$ for MON; for example, 20%CO$_2$ + 80%CH$_4$ (by vol.) results in MON of 120 while 20%H$_2$ + 80%CH$_4$ (by vol.) leads to MON of 80. Therefore, it is expected that an engine fueled with a syngas fuel having a higher CO$_2$ fraction leads to a rise in the upper limit of compression ratio (CR) without knock issue. More generally, once the MN number through this method is determined, regulating both spark timing and CR can be employed to avoid knock, applicable to an engine fuel with either 100% syngas or syngas blended with other gaseous fuels. To determine the MN, some researchers [176-179] have conducted their own procedure and compared it to developed MN programs, such as the AVL Methane program V3.20 [180] and the MWM MN program [181], which are partly looked at in the following.

Generally, the procedure for specifying the MN of tested fuel is basically a comparative basis in which unknown fuel is indirectly compared to a map of reference blends at the same CR via a curve; however, this subject is out of scope for the current review and can be found elsewhere [182,183]. As an alternative approach for indirectly comparing the tested fuels to reference blends, Malenshek and Olsen [182] conducted a direct comparison by developing a test procedure with a computer-controlled gas blending system, minimizing the effects of other uncontrolled variables besides CR, such as ambient temperature and atmospheric pressure, and producing maximum knock by sweeping the air-fuel ratio (rather than $\phi=1$ for indirect comparison). Some results for a wide range of syngas composition are presented in Table 7.

Experimental data, such as that represented in Table 7, were used in the literature to compare with the programs that estimate the MN of natural gas as a function of its composition. It was found that estimates can deviate considerably with respect to experimental data when syngas is considered as fuel [183]. These deviations are mainly caused by the various and high concentrations of carbon monoxide, and especially carbon dioxide (as a knock suppressor) and hydrogen (as a knock propagator) in syngas. The other reason, for example, for early version of AVL program was that carbon monoxide effects are not included. Additionally, pure methane, pure propane, pure hydrogen and a biogas mixture consisting of 60 vol% CH$_4$ and 40 vol% CO$_2$ were examined as reference fuels. Practically all syngas blends were more prone to knock than methane or biogas. Admixtures of higher hydrocarbons were found to substantially increase the knock propensity. This indicates the prominent role of higher hydrocarbons with regard to the knock propensity of fuel gases. Lean equivalence ratios, exhaust gas recirculation, and the addition of water vapor were effective measures to mitigate the risk of knock.

Under the MN determination, hydrogen should have the lowest resistance to knocking, which somehow is not true since some work has presented a research octane number (RON) of around 130 for hydrogen. Also, hydrogen and methane as reference fuels in the MN rating system have very different characteristics in flame speeds and ignition delays, in contrast to those in the ON rating system, which have similar flame speeds [185]. It was seen that the MN could be correlated to the adiabatic flame temperature and laminar flame speed, a high MN fuel having a low adiabatic flame temperature and long flame initiation period [176]. However, compared to H$_2$, propane (C$_3$H$_8$) has shown more knock tendency, which may stem from its lower auto-ignition temperature.

To summarize, there is still no comprehensive consensus to determine the knock propensity of gaseous, namely syngas fuels. The currently potential errors in the MN method, such as various operating conditions of the system and the test procedure, need to be considered in the future studies.

Table 6

Available experimental datasets for ignition delay times of syngas mixtures.

<table>
<thead>
<tr>
<th>Year</th>
<th>Author(s)</th>
<th>Facility</th>
<th>Mixture (by vol.)</th>
<th>p (bar)</th>
<th>T (K)</th>
<th>ϕ (-)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>Mittal et al. [152-153]</td>
<td>RCM</td>
<td>H$_2$/CO$_2$/Ar</td>
<td>15-30</td>
<td>950-1100</td>
<td>0.36-1.0</td>
</tr>
<tr>
<td>2007</td>
<td>Walton et al. [154]</td>
<td>RCM</td>
<td>H$_2$/CO$_2$/Ar</td>
<td>30-40</td>
<td>1100-1600</td>
<td>0.5-1.0</td>
</tr>
<tr>
<td>2007</td>
<td>Peterson et al. [156]</td>
<td>ST</td>
<td>H$_2$/CO$_2$/Ar</td>
<td>20-25</td>
<td>940-1148</td>
<td>0.5-1.0</td>
</tr>
<tr>
<td>2012</td>
<td>Gersen et al. [166]</td>
<td>RCM</td>
<td>H$_2$/Ar</td>
<td>20-25</td>
<td>900-1000</td>
<td>0.5 & 1</td>
</tr>
<tr>
<td>2012</td>
<td>Krejci et al. [161]</td>
<td>ST</td>
<td>H$_2$/CO$_2$/Ar</td>
<td>1.5-3.5</td>
<td>960-2000</td>
<td>0.5</td>
</tr>
<tr>
<td>2013</td>
<td>Kéromnès et al. [165]</td>
<td>RCM & ST</td>
<td>H$_2$/CO$_2$/Ar</td>
<td>1.7-3</td>
<td>914-2220</td>
<td>0.1</td>
</tr>
<tr>
<td>2014</td>
<td>Mansfield and Wooldridge</td>
<td>RCM</td>
<td>H$_2$/CO$_2$/Ar</td>
<td>3-15</td>
<td>870-1150</td>
<td>0.1</td>
</tr>
<tr>
<td>2015</td>
<td>Mansfield and Wooldridge</td>
<td>RCM</td>
<td>H$_2$/Ar</td>
<td>5 & 10</td>
<td>1010-1110</td>
<td>0.1</td>
</tr>
<tr>
<td>2015</td>
<td>Ouyang et al. [172]</td>
<td>ST</td>
<td>H$_2$/CO$_2$/Ar</td>
<td>5-10 25</td>
<td>1100-1700</td>
<td>1.0 / 2.0</td>
</tr>
</tbody>
</table>

2. TMS: Trimethylsilanol which is added to syngas as impurity, 10-100 ppm.

Table 7

Measured MN for various test gases [182].

<table>
<thead>
<tr>
<th>Test gas</th>
<th>H$_2$</th>
<th>CO</th>
<th>CH$_4$</th>
<th>CO$_2$</th>
<th>N$_2$</th>
<th>MN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reformer gas</td>
<td>44.5</td>
<td>2.30</td>
<td>38.1</td>
<td>13.0</td>
<td>2.10</td>
<td>62.4</td>
</tr>
<tr>
<td>Coal gas</td>
<td>22.3</td>
<td>63.1</td>
<td>-</td>
<td>1.30</td>
<td>13.3</td>
<td>30.0</td>
</tr>
<tr>
<td>Wood gas or PG</td>
<td>39.2</td>
<td>23.5</td>
<td>8.50</td>
<td>26.4</td>
<td>2.40</td>
<td>61.4</td>
</tr>
<tr>
<td>Digestor gas</td>
<td>-</td>
<td>-</td>
<td>60.8</td>
<td>37.8</td>
<td>1.50</td>
<td>139.1</td>
</tr>
<tr>
<td>Landfill gas</td>
<td>-</td>
<td>-</td>
<td>60.5</td>
<td>39.5</td>
<td>-</td>
<td>139.5</td>
</tr>
</tbody>
</table>

1. The propane knock index is one of MN alternatives to index knock propensity of gaseous fuels.
engine conditions and heavy hydrocarbon presence in syngas, lead to keep investigating this matter.

2.4. Laminar flame speed (LFS)

Laminar flame speed is a crucial parameter, which results from the net effects of the diffusivity, exothermicity, and reactivity of the mixture [186], and has a strong dependency on pressure, temperature, mixture composition, and equivalence ratio [187]. The LFS of syngas-air mixtures at typical temperatures and pressures (NTP) conditions were extensively reported in [188–194], and Fig. 11 shows an example of published data for LFS of a syngas mixture (H\textsubscript{2}/CO: 5/95 by vol.) at atmospheric and high-pressure conditions. As can be seen, a relatively decent consistency in measured LFS values can be observed among all data, with a maximum variance of 10 cm/s peak-to-peak, while the difference was seen to be larger as pressure increases.

Moreover, the discrepancies among measured LFS data are as high as 40 cm/s at fuel-rich conditions (\(\phi > 2\)) by increasing H\textsubscript{2} concentration by just 10%. Fig. 12 shows that the maximum LFS value increases approximately from 65 in Fig. 11 to 130 cm/s by substituting 20% of CO with H\textsubscript{2} in the syngas mixture. This can be attributed to the wide range of data sets used for extrapolation\(^2\) (to eliminate stretch effects from data), the applied stretch extrapolation model, the chosen flame radius range, and the inhibiting effect of carbonyl compounds coming from the steel containers utilized to store the CO content of syngas. More information on fundamentals and technical possible sources of observed discrepancies and uncertainties are described in [187] and [197] for each distinct fuel-air mixture, and in [198] for spherically expanding syngas flames.

For the high-pressure operating condition, Sun et al. [196] were one of the first groups that conducted the LFS measurement of H\textsubscript{2}/CO mixtures at pressures up to \(p=40\) atm. They substituted nitrogen (N\textsubscript{2}) with helium (He) to increase the Lewis number (L\textsubscript{e}) of the mixture, minimizing flame-front instability\(^3\) due to wrinkling and cell formation over the flame surface. It is also noteworthy that if the ignition energy supplied by the spark plug of a SI engine is not enough to drive the flame front to a minimum radius at which stretch effects are decreased, the propagating flame of a mixture with L\textsubscript{e}>1 can extinguish [199]. Referring back to Fig. 11 and now to Fig. 13 (left) for pressures higher than \(p=10\) atm, it is obvious that increasing initial pressure substantially reduces LFS, which is attributed to hydrodynamic instabilities due to decrease in flame thickness as seen in Fig. 13 (right). Some studies are available concerning the LFS of syngas mixtures at higher pressure [162, 165, 194-196, 200,201]; most of them used helium rather than nitrogen.

High-H\textsubscript{2} syngas, the target fuel for IC engines, is more susceptible to flame front instabilities, taken from LFS of pure H\textsubscript{2}-oxidizer mixtures [19]. Both thermal-diffusive and hydrodynamic instabilities are involved in amplifying the flame front’s destabilization by affecting the Lewis number and flame thickness, respectively. So, as compared with CO, H\textsubscript{2} has a more dominant effect on flame stabilities [202]. To measure LFS of syngas with H\textsubscript{2}/CO: 85:15% (by vol.) at elevated pressures up to \(p=10\) bar and lean conditions (\(\phi = 0.5-0.6\)), which is relevant to IC engines with premixed charge, Goswami et al. [203] conducted experiments using the heat-flux method and then compared the resulting LFS with those obtained from the available mechanisms [165,204-206] by kinetic modeling. They observed significant differences between experiment and modeling, attributed to the uncertainty in key reactions, and suggested that further studies are requisite to modify their rate

\(^2\) To correctly determine the LFS, particularly in spherical propagating flame at elevated pressures, stretch effects due to flame curvature and flame unsteadiness should be subtracted from experimental data to avoid scattering the data. Stretch effects can be eliminated by using non-linear extrapolation equations.

\(^3\) Two common intrinsic flame instabilities have been pointed out within the present work, the thermo-diffusivity instability that is characterized by Lewis number and the hydrodynamic (as known as the Darrieus-Landau) instability, which is due to density jump across the flame-front, that is characterized by the flame thickness and thermal expansion ratio.
constants. Later, Zhang et al. [207] studied the LFS of the same lean high-H\textsubscript{2} syngas of the previous study [203] at elevated pressures but using the spherical flame method. Fig. 14 depicts that the measured LFS is seen to diminish monotonically as pressure increases, due to the fact that $S_L \sim p^{0.15}$ [197] and the overall order of reaction n is normally less than 2, due to the third body, inhibiting the $H + O_2 + M \rightarrow HO_2 + M$ reaction. As can be seen from Fig. 14, while mechanisms have better predicted the results of the latter study compared to that of the former study, the reason is unclear and needs additional study. In addition, the preferential diffusivity of high-H\textsubscript{2} syngas must be noted here due to the high mass diffusivity of H\textsubscript{2} [19], as it plays a vital role in the future of flame front structure [208]. Interestingly, at elevated pressures and lean conditions but lower H\textsubscript{2} content (35:65 H\textsubscript{2}:CO mixtures), syngas laminar flames were determined [209] to be extremely unstable, resulting in cellular structures in the spreading flame front surface, where $S_L \sim p^{-0.50}$ having a fairly small reduction in pressure compared to lean methane flames where $S_L \sim p^{-0.30}$. As a result, it is challenging to measure the LFS of syngas-air mixtures free of flame instability effects without diluents. It is almost impossible to obtain accurate LFSs before the onset of flame instabilities at lean and elevated pressure conditions [210].

Based on the above discussions and Refs. [211,212], it is worth noting that lean high-H\textsubscript{2} syngas (H\textsubscript{2}/CO) flames at elevated pressures tend to wrinkle and exhibit cellularity even at the early stage of kernel development. Such unstable cellular flames can be self-accelerated by
gradually increasing their frontal surface area, and, thus, this should be noted as a reason for knocking combustion in SI engines. Both intrinsic flame instabilities and the acceleration characteristic of the flame front, at decreased critical (minimum) flame radius, result in more difficulties in accurately measuring the LFS. Accordingly, Xie et al. [211] proposed an updated method, based on Bradley et al. [213], to obtain the LFS at various flame radii without the acceleration effect. Identification and characterization of self-acceleration of syngas flame are still in their infancy and an ongoing topic for research.

As H₂/CO mixtures do not represent real syngas and always refer to bottled gas or simulated gas, the effect of dilutions with CO₂, N₂, H₂O, at least on LFS of H₂/CO mixtures must be investigated by scrutinizing the thermal, chemical, and transport impacts of each of them. It has been separately reported in [195,200,202,214,215] that CO₂ decreases the flame temperature, thereby reducing the rate of H₂/CO oxidation and thus the LFS, which means the chemical effect of CO₂ is dominating. Han et al. [200] measured the LFS of H₂/CO (3/1, 1/1, and 1/3 by vol.) with CO₂ dilution for elevated pressures p=1, 4, and 10 bar and temperatures T=298, 375, and 450 K using the outward spherical flame propagation method, and indicated that increasing CO₂ dilution linearly decreases the LFS and directly affects the elementary reaction rates. A comprehensive study by Vu [202] revealed that CO₂- and N₂-diluted syngas-air flames are more sensitive to stretch effects than a He-diluted one because of the reduced Markstein number with increasing diluent concentrations. Also, from Fig. 15, it can be seen that the effective Lewis number (defined as a combination of fuel and oxidizer Lewis numbers) is reduced in both cases of CO₂ and N₂ dilution and will be more prone to thermo-diffusive instability at lean conditions; according to such trend, Parthap et al. [214] showed the minimum permissible quantity of the equivalence ratio to achieve flame stability would be shifted from 0.6 to 0.8 for increasing CO₂ concentration from 0 to 30%, respectively, for a H₂/CO: 1/1 (by vol.) mixture. A recent study [216] showed that for a diluted H₂/CO mixture, the flame would be more stabilized by increasing ϕ when the H₂ fraction is more than 50%. Also, it was shown that the flame instability of high-H₂ syngas (as H₂/CO mixture) scarcely varies with increasing CO₂ or N₂ dilution fraction compared to a high-CO syngas whose flame becomes more stable with rising dilution.

While decreasing LFS with both CO₂ and N₂ addition has been proven [217–222], syngas-air mixtures have higher LFS with N₂ dilution, which has a thermally dominant impact [222]. Therefore, increasing CO₂ dilution has a more substantial inhibiting effect on LFS due to its direct engagement in the chemical reactions through CO + OH ↔ CO₂ + H [214,223], and hence it is necessary to evaluate it with more caution in predicting syngas containing CO₂ by a reaction model.

The LFSs of H₂O diluted syngas-air mixtures have been explored by some researchers at atmospheric conditions using both stagnation [224] and spherical [193] flame methods, consistently concluding that H₂O addition will non- and monotonically reduce the LFS of CO- and H₂-rich syngas, respectively. For higher pressures up to p=10 bar, Santner et al. [225] found a monotonic drop in mass burning rate with increasing H₂O concentration for an equimolar H₂/CO syngas. Besides, they indicated that the inhibitory effect of H₂O addition would be increased with increasing pressure. In a research on CH₄ blended with H₂/CO, Zhou et al. [226] conducted measurements and numerical simulations at T_{in}=303 K, ϕ = 0.6–1.5 and p = 0.1–0.5 MPa with a wide range of bio-syngas (H₂/CO/CH₄) compositions. They experimentally determined and measured LFS of premixed bio-syngas/air flames under various compositions of fuel mixtures, as depicted in Fig. 16, in which αBasis, as a base for comparison, is set to H₂/CO/CH₄ = 40/40/20 (% by vol.) with constant mole ratios among species; and αH₂-60 equals H₂/CO/CH₄ = 60/26.6/13.3. It was observed that the Li mechanism [204] is well in line with the measured LFS of premixed bio-syngas flames, particularly under fuel-lean conditions. There is a slight difference between the expected findings and the experimental ones for...

![Fig. 16. Laminar flame speed of H₂/CO/CH₄/air mixtures at various compositions (Reprinted from [226] with permission of Elsevier).](image-url)

![Fig. 15. Effective Lewis number at rich/lean conditions and room temperature with the (Reprinted from [202] with permission of Elsevier).](image-url)
fuel-rich conditions.

It can also be seen in Fig. 16 that the peak value of LFS moves towards fuel-rich conditions with increasing H2 content in the mixture due to the very high diffusivity of hydrogen [227], which has a severe, increasing trend with ϕ. Conversely, the addition of CH4 to the mixture leads to shifting the peak value to the lean side with a quite large reduction in the quantity of LFS due to the inherent slower LFS of CH4. Also, with an increase in CO fraction in the fuel, the LFS is not much influenced. The thermal and chemical kinetic analysis shows that the addition of CO has much more impact on the adiabatic flame temperature but plays a minor role in its chemical kinetic impact as opposed to the addition of H2 [228]. The influence of H2 addition to LFS is mainly due to its chemical effect at lean and stoichiometric conditions. However, with the addition of around 75% CO, the rise in laminar flammability is attributed to the high adiabatic flame temperature (thermal effect) [229].

The effects of inert gases like N2, CO2, and H2O and CH4 on the laminar flame speeds of syngas, in the form of H2/CO, were briefly reviewed here and are extensively discussed in [137,230]. The LFS of syngas in the form of producer gas (PG) have also been addressed in [231–235], which is the case of 100% syngas fueled IC engines in stationary applications. Monteiro et al. [234] investigated the impact of various compositions of PG generated through fluidized bed, updraft, and downdraft gasification on the LFS, using the spherical flame method. Fig. 17 illustrates that the LFS of two studied PG over a wide range of ϕ have a similar trend to those of syngas with high CH4 content, although the maximum values are at stoichiometric conditions. Tippa et al. [236,237], concluded that PG combustion with higher H2, CO, and N2 fractions and comparatively lesser amounts of CH4 and CO2 are stable to preferential diffusion effects and predictable for minor changes in composition.

Other researchers have tried to determine the LFS of syngas blended with hydrocarbon fuels [238–240] and with exhaust gas recirculation (EGR) [241,242], which is the primary case in syngas fueled engines through reforming fuel on-board a vehicle, of which detailed discussions can be found in sections 3 and 4. For instance, Kwon and Min [238] calculated the LFS of syngas/iso-octane-air mixtures by a 1-D model under conditions relevant to SI engines. The EGR effect was also included using different fractions of burnt gas up to 0.5 in volume. The LFS of the studied mixtures were observed to be proportional to the initial temperature, LHV, the fraction of syngas in the fuel mixture and H2 fraction in the syngas, and inversely proportional to the initial pressure, deviation of equivalence ratio from the stoichiometric condition, and the fraction of burnt gas. A few studies have also considered the combustion characteristics of syngas mixtures in premixed SI engines [73,243,244]. However, the extent of accuracy and reliability in the results of such studies are vastly dependent on the capability of the developed reaction mechanisms in predicting the LFS under desired simulation conditions.

Finally, measured LFS data can establish correlations [245], which is a simpler and more convenient approach than detailed simulations with kinetic mechanisms, for easy use in estimating the LFS of syngas-based mixtures during engine combustion simulations [191]. However, those are only applicable to regions far away from stretch and ignition energy effects. An example of the kind of LFS correlation is given below, which is a function of equivalence ratio, temperature, and pressure [194]:

$$S_\infty = S_{\infty 0}(1 + a(\phi - 1) + b(\phi - 1)^2)(\frac{T}{T_0})^c (\frac{p}{p_0})^d$$

(2)

where $S_{\infty 0}$ is the reference LFS at certain point ($\phi = 1$, $T_0 = 298.15$ K, $p_0 = 1$ bar), ϕ the equivalence ratio, T the temperature in K and p the pressure of the mixture in bar. The fitting coefficients, a, b, c, and d were obtained for different hydrogen concentrations using a nonlinear, least-squares method. This correlation is valid only for non-cellular laminar flames within the equivalence ratio range of 0.6 < ϕ < 5. The pressure and temperature ranges are a function of the equivalence ratio and hydrogen fraction.

Semi-empirical correlations are also available to predict the LFS of H2/CO/air flames with N2 and CO2 dilution [246]. Although such correlations are preferred to comprehensive chemical kinetic models in terms of computational cost, they have been restricted to specific conditions, beyond which the predictions are inaccurate. This is because many earlier correlations were based on a small collection of experimental data, mostly carried out over a narrow range of engine operating conditions [73,191,196,238,245,247,248]. In addition, no flame speed correlation is available that allows the calculation of LFS for blends of syngas and gaseous fuels. For gaseous blends, blending has a non-linear effect on the LFS, resulting in complicated mathematical correlation equations to capture this behavior [249]. Therefore, the use of reaction kinetics calculations is preferred for the combustion study of syngas-fueled engines. With this in mind, data-driven machine learning (ML) algorithms [250], as a more recent solution, can be trained to overcome this issue based on a large dataset having high accuracy to anticipate the LFS of syngas with large fluctuations in their composition at various conditions. This approach also allows more researchers to participate in developing syngas-based combustion systems without requiring the in-depth knowledge that only qualified experts have.

In summary, instabilities induced by high H2-containing syngas at elevated pressures make LFS measurements with reasonable accuracy impossible. In general, with an increase in pressure and concentration of H2, the LFSs for premixed H2/CO-oxidizer mixtures reduce and increase, respectively. Diluting syngas with N2, CO2, or H2O decreases the LFS. The maximum flame speed occurs at fuel-rich conditions, while the maximum flame temperature occurs near the stoichiometric condition. Also, the LFS has shown a strong dependency on pressure, inlet temperature, and equivalence ratio. It was shown that extensive modifications in kinetic mechanisms should be taken into account. There is a broad experimental data collection available in the literature for the combustion of syngas with various concentrations of H2/CO. Nonetheless, research on syngas mixed with other gases such as CO2 and H2O is still limited, and a few experimental data are available for the LFS of syngas mixed with CH4 at elevated pressures [158,195,239,251]. New measurements with thorough uncertainty analysis on the LFS of syngas (H2/CO + diluents) solely and blended with other fuels (like gasoline, diesel, etc.), which are of great interest in vehicular applications at elevated pressures and engine-relevant conditions, will help us to understand syngas combustion behavior properly.

2.5. Turbulent flame speed (TFS)

Like the LFS, the turbulent flame speed (TFS), S_T, is of interest and is
defined when the surface area of thin laminar flames interacting with the turbulent flow is increased. Unlike LFS that exclusively depends on mixture properties, TFS is also a function of turbulent flow, enclosed by the IC engine geometry. So, measuring TFS is sensitive to the experimental rig used, and it was confirmed [252,253] that it is an experiment-dependent variable. Turbulent spherical flames propagating inside the IEC engine consume the unburned mixture when the flame-front enters to reaction zones, thereby determining the heat release rate. From an engine viewpoint, TFS is dependent on trapped-mass conditions, residual turbulence at trapping, and the mean piston speed, while processes such as auto-ignition, combustion, and heat conduction are also affected [254]. Generally, Lipatnikov and Chomiak [253] demonstrated that flame stretch and instability could significantly affect TFS, depending on the conditions and mixture properties.

Because of high stretch sensitivity due to the high mass diffusivity of H₂ content [255], the turbulent flame properties of model syngas (H₂/CO) mixtures are of great importance and interest. A few helpful experimental measurements on the H₂/CO-air mixtures have been carried out under elevated pressures, such as those by stabilized Bunsen-type flames [256–259] and centrally-ignited propagating flames [209,260]. The findings of several flame configurations suggested that the TFS of lean hydrogen flames are around a factor of two faster than those of hydrocarbon flames, although their magnitudes vary significantly for various flame geometries [29]. Regarding measuring the TFS of syngas-air mixtures in high-pressure environments, the two most discussed topics in the literature are:

1- The impact of pressure increase, fuel composition, flame-front sensitivities, and Reₜ on TFS.
2- Extracting Sₜ correlations from experimental data for a particular fuel-air mixture at specific conditions and generalizing them.

Herein, the turbulent Reynolds number is defined as Reₜ = (u′l₀)ν, where u′, l₀ and ν are the turbulent intensity or root-mean-square (r.m.s) turbulent fluctuating velocity, the integral length scale, and the kinematic viscosity of the reactants, respectively. In the first topic, the influence of pressure, two scenarios have been reported to date. The first states that the TFS increases with increasing pressure due to the improvement of flame instabilities, at constant u′ and l₀, regardless of the fact that Reₜ also increases due to the inverse proportion of ν to pressure elevation. However, the second proved that TFS decreases, similar to LFS in a negative exponential behavior, with increasing pressure as the Reₜ is held constant [260,261].

As instances of the first scenario, Liu et al. [209] studied TFS for 35:65 H₂/CO-air mixtures at φ = 0.5 and 0.7 over an initial pressure range of p = 1–10 bar. They found that Sₜ increases with increasing pressure (Sₜ ≈ p₀.13 for φ = 0.7 and Sₜ ≈ p₀.11 for φ = 0.5) at a fixed r.m.s. turbulent fluctuating velocity (u′ ≈ 1.4 m/s), often attributed to cellular instability promotion due to thinner flame thickness (hydrodynamic instability) [255,262]. At higher pressure up to 20 bar, Daniele et al. [257] mentioned that the Sₜ increase is because of diffusive-thermal instability co-acting with hydrodynamic impact. Additionally, it was demonstrated that increasing u′/Sₜ is much more effective in increasing Sₜ/S₀ than increasing pressure, particularly in the weak turbulence regime. Besides the pressure influence, the increase of Sₜ/S₀ with increasing hydrogen fraction in syngas (H₂/CO) mixtures was observed using one-dimensional DNS in a work by Wang et al. [263], which resulted in the promotion of the intensity of flame front wrinkles due to amplified preferential diffusive-thermal instability. In addition to results consistent with prior studies, Venkateswaran et al. [264] displayed measured quantities of Sₜ for 90:10 H₂/CO that are around three times larger than for CH₄ blends, with the same S₀, u′, and operating conditions. An important conclusion from the work of the same authors [255] was that fuel effects on Sₜ are not simply a low turbulence intensity phenomenon – it clearly persists over the entire range of turbulence intensities used in the measurements. It is believed that these fuel effects are due to the reactant mixture’s stretch sensitivity, which has a strong effect on the positively strained leading points of the turbulent flame brush for non-zero Markstein length fuels [265].

The second topic was devoted to extracting Sₜ correlations for ease of use in combustion modeling. Regarding syngas-air mixtures at higher pressure than atmospheric, some of them are presented in Table 8.

However, such correlations are obviously incapable of capturing all sensitivities of the TFS. For example, Venkateswaran et al. [267] used Sₜ databases for negative Markstein length fuel blends, i.e., mixtures with small Lewis number like H₂-rich syngas- or H₂-air mixtures, and highlighted that it is challenging to distinguish the effects of time-scale, length-scale, and Reₜ on these correlations. Thus, future works are needed with novel correlations in a more unified form.

As the final point of this section, the detailed experimental study on chemistry-turbulence interaction and instabilities of the flame front for simpler fuels like H₂, particularly, in turbulent flame combustion is next to impossible at this instant, while it is possible with the aid of the direct numerical simulation (DNS) [268]. An exciting subject addressed with DNS is the effect of preferential diffusivity on turbulent spherical syngas flames on the lean side of stoichiometric. This is due to the well-known behavior of lean hydrogen-air mixtures, which is a non-uniquely Lewis number fuel and differs from heavy hydrocarbon fuels. In an example study of three-dimensional DNS with detailed chemistry for lean 70:30 H₂/CO syngas at p = 4 bar, it was found [269] that thermo-diffusive instabilities have negligible impact on cellularity development of flame structures under high turbulence levels, though the flame acceleration and species diffusive flux are still influenced by the preferential diffusion. The same authors [270] showed how the interaction between equivalence ratio variation and instabilities could affect the heat release rate. Performing two-dimensional DNS for a turbulent expanding 50/50 H₂/CO syngas flame at φ = 0.6 and atmospheric conditions, Bhide and Sreedhara [271] found heat release rate enhancement and a rise in flame speed for even a quiescent medium due to high mass diffusivity of hydrogen. Under greater turbulence levels, a further increase in HRR and a shift in the peak location of HRR towards low-temperature zones were also seen. The shifting trend was ascribed to atomic hydrogen species, and it disappeared at high pressure and temperature conditions. The differential diffusion effect (related to the different values of the species Le) was also observed to diminish when raising the CO fraction to 70%.

In conclusion, while noting that high-pressure turbulent combustion

Table 8

Some correlations based on measured data for the turbulent flame speed (Sₜ) of syngas-air mixtures at elevated pressures.

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Correlation for Sₜ</th>
<th>Constants</th>
<th>Eq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daniele et al.</td>
<td>Sₜ = (Pₚ/1 bar) - (3)</td>
<td>Reₜ = 1 K</td>
<td>(3)</td>
</tr>
<tr>
<td>(2011)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wang et al.</td>
<td>Sₜ = (Pₚ/1 bar) - (3)</td>
<td>Reₜ = 1 K</td>
<td>(4)</td>
</tr>
<tr>
<td>(2013)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shy et al.</td>
<td>Sₜ = dSₜ/d(φ/α)</td>
<td>n = 0.42</td>
<td>(5)</td>
</tr>
<tr>
<td>(2014)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sun and Zhu</td>
<td>Sₜ = (1.325X₀ₚ + 0.916) u + 0.597</td>
<td>n = 0.42</td>
<td>(6)</td>
</tr>
</tbody>
</table>

Note(s): the Damköhler number is defined as Da = (l₀/ν)(Sₜ/S₀), where l₀ is the laminar flame thickness which is approximated by l₀ = u′/Sₜ, and α is the thermal diffusivity of unburned mixture.

X₀ₚ : Hydrogen fraction in H₂/CO syngas.

B : Bunsen-type flame method.

S : Spherical-type flame method.
cannot be directly inferred from atmospheric turbulent combustion results [209], there is no consensus among published findings at higher pressures than atmospheric, nor even a general description for turbulent premixed syngas flames. There are also very few studies presenting the turbulent combustion of spherical (model) syngas flames compared to Bunsen-type flames. As in Daniele et al. [257] study under gas turbine-relevant conditions, there is a need to study turbulent spherical syngas flames with boundary conditions matched with those in an IC engine, also considering the dilution effect.

3. Syngas application in IC engines

3.1. Syngas in SI engines

Research on syngas application in SI engines has been focused on improving the fuel consumption (or fuel conversion efficiency) and engine-out emissions. All employed strategies that result in a more efficient SI engine\(^4\) can be divided into two categories, along with the associated engine design modifications:

1. Improve stoichiometric operation with a combination of downsizing, boosting, and exhaust gas recirculation (EGR) strategies.
2. Move towards lean or ultra-lean operation through the intake charge dilution and advanced direct injection strategies.

The lean combustion concept in gasoline SI engines has allowed higher brake thermal efficiency due to reducing pumping and heat transfer losses, while keeping NOx emissions low because of lower peak combustion temperatures. However, ultra-lean combustion requires careful consideration in order to operate the engine beyond the lean limit or dilution limit. While a number of methods, including intake design improvement, advanced ignition systems, and EGR stratification, could address this, reformate containing hydrogen-rich gas can serve as an extender of lean and flammability limits of the engine. Additionally, since the choice of fuel directly affects the engine’s lean limit, alternative fuels with reformate can also be used in SI engines. Also, synergies can emerge from syngas production via on-board fuel reforming and thermochemical energy recovery techniques. However, the focus of this section is to run SI engines with syngas as the primary fuel, which can only improve engine’s efficiency by extending its lean limit.

3.1.1. 100% Syngas in carbureted and port fuel injection (PFI) SI engines

The majority of studies on 100% syngas-fueled SI engine have used carburetor or port fuel injection (PFI) technologies in power generation for two main reasons. First, the SI engine can integrate thermo- and biochemical processes in which feedstock can be supplied from viable, eco-friendly energy resources, e.g., biomass. Second, since the LHV of syngas is lower than that of typical fuels such as gasoline and natural gas, the engine output power and torque could drop by 20-40% with syngas operation, as reported in several published works [59,272,273]. This drawback makes using 100% syngas in SI engines via carburetor or PFI technologies unsuitable for vehicular applications. However, it is a good choice for stationary applications where some limited operating points can be optimized by MBT timing. Also, the engine-out emissions can vary by changing the ways of syngas production or adding some other species to syngas. A brief review of 100% syngas fueled SI engines for stationary and transportation applications is presented below.

Syngas composition variability can affect the level of extending the lean limit of engine combustion. Ando et al. [274] evaluated the performance of low-BTU gases produced from gasification and a two-step pyrolysis/reforming process in a small-scale naturally aspirated (NA) single-cylinder SI engine with variable compression ratio from 8.47 and 11.9 and an installed mixer instead of the original carburetor. The gas produced from gasification was hydrogen-rich, while that from the two-step pyrolysis was methane-rich. They found that both gases provided similar thermal efficiency compared to CNG. In addition, the hydrogen-rich gas was observed to show a wider stable engine operation range with the \(\lambda\) up to 2.0, and NOx and HC emissions were quite low for it compared to both CNG and the methane-rich gas. Bika [275] investigated the combustion characteristics and knock limits of a syngas-fueled SI engine with a variable compression ratio (CR=6.1-10.1). The fuels investigated were pure \(\text{H}_2\)/\(\text{CO}: 75/25\), and \(\text{H}_2/\text{CO}=50/50\) (% by vol.). He reported that increase in the CO fraction increased the knock limit of syngas and advanced the ignition timing of MBT but did not affect the indicated efficiency up to \(\text{H}_2/\text{CO}=50/50\). In addition, the maximum heat HRR was observed with pure hydrogen. However, the compression ratio increase affected the peak pressure more than by the CO percentage increase. A maximum ITE of 52% was reported with \(\text{H}_2/\text{CO}=50/50\) at \(\phi=0.6\) and CR=10:1. The general conclusion was that the extended combustion duration with a higher CO percentage provides more knock resistance at a higher compression ratio.

As mentioned earlier, the power output of SI engines is usually degraded during operation with 100% syngas. For instance, Mustafi et al. [272] studied a syngas fuel named “Powergas” that contained 44%H\(_2\), 52% CO, and 4% \(\text{N}_2\) produced from the Aqua-fuel process\(^5\), to evaluate the performance and emissions with Powergas (15.3 MJ/kg LHV) in a variable CR Ricardo E6 single-cylinder SI engine and also compared it with those with gasoline at lean (\(\phi=0.81\)) and CNG at stoichiometric conditions (\(\phi=1.0\)). The Powergas indicated no superior performance relative to CNG and gasoline as the main fuel in the SI engine. They observed more than 20% decline in brake torque output and more than 100% increase in BSFC compared to gasoline and CNG at 1500 rpm and CR = 8.1:1, as seen in Fig. 18. Although the engine-out THC and CO emissions with syngas fueling were lower than those with gasoline and CNG, both \(\text{CO}_2\) and NOx emissions were higher. Similar power losses have also been reported with syngas combustion in SI engines [272,274,276-280], especially at lower CR and closer to stoichiometric conditions and operating away from the MBT timing. Munoz et al. [276] also found around 50% reduction in power output of a carbureted SI engine with producer gas compared to gasoline, at CR=8:1:1.

Shah et al. [277] experimentally studied the performance of a single-cylinder SI engine with syngas produced from biomass gasification. The syngas was composed of 16.2-24.2% CO, 13.19-14.4% \(\text{H}_2\), 1.2-6.4% \(\text{CH}_4\), 9.3-13.8% \(\text{CO}_2\), and the balance \(\text{N}_2\) with an LHV of about 5.79 MJ/Nm\(^3\). Based on the results obtained, the overall engine efficiency from the combustion of both syngas and gasoline fuels was found to be similar at the same maximum power output, albeit higher maximum power output was achieved by gasoline operation. CO was observed to be 30-96% lower with syngas than gasoline at each operating point due to the higher carbon content of gasoline fuel. In addition, the HC emissions of syngas was negligible at less than 40 ppm in all operating conditions due to the presence of very less HC (1.2-6.4%) in the syngas used in this study. However, the main reason for HC reduction could be the increased \(\text{H}_2\) content in the fuel mixture, which is responsible for promoting fast conversion of HCs [273]. It was also reported that NOx emissions in syngas operation were lower, about 54-94% compared to gasoline operation. This was due to the lower cylinder temperatures as a result of the lower LHV of syngas. The operating fuel/air equivalence ratio (\(\phi\)) in this study was not directly declared while appearing that the operation of a designed gasoline-based engine is stoichiometric for gasoline and is lean for

\(^4\) Here we can consider two ways of reduced pumping losses (also referred to as either throttling or gas exchange losses) at low to part loads and/or decreased friction losses at high speeds while maintaining emissions low enough.

\(^5\) Aqua-fuel technology transforms clean by-products like glycerin into renewable fuels for standard generators.
Fig. 18. Brake torque and BSFC versus engine speed at WOT and MBT timing and CR = 8:1 (Reprinted from [272] with permission of Elsevier).

Fig. 19. Brake thermal efficiency contour maps for specified fuels at $\phi = 1, 0.85, \text{and} 0.7$ and a fixed ignition timing of 15$^\circ$ BTDC and CR = 10.7:1 (Reprinted from [281] with permission of Elsevier).
syngas. It is complicated to run a 100% syngas-fueled SI engine close to stoichiometric conditions (i.e., $\phi > 0.75$) because the retardation of ignition timing after the TDC is required due to hydrogen presence in the syngas composition (irrespective of unstable combustion possibility due to high hydrogen content in syngas). With this in mind, the following two studies are presented for fixed and varying ignition timings.

In a study intended for vehicular applications, Arroyo et al. [281] conducted an experimental study to compare the operation of a NA SI engine fueled with two different syngas cases and two typical gasoline and methane fuels, at $\phi = 1, 0.85, \text{and} 0.7$ in full and medium-loads over a wide range of engine speeds. Two syngas fuels produced from catalytic decomposition of biogas with molar composition of 23% H$_2$ and 23% CO, 26% CH$_4$, and 28% CO$_2$, with the LHV = 14.095 MJ/kg as syngas #1, and 40% H$_2$, 39% CO, 11% CH$_4$, 10% CO$_2$, with LHV = 16.525 MJ/kg as syngas #2, were tested. A considerable loss in BTE was observed in gaseous fueling cases at stoichiometric conditions; however, a slight increase in power occurred at $\phi = 0.85$, as shown in Fig. 19 (gasoline did not achieve stable combustion at $\phi = 0.7$). As the authors reported, the reason for higher NOx emissions was the increased H$_2$ and the decreased diluent contents, e.g., CO$_2$, in syngas composition. The established comparison with syngas #1, syngas #2, and methane showed that the high methane fraction of the syngas fuel accounts for the increased levels of HC emissions. The general increasing CO$_2$ trend of syngas cases with respect to gasoline and methane cases seen was due to the CO$_2$ content in syngas. Nevertheless, a fixed injection timing (15° BTDC) of gasoline used as a baseline for all cases in this study may result in a deviation from a realistic comparison.

In the case of varying ignition timing to achieve MBT, Ran et al. [282] conducted experiments to differentiate the performance and emissions of a NA PFI single-cylinder CFR engine operating on E10 (90% gasoline + 10% ethanol vol.), CNG (95% CH$_4$ vol.), ethanol (95% ethanol + 5% water vol.), and syngas (60% H$_2$ + 40% CO vol.) at an engine speed of 1200 rpm and CR = 8:1. The ϕ was in the range of 0.74-0.99, 0.63-0.98, 0.76-0.97, and 0.3-0.78 for fuels in the above-mentioned order. The high heat release rates and spark timing restricted the upper side of ϕ for syngas (see Fig. 20 (b)). Among tested fuels, syngas indicated the lowest net IMEP due to having the lowest volumetric efficiency and LHV. Generally, the volumetric efficiency of syngas and CNG due to their gaseous nature and lack of evaporative cooling effects is lower than for liquid fuels. Also, the stoichiometric air/fuel ratio of syngas is lower than CNG; therefore, extra mass fuel is injected for syngas fueling, resulting in more degradation of volumetric efficiency.

![Fig. 20. Volumetric efficiency (a), gross heat release rate (b), net indicated efficiency (c), and combustion efficiency(d) for specified fuels at MBT timings and CR = 8:1 (Reprinted from [282] with permission of Elsevier).](image-url)
efficiency, as can be seen in Fig. 20 (a). Moreover, the lowest CA_{0-10}\% (flame development period) and CA_{10-90}\% (rapid burn period) belonged to syngas because of the high laminar flame speed and high diffusivity of the H\textsubscript{2} content in syngas. However, the smaller quenching distance of H\textsubscript{2}, which implies the flame could travel nearer to the cylinder wall, leading to higher heat loss, reducing the net indicated efficiency (Fig. 20 (c)) at closer stoichiometric conditions.

Another work [283] tried to draw a comparison between syngas, and biogas, biogas-syngas blend fueling cases in a NA SI engine at various MBT timings and at a fixed engine speed of 1500 rpm, using experiments and numerical simulations. The syngas used had a molar composition of 17\% H\textsubscript{2}, 15\% CO, 4\% CH\textsubscript{4}, 15\% CO\textsubscript{2}, and the balance N\textsubscript{2} (HHV = 5.65 MJ/nm3) and biogas had 65\% CH\textsubscript{4}, 35\% CO\textsubscript{2} (HHV = 25.83 MJ/kg). The corresponding ITE, NOx emissions, higher temperature, and maximum pressure derivative for both syngas and biogas fueling are shown in Fig. 21. As seen, all observed variables have a relatively distinct sensitivity to where ignition timing occurs, revealing that the previous work lacks a reasonable basis for comparison. Although the syngas fueled SI engine due to having high H\textsubscript{2}, low CO\textsubscript{2}, and presence of N\textsubscript{2} contents produces more NOx and has the highest temperature regions over the entire ignition timing sweep than the biogas one, lower NOx formation belongs to syngas, 3 g/kWh, rather than biogas, 7 g/kWh, at maximum MBT operation, where the maximum ITE happens (26° and 50° BTDC for syngas and biogas, respectively). Additionally, syngas fueling not only indicates 1.5\% more ITE compared to biogas at maximum MBT, but also tends to maintain high ITE over the whole range of ignition timing in contrast to biogas, indicating the superior combustion characteristics of H\textsubscript{2} relative to CH\textsubscript{4}.

3.1.2. 100\% syngas in CI engines retrofitted to SI mode

To mitigate the power loss with syngas use in SI engines, Sridhar et al. [284,285] experimentally studied syngas combustion in a multi-cylinder SI engine modified from a diesel engine at varying CRs (11.5:1 to 17:1). Fig. 22 shows in-cylinder pressure traces at different CRs, which did not show any trace of knock for all the studied loads. Performance of the engine at higher CRs was smooth and proved that syngas use in the SI mode at higher CR is technically feasible. Homdoung et al. [286,287] also reported that for CRs as high as 17:1, the engine fueled with producer gas (PG, see section 1) could operate smoothly without knock risk. This was attributed to the faster burn rate due to the presence of H\textsubscript{2} in the PG. Although the maximum BTE for the PG engine was lower than the original diesel engine by about 3.5\%, and the smoke density recorded in the diesel engine (1.5-12\%) was much higher than that in the PG case (0-2\%). Zero-dimensional (0-D) modeling was also employed to compare the brake power results obtained under a wide-open throttle (WOT) condition, and a good agreement was noticed.
with experimental results [288].

Raman and Ram [289] studied the efficiency of a syngas-fueled engine at different loads. Fig. 23 illustrates the comparison of syngas, diesel, and natural gas engines in power generation efficiency at different load conditions. The maximum power generation efficiency of the diesel, natural gas, and syngas engine is 28%, 24%, and 21%, respectively. Again, a reduction in torque and power de-rating for the syngas engine was observed, but at a lower amount. The syngas engine operates at 21% power generation efficiency at the full load condition, which is about 20% and 10% less than that of the diesel and natural gas engines.

It can be mentioned that increasing the engine compression ratio through use of CI engines retrofitted to the SI mode is an efficient way to increase brake power. However, an average of 16% power loss can be observed in the gas mode compared to diesel operation at a comparable CR. Recently, Park et al. [290] demonstrated that high compression ratios and intake boosting could improve syngas (30% H₂, 25% CO, 45% CO₂) fueled SI engine power and efficiency. Engine operation with a high compression ratio of 17:1 was possible in the lean combustion mode owing to the low combustion temperature. The gross ITE in the lean combustion mode was 18.4% higher than that in the stoichiometric combustion mode, mainly because of a significant reduction in the heat transfer loss. However, the gross indicated power in the lean combustion mode was 25.6% lower than that in the stoichiometric combustion mode. In summary, stoichiometric operation using syngas was appropriate for a high-power engine generator, whereas lean operation using syngas is more suitable for a high-efficiency engine generator.

3.1.3. 100% Syngas in direct injection (DI) SI engines

Hagos et al. [291–293] were the first researchers to utilize syngas (50%H₂/50%CO) as the primary fuel in a direct-injection spark-ignition (DISI) engine, and then compared its combustion, performance, and emissions characteristics to those with CNG operation (as the baseline). It should be noted that besides overcoming the issues related to the volumetric efficiency of gaseous fuels, the backfire phenomenon is also being addressed by the DI ignition system. As well-known, implementation of gaseous injectors in comparison with liquid ones has its own difficulty in terms of injector geometry and engine-related characteristics such as the interaction between piston design and the mixing process with late injection, injector width pulse, etc. An improvement to the previous work [272], as the authors stated, was a slight decrease in brake torque from ranging 20-30% to 14-19% at the same speed of 1500 rpm, due to eliminating issues attributed to volumetric efficiency penalty of delivering gaseous fuels at the intake. Despite the improvement, Hagos et al. [294] came across a limitation on the injection duration at late injection timings and higher BSFC with syngas fueling than CNG fueling. Thus, the engine operation was limited to near stoichiometric conditions, leading to a restriction in maximum brake power and a request for a bigger fuel tank. These all were attributed to the low LHV of syngas, which is lower than a fifth of LHV of CNG (see Table 5). To overcome this, in a series of works Hagos et al. [294–296] investigated enriching the syngas with methane (a higher LHV fuel) in a DISI engine. The new fuel was named methane enriched syngas (MES), consisting of H₂/CO/CH₄ 40/40/20 (% by vol.). It was found that the MES shortens the injection duration of syngas and extends the air/fuel stoichiometric ratio (λ) compared to CNG and syngas at the same engine speed. Furthermore, the MES improved the maximum BTE and the BSFC by 30.2% and 21.3%, with a little effect on the CO, NOx, and THC emissions [294] (see Fig. 24).

Following the work of Hagos [292], Fiore et al. [297] numerically investigated the effect of piston shapes and injection specifications on the performance and emissions of a syngas-fueled DI SI engine. The parametric study included three different piston bowl profiles and half-angles of injection of 30°, 45°, 52.5° and 60°, and the SOI timing was also varied from 90° BTDC to 130° BTDC. They found that the Omega shaped profile can provide best performance, despite of maximum NOx emissions compared to the high clearance and low clearance combustion cups. The results were very sensitive to the injection angle and SOI, which affected the fuel distribution.

Particulate matter (PM) emission:

Compared to PFI engines, particulate matter (PM) emissions lead to a known big challenge in DISI engines, especially for ultrafine particles, which harmfully affect human health [298]. The sources of PM formation during DISI stem from mixture inhomogeneity because of a lack of time for fuel atomization and spray impingement, which depends on many factors, including operating engine conditions, air-fuel equivalence ratio, injection timing, spark timing, and fuel-specific properties [299]. While fueling a DISI engine with hydrogen-free gaseous fuels is seemingly expected to lead to lower particle emission, Thawko et al. [300] surprisingly showed a 170% increase in total particle concentration of reformate (H₂/CO₂/5/25 % by mole) fueling compared to gasoline at the same and fixed engine speed and load. The most likely reason for the difference was that high measured particle size is attributed to the interaction between lubricating oil and high-pressure reformate jet, as the authors claimed. Due to its lower density, the required time for syngas fuel injection at high pressure is much longer than that for the liquid fuel. Besides, the small flame quenching distance of hydrogen content in syngas may result in the syngas flame traveling closer to the lubricated cylinder walls. Thus, the chance of lubricant participating in the combustion rises. In terms of particle size distribution, it was indicated that the nucleation mode (< 50 nm) is primarily responsible for the discrepancy in total particle number concentration between reformate and gasoline fueled DISI engines, as can be seen in Fig. 25 (right).

In contrast, Bogarra et al. [301] indicated that the addition of reformate (H₂/CO/CO₂/H₂O: 5/2.7/11/9.0 %vol.) plus EGR (called R-EGR, see Section 4.1) as supplementary fuel to gasoline in a gasoline direct injection (GDI) engine reduced the engine PM emissions even more than the addition of EGR only, as shown in Fig. 26. It was found that the reformate combustion can significantly decrease the PM emissions, however, the reduction was dependent on the PM nature. Reformate combustion was also found to remove soot cores more efficiently than the volatile PM. Moreover, fuel reforming technology did not show significant detrimental influence on the TWC operation for the studied conditions.

3.1.4. Syngas addition in SI engines

As mentioned earlier, a possible use of syngas in SI engines is as an additive to enrich or improve the performance of another fuel such as methane or a methane-rich biofuel (natural gas or landfill gas), and gasoline. Since syngas has a lower heating value than these two fuels, the improvement obtained by adding it is not really on the engine power but rather on the efficiency, combustion, and pollutant emissions. Concerning knock studies, Gerty and Heywood [302] experimentally investigated the performance of a knock-limited SI engine by considering the effects of relative air/fuel ratio, inlet boost pressure, compression ratio, and reformate added to the tested fuel-air mixtures. The tested fuels were: Unleaded test gasoline (UTG96, representing as gasoline or indolene fuel with octane number of 96), primary reference fuel (PRF, a mixture of iso-octane and n-heptane), and toluene reference fuel (TRF, a mixture of toluene and n-heptane). A bottled mixture, as reformate, of H₂/CO/N₂/25/26/49 (% by vol.) was utilized to simulate the output of a POX fuel reformer (named Plasmatron, see subsection 4.1.1). The mixture was considered the replacement for a portion of the main fuel (gasoline), which then mixes with the gasoline in the intake manifold. Fig. 27 (a) shows the combustion retard, which was defined as

* Even by eliminating the physical processes associated with the spray of liquid fuel (droplet breakup to evaporation), a sufficient time for the charge mixing process at late injection is still needed because the shape of the piston head affects the charge distribution, which may result in an uneven air/fuel ratio in the chamber.
the combustion phasing disparity at the current state and the optimal one (i.e., MBT spark timing), as a function of reformate fraction. A reduction in combustion retard can be seen with increasing reformate fraction. The reduction with the addition of reformate for each fuel was normalized, as shown in Fig. 27 (b). As can be seen, reformate addition was most effective when added to PRFs that are entirely composed of alkane hydrocarbons. The combustion retard needed to avoid knocking decreased by about 2° CA per 3% reformate fraction. When applied to TRF fuels composed of more than 20% n-heptane with octane numbers of 95 or lower, reformate addition was only marginally less effective than for PRF fuels. As the content of alkanes declined and the aromatic content increased, reformate addition seemed to be less successful for TRFs to the point where there was no value in reformate addition to pure toluene.

Using the same reformate and at low CR (9.8:1), a direct comparison between pure hydrogen and reformate additions showed that both of them could extend both peak efficiency and the lean limit of indolene combustion linearly [303, 304]. On the contrary, at high CR (13.4:1), the reformate addition was no longer had a linear relationship, while pure hydrogen still indicated an obvious, proportional/linear extension of peak efficiency [305], as can be seen in Fig. 28 (left). The main reason for this behavior was due to the proportional extension of the location of the Δθ_{10-90} = 30° CA. However, no distinguishable curves were seen with increase of reformate, as shown in Fig. 28 (right).

Smith and Bartley [306] evaluated stoichiometric operation of natural gas + EGR and natural gas with syngas + EGR in a single-cylinder.
Caterpillar engine converted to SI operation. A 44% extension of EGR tolerance on a mass basis and a 77% reduction in raw NOx emissions for using syngas with natural gas were detected compared to the natural gas case. Cha et al. [307] experimentally investigated the operating characteristic of an SI engine for power generation upon mixing CH\textsubscript{4} and simulated syngas (H\textsubscript{2} and CO) in a diesel engine that was modified to run in the SI mode with a CR = 13:1. Fig. 29 shows the fuel conversion efficiency versus NOx emissions for various fuel mixtures, where NOx emissions were elevated as fuel conversion efficiency increased. However, this increase was insignificant for syngas compared to H\textsubscript{2} or CO when added to CH\textsubscript{4}-air mixtures at a ratio of 5% of the overall LHV. Since on-board fuel reforming methods can produce syngas as the primary fuel, this will be discussed in section 4.

A summary of the main research works published on syngas utilization in SI engine is presented in Table 9. Future study of 100% syngas-fueled SI engines can be followed in designing an appropriate injection system for gaseous fuel like syngas in DISI engines and applying advanced spark systems like multiple injections.

3.2. Syngas in HCCI engines

Research on syngas utilization in advanced combustion strategies has significantly increased due to its clean-burning properties and possible production from several paths. The homogeneous charge compression ignition (HCCI) engine is a low-temperature combustion (LTC) concept which combines the best features of SI and CI engines. The HCCI engine has shown the potential for higher efficiency and ultra-low NOx and soot emissions, however it has some drawbacks in terms of limited operating range, combustion control and excessive unburned products [319,320]. In this part, syngas-fueled HCCI combustion is analyzed in detail.

3.2.1. 100% syngas fueling

According to the finding of previously published papers, HCCI combustion with syngas has not shown superior performance over other fuels. It faces a similar barrier, such as the limited operating window and a need for regulating the intake temperature to control the combustion event. For instance, Stenlåås et al. [321] focused on HCCI combustion of 100% syngas, which was reformed methanol gas (RMG), a mixture of hydrogen and carbon monoxide in the volume ratio 2:1, and then...
compared it to pure hydrogen fueling [322] in SI operating mode. They found that a higher temperature for RMG fueling than pure hydrogen was required to achieve the same combustion duration with HCCI mode. Both hydrogen- and RMG-fueled HCCI did not provide sufficient exhaust energy for the on-board reforming process by waste heat recovery. In summary, the operating mode based on 100% reformate was more favorable for SI mode operation.

Several years later, Bika et al. [323] measured the HCCI performance on 100% syngas fueling at two equivalence ratios, 0.26 and 0.30, and an engine speed of 1800 rpm, with a diesel engine converted to HCCI mode by adding PFI injection and intake air heating systems. Three compositions were considered: H2=100%, H2/CO=3/1, and H2/CO=1/1 by volume. By increasing intake temperature, it was seen that the in-cylinder pressure, temperature, and heat release started to increase, and finally led to advancing the combustion phase, which had combustion efficiency in the range of n2 = 83%-88%. Also, by altering the equivalence ratio towards leaner regions and increasing CO in syngas, the intake temperature was increased to maintain the best IMEP conditions.

With the aim of improving HCCI combustion and reduction of pollution emissions based on the syngas-air mixture, a few modeling studies [324,325] have been carried out to explore the effect of various species addition. Starik et al. [325] assessed the potential of the addition of a highly reactive species such as ozone or singlet delta oxygen (SDO) into an HCCI fueled with syngas (50%H2/50%CO) by volume. They noticed that the presence of 0.38% of O2 mole fraction (>1% of SDO) in total oxygen could diminish the dependency on high intake temperature by accelerating and intensifying the ignition and combustion event, especially under the low load regime (φ = 0.2); this resulted in a 7-14% improvement of engine power output and up to a 15% reduction of both CO and NO emissions due to lack of excess O2.

For better understanding of auto-ignition and combustion development in HCCI based on 100% syngas, Yamasaki and Kaneko [326] conducted an experimental and modeling study using mock syngas with varying compositions, ranging from 20% to 40% for H2, 7-27% for CO, 20-40% for N2, 10-30% for CO2, and a 3% CH4 by volume. An auto-ignition temperature of T=1100 K, almost similar to hydrocarbon fuels, was observed for syngas, governed by in-cylinder gas temperature and not by the fuel composition test. It was also found that H2 has a longer conversion time than CO during the combustion process, and combustion duration can be roughly determined by the volumetric ratio of H2/ CO2. For detailed analysis of the syngas combustion in HCCI combustion, Mauya et al. [327] used a stochastic reactor model (SRM) with a detailed chemical kinetic mechanism (32 species and 173 reactions) to numerically investigate syngas fueled HCCI combustion validated against previous experiments [323]. Within the SRM, a probability density function (PDF) was used to define the local (variable) and global (constant) physical parameters. For various engine operating conditions, simulations were performed by changing intake temperature, engine load, and speed at a constant compression ratio of 19:1, and the obtained operating window is shown in Fig. 30. The inclined hatched line represents operating conditions with a combustion efficiency of less than 80%. The area with PPRR > 5 MPa/ms is represented by the crossed hatched region, and the contour lines in the plot represent IMEP. Operating conditions with combustion efficiency higher than 80% and PPRR < 5 MPa/ms are considered as the operating area of the HCCI engine. It can be seen that increasing the intake temperature (or Tinv, specified at intake valve closing) can help the operating range in the lean-side of stoichiometry, but at the expense of lowered IMEP due to decreased volumetric efficiency. At higher engine speed, suitable operating range has adversely shifted to a more bounded region that is highly sensitive to intake temperature and excess air (i.e., air-fuel ratio). In this case, the chance of incomplete or vigorous combustion is severe. The maximum combustion efficiency of 98% is reported in the study.

While the abovementioned works have dealt with 100% syngas in the form of simulated reformate gas (with only H2 and CO), there are a number of published works with producer gas generated from a biomass gasification process. Przybyla et al. [328] compared SI and HCCI fueled with low calorific producer gas under the same load; they reported that the syngas-fueled HCCI engine had extremely high CO and a lower indicated efficiency than SI, equaling a more than 10% loss in the base fuel’s chemical energy. It is worth mentioned that the use of high intake temperature to control the combustion in syngas-fueled HCCI engines has been reported in previous works. Bhaduri et al. [329] employed high temperature strategy as a positive advantage over a syngas-fueled SI engine to introduce a novel concept of unprocessed syngas-fueled HCCI, which has tar contents and moisture. Because the intake temperature was set to around T=250°C, which is higher than the dew point of the tars, issues related to tar condensation were eradicated. According to the authors, moisture in syngas tends to delay combustion, while tars’ effect was negligible. Nevertheless, such an intake temperature is not acceptable for vehicular applications, but the readers can refer to their later works [330-332] for in-depth information on this concept. We believe that a brief discussion of syngas impurities can also be useful here.

3.2.2. Syngas addition
Reformate as ignition controller:

The operating range of kinetically-controlled HCCI combustion is narrow due to lack of any direct control on ignition timing; this can lead to extremely high pressure rise rates corresponding to nearly constant volume heat release of a homogeneous air-fuel mixture in the combustion chamber at high loads (for low octave fuels), and poor combustion and misfiring at low loads (for high octave fuels). To mitigate this, various techniques such as intake charge preheating [333], EGR [334, 335], boosting [336,337], using two fuels with different reactivity (i.e., one has a high octane and the other has a high cetane number) [338, 339] have been proposed which proved to have a profound effect on control of ignition event. For more details about these techniques, one can refer to [340,341].

Syngas or reformate plays the role of the ignition-timing controller by either retardation (if it is the primary fuel with high octave number, e.g., syngas/diesel fueling case) or advancement (if used as the secondary fuel with higher combustibility characteristics, e.g., natural gas/syngas) of the main combustion, which leads to widening the load operating range of the HCCI engine. In the former case, syngas has two widespread effects on fuels, showing two stages of heat release such as diesel, n-heptane, and dimethyl ether (DME). These result in prolonged ignition delay times, and widened combustion duration (in other words,
Table 9
Summary of syngas utilization studies in SI engines.

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Objective(s)</th>
<th>Syngas composition (% vol.)</th>
<th>Experimental info</th>
<th>Simulation</th>
<th>Finding(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100% Syngas in carbureted, port fuel injection (PFI), direct injection (DI) SI engines</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mustafi et al.</td>
<td>A comparison study between 'Powergas', gasoline, and natural gas fueled SI engine</td>
<td>H<sub>2</sub>/CO/N<sub>2</sub>: 44/52/4</td>
<td>A 4-stroke, 1-cyl, SI engine, CR= 8-11:1, rpm= 1000-2000, WOT; ITs = MBT timings</td>
<td>Engine simulation program ISIS</td>
<td>Compared to gasoline and CNG: 23-36% ↓ in brake torque, ↑NOx, ↑CO2 while HC and CO were negligible.</td>
</tr>
<tr>
<td>Conte and Boulouchos</td>
<td>Effect of RG addition on flame speed and flame front propagation in premixed, homogeneous charge gasoline engines</td>
<td>H<sub>2</sub>/CO/N<sub>2</sub>: 21/24/55</td>
<td>A 4-stroke, 2-cyl, PFI SI engine, CR= 8.7:1, rpm= 2000, BMEP= 2 bar, ITs = MBT timings</td>
<td>—</td>
<td>When the stability limit was met, combustion took place in a very similar way for different gasoline-RG blends.</td>
</tr>
<tr>
<td>Papagiannakis et al.</td>
<td>Comparison between conventional natural gas (NG) and syngas fueled SI engine</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rakopoulos and Michos</td>
<td>Development of a zero-dimensional, multi-zone combustion model for predicting the performance and NO emissions of a SI engine fueled with syngas</td>
<td></td>
<td>A zero-dimensional, multi-zone, thermodynamic combustion model</td>
<td>More reliable NO emissions prediction with multiple burned zones than single burned zone. Calculated NO were kept low at all engine loads (< 200 ppm) with lean combustion of syngas.</td>
<td></td>
</tr>
<tr>
<td>Shah et al.</td>
<td>Evaluation of syngas fueled SI engine-alternator and compared it with gasoline operation</td>
<td>H<sub>2</sub>/CO/CH<sub>4</sub>/N<sub>2</sub>: 23/26/28</td>
<td>A 4-stroke, 2-cyl, NA, SI engine, capacity= 5.5 kW</td>
<td>—</td>
<td>Lower power output (by about 1000 W), a significant ↑ in CO<sub>2</sub> (33-167%) but lower NO<sub>x</sub> (54-84%) and CO (30-96%) compared to gasoline operation</td>
</tr>
<tr>
<td>Arroyo et al.</td>
<td>Efficiency and emissions of a SI engine fueled with syngas, CH<sub>4</sub>, and gasoline</td>
<td>H<sub>2</sub>/CO/CH<sub>4</sub>/N<sub>2</sub>: 19/29/6/8/38</td>
<td>A 4-stroke, 20-cyl, TC, SI engine, CR= 11:1, 1500 rpm</td>
<td>Two-zone thermodynamic model</td>
<td>Syngas fuel concentration with 1engine load: ↑peak cylinder pressure and an improvement of the engine efficiency. Compared to NG: ↑CO, ↑NOx emissions</td>
</tr>
<tr>
<td>Arroyo et al.</td>
<td>Combustion behavior of SI engine with syngas, CH<sub>4</sub>, biogas, and gasoline</td>
<td>Synthetic: H<sub>2</sub>/CO/CH<sub>4</sub>/N<sub>2</sub>: 40/39/11/10</td>
<td>—</td>
<td>—</td>
<td>In all speeds and φ: CoV of IMEP: biogas= CH<sub>4</sub>, syngas= gasoline. Maximum HHR and cylinder Pressure, highest NO<sub>x</sub>, and lowest HC belonged to synt<sub>2</sub>.</td>
</tr>
<tr>
<td>Arroyo et al.</td>
<td>Effects of IT and supercharging</td>
<td>Synthetic: H<sub>2</sub>/CO/CH<sub>4</sub>/N<sub>2</sub>: 40/39/11/10</td>
<td>—</td>
<td>—</td>
<td>In all speeds and IT: CoV of IMEP: biogas= CH<sub>4</sub>, syngas= gasoline. Maximum HHR and cylinder Pressure, highest NO<sub>x</sub>, and lowest HC belonged to synt<sub>2</sub>.</td>
</tr>
<tr>
<td>Hagos et al.</td>
<td>First attempt at study on a direct-injected (DI) syngas fueled SI engine and compare it with CNG (baseline)</td>
<td>H<sub>2</sub>/CO: 50/50</td>
<td>A 4-stroke, 1-cyl, DISI engine, CR= 14.1, rpm=1500-2400, φ= 0.67-1, a fixed SOI of 180° BTDC</td>
<td>—</td>
<td>Compared to CNG operation: ↑brake torque (14.2-19.6%) and ↓BT<sub>TE</sub> (16.7%), and ↓BSFC. At higher loads: ↓NO<sub>x</sub> and --- CO. THC was negligible.</td>
</tr>
<tr>
<td>Hagos et al.</td>
<td>Methane-enriched syngas (MES) in DISI engine</td>
<td>Syngas: MES: H<sub>2</sub>/CO/CH<sub>4</sub>/N<sub>2</sub>: 40/40/20 LHV= 24.4 MJ/kg</td>
<td>—</td>
<td>—</td>
<td>At all tested BMEP: BTE at 1500 rpm: CNG= MES= syngas. BTE at 2100 rpm: MES<sub>≤</sub> CNG<sub>≤</sub> syngas. BSFC at both rpm: syngas<sub>≤</sub> MES<sub>≤</sub> CNG. Little effect on CO, THC and NOx.</td>
</tr>
<tr>
<td>Hagos et al.</td>
<td>Study of effect of injection timing on a syngas fueled DISI engine</td>
<td>H<sub>2</sub>/CO: 50/50</td>
<td>SOI= 120° and 180° BTDC</td>
<td>—</td>
<td>At all tested BMEP: BTE at 1500 rpm: CNG<sub>≤</sub> MES<sub>≤</sub> syngas. At 2100 rpm: MES<sub>≤</sub> CNG<sub>≤</sub> syngas. BSFC at both rpm: syngas<sub>≤</sub> MES<sub>≤</sub> CNG. Little effect on CO, THC and NOx.</td>
</tr>
<tr>
<td>Hagos et al.</td>
<td>Effect of SOI timing on a DISI engine with 20% CH<sub>4</sub> augmented syngas</td>
<td>H<sub>2</sub>/CO: 50/50</td>
<td>—</td>
<td>—</td>
<td>At all tested BMEP: BTE at 1500 rpm: CNG<sub>≤</sub> MES<sub>≤</sub> syngas. At 2100 rpm: MES<sub>≤</sub> CNG<sub>≤</sub> syngas. BSFC at both rpm: syngas<sub>≤</sub> MES<sub>≤</sub> CNG. Little effect on CO, THC and NOx.</td>
</tr>
<tr>
<td>Hagos et al.</td>
<td>Engine speed and A/F ratio (λ) effects on the CH<sub>4</sub> augmented H<sub>2</sub>-rich syngas combustion in DISI engine</td>
<td>H<sub>2</sub>/CO: 50/50</td>
<td>—</td>
<td>—</td>
<td>At all speeds and IT: CoV of IMEP in all speeds, ↑flame development and ↑flame propagation durations. All the durations were more sensitive to λ at lower speeds as compared to the other speeds.</td>
</tr>
<tr>
<td>Kan et al.</td>
<td>Effects of IT, H<sub>2</sub> and CH<sub>4</sub> contents on SI engine fueled with syngas and biogas</td>
<td>H<sub>2</sub>/CO/CH<sub>4</sub>/N<sub>2</sub>: 17/15/4</td>
<td>A 4-stroke, 3-cyl, SI engine, CR= 12.9:1, rpm= 1500, φ= 0.8, IT= variable</td>
<td>KIVA4-CHEMKIN</td>
<td>Under WOT and MBT operation: ITE (%): syngas (39) > biogas (37.5), NOx (g/kWh): syngas (3.3) < biogas (7.2) At advanced ITs: H<sub>2</sub> (11-20% by vol.): was less sensitive to NOx change, than CH<sub>4</sub> (55-88% by vol.).</td>
</tr>
</tbody>
</table>

continued on next page
Table 9 (continued)

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Objective(s)</th>
<th>Syngas composition (% vol.)</th>
<th>Experimental info</th>
<th>Simulation</th>
<th>Finding(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ran et al. [313] (2020)</td>
<td>The potential of lean SI combustion with E10, CNG, ethanol, and syngas.</td>
<td>H₂/CO: 60/40 LHV= 20.4 MJ/kg</td>
<td>A 4-stroke, 1-cyl, SI engine, CRs= 9:1-11:1, rpm= 1200, intake pressure= 0.75 bar, φ= 0.3-1, various ITs</td>
<td>—</td>
<td>With [CR]: engine efficiency and improved lean burn capability for all tested fuels. The leanest misfire limit (0.4-φ<-0.7) was achieved with syngas with low NOx, low CO, and no THC.</td>
</tr>
<tr>
<td>Sridhar et al. [384] (2001)</td>
<td>Use of producer gas (PG) in engines at high CRs</td>
<td>H₂/CO/CH₄: 4/2/8; 0.5/0.5/0.5; N₂: 19/19/2; LHV= 4.5 MJ/kg</td>
<td>A 4-stroke, 2-cyl, SI engine, CRs= 400/11; 1800 rpm, various ITs</td>
<td>—</td>
<td>Smooth combustion at CR=17:1. To achieve MBT, a retardation in spark timings is needed. Compared to diesel mode, at equal CR, the maximum power loss was 16% in SI mode with PG.</td>
</tr>
<tr>
<td>Sridhar et al. [313] (2005)</td>
<td>Develop a PG engine integrated with a biomass gasifier, with a new designed gas carburetor.</td>
<td>//</td>
<td>A 4-stroke, 3-cyl, NA, CI engine, CRs= 11.5; ITs= variable</td>
<td>—</td>
<td>20 – 30% loss in power compared to diesel (baseline) case at CR=17:1 and maximum MBT; both NOx and CO were minimum.</td>
</tr>
<tr>
<td>Ullvø et al. [315] (2011)</td>
<td>Engine performance, efficiency and emissions of SI engine with PG and natural gas</td>
<td>H₂/CO/CH₄/CO₂/ N₂= 30/20/1/15/34</td>
<td>A 4-stroke, 1-cyl, CR= 12.6, rpm= 1050, ITs= variable</td>
<td>—</td>
<td>Compared to NG:</td>
</tr>
<tr>
<td>Raman and Ram [389] (2013)</td>
<td>Comparison of PG engine with diesel and natural gas (NG) engines at various loads</td>
<td>H₂/CO/CH₄/CO₂/ N₂= 12/1, 1500 rpm, a fixed IT of 28° BTDC</td>
<td>A 4-stroke, 6-cyl, NA CI engine, CR= 12.1; 1500 rpm, various ITs</td>
<td>—</td>
<td>At all loads: Overall efficiency: Diesel>NG>P. Specific fuel consumption: PG>NG>P.</td>
</tr>
<tr>
<td>Shivapuji and Dasappa [316] (2014)</td>
<td>The PG impact on overall engine performance with turbocharger (TC)</td>
<td>H₂/CO/CH₄/CO₂/ N₂= 19/19/2; 12/2/64</td>
<td>A 4-stroke, 6-cyl CI engine, CR= 16.5 in CI mode and 10.5 in SI mode, 1500 rpm</td>
<td>—</td>
<td>At full load the discrepancies were decreased. TC imbalance led to the highest power de-rating. The selection and optimization of TCs were described as the technique for recovering the loss of non-thermodynamic power.</td>
</tr>
<tr>
<td>Shivapuji and Dasappa [317] (2015)</td>
<td>Analysis of thermo-physical properties and experimental analysis of the proportion of fuel hydrogen on syngas fueled by SI engine</td>
<td>// – Effect of H₂ ratio</td>
<td>A 4-stroke, 2-cyl, SI research engine, CR= 11:1, 1500 rpm</td>
<td>CHEMKIN model</td>
<td>1/4 H₂ part from 12.8% to 19.4% by vol.; ↑BTE ↑H₂ part up to 37.2% by vol.; ↑engine cooling load, ↑BTE, due to increasing the combustion stage</td>
</tr>
<tr>
<td>Cha et al. [307] (2015)</td>
<td>Study of a SI engine by adding syngas into CH₄, with a mixing ratio</td>
<td>H₂/CO: 50/50</td>
<td>A 4-stroke, 4-cyl, TC, SI engine, CR= 13:1, various ITs</td>
<td>—</td>
<td>[Syngas mixing ratio (5%, 10%, and 15%)]: Combustion was improved, ↑fuel conversion efficiency, ↑NOₓ, and the rate of ↓ non-linear. A/F and spark timings should be calibrated.</td>
</tr>
<tr>
<td>Homdoum et al. [286] (2015)</td>
<td>Effects of variable CRs, engine speeds and loads on the performance of a small engine operated on PG</td>
<td>H₂/CO/CH₄/CO₂/ N₂= 8.5/30.5/ 0.25/4.8/6.3/49.55 8.9%H₂, 30.5% CO₂; 0.35% CH₄, 4.8% CO₂, 6.3%O₂ and 49.55%N₂</td>
<td>A 4-stroke, 1-cyl, CI engine, CRs= 9.1-17:1, rpm= 1000-2000, load= 20-100%</td>
<td>—</td>
<td>The modified engine worked well at higher CRs with PG than with gasoline. Up to 23.9%, BTE was obtained. Rather to the original diesel: ↑BTE (11.3%), ↑engine’s smoke density, ↑CO, with similar HC emissions.</td>
</tr>
<tr>
<td>Kim and Kim [318] (2015)</td>
<td>Feasibility assessment of hydrogen-rich syngas spark-ignition engine for heavy-duty long-distance vehicle application</td>
<td>H₂/CO/CO₂= 70/ 15/15</td>
<td>A 4-stroke, 1-cyl, CI engine, CRs= 15:1, rpm= 1800</td>
<td>1-D multicylinder engine model in GT-SUITE</td>
<td>The vehicle with the syngas engine could travel for 152.6 km without refilling. The syngas bus exhibited lower fuel consumption than the equivalent CNG bus by 15%.</td>
</tr>
</tbody>
</table>
intake stroke to obtain more hot gases in the cylinder, i.e., exhaust re-breathing. The combustion chamber of an HCCI-mode engine fueled with iso-octane and partial oxidation gas (POX gas) added to the intake experiences a high quantity of internal residuals and thermal stratification; this causes the ignition timing to advance. Another technique is negative valve overlap (NVO), in which the residuals are trapped and recompressed, as described in section 4.

Dimethyl ether (DME) has some more interesting combustion characteristics than diesel (i.e., soot-free combustion and lower NOx emissions), but still faces challenges with regard to its physical properties (i.e., low viscosity, which leads to higher leakage and in turn engine durability concerns) [344]. Similar to syngas, DME can benefit from on-board fuel reforming in vehicles via a methanol-steam reforming process [345]. With these mentioned potentials for DME, and emerging dual-fueling strategies for achieving controllable HCCI combustion, Shudo et al. [346–351] conducted a number of experiments supported by chemical kinetics analysis, to run a single-cylinder SI engine converted to the HCCI mode fueled with DME and MRG (methanol reformed gas or syngas). Both fuels were produced from endothermic methanol steam reforming using engine exhaust gases, and then followed by methane dehydration for DME generation; with a single fuel tank required for liquid methanol, as seen in Fig. 31 (left). While using simulated reformate comprising 67% H\textsubscript{2} and 33% CO (by volume) in the experiments, they found that ignition of the second heat release (main combustion) and engine load could be controlled by altering the proportion of the MRG/DME ratio; by increasing the ratio, the overall system efficiency reached 49% and a 14% rise in engine efficiency over the baseline was obtained (see Fig. 31 (right)). This controllable HCCI concept was achieved due to delayed ignition and increased temperature before the main combustion, corresponding to the hydrogen content of the MRG. Similarly, they proposed this concept by storing a tank of DME and partial oxidation of it to produce DME reformed gas (DRG) [352].

They stated that this concept with HCCI combustion can result in high thermal efficiency over a wide operable window of equivalence ratio and high overall system efficiency, which is comparable to the fuel cell system. A brief summary of their work is given as follows:

1. Using an optimal compression ratio along with a suitable DME/MRG ratio (with increasing amount of MRG) resulted in a higher thermal efficiency for HCCI combustion, and a higher overall thermal efficiency can be achieved by using waste heat recovery (WHR) [346].
2. Higher compression ratio led to advanced ignition timing, but with higher heat transfer (cooling) loss [346] due to the small quenching distance and fast burning velocity of hydrogen content in MRG (syngas) [353].
3. While both H\textsubscript{2} and CO have influence on retarding the second stage HR, the role of H\textsubscript{2} is much more intense due to having a larger effect on first stage HR by consuming the OH radical [347]. Also, combustion of hydrogen during LTHR is controlled by H + O\textsubscript{2} → OH + O and less reactive HO\textsubscript{2} [349]. CO\textsubscript{2} also caused a slight retardation [348].
4. Despite larger amounts of H\textsubscript{2} being useful for ignition control effects, H\textsubscript{2} has a lower effect on WHR.
5. Highest overall thermal efficiency was expected from thermal decomposition [350] and highest output would be from steam reforming, which resulted in MRG with higherH\textsubscript{2} content.

A collection of works [354–356], which have studied use of a catalytic reforming reactor in the exhaust stream of a natural gas HCCI engine, have shown that hydrogen-rich gas could be a substitute for intake preheating for the same emitted NOx, greatly benefiting low engine loads. These works have been expanded to form on-board fuel reforming strategies, which are called reformed exhaust gas recirculation (R-EGR), as described in the next section. Those works concluded that employing

Fig. 30. Operating range for syngas fueled HCCI engine under various engine speeds at a constant compression ratio [327].

Fig. 31. Schematic of proposed concept (left) heat balance of this concept (right) (Reprinted from [349] with permission of Elsevier).
on-board fuel reforming products to extend the lower load-limit, along with using the supercharging and high internal EGR technologies for increasing the upper load-limit could be a solution for extending the entire operating window of HCCI engines fueled with natural gas or gasoline [357].

At the University of Alberta, a series of research works have been experimentally conducted to capture the effect of reformer gas (RG) blending on the base fuels, including high-octane primary reference fuels (PRF) [358], low-octane PRF [359], natural gas [360,361], n-heptane [361,362], and iso-octane [361] in a variable compression ratio, single-cylinder CFR engine operated in the HCCI mode. The effect of varying RG blend fraction (m\textsubscript{RG} / m\textsubscript{gasoline} × 100) was studied, while intake temperature, air-fuel ratio, and EGR were kept constant. For low-octane PRF, such as PRF0 (i.e., 100% n-heptane) and PRF20 (i.e., 20% iso-octane and 80% n-heptane), it was observed, in conformity with the above discussion, that increasing values of RG replacement leads to a retarded and prolonged combustion event even after TDC [359]. As a reported case, 20% of RG replacement delayed the start of combustion (SOC) by about 14 CAD (3 ms) and lengthened the combustion duration by 50%, and increased the indicated power and thermal efficiencies by 17% and 12%, respectively. This remarks that combustion can be controlled by syngas without using other strategies like preheating the intake charge, adjusting dilution level or EGR, and by using valving strategies, which do have slow response or penalty in engine power. They also applied a similar procedure to high-octane PRF [358], PRF80 and PRF100, except by increasing CR and intake temperature (from 100°C to 140°C). Fig. 32 displays representative in-cylinder pressure traces and their corresponding heat release. As can be seen, the peak in-cylinder pressure and pressure rise rate were reduced by increasing the RG, with peak pressure shifting from approximately TDC to approximately 10\degree ATDC. RG substitution effectively smoothed combustion by retarding the combustion phasing towards a more efficient timing for HCCI combustion, and by widening the combustion duration. Replacing RG did not impact NOx emissions but increased CO and HC marginally, therefore, with a slight decrease in combustion efficiency. The indicated fuel conversion efficiency was slightly increased, because the combustion phasing was better than the baseline case. It was found that 40% of RG blended in a PRF80 fuel (by mass) has an octane number as close as PRF100, but with totally different combustion characteristics. Thus, the calculated octane number is not a good indicator of the characteristics of HCCI combustion.

Later in 2008, the same researchers [361] examined the effects of varying simulated RG compositions on HCCI combustion timing with natural gas, iso-octane, and n-heptane. The RG compositions chosen had H_2/CO ratios of 3/1 (H_2/CO=75/25 \%by volume) and 1/1 (H_2/CO=50/50 \%by vol.). The first and latter are a typical output of natural gas steam reforming and gasoline partial oxidation in an on-board fuel reformer, respectively. Fig. 33 reveals the impact of two selected RG compositions on ITE and SOC for selected fuels. For iso-octane, both compositions retarded the combustion timing similarly (i.e., 1.5 CAD per each 10\% of RG); which implies that iso-octane may behave more sensitively to the thermal effect than the chemical effect of the H_2 content in RG. Also, at the same IMEP, the RG 75/25 moved the mixtures towards the richer region compared to the RG 50/50, which was operated at the leaner condition. Fig. 33(a) shows the ITE with the expanded rich-limit of RG75/25 decreased, presumably due to increased heat transfer losses. For natural gas, both compositions advanced the combustion timing with no obvious discrepancy by increasing the specific heat ratio and compression temperature of the mixture. The supporting modeling studies showed that the thermal effect is dominant, and the chemical effect arising from the various compositions used has an insignificant effect. Also, ITE with RG75/50 is increased due to H_2 properties in extending the lean limit of the mixture (see Fig. 33(c)).

For n-heptane, both compositions retarded the combustion timing by suppressing the LTHR stage (see Fig. 33(e)), in which H_2 indicates a stronger effect than CO (see Fig. 34). Indicated efficiency of the RG 75/25 fueling decreased after reaching an RG fraction of 10\%, staying away from optimal combustion phasing of n-heptane, with more retardation (see Fig. 33(b)).

Thus, it is evident that RG with emphasis on the H_2 content acts as an LTHR inhibitor (chemical effect) due to its participation in low temperature oxidation for fuels having two-stage heat releases like n-heptane, PRFs, and DME. In this regard, Gou et al. experimentally [364] and numerically [365] studied the thermal, chemical, and dilution effects of hydrogen enrichment on HCCI fueled with n-heptane. Recently, based on numerical validation against experimental data acquired from the work of Hosseini and Checkel [358,359], multi-zone modeling studies with detailed chemical kinetics and with artificial inert species have been carried out to assist in the fundamental understanding of the chemical, dilution, and thermal effects of RG blending on the base fuels during the HCCI combustion [363,366-370]. For n-heptane [370] and low-PRF fuels [368], the dominance of the chemical effect among other

Fig. 32. Effect of reformer gas on in-cylinder pressure traces and heat release rates with PRF80 at CR = 14.4:1 and EGR = 33% [363].
effects on retarding the SOC was confirmed, mostly due to H₂ presence in low-temperature oxidation reactions during the negative coefficient temperature or NTC (period between LTHR and HTHR). For high PRF fuels, the dilution effect increases by increasing the PRF number [368].

Table 10 summarizes the main syngas works on HCCI engines published in the literature. Syngas as a primary fuel of an HCCI engine has serious obstacles such as its lower combustion efficiency than 90%, high CO emissions, and excessive dependency on intake preheating and high
Table 10
Summary of syngas utilization studies in HCCI engines.

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Experiments/Simulation</th>
<th>Main fuel</th>
<th>Fuel addition (% by volume)</th>
<th>Objective(s)</th>
<th>Finding(s)</th>
</tr>
</thead>
</table>
| Shudo and Ono [346] (2002) | 1-cyl SI converted to HCCI, CR= 8.3, 9.7, 12.4, 15.8, rpm= 1000, T
\[\text{intake}\] = at room temp. | Dimethyl-ether (DME) | A model gas for methanol reforming (MRG): H
₂C
_O = 67/33, 10% of Reformate was added to intake. H
₂C
<sub>O/CH
₄/CO/ O
₂/N
₂ = 10/0.3/0.4/ 9.0/0.8/79.5 | Using on-board generated DME and MRG by waste heat recovery to control HCCI combustion timing | Combustion ignition timings were controlled by DME/MRG ratio. With ↑ CR: HRR advances and cooling loss increases. |
\[\text{intake}\] = 140°C, 230°C | Natural gas (NG) | | | Proposed an onboard catalytic exhaust gas fuel reforming strategy for NG HCCI engine. Stable combustion. Lower intake temperature requirement ↓ NOx ↑ HCCI CO. |
\[\text{intake}\] = 140°C | CNG | Reformer gas (RG) was introduced to the intake charge (0-60% replacement with the main fuel by mass) H
₂C
_O = 3/1 | A solution to: Pure NG-fueled HCCI with knock severity, high NOx and low performance | By ↑ RG replacement fraction: Expanding the operating window very lean range: ↓ Knock ↓ NOx ↑ CO ↓ Combustion eff. |
\[\text{intake}\] = 140°C | PRFB0 (20% n-heptane, 80% iso-octane) | A solution to SI at part load: RG effects on high octane fueling in an engine with dual SI/HCCI modes (improving HCCI operating at part load) | By ↑ RG replacement fraction: Expanding and shifting the engine operating window towards ultra-lean: ↓ Maximum cylinder pressure ~ NOx ↑ HCCI CO. | Combustion efficiency. |
\[\text{intake}\] = 100°C | PRF0 PRF20 | RG (0-40% replacement by mass) | A solution to high emissions of diesel engines: RG effects on low octane fueling in an effective HCCI | By ↑ RG replacement fraction: Expanding the engine operating window on the rich side: ↓ Peak cylinder pressure and PRR ↑ IMEP ↓ CoV IMEP | Engine power ~ NOx ↑ HCCI CO. |
\[\text{intake}\] = 100°C | iso-octane | H
₂C
_O = 3/1 | Thermal and chemical effects of RG blending | At high initial temperature: Thermal effect dominates (advancing the combustion phasing). At moderate temperature: Chemical effect dominates (retarding the combustion phasing). Overall: insignificant effect on combustion. |
| Hosseini at al. [371] (2009) | 1-cyl CFR CR= 11.8, rpm= 800, T
\[\text{intake}\] = 110°C | n-heptane | n-heptane blending (0-40% replacement by mass) | A solution to: Knock propensity at high load | With RG blend fraction of 10%: 4.4° CA retardation in SOC, ↓ H2 content was more effective in retarding, ↓ IMEP by 0.25 bar, ↓ TKE by 2.8% |
| Voshani et al. [372] (2014) | Single-zone and multi-zone thermodynamic-kinetic models, based on [360] | NG | RG enrichment effects on a HCCI combustion engine operating with NG. | Both chemical and thermal effect advance the SOC, but dilution retards that. chemical > dilution > thermal H2 and CO in RG at low and high amount of RG have strong responsibility of altering SOC. | |
| Zheng et al. [373] (2014) | Zero-dimensional (0D) and three-dimensional (3D) combustion models | DME | DME reformed gas (DRG) produced by REG strategy: H2/CO: 66.7/33.3 | Effect of REG on HCCI fueled with DME | REG (EGR + DRG): can delay ignition time, allowing main combustion closer to TDC, minimizing negative compression work. Compared to EGR-only: ↓ HC, ↓ CO. By RG addition: ↓ H abstraction reactions rate ↑ decomposition fuel time ↓ LTHRR peak. ↓ PRF number: ↓ dilution ↓ chemical effect. ↓ NOx ↓ HCCI CO. |
| Neshat et al. [368] (2016) | Multi-zone model and semi detailed chemical-kinetic mechanism | PRFs | (0-30%) replacement H
₂C
_O = 1/1 | Effect of RG blending on HCCI combustion of PRFs | Thermal effect: SOC was advanced for all fuels. Chemical effect: SOC was advanced with NG and iso-octane and retarded with n-heptane, mainly due to H2. Dilution effect: SOC was retarded for all fuels. Ignition timing and combustion duration were retarded and decreased, respectively, especially at φ= 0.2. |
| Reyhanian and Hosseini [370] (2018) | Multi-zone model with detailed chemical-kinetic mechanism | NG | iso-octane | Understanding of various effects of RG addition, with composition of RG in HCCI combustion | Thermal effect: SOC was advanced for all fuels. Chemical effect: SOC was advanced with NG and iso-octane and retarded with n-heptane, mainly due to H2. Dilution effect: SOC was retarded for all fuels. Ignition timing and combustion duration were retarded and decreased, respectively, especially at φ= 0.2. |
| Kozlov et al. [374] (2018) | 2D CFD simulation At φ= 0.2, 0.4 | iso-octane | H
₂C
_O = 2/1 | Combustion and emission characteristics of HCCI operating on iso-octane/syngas | (continued on next page)
3.3. Syngas in dual-fuel engines

Stable combustion of a premixed syngas-air mixture is problematic in CI engines due to the low reactivity and high auto-ignition temperature (> 500°C) of syngas. Also, more stringent diesel engine emissions regulations have directed research towards further development of advanced combustion engines. Meanwhile, diesel-fuel operation with a premixed fuel and pilot-injected diesel has shown interesting advantages in terms of efficiency and emissions over conventional diesel combustion (CDC). Similar to compressed natural gas (CNG) and liquefied petroleum gas (LPG) [382], syngas is also a good candidate for the premixed fuel in dual fuel mode owing to its variable composition, flexible feedstocks, and possibility of on-board production on a vehicle [383,384]. In this part, syngas utilization in dual-fuel combustion is analyzed and reviewed in detail.

Table 10 (continued)

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Experiments/Simulation</th>
<th>Main fuel</th>
<th>Fuel addition (% by volume)</th>
<th>Objective(s)</th>
<th>Finding(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Achilles et al. (2011)</td>
<td>Modified, 1-cyl truck/bus engine, CR=22.5:1, 1050 rpm, T({\text{intake}})=80-180°C for NG, T({\text{intake}})=75-145°C for PG</td>
<td>PG: H(_2)/CO/CH(_4)/CO(_2)/N(_2) 30/20/1.0/15/34</td>
<td>—</td>
<td>Comparing producer gas (PG) and natural gas (NG) in HCCI engine</td>
<td>PG as compared to NG fueling: Wider 4 range, faster combustion, more smooth and stable, maximum IMEP, intake temperature requirement, THC, and CO emissions.</td>
</tr>
<tr>
<td>Przybyla et al. (2016)</td>
<td>SI engine with CR=8.2, HCCI engine with CR=20, T(_{\text{intake}})=132-153°C</td>
<td>H(_2)/CO/CH(_4)/CO(_2)/N(_2) 10.1/24.9/2.5/2.5/57.8</td>
<td>—</td>
<td>Fueling of SI (ϕ=1) and HCCI (ϕ=0.5) engines with low heating value PG</td>
<td>ITE: SI:HCCI by about 3.5%, Energy loss in exhaust based on chemical energy of the fuel: HCCI (10%) > SI (2%). The SI efficiency can be easier than HCCI optimized.</td>
</tr>
<tr>
<td>Przybyla et al. (2011)</td>
<td>1-cyl engine, CR=21.2:1, 1800 rpm, T(_{\text{intake}})=60-90°C</td>
<td>RG 1: H(_2)/CO: 75/25</td>
<td>—</td>
<td>Studying HCCI engine with two different syngas compositions at ϕ=0.26 and 0.3</td>
<td>1CO fraction in RG: ↑auto-ignition temperature, ↑intake temperature requirement, ↑combustion efficiency (83-88%). At low load and high intake temp.: ↑heat transfer to wall.</td>
</tr>
<tr>
<td>Przybyla et al. (2015)</td>
<td>Air cooled mono-cylinder HCCI engine CR=12, rpm=1500, T(_{\text{intake}})=230-270°C</td>
<td>H(_2)/CO ratio from 30:70 to 55:45%</td>
<td>—</td>
<td>Proposing a novel tar-tolerant HCCI engine in response to various syngas compositions (with water and tars)</td>
<td>Moisture in syngas: water’s dampening effect on chemical reaction rate, delay in combustion (positive effect), Tars in syngas: ↓TV of syngas, but their effect on the combustion phasing were negligible.</td>
</tr>
<tr>
<td>Przybyla et al. (2017)</td>
<td>Air cooled mono-cylinder HCCI engine CR=12.2, rpm=1500, T(_{\text{intake}})=250°C</td>
<td>H(_2)/CO/CH(_4)/CO(_2)/N(_2) 15:25:15-25/1-3/8-15/balance</td>
<td>—</td>
<td>Testing the stability of the engine in response to the naturally occurring random variations in the syngas composition</td>
<td>Over a 24 h test: high ITEs of 33%-39%, a low IMEP of about 2.5 bar, and a relatively high NO(_x) (due to ammonia in the syngas) were observed.</td>
</tr>
<tr>
<td>Przybyla et al. (2017)</td>
<td>Air cooled mono-cylinder HCCI engine CR=12.2, rpm=1500, T(_{\text{intake}})=250°C</td>
<td>H(_2)/CO/CH(_4)/CO(_2)/N(_2) 18/22/1.0/11/48</td>
<td>—</td>
<td>EGR effect on a tar tolerant HCCI engine</td>
<td>↑EGR from 0% to 25%.</td>
</tr>
<tr>
<td>Przybyla et al. (2017)</td>
<td>Zero-dimensional single-zone thermochemical model</td>
<td>H(_2)/CO: 50/50</td>
<td>—</td>
<td>Improvement of combustion in a syngas fueled HCCI engine by adding ozone or excited oxygen molecules</td>
<td>Ignition can be accelerated before TDC, thus ↓intake temperature. At the same IT, 1% of SDO in total oxygen may ↑the power by 7-14% compared to the base case with higher intake temperature.</td>
</tr>
<tr>
<td>Przybyla et al. (2021)</td>
<td>1-cyl 126TI-II series, Doosan Infracore, CR=17.1, rpm=1800, T(_{\text{intake}})=140°C/140°C/230°C</td>
<td>H(_2)/CO/CO(_2) 30/20/30:25/55:15/55/25/15/55/15/70</td>
<td>—</td>
<td>Investigate the combustion and emissions of an HCCI engine with various syngas compositions</td>
<td>↑intake temperature and boosting: Low-calorific syngas (15% H(_2), 15% CO, and 70% CO(_2)) at 3.34 MJ/Nm(^3) can be auto-ignited</td>
</tr>
</tbody>
</table>
established a predictive model to determine the ignition delay and combustion of a syngas/diesel CI engine, based on an empirical model and three Wiebe functions (for pilot-fuel, gaseous-fuel, and diffusive combustions) calibrated with experimental data. After that, some experiments were conducted to characterize syngas/diesel dual-fuel combustion in terms of engine performance and emissions by varying syngas compositions. Sahoo et al. [386] evaluated the dual-fuel concept using syngas with a H_2/CO ratio of 1/1 by volume in a single-cylinder diesel engine at a constant 1500 rpm and injection timing of 23° BTDC by altering the load from 0 to 100%. Compared to the diesel-only mode, a lower BTE with a peak reduction of 21% at 80% load, increased exhaust gas temperature (50-100°C), increased CO and HC emissions for all engine loads were observed; however, both NOx emissions and peak cylinder pressure were decreased. Also, by varying H_2/CO's volumetric ratio during various loads (387), the maximum HC, CO, and CO$_2$ emissions and minimum BTE occurred with 100% CO; however, the opposite behavior was observed with 100% H_2 (388). Moreover, from the second law efficiency point of view, the same authors [389] concluded that a syngas/diesel CI engine’s theoretical performance favors higher load (beyond 40% load) over lower loads, where the exergy destruction increases due to the heat transfer losses, see Fig. 35 (right).

Bika et al. [390] experimentally assessed the cycle efficiency of a single-cylinder syngas/diesel engine for four diesel substitutions of 0% (diesel-only baseline case), 10%, 20%, and 40%, at two net IMEPs of 2 and 4 bar, see Fig. 35 (left). Bottled gases of H_2 and CO with varying proportions (H_2/CO: 100/0, 75/25, 25/75, and 0/100 by %volume) were used to simulate syngas. Compared to the diesel baseline case, they displayed lowered efficiencies at both loads (10-25% for 2 bar and 5-17% for 4 bar IMEP), presumably attributed to the unburned syngas discharged in the exhaust stream. Moreover, NOx emissions were increased for all syngas proportions at 4 bar IMEP.

So far, syngas/diesel dual fuel operation findings have shown a common trend of efficiency degradation particularly at low- and part-load engine loads with the decrease in combustion efficiency being due to increased H_2 and CO. Wagemakers and Leermakers [382] reviewed the comparison of dual-fueling of diesel with various gaseous fuels like CNG, LPG, syngas, and hydrogen. They reported that all gaseous fuels could reduce soot emissions except for syngas. As a consequence of the dual fuel mode for diesel substitution, methane demonstrated better performance than syngas. The drawbacks generally reported from engines operating on gaseous fuels/diesel at part loads are excessive HC and CO emissions, and high fuel consumption, resulting in lower combustion efficiency and low thermal efficiency [391]. Also, a recent review on natural gas (NG)/diesel engines reported the same trend with up to a 2.1% fall in engine power and low BTE at low-to-part engine loads, while a maximum rise of 3% at high loads would be attainable compared to the diesel engine [392]. The only reported solution to the stated problems was to increase the H_2 content of the syngas, while the pilot injection strategy has not received much attention. It is also worth noting that higher efficiency with H_2/diesel dual operation than diesel-only operation has been obtained when H_2 is injected directly within the cylinder [393,394]. Antunes et al. [393] indicated fuel efficiencies of 34% for H_2/diesel and 43% for H_2/diesel compared to 28% for the diesel-only case.

At Okayama University, a group has conducted research on dual-fuel operation [395–402] with different producer gas generated by biomass gasification (BMG) and coke-oven gasification (COG) in a supercharged, single-cylinder diesel engine. They reported performance and emissions characteristics of a dual fuel syngas/diesel engine considering the effect of pilot injection. Their key findings are summarized below:

- The effect of injection pressure and amount of pilot fuel (diesel): Smoke emissions were increased with increasing amount of injected diesel, while decreasing with increasing injection pressure (i.e., 2 mg/cycle with 400 bar has the same measured smoke with 10 mg/cycle with 800 bar) [395].
- The effect of pilot-injection strategy with timings ranging from 4 to 12 BTDC, injection pressures of 40, 60 and 80 bar, pilot quantities of 2 to 10 mg/cycle: 80 MPa with 3 mg/cycle was optimal for best performance [396].
- The lowest energy content PG used showed the lowest level of NOx emissions and smoke-free operation with smooth combustion [398].
- The effect of varying hydrogen content in PGs from 13.7% to 20% by volume: High hydrogen content in syngas led to a wide operating

![Fig. 35. Comparison of cycle efficiency vs. diesel substitution at 4 bar IMEP (left) [390] and exergy efficiency vs. engine load (right) [389] for various H_2/CO volumetric ratio (Reprinted with permission of Elsevier).](image1)

![Fig. 36. Premixed mixture ignition in the end-gas region (PREMIER) combustion concept (Reprinted from [401] with permission of Elsevier).](image2)
Following this work, Azimov et al. [403] suggested a novel combustion strategy with inspiration from the knock event in the end-gas regions of SI engines. The natural gas engine with a homogenous air-fuel mixture could be controlled; when natural gas combusts with the flame front supported concurrently by pilot-injected diesel fuel, which has already been ignited. They called it premixed mixture ignition in the end-gas region (PREMIER) combustion; also, shifting from diffusion combustion to flame front combustion for syngas/diesel dual-mode was reported in [404]. With the proposed combustion strategy illustrated in Fig. 36, the effect of H$_2$ and CO$_2$ content in syngas on the performance and emission of a syngas/diesel engine was investigated under lean operating conditions [401]. PREMIER combustion was observed primarily when the amount of pilot fuel used was minimal. Additionally, they [401] stated that an increase in syngas’s hydrogen content shortened the main combustion period and caused the mean combustion temperature, IMEP, and efficiency to increase. They also found that diesel could not be substituted completely, or syngas could not be used as a single fuel in the diesel engine.

Some other researchers [396,405-409] have explored the feasibility of the dual-fuel concept with syngas generated from various sources by either gasification like producer gas or on-board reforming processes like reformer gas. Dohle et al. [409-411] performed a series of experimental studies to investigate the combustion characteristics of a dual-fuel diesel engine fueled by three cases of H$_2$, PG, which was generated from rice husk, and PG in combination with H$_2$ (PG + H$_2$) as a secondary fuel. Fig. 37 (left) shows the thermal efficiency variations with five different combinations of gaseous fuel replacement at 13%, 40%, and 80 % engine loads. Again, up to 30% load, a decrease of BTE was found due to the poor combustion characteristic of low calorific producer gas even in combination with H$_2$ at low loads. While by increasing the total mass quantity of fuel through increasing the engine load, the combustion of the dual fuel mode improved due to the higher flame velocity and diffusivity of gaseous fuels compared to diesel. As compared to H$_2$/diesel and PG/diesel cases (see Fig. 37 (right)), H$_2$ would augment more stability in the flame of the H$_2$+PG/ diesel case, presumably attributed to the high stability of H$_2$-air flames while the PG flames tend to become unstable. Nevertheless, the increase in H$_2$ from a certain amount (here, 40% of H$_2$ in PG/H$_2$ mixture) resulted conversely in the destabilization of the flame, which may be attributed to a decrease in the Markstein length [412]. At higher loads, much oxygen was consumed by PG/H$_2$ while hydrocarbon fuel received not enough oxygen; thus, a reduction in BTE would be sensible.

Fig. 38 depicts the variation in emissions at 80% load conditions for the three cases, with PG/H$_2$ ratio of 60:40. Because of the low pilot quantity, HC emission is high with gaseous fuel replacement at higher engine loads. As noted above at higher loads, larger gaseous fuel substitutions, which replace some of the air during the intake stroke, can lead to increased utilization of oxygen and the reduction of oxygen available for further combustion of the pilot diesel fuel, thus raising the HC level. Higher CO emissions implies that incomplete combustion and burning of lubrication oil take place, together with the lower heating value of PG, CO-containing PG (lower mean effective pressure), lower adiabatic flame temperature, and lower over-mixing. For the PG case, the drop in NOx may be due to the lower adiabatic flame temperature of PG and the absence of nitrogen in the PG, as well as a more uniform temperature distribution achieved with the gaseous fuel-air mixture, allowing the number of high-temperature regions around the diesel flame to decrease.

The summary of relevant literature that has been reviewed so far indicates:

1- Feasibility of syngas/diesel among gaseous fuels/diesel as a good choice for dual-fuel operation: according to all cited work here, while it has no beneficial aspects in terms of engine performance, and even also emissions, it performs well at low and part loads.
2- The influence of syngas compositions confirmed that increasing the H$_2$ content of the syngas has considerable merit in combustion improvement.
3- Modifying the pilot injection strategy can be a promising way of extending the prospects of the dual-fuel mode with syngas.

![Fig. 37. Brake thermal efficiency for PG+H$_2$/diesel mixtures (left) and for H$_2$/diesel and PG/diesel (right) at different loads (Reprinted from [409] with permission of Elsevier).](image-url)
4. This concept’s flexibility with a broad range of synthetic gases derived from varying sources has led to more attention in research.

The pilot injection strategy of Roy [396], is regarded as a means of controlling the in-cylinder reactivity and combustion phasing. By introducing two fuels having different reactivity (i.e., low and high reactivity) with a pair of separate injections for the high-reactivity fuel within the cylinder control can be achieved. This concept has been presented by Kokjohn et al. [413], who named it reactivity-controlled compression ignition (RCCI). In terms of commercialization, RCCI [380, 381, 414, 415] is under more investigation for single-fuel operation, where high reactivity like diesel as the parent fuel, can be converted into a low-reactivity fuel by suitable in-situ on-board fuel reforming [34, 416–424].

Rahnama et al. [34] investigated the effects of reformer gas, hydrogen, and nitrogen on the combustion characteristics of a heavy-duty RCCI engine fueled with natural gas/diesel. The impact of the introduction of syngas (up to 5%vol) at medium load engine operation was also investigated. As shown in Fig. 39, by adding syngas, peak pressure, combustion, and gross indicated efficiency values significantly increase, but after a certain point, the gross efficiency drops due to improper phasing in combustion and heat release during the compression stroke. With respect to emissions, the introduction of syngas increases NOx emissions due to the higher temperature induced by the higher adiabatic flame temperatures of carbon monoxide and hydrogen. It also decreases soot emissions, due to the higher temperature of combustion resulting from the hydrogen content of the syngas, which allows soot oxidation. It is also confirmed in a recent study by Zhong et al. [425] that hydrogen in syngas promotes NOx emission but suppresses soot emission. Even though HC and CO emissions at medium load operation are relatively low, syngas addition slightly reduces HC emissions and increases CO emissions due to the syngas CO content, as depicted in Fig. 40. In another work, Rahnama et al. [418] numerically studied the effects of reformer gas composition (3% syngas enrichment of intake air) on the combustion and emission characteristics of a natural gas/diesel RCCI engine at a low load condition. They observed that with increasing CO fraction in the syngas, peak pressure, ringing intensity, and pressure rise rate increased significantly. Using a mixture with a higher CO content, a shorter ignition delay and combustion time and advanced CA50 were achieved. These were interesting results but was attributed to the lower cylinder temperatures as a result of using lower intake temperatures with high-H$_2$ syngas.

Chuahy and Kokjohn [416] were the first to experimentally examine the effect of varying syngas composition on a single-fuel RCCI fueled...
with diesel and simulated reformed diesel (50% H$_2$ and 50% CO by mole); it was done by keeping both the fuel energy level (4100 J/cycle) and the combustion phasing (at -0.3° and 0.5° ATDC for 0% and 40% EGR, respectively) constant by adjusting the injected diesel mass. The authors indicated that syngas with high H$_2$ content suppresses the low-temperature heat release (LTHR) stage and shortens the duration of high-temperature heat release (HRHR) or combustion with rising its peak, as seen in Fig. 41. They pointed out that by keeping the combustion phasing constant, increasing the H$_2$ content in syngas has an identical effect on the engine’s gross indicated efficiency. Moreover, as shown in Fig. 42, the effect of syngas replacement by energy on the combustion phasing was shown that excessively high syngas has HTHR
with two distinct stages and higher cyclic variability, represented by shaded regions, which is ± standard deviation.

In light of the integration of single-fuel RCCI with varying fuel reforming reactions, work by Chuahy and Kokjohn [417] has shown that reformate generation from all reactions, including steam reforming, partial oxidation, and auto-thermal, have the capability of raising the net indicated efficiency of the engine by 4% compared to that of conventional diesel. The steam reforming case had the highest system efficiency if exhaust energy recovery was enabled. Further, it was reported [426] that the engine-reformer system with endothermic reforming has comparable efficiency to a conventional diesel engine at equal tailpipe-out NOx and negligible soot emissions; lower hydrogen to carbon ratios allows to achieve more engine-reformer efficiency.

By utilizing a thermally integrated R-EGR reactor (see the next section), single-fuel RCCI operation in a light-duty diesel engine was achieved by Hwang et al. [427]. Data were collected over a range of EGRs and main diesel injection timings at a constant fuel flow rate. The analysis indicated that RCCI is achievable with low efficiency in reactor conversion as long as reformate produced has reasonably small reactivity compared to diesel. The results also showed that while operating the reformer at a lower equivalence ratio resulted in higher hydrogen production, ignition was significantly delayed at achievable diesel injection timings. This work showed that while single-fuel RCCI is possible using an R-EGR diesel engine design, more research is required to optimize the system in order to reach the efficiency and emission rates achieved by dual-fuel RCCI engines.

3.3.2. Biofuels/syn gas engine performance and emissions

Vegetable oils such as honge, rice bran, and neem oils have been investigated for their suitability as diesel engine fuels [428] due to being renewable, non-toxic, and biodegradable. Many researchers have performed tests on CI and dual-fuel engines with different vegetable oils at different operating condition. Banapurmath et al. [429,432] studied the combustion characteristics of a CI engine operated on the dual-fuel mode with PG as the premixed fuel and honge oil and its methyl ester (HOME) as the injected fuels (liquid pilot fuels). Fig. 43 represents heat release rate comparisons for the dual-fuel mode at optimum injection timings for the selected fuel combinations. It was observed that the premixed burning phase associated with a higher heat release rate is significant with diesel-PG dual-fuel mode leading to the higher thermal efficiency of diesel-PG operation. Furthermore, the diffusion burning process indicated under the second peak was higher for honge oil-PG and HOME-PG than diesel-PG dual fuel operation, which is in agreement with the effects of the viscosity of vegetable oils on the fuel spray and reduced air entrainment and lower fuel-air mixing rates. Higher exhaust temperatures and lower thermal efficiency were noticed with honge oil-PG due to the significantly higher combustion rates during the later stages. However, HOME-PG operation showed improvement in heat release rate compared to neat honge oil-PG dual-fuel operation.

Yaliwal et al. [51,433-438] increased the fuel efficiency of a single-cylinder, dual-fuel DI stationary diesel engine using HOME-Bioethanol (BE) blends, such as HOME+5% bioethanol (BES), HOME+10% bioethanol (BE10) and HOME+15% bioethanol (BE15). Fig. 44 depicts in-cylinder pressure versus crank angle for diesel-PG, HOME-PG, and HOME+ bioethanol-PG combinations at a load level of 80%. The cylinder pressure was determined to depend on the combustion rate, the type of combinations of fuel utilized, and how much of the fuel is involved in the rapid combustion cycle. Lower cylinder pressure was observed for the combination of HOME–PG and HOME+ bioethanol – PG compared to the combination of diesel–PG, due to the combined impact of the lower heating value of the blends and PG and the longer ignition delay due to inadequate mixing with the slow-burning nature of the PG. Nonetheless, for the BE5–PG combination, a significantly higher in-cylinder pressure was observed compared with the combinations of HOME–PG, BE10–PG, and BE15–PG. This may be attributable to the higher blend’s improved spray properties. Furthermore, when PG is present, a higher blend of bioethanol with HOME lowers the energy content for dual-fuel operation.

Overall, experimental work on the dual-fuel engine utilizing BES-PG operation resulted in up to 4-9% increased BTE with reduced HC, CO emissions, and slightly equivalent NOx emissions compared to HOME-PG, BE10-PG, and BE15-PG modes. However, the overall performance of BE-PG operation was lower compared to diesel-PG operation.

Later in 2018 [439], the same group compared the performance, combustion, and emission characteristics of a single-cylinder, DI stationary diesel engine operated in dual-fuel mode with a combination of HOME and the gaseous fuels CNG, HCNG, and PG. The combined effect of poor mixture preparation, longer ignition delay, lower heating value, and adiabatic flame temperature (1800 K) and slowing burning velocity nature of the PG (50 cm/s) resulted in the lower peak pressure and lowered rate of pressure rise for HOME–PG operation compared to HOME–CNG/HCNG operation.

Carlucci et al. [440-442] studied the improvements in dual-fuel biodiesel-producer gas combustion seen at low loads through pilot injection splitting. Utilizing a common-rail injection, single-cylinder research diesel engine fitted with a high-pressure common rail injection system controlled in dual-fuel mode, they measured changes resulting from splitting of the liquid fuel injection. In this case, the inducted gaseous fuel was a synthetic PG, while biodiesel was utilized as the pilot fuel. The experimental campaign was split into two parts, running on engine speed at 1500rpm. First, only one pilot injection of constant fuel quantity (11 mm³/cycle) was used, the rail pressure was set at 500 or 1000 bar, while the quantity of gaseous fuel produced in the cylinder was varied on three stages. Second, splitting pilot injection was shown to be an efficient way to increase the efficiency of fuel conversion and to reduce the levels of all polluting emissions compared to the single pilot strategy. Based on the comprehensive experimental tests, a dwell ranging from 10 to 30 degrees of crank angle combined with a first injection timing varying from 35 to 20 degrees of crank angle BTDC allowed the highest fuel conversion efficiency and the lowest emission levels. The injection pressure was verified to be a significant factor affecting the development of combustion, while the gaseous mass inducted in the cylinder determined a side effect in terms of oxygen depletion. Eventually, an efficient injection splitting proved to be an efficient way to boost the combustion of gaseous fuel under low load (lean mixture) conditions in the dual-fuel system. Kan et al. [443] simulated the combustion and emission performance of three dual-fuel strategies for utilizing the syngas and biodiesel produced from the biomass wastes, namely syngas-biodiesel, hydrogen-enriched syngas-biodiesel and DME-biodiesel in a compression ignition engine using the KIVA-CHEMKIN code. It was found that syngas-biodiesel and hydrogen-enriched syngas-biodiesel cases can improve the combustion

Fig. 43. HRR for honge oil-producer gas and honge oil methylester-producer gas at optimum injection timings (Reprinted from [429] with permission of Elsevier).
and had higher indicated power at high engine loads of 50% and 100%. The DME-biodiesel case was advantageous for the combustion at 10% load comparing to the other two cases. With the increase in fuel supplement ratio, the soot emission generally showed a decreasing trend at all engine loads for all three strategies.

Table 11 summarizes the main syngas combustion works on dual fuel engines published in the literature.

3.4. Syngas contaminants in IC engines

There are two sources of contaminants leading to deposit formation after running the engine with syngas fuels:

1. Impurities that originate from the production method,
2. Changing syngas composition during the storage process.

Impurities in biomass feedstocks and partial gasification lead to contaminants in syngas, which are mainly classified as tars, PM, alkali, nitrogen (NH\textsubscript{3}), Sulphur (H\textsubscript{2}S), halides, and trace elements [451]. These contaminants are responsible for downstream problems in the gasifier, such as corrosion, clogging, and catalyst deactivation [61,452-455]. Syngas produced from biomass gasification should be refined to remove condensable tars prior to using it as a fuel for IC engines [456]. Syngas impurities affect engine performance for all types of IC engines, but there are few studies in the literature on this. Bhaduri et al. [329,331,376] developed a tar tolerant system, wherein syngas with tar contamination was used as a fuel for an HCCI engine where intake temperatures were set to be above the tar dew point to prevent condensation of tars. They noticed that the moisture content of the syngas adversely affects combustion efficiency. In addition, the results demonstrated that the introduction of tars leads to an increase in the LHV without affecting the timing of combustion for neat syngas operation. In another work, Bhaduri et al. [330] carried out experiments using an impure and hot biomass syngas burned in an HCCI engine without the intermediate cooling and tar purification steps to test the engine’s stability in response to naturally occurring random variations in the syngas composition. Minimal tar deposits were found due to the use of a low tar gasifier after 24 h of operation (see Fig. 45). Besides, brown discoloration from some deposits was observed on the piston and cylinder heads, which was attributed to the regular oil-related deposits.

In the second case, Hagos et al. [457] ran a DISI engine with various syngas compositions free of tar and periodically checked the fuel injector, spark plug, piston, cylinder head, and valve seats during the engine shutdown. Deposit formation was visibly observed on the surface of the injection tip, turning the color glow red, as can be seen from Fig. 46 (left). While a similar deposit color was also seen in other engine components, as shown in Fig. 46 (right), such deposits have never been found when running the engine with CNG, hydrogen, or a combination of them. It was pointed out that producer gas with light tar compounds as fuel has less impact on the deposit formation [458], although neither the effect of engine hours running nor the effect of syngas composition on the deposit quantity were investigated. The deposit characterization revealed that reacting the CO content in syngas with the metallic wall of storage tanks at high pressure may result in metallic carbonyl contaminants such as iron pentacarbonyl (Fe(CO)\textsubscript{5}) in the syngas, which in turn participates in the engine’s combustion. Before deposit formation, as mentioned in section 2.4, these components also affect the ignition delay and laminar flame speed of the whole combustion process. Besides, such metallic carbonyl could be generated during syngas production via gasification. Consequently, extra attention should be paid to the design of syngas production and storage systems.

4. Syngas from on-board fuel reforming in IC engines

A study by Yang et al. [459] reported that syngas could be stored under pressures as high as \(p = 83 \) bar and temperatures of \(T = -15 \)°C to 45°C. However, with on-board syngas production, the storage-related issues such as the demand for a large storage tank due to the low energy density of the syngas and the syngas contaminants (see Section 3.4) can be eliminated. This section provides a comprehensive overview of previous research on on-board fuel reforming and syngas production in IC engines. Regarding the vehicular applications, the fuel reforming process can be achieved either inside cylinders (i.e., in-cylinder fuel reforming) or outside the engine cylinders (i.e., external fuel reforming). In-cylinder reforming methods are a preventive measure to achieve a more efficient engine by increasing thermal efficiency, reducing energy content in the engine’s exhaust stream. In contrast, external reforming methods are a corrective one to a lower engine efficiency by capturing the exhaust gas energy via placing a WHR device (reformer) in the exhaust stream. Both methods are considered as thermochemical recuperation (TCR) technologies [460-462], which can be more efficient than thermomechanical methods [463] such as turbo-compounding and bottoming cycles because the energy transfer is not bounded by isentropic expansion and Carnot efficiency. Additionally, there is no significant modification needed in the design of production engines. Fig. 47 shows the schematic of the mentioned techniques by classification, and they are reviewed in detail in the following sections.

4.1. External fuel reforming

4.1.1. Intake fuel reforming

Engine intake on-board fuel reforming involves all methods in which
Table 11
Summary of syngas combustion research in the dual fuel engine mode.

<table>
<thead>
<tr>
<th>Authors</th>
<th>Research objectives</th>
<th>Syngas composition</th>
<th>Experiments</th>
<th>Simulations</th>
<th>Main results</th>
</tr>
</thead>
</table>
| Bika et al. [390] (2011) | Cycle efficiency comparison between RG-diesel dual case and diesel-only case, at 2 and 4 bar IMEP | RG1: 100%H2, 0% CO
RG2: 75%H2, 25% CO
RG3: 25%H2, 75% CO
RG4: 0%H2, 100% CO | 4-stroke, 1-cyl Yanmar L100V CI engine, CR=21.2:1 rpm=1825 | — | Cycle efficiency: 10-25%, 5-18% lower than the diesel-only for 2 and 4 bar IMEP, respectively.
NOx: ~ for 2 bar, † for 4 bar with increasing diesel substitution. |
| Sahoo et al. [387] (2011) | Effect of load level on the performance of the RG-diesel and diesel (baseline) operation with varying H2/CO content | | 4-stroke, 1-cyl Kirlokar CI engine, CR=17.5:1 rpm=1500 | — | Maximum diesel replacement ~72.3% for RG1. At almost all loads:
Ignition delay: diesel < RG4 < RG3 < RG1, RG2
HC: RG1 < diesel < RG2 < RG3 < RG4
CO: RG1 < diesel < RG2 < RG3 < RG4
NOx: RG4 < RG3 < RG2 < diesel < RG1 |
| Sahoo et al. [389] (2011) | Second-law analysis of RG-diesel operation under varying load conditions | // | // | — | At higher loads:
† Combustion temperature and pressure; † cumulative work availability; † energy efficiency.
At 80% loads: max. ITE for RG 1-4: 19.8, 18.3, 16.1, 15.7%
At lower loads: Opposite of higher loads due to poor combustion. |
| Christodoulou and Megaritis [444] (2014) | Effect of composition on the performance of dual fuel RCCI engine | 60%H2:40%CO | 4-stroke, 4-cyl Ford Puma CI engine, CR=18.2:1 rpm=variable | — | With introducing RG + N2 mixture:
† NOx and smoke emissions over a large engine operating conditions; † Engine speed, † overall rate of pressure rise.
Engine is more fuel efficient with neat diesel. |
| Rahnama et al. [34] (2017) | The effects of H2, RG and N2 (by direct injection) on combustion, emissions and load limits of a heavy-duty natural gas/diesel RCCI engine | H2:CO = 0–100% variation in hydrogen fraction | — | — | Extending high load by adding N2:
† combustion phase delay, † ringing intensity
Extending low load by adding H2 and syngas: † combustion efficiency
At medium load with adding syngas:
† NOx, † ringing intensity, † pressure rise rate. |
| Chuahy and Kokjohn [416] (2017) | Effects of RG composition on a single-fuel RCCI engine at constant fuel energy and combustion phasing | 50%H2:50%CO
H2 is variable from 10% to 80% by mole | 4-stroke, 1-cyl Caterpillar CI5 CI engine, CR=16.9:1 rpm=1300 | Constant volume ignition delay calculation by ChemkinPRO | By replacing CO with H2:
† Charge reactivity, † combustion duration, † magnitude of low temperature heat release.
† Soot with increasing fuel reforming. |
| Haritharan et al. [421] (2020) | Study on single-fuel RCCI with diesel and reformed diesel by catalytic partial oxidation | H2:3%, CO:11%,
C0:3.4%,
N2:78.15%,
CH4:1.35%,
C2H6:2.9% (2.3 MJ/kg) | 4-stroke, 1-cyl Ricardo Hydra CI engine, CR=15.5:1 rpm=1200 | 3-D simulations using CONVERGE CFD | In comparison to gasoline/diesel and natural gas/diesel RCCI:
Comparable thermal efficiency with NOx, THC and good controllability, but at (CO and CO2. |
| Producer gas (PG)/diesel dual fuel CI engine | Performance and emission comparison of a supercharged dual-fuel diesel engine fueled by PG with varying H2 content | PG 1: 13.7%H2,
22.3%CO, 1.9% CH4, 16.8%CO2 and 45.3%N2
PG 1: 20%H2,
22.3%CO, 1.9% CH4, 16.8%CO2 and 39%N2 | 4-stroke, 1-cyl CI engine, CR=16.1:1 rpm=1000 Pilot injection timing—variable | — | Smooth and smoke-free, two-stage combustion was obtained.
High H2-content PG compared to low H2-content PG:
† 12% at engine power (operable range of η (from 0.52-0.68 to 0.42-0.79)
† combustion duration by 4-5% CA
† HC and CO by 10-25%. |
| Azimov et al. [401] (2011) | PG composition effects on a dual-fuel engine with PREMIER combustion at various equivalence ratios | 7 different compositions, H2 varying between 4-stroke, 1-cyl CI engine, CR=16.1:1 rpm=1000 | — | — | H2 content:
† Combustion temperatures, † IMEP, † efficiency, † CO, † HC, but † NOx.
(continued on next page)
Table 11 (continued)

<table>
<thead>
<tr>
<th>Authors</th>
<th>Research objectives</th>
<th>Syngas composition</th>
<th>Experiments</th>
<th>Simulations</th>
<th>Main results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dhole et al. [409] (2014)</td>
<td>Effect of H₂, PG, and H₂(40%) + PG (60%) as secondary fuels on combustion parameters of a dual fuel diesel engine</td>
<td>21.6%H₂; 23%CO₂; 2.1%CH₄; 10.2%CO; and 43.1%N₂ (6 MJ/kg)</td>
<td>4-stroke, 4-cyl, Turbocharged, Ashok Leyland ALU W04CT engine, CR = 17.5:1, rpm = 1500</td>
<td>—</td>
<td>At all loads and gaseous fuel substitutions: BTE: PG < PG + H₂ < H₂ Mean cylinder temperature: H₂ < PG < PG + H₂ HC: PG + H₂ < PG < H₂ CO: H₂ < PG + PG + H₂ Lowest NOx: for H₂ at 20% for PG at 80% load.</td>
</tr>
<tr>
<td>Rinaldini et al. [445] (2017)</td>
<td>Exploring the potential of using both Diesel fuel and syngas in a current turbocharged diesel engine</td>
<td>9.4%H₂; 22.4%CO₂; 2.9%H₂; 5.4%CO₂ and 5.9%N₂ (2.65 MJ/kg)</td>
<td>4-stroke, 4-cyl VM Motori CI engine, CR = 17.5:1, rpm = 3000</td>
<td>—</td>
<td>No need to significantly alter the standard stock engine design. Engine brake efficiency up to 5%. The use of syngas: Diesel oil consumption, quality of combustion.</td>
</tr>
<tr>
<td>Balakrishnan and Mayilasamy [446] (2014)</td>
<td>CR effects on CI engine performance with biodiesel and PG in mixed fuel mode</td>
<td>12.31%H₂; 10.13%CO₂; 1.48%CH₄; 14.58%CO₂ and 58.8%N₂ (3.56 MJ/m³)</td>
<td>4-stroke, 1-cyl Modified Kirloskar AV1 engine, CR = 5:1 to 20:1, rpm = 1450-1600</td>
<td>—</td>
<td>With CR: BTE and decrease brake-specific energy consumption. At higher possible CR: emissions, due to the well-mixed fuel with no engine modifications. The CR is limited by the ignition delay, noise pollution, and engine vibration to a maximum of 18.</td>
</tr>
<tr>
<td>Carlucci et al. New(2014)</td>
<td>Study on splitting pilot injection to improve of dual-fuel biodiesel-PG combustion at low loads</td>
<td>20%H₂; 20%CO and 60%N₂</td>
<td>4-stroke, 1-cyl Modified Kirloskar AVL model 5402 engine, CR = 17:1:1</td>
<td>—</td>
<td>By splitting the pilot injection: Fuel conversion efficiency, THC and CO. Dwells between two injections: Two-phase HRR was clearer. NOx showed an increasing-decreasing behavior.</td>
</tr>
<tr>
<td>Carlucci et al. [436] (2017)</td>
<td>Investigate on pilot biodiesel injection parameters and strategy on the biodiesel-PG dual-fuel combustion</td>
<td>//</td>
<td>4-stroke, 1-cyl AVL model 5402 engine, CR = 17:1:1, rpm = 1500</td>
<td>—</td>
<td>Highest fuel conversion efficiency and lowest emissions: Dwell with a range of 10-30° CA + first injection in the range of 20-35° BTDC. The injection pressure reported to be a major factor.</td>
</tr>
<tr>
<td>Yaliwal et al. [434] (2014)</td>
<td>Honge oil methyl ester (HOME) and PG fueled dual-fuel engine operated with varying CRs</td>
<td>15.19%H₂; 18.22%CO; 1.5%CH₄; 4%HO and 45.55%N₂ (5.56 MJ/m³)</td>
<td>4-stroke, 1-cyl Kirloskar CI engine, CR = variable (15:1, 16:1, 17:5:1)</td>
<td>—</td>
<td>CR from 15 to 17.5: BTE by 39.1%, exhaustion gas temperature by 26%, peak pressure by 9.65%, CO by 20.5%, CO by 44.5%, HC by 30.2%, NOx by 24.4%. At various CRs, lower BTE was seen with HOME-PG than diesel/PG. More improvement by turbocharging was suggested.</td>
</tr>
<tr>
<td>Yaliwal et al. [436] (2016)</td>
<td>Combustion chamber and nozzle geometry effects on a diesel engine performance operated on HOME/PG dual-fuel mode</td>
<td>//</td>
<td>4-stroke, 1-cyl Kirloskar CI engine, CR = 17:5:1</td>
<td>—</td>
<td>Injection pressure, hole number with hole size could result in efficient preparation of mixtures. With re-entrant combustion chamber + optimized nozzle geometry: BTE by 4.5%, smoke by 19%, CO by (continued on next page)</td>
</tr>
</tbody>
</table>
fuel for the reformer is supplied from the engine’s main fuel, and no relationship exists between the reformer and engine exhaust in terms of heat recovery, and the main purpose is not only to improve the combustion process, but also to improve the aftertreatment system performance at particular operating conditions. For example, on-board reformers have been employed to reduce HC and CO emissions during cold start and warm-up periods of a SI engine. Isherwood et al. [464] integrated a multi-cylinder SI engine with an electrically-heated prototype POX reactor to produce reformate as replacement of gasoline fuel during cold-start, and then observed time-averaged reductions in HC emissions.

![Image](a.png)

Fig. 45. (a) Tar deposits on a component of the check valve; (b) piston showed no deposits, but small impurities were found in the oil rings (Reprinted from [330] with permission of Elsevier).

![Image](b.png)

Fig. 46. Injector tip (left), cylinder head and valve seat (right) after and before syngas fueling [457].
and CO by about 80% and 40%, respectively. Kirwan et al. [465], at Delphi automotive, also established an intake-side, external POX reformer to convert a fraction of gasoline at rich conditions to reformate by catalytic reforming; then, the reformate was split into separate injections, a portion into the cylinder and the rest into the exhaust stream, resulting in a reduction of both engine-out and tailpipe emissions during cold-start. Another study [466] proposed an on-board water electrolysis system to reduce fuel consumption of the SI engine fueled with ethanol and gasoline at the idle condition.

The most significant way of producing reformate from this category is partial oxidation because of its inherently fast start-up and shut-down, rapid response to transient loads, and high hydrogen production, but at the expense of a drop in the reforming process efficiency, which should be offset by the increased engine thermal efficiency. Overall, enhancement in engine-reformer efficiency was reported for motorcycle applications assisted with plasma converter [467,468].

Briefly, although these on-board reforming processes could be operated independently of the engine condition (as a positive point), the complexity and extra costs bring additional issues. It is worth noting that developments in the aftertreatment systems following the adoption of more stringent emission standards are in progress.

Plasma reforming:

Plasma-assisted fuel reforming is a technique to generate hydrogen-rich gas on-board the vehicle by supplying a small fraction of the main fuel stream to a device where fuel and air are converted to a stream containing the syngas by POX process, and then mixed with the main intake air/fuel charge for SI and HCCI combustion improvements or directly applied to exhaust aftertreatment systems for a NOx trap [469] or for diesel particulate filter (DPF) regeneration [470], as demonstrated in Fig. 48. The device, which was initially developed and tested by Bromberg et al. [471,472] at the Plasma Science and Fusion Center (PSFC) of Massachusetts Institute of Technology (MIT) and they called it “Plasmatron”, can be categorized into thermal and non-thermal plasma reformers, depending on how electrical power input transfers from the electric field to plasma components including electrons, ions, neutral gases to form and maintain plasma [473].

In thermal plasma reformers, the plasma energy input supplied by a DC source creates a small region with an extremely high temperature (in the range of 5000 to 10000°K) to heat the electrons and the other plasma components, depending on how electrical power input transfers from the electric field to plasma components including electrons, ions, neutral gases to form and maintain plasma [473].

In thermal plasma reformers, the plasma energy input supplied by a DC source creates a small region with an extremely high temperature (in the range of 5000 to 10000°K) to heat the electrons and the other plasma components, such that temperatures reach thermal equilibrium. While
the provided high-temperature environment, along with created plasma heating, boost the slow reaction rates associated with POX reactions, irrelevant inert species (such as \(\text{N}_2 \)) are also heated, meaning that much-unused energy is wasted through this non-selective way. On the other hand, in non-thermal plasma reformers, only the electrons have very high temperatures; however, the other components are relatively cold (near room temperature) and capable of absorbing and storing energy to efficiently produce locally highly reactive species to perform fuel reforming at low temperatures. Due to this behavior acting as a catalyst, many researchers believe that non-thermal plasma reforming has inherent catalysis effects that are fundamentally yet unknown [84].

Rabinovich et al. [474] developed a high current (>10 A), thermal compact Plasmatron reformer to convert various fuels, namely biofuels, gasoline, and diesel, into \(\text{H}_2 \)-rich gas, and also integrated it with an SI engine fueled with methane [475] and gasoline [476] to investigate engine performance, NOx emissions, and engine-reformer interactions. They succeeded to potentially apply the compact Plasmatron to IC engine, resulting in substantial NOx emissions reductions but at the expense of the high power requirement, the high overall engine-reformer efficiency cost, and possibly lower electrode lifetime [477]. Besides, as seen in Fig. 49 (left), they needed two or more channels in which water flows for electrode cooling prohibit electrodes from erosion.

To overcome thermal compact Plasmatron-related issues, the same authors developed a low current (<120 mA) version of that through the non-thermal plasma generation mechanism, as indicated in Fig. 52 (right) [470]. A wide range of fuels such as heavy hydrocarbons, alcohols [478], and renewable fuels [479] can be used with different types of non-thermal plasma reformers.

It’s worth noting that due to developing an understanding of plasma-chemistry interaction mechanisms, the role of plasma, specifically the non-equilibrium one, in combustion enhancement by assisting ignition and flame stabilization has been drawing more attention than the low-temperature fuel reforming application in recent years. For instance, microwave non-equilibrium plasma could enhance an ignitor such as the spark plug of SI engines to initiate a sufficiently large flame kernel, which in turn causes lean limit extensions by maintaining nearly constant combustion variability by increasing the air-to-fuel ratio, in addition to the observed improvements in fuel consumption and CO emissions. This is beyond the current review’s scope, but in this regard, two critical and comprehensive reviews have been published [480,481]. Several studies were also conducted to mimic the Plasmatron-generated reformate in gasoline engines through simulated gases using bottled gas [305,482,483] with a typical reformate composition consisting of 25% \(\text{H}_2 \), 26% \(\text{CO} \), and 42% \(\text{N}_2 \), which indicated an improvement of about 12% in engine efficiency at partial loads.

In short, plasma-assisted reformers have shown vastly superior characteristics compared to traditional catalytic reformers, including fast response, rapid startup, fuel flexibility, size requirements, and absence of sulfur and soot as bi-products. Nevertheless, they deteriorate the vehicle’s overall power output by about 2%, as the engine must provide the electrical power. Additionally, they are immature for IC engine applications since plasma technology is still being under development.

4.1.2. Exhaust gas fuel reforming

Since in an IC engine approximately about 30% of the fuel’s energy is lost through hot exhaust gases, utilizing a part of these hot gases for providing heat and the reactants required, along with a portion of engine fuel for an exhaust gas fuel reformer placed inside the EGR loop, can result in reformate having higher enthalpy than the base fuel, as seen in Fig. 50. Reformate mixed with the rest of the EGR (in total, reformed exhaust gas recirculation or R-EGR) is fed back to the intake manifold to run the engine similar to a dual-fuel (the base fuel + R-EGR (EGR + Reformate)) engine. The same concept with varying configurations has been investigated by several researchers, as seen in Fig. 50. Because of using a catalyst to convert the fuel, it is also called on-board catalytic reforming.

Catalyst considerations:

The catalyst formulation determines the catalyst activity and resistance to deactivation due to carbon deposition, and reformer design affects catalyst temperature; therefore, both influence reformer performance and reformate product. An earlier work [489] on an R-EGR reformer with a gasoline SI engine exhibited poor performance at moderate temperatures (\(T = 600-650{\degree}\text{C} \)) as compared with values predicted by thermodynamic equilibrium, resulting in a low concentration of hydrogen (2-5%). This low fuel conversion was mostly attributable to the inactivity of the catalyst that was however not specified in that study. Recent works by Gomez et al. [490,491] showed that high activity of precious metal catalysts, e.g., 1 wt% rhodium (Rh) supported on zirconia, can bring yields near equilibrium for a given fuel conversion rate by preventing methanation reactions at typical exhaust temperatures of a gasoline engine. The study revealed that increased fuel conversion occurred with higher catalyst mass and temperature (see Fig. 51). A 10% drop was also observed in hydrogen production when increasing pressure from \(p = 1 \) to 1.3 bar. In a current configuration, the exhaust gas reformer is placed after the TWC in the exhaust gas system [492], and achievable hydrogen and CO yields were in the range of 5-10%; another current (and more complex) layout [487] is that the reformer is positioned close to the exhaust manifold, as will be discussed.
Fig. 50. Schematic of various integrations of on-board exhaust gas fuel reformer in IC engines adapted from literature.

R-EGR (University of Birmingham) [484]

On-board fuel reformer (Nissan Motor Co.) [485]

Catalytic EGR–loop reforming strategy (ORNL) [486]

Integrated steam reforming (ISR) reactor (University of Minnesota) [487]

Shoebox reformer design (Monsanto Company) [488]

Vehicle hybrid propulsion system with onboard methanol reforming (TIIT) [24]
obtained during an increase of 10 °C/min and at p = 1.3 bar. (Reprinted from [490] with permission of Elsevier).

in the following. In general, optimized heat transfer from exhaust gas stream to catalyst with minimized heat loss positively affects hydrogen and CO yields, and this can be addressed with an appropriate reformer design and a fitting place of the reformer relative to the engine. However, before all of these, the engine operating conditions decide what will happen inside the reformer.

Thermochemical recovery:

The engine provides heat and reactants (oxidizer or steam) for evaporating liquid fuel and initiating reactions involved in the reforming process. The exhaust gas stream contains CO$_2$ (for dry reforming), H$_2$O (for steam reforming), and O$_2$ (for partial or complete oxidation); each of them can initially react with the engine fuel with a proper catalyst. Thereafter, CO supplied by incomplete combustion from the engine or by the product of preceding primary reactions can react with steam not yet consumed to perform the water-gas shift (WGS) reforming reaction as a means of minimizing CO, which may be considered as a CO clean-up strategy for the catalyst [116,493], similar to that for avoiding poisoning of fuel cell anodes [494]. Finally, methanation reactions may take place to consume available hydrogen in reformate, decreasing the potential H$_2$ yield.

Understanding which of the reactions has a significant share in the reforming process depends on the temperature and composition of the engine exhaust gas, which directly relies on the engine operating conditions. Efficient TCR with a high heating value reformate occurs when all reactions are eventually net endothermic; therefore, the target is to maximize endothermic reforming reactions, primarily dry and steam reforming. Nevertheless, the low temperature of the exhaust at low engine loads cannot drive endothermic reactions alone; thus, in this case, partial and complete oxidation reactions are useful to provide the heat required to achieve the reforming process and the likelihood of tailpipe-out emission reduction, with the possibility of heat loss. Hence, the exhaust gas fuel reformer may act like an auto-thermal reformer (ATR) without needing a separate water tank and air supply system. Recently, Tartakovsky and Sheintuch [33] thoroughly reviewed this concept and we would recommend to refer to this paper for more information.

IC engine considerations:

Incorporating the exhaust gas fuel reformer at various engine operating points at different combustion modes, including CI [495-502], SI [484,489], HCCI [356,498,503], and partially premixed compression ignition (PCCI) [504] to produce R-EGR reformate has been widely investigated at the University of Birmingham over the last two decades; and more recently with a gasoline direct injection (GDI) engine reported in [100,492,505-510].

A series of studies on diesel engines integrated with a prototype exhaust gas fuel reformer (see Fig. 52 (left)) has been done with precious metal catalysts. Tsolakis et al. [496] employed this reformer whereby direct catalytic reforming of diesel is performed with the exhaust gas of a single-cylinder diesel engine operating at part load. They achieved up to 16% hydrogen content in the R-EGR products for a reformer inlet temperature of $T = 290$ °C. They also indicated that the use of R-EGR shifted the traditional NOx-smoke trade-off curve to lower values and lowered the incremental slope of smoke as compared to conventional EGR, as depicted in Fig. 52 (right). The same author [499] externally heated a diesel oxidation catalyst (DOC) Pt/Al$_2$O$_3$ at the temperature of $T = 250$ °C (same condition as the engine running at 1800 rpm and 25% load) and then added R-EGR products to the engine intake manifold with reduced diesel fuel injected in order to maintain the engine condition constant at low load. They found that poor use of gaseous fuel (diesel combustion was still predominant) occurred with 20% R-EGR addition due to increased fuel consumption (i.e., a higher BSFC in g/kWh); while improving gaseous fuel oxidation with 30% R-EGR addition lowered BSFC due to approaching the stoichiometric air-fuel mixture by reducing O$_2$ concentration in the cylinder and the higher intake temperature. Note that all these engine tests were achieved with simulated R-EGR bottled gas replaced with a part (or entire) of EGR.

Fig. 51. Thermodynamic and experimental product yields as a function of temperature for iso-octane fuel and REGR conditions; experimental data were obtained during an increase of 10 °C/min and at p = 1.3 bar. (Reprinted from [490] with permission of Elsevier).

Fig. 52. Schematic of liquid fuel reforming system (left) and effects of EGR (0–20%) and R-EGR (0–20%) on the NOx and Bosch smoke number (BSN), both upper and both lower curves pertain to 6.1 and 4.6 bar IMEP, respectively, and 1500 rpm (right) (Reprinted from [495,496] with permission of Elsevier).
Yap et al. [356] introduced a closed reforming loop system in the inlet of the exhaust manifold of a natural gas HCCI engine to perform methane (base fuel) reforming at low temperatures (~ 300°C) corresponding to lean operation. Since hydrogen yield varies with engine operating load (see Fig. 53 (left)), they suggested that a part of the exhaust gas can be displaced by extra O₂ content from the incoming fresh air (see Fig. 53 (right)) to maintain the hydrogen production target of 10% (by vol.) from 1 to 3 bar IMEP. Recently, another study [511] also reported that the adverse effect of highly endothermic conditions (ϕcatalyst > 7) on the suppression of high reformate yields could be counteracted by adding a small quantity of O₂, reaching 15% H₂ (by vol.).

In general, if the steam reforming process reduces the reformer temperature sufficiently, the possibility of inactivating the entire reforming process must be considered. Therefore, the addition of O₂ contained in the incoming fresh air as an option affords partial oxidation of methane (base fuel) reforming at low temperatures (~ 300°C) due to the need for a small amount of H₂O for IC engine applications.

The effects of water added into the exhaust gas fuel reformer on hydrogen yield and conversion efficiency of catalytically diesel reforming were also investigated by Tsolakis et al. [497]; at T = 290°C reformer inlet temperature, H₂ in the reformer product was obtained up to 15% more than with reformer operating without supplying water, due to presence of WGS reactions and then CO consumption in the reforming process. While heat losses from oxidative reactions can be mitigated by water addition, however, endothermic nature of WGS can lead to a reduction in overall engine-reactor efficiency.

Full scale engine-reactor integration:

A problem with aforementioned works was that the reformer and IC engine was not considered as a fully integrated system. As described in Fennel et al. [100,492], for the first time, a full-scale prototype gasoline reformer consists of a stack of five metallic catalyst plates loaded by 3.3% Pt/ 1.7% Rd was integrated with a modern TC, multi-cylinder GDI engine, by installing the reformer after TWC. A high pressure EGR loop was used to introduce a fraction of engine exhaust gas as the feed gas into the reformer and then the produced reformate was inducted into the intake manifold of the engine. Initially, they showed R-EGR benefits over the baseline and conventional EGR in GDI engine, in terms of engine efficiency, NOx and PM emissions, due to extension of the dilution limit [505,506]. Secondly, it was shown that temperature distribution and generally performance of the reformer have a great dependency on the exhaust temperature and mass flow rate of the feed gas. At high temperature conditions (~ 650°C), both efficiencies of engine and reformer process were improved up to 8% and being more than 100%, respectively, indicating an improvement in the base fuel enthalpy. At lower temperatures (~ 600°C), engine efficiency increased up to 4%; but in contrast, reformer efficiency was less than 100%, meaning some energy is lost in the base fuel (gasoline) during the reforming process [507]. Finally, they offered that the downsizing strategy and using a boost device with GDI engine would be favorable for exhaust gas fuel reforming because operating IMEPs of engine will be shifted to the higher loads, resulting in increasing the exhaust gas temperature.

Ashida et al. [485,513] used a 4 wt% Rh/Al₂O₃ catalyst reformer installed in the external EGR line of a SI engine (see Fig. 50, under the label of ‘On-board fuel reformer’) for catalytic steam reforming of injected gasoline in the presence of high-temperature EGR gas, without any additional O₂. They initially observed an H₂ production close to the calculated equilibrium concentration, but later catalyst deactivation almost started appearing within 5 hours, affecting the catalyst’s durability [514]. Thus, steam reforming only will potentially face the challenges of catalyst activity and durability in R-EGR strategy. Similarly, Brookshead et al. [515] at Oak Ridge National Laboratory (ORNL) incorporated a 2 wt% Rh/Al₂O₃ catalyst into the EGR loop of a multi-cylinder, stoichiometric SI engine. That work was followed by Chang et al. [511] to characterize the catalytic reforming performance using equilibrium modeling and experiments with iso-octane fueling. They firstly showed that reformer temperature, O₂ mole concentration, H/C ratio of the fuel, and equivalence ratio of the catalyst are all key factors for determining the reformate products. Findings at a quasi-state-condition revealed that the highest H₂ yield (15% vol.) (Fig. 54-A) for O₂ catalyst flow rate of 12 g/min (and higher) has coincided with maximum water consumption (Fig. 54-D) in the range of ϕ₄ < ϕₒ₄ < 7, suggesting the strong presence of SR or WGS reactions. Moreover, for ϕₒ₄ > 5, CO began being consumed (Fig. 54-B), and then H₂/O₂ captured higher values, meaning that the WGS would predominate at lower catalyst temperatures (Fig. 54-C).

Hwang et al. [516] were the first researchers who introduced a thermally integrated Rh/Pt catalyst reformer with a diesel engine to mitigate heat losses to the environment by mounting the reformer inside the exhaust manifold system. In this way, much more heat is readily accessible to the exhaust fuel reformer; thus, the primary candidate for catalytic reactions will be steam reforming. While the study showed the capability of producing high concentrations of hydrogen (as much as 10% indicating high conversion efficiency), the on-board reforming system indicated a decrease in overall engine efficiency due to a fuel energy penalty for diesel at conditions with low reformer equivalence ratio (ϕₒ₄~1.5). Hence, a thermally integrated reforming system with a high reformer equivalence ratio (lower dependency on POX reactions) demonstrated improvement in both engine and reformer conversion efficiencies. Completely eliminating POX in the reformer along with using water contained in the fuel, like hydrous ethanol as the secondary fuel to provide a source of water for SR, is a solution to boost TCR effect; in this regard, the same authors [487] developed their proposed reformer and called it integrated steam reforming (ISR) (see Fig. 50, under the label of ‘Integrated steam reforming (ISR) reactor’) to
enable diesel engine dual-fuel (diesel/syngas) operation. It was shown that the heating value of the fuel increased by 23% at 100% conversion.

Reforming fuel type:

It has been reported that the reformer and catalyst designs should be optimized exclusively for each type of reforming fuel in the REGR-assisted IC engine application. For instance, Tsolakis et al. [517] compared the reforming of ultra-low sulfur diesel (ULSD) with ultra-clean gas-to-liquid (GTL) fuels for a single-cylinder diesel engine. They showed decreased methanation reactions, which ends with \(\text{CH}_4 \) present in the reformed products with GTL fueling. Thus, results in higher hydrogen generation and fuel conversion compared to ULSD reforming. These advantages of such fueling can result in reformer compactness improvement and catalyst cost-benefit.

The feasibility of R-EGR with renewable fuels such as biodiesel was shown in the earlier stages of research in a CI engine [495], and later with renewable oxygenated fuels like bioethanol and rapeseed methyl ester (RME) in both CI and HCCI engines [356,503,504,518]. Tsolakis et al. [519] indicated that both of them have higher reforming efficiency (as defined by low heating values of products over the fuel input) and H\(_2\) production compared to ULSD, especially at lower reformer inlet temperatures (~290°C). Thus, reforming process efficiency has a strong reliance on reforming fuel type. For CI engines, other fuels such as biogas [501,520,521] are also used to upgrade into reformate through exhaust gas reforming.

SI engine fueled with bioethanol was investigated for the first time by Leung et al. [484] for R-EGR; the activity of a precious-metal catalyst containing 1%Rh – 2%Pt (by mass) on 30% (by mass) ceria-zirconia for all expected reaction routes of bioethanol reforming during exhaust gas reforming were observed, except for the WGS reaction. Their results predicted that the overall reforming process is oxidative, increasing fuel heating value by 6% while increasing it up to 20% with less O\(_2\) present in the exhaust. Researchers at AVL and Monsanto Co. [488,522,523] designed a compact lightweight, exhaust gas ethanol reformer, called "shoebox", with a copper-nickel powder catalyst to combine with a multi-cylinder SI engine fueled with ethanol or E85 (see Fig. 50, under the label of 'Shoebox reformer design'), with the objectives of reducing HC emissions during cold start and improving part-load dilution. They initially observed that mixing 50% of (simulated) reformate, known as

Fig. 54. Concentration of \(\text{H}_2 \) (A), CO (B), and \(\text{H}_2\text{O} \) (C) as function of \(\Phi_{\text{catalyst}} \) and \(\text{O}_2 \) catalyst flow rate at the outlet of the catalyst, and correlation of \(\text{H}_2/\text{CO} \) ratio and the catalyst-out temperature (D) [511].

A. Paykani et al.
the "low-temperature ethanol reformate" due to low temperatures requirement (300-350°C), with E85 enables diluted engine operation, leading to a 10-17% and 20-25% rise in brake thermal efficiency as compared to stoichiometric E85 and gasoline baselines, respectively [522]; mixing 25-40% of real ethanol reformate in E85 increased the efficiency by 10-12.3% at part load and idle conditions, as well as HC emission reduction [523]. Ji et al. [524] placed an ethanol steam reformer loaded with the copper catalyst inside a multi-cylinder SI engine fueled gasoline. Note that deionized water and ethanol were the feedstock of SR, meaning that the engine exhaust was just the source of heat, not reactants. They reported around 4.5% improvement in indicated thermal efficiency with 2.43% of reformate (by vol.) in the total intake gas. Also, the exploration of suitable catalyst formulation for exhaust gas-driven ethanol steam reforming (ESR) of a single-cylinder SI engine is discussed in [525]. Unlike the TCR goal, catalytic partial exhaust gas-driven ethanol steam reforming (ESR) of a single-cylinder SI engine is discussed in [525]. For instance, it has been reported that for the CPOX of ethanol over Pt, Pt-Palladium (Pd), and Pt-Rh catalysts at typical diesel exhaust temperatures up to 400°C have been experimentally carried out as a viable pathway of producing reformate for the automotive exhaust gas aftertreatment systems [526,527]. For instance, it has been reported that for the CPOX of ethanol over a Pt-Rh on alumina at a constant reformer inlet temperature of 300°C, oxygen/ethanol (O/E) molar ratio has a key role in the determination of ethanol conversion, reaction temperature, H2 generation, and selectivity toward H2, such that the maximum H2 would be produced at a higher O/E ratio than that predicted by equilibrium, for a given ethanol concentration.

Hydrous ethanol (HE) or wet ethanol has considerable saving energy rather than anhydrous ethanol, (as typical alcoholic engine fuel) in terms of not only eliminating the water removal requirement, but use of water content for assisting steam reforming. It has been claimed that HE distillation and dehydration account for about 50% consumption of total base fuel energy [484]; thus, HE has higher overall energy cycle than anhydrous ethanol. HE as standalone fuel for IC engines may result in poor performance due to incomplete combustion and severe charge cooling effect of water [528]. Li [529] indicated the feasibility of 150 proof HE (i.e., 75% ethanol with 25% water volume content) as exhaust reformer fuel of SI engine fueled with gasoline; the HE conversion peaked at approximately 675 K using a copper-based catalyst. Also, Hwang et al. [487] catalytically converted a 150 proof HE over a Pt-Rh catalyst into a secondary fuel (with a 23% increase in heating value) for a diesel engine coupled to an exhaust reformer. Nevertheless, ethanol production is confined to certain regions such as Brazil and North America.

Methanol has been the primary fuel in reforming applications for many years because it requires a slightly lower reforming temperature than ethanol due to having no C-C bonds. This makes it candidates for 100% reforming such that its resultant reformate would be as standalone fuel for the IC engines [33]. In this regard, Tartakovsky et al. [530-535] conducted a series of studies on on-board methanol steam reforming (MSR) with a high-pressure TCR system and then introducing it with direct injection into the IC engine. Results from a DISI engine fed with 100% methanol SR products as engine fuel showed an 18-39% improvement in the indicated efficiency and a reduction of 73-94%, 90-95%, 85-97%, and 10-25% in NOx, CO, HC, and CO2 emissions, respectively compared to gasoline within a wide range of engine loads. Lia and Horng [536] employed the exhaust heat of a 4-cylinder SI engine to drive MSR reactions over a CuO-ZnO/Al2O3 catalyst at a controlled reforming temperature of 300°C; a maximal methanol conversion of 93% and the molar flow rate of produced H2 by about 1.34 mole/min for a steam to carbon (S/C) ratio of 1.2 were reported. More recently, Nguyen et al. [537] numerically examined the efficiency of a REGR-assisted SI engine fueled with methanol and then compared it with ethanol counterpart, considering only steam and dry reforming reactions for both fuels. As illustrated in Fig. 55, steam reforming of ethanol with H2/CO products (EtOH-CO) and with H2/CO2 products (EtOH-CO2) have higher engine-cycle efficiency than methanol steam reforming (MSR), at a higher reforming fraction. On the figure’s y-axis, two lower cases indicate no EGR and no reforming usage, and the top of those relate to an EGR limit of 25% without reforming.

As another renewable fuel, ammonia, an affordable hydrogen carrier [538], can be converted into reformate which is free of COx. Earlier, ammonia in the form of urea was applied on catalytic after-treatment systems of heavy-duty diesel engines to reduce NOx [539]. Then, exhaust reforming of ammonia, which needs ~ 500°C for decomposing [540], with a diesel engine that provided 100-400°C was investigated through the auto-thermal (i.e., NH3-ATR) process and using a ruthenium (Ru)-Al2O3 catalyst [541]. It was observed that the H2 production was in the range of 2.5-3.2 l/min with the O2/NH3 ratio from 0.03 to 0.175 with a fixed NH3 feed flow of 3 l/min; and when the small amount of produced reformate was added to the intake air (representing as 5% replacement of diesel fuel), a substantial reduction was obtained in CO, CO2, and THC emissions. In a more recent study [542], exhaust reforming of ammonia at higher exhaust temperatures of a GDI engine (450-550°C) over an Rh-Pt/Al2O3 catalyst was evaluated by two cases of direct catalytic conversion of ammonia (a portion of exhaust used) and ammonia decomposition (only exhaust heat used) to produce H2-N2 products. They showed that 30 and 32% improvements were achieved in the case of extracting exhaust heat and using exhaust gas, respectively.

In summary, ethanol and methanol as suitable reforming feedstocks can facilitate catalyst reforming at lower temperatures, mainly due to having a simpler structure than the complex long-chain hydrocarbons. Another advantage is that they are soluble in water and can be premixed to contain appropriate molar steam-to-carbon ratio for reforming. Pure steam reforming of alcohols can be accomplished using waste heat in a TCR reactor due to their ability to be reformed at engine exhaust-relevant temperatures. The temperature needed for reforming HC fuels is at least about 550°C while for methanol and ethanol is typically in the range of 250-300°C. However, because of methanol’s toxicity, it is less desirable than ethanol for reforming.

Conclusion:

With the assumption of a proper catalyst reformer choice and appropriate integration with the IC engine:

- At close to stoichiometric conditions and high engine loads: more provided heat and steam to drive predominantly endothermic reactions (steam and dry reforming) increase the heating value of the base fuel and afford a high TCR effect. In the case of low temperatures (<700°C), fresh air addition is an option to maintain catalyst activity by providing more heat from POX or combustion reactions.

![Fig. 55. The maximum Otto cycle efficiency of methanol, ethanol-CO, and ethanol-CO2 at the same combustion stability limit (Reprinted from [537] with permission of Elsevier).](image-url)
within the reformer. The overall process can be either exothermic or endothermic; depending upon catalyst temperature and reforming fuel type.

- At lean conditions and low engine loads: higher oxygen concentrations in the engine exhaust stream are accessible to the reformer but at lower temperatures. A high achievable conversion efficiency, which yields high reformate concentrations in the range of 10-15% for both H2 and CO, can be demonstrated. In this case, the risk of combustion occurrence exists due to the possibility of complete fuel oxidation. POX reactions may increase the reformer temperature exceedingly until the catalyst burns out or deactivation takes place.
- Moreover, in an engine operating map, transients from low to high loads impose controllability issues due to variations in local reformer equivalence ratio (O2 availability). Hence, there is a continuous balance to manage between high fuel enthalpy achievement and high reformate production (high fuel conversion) across all engine speed/load conditions.

According to the literature, stoichiometric exhaust at higher temperatures (i.e., modern SI engines) is the priority to fully take advantage of exhaust gas reforming in terms of heat recovery benefits; and for overall lower exhaust temperature, and proven feasibility of renewable oxygenated fuels such as methanol and ethanol with R-EGR suggest the need for more research in this area, despite having more cost relative to in-cylinder reforming strategies.

4.2. In-cylinder fuel reforming

4.2.1. Negative valve overlap (NVO) reforming

Negative valve overlap fuel injection or NVO fuel injection (initially referred to as activation injection) was suggested [543] as a chemical extender for homogenous combustion by injecting fuel into the remaining exhaust gas (called residuals, iEGR or residual gas fraction) between two timings of early exhaust valve closing and late intake valve opening. This technique offers control of the activation energy of the main combustion reactions by potentially providing an in-cylinder environment prone to ignite, as shown in Fig. 56.

On the other hand, the absence of any direct control of in-cylinder fuel processing in a typical HCCI engine will lead to a narrower engine operating range due to the possibility of misfiring at low-load and severe high-pressure rise rates at high load. Urushihara et al. [545] recognized the concept of shifting the chemical composition of the fuel in the high-temperature residual gases and then recompressing during the exhaust stroke, and called it the fuel reforming process. They tested various patterns of direct fuel injection to explore the effect on the exhaust enthalpy during the NVO period.

Fig. 56. Cylinder pressure versus crank angle degrees for NVO fuel injection and LTGC combustion, including valve events [544].

NVO fuel reforming effects:

Thermal and chemical effects corresponding to the NVO fuel reforming process directly influence the main combustion; hence, these effects must be identified individually. Retained and recompressed exhaust enthalpy during the NVO period can raise the overall charge temperature and this increases the specific heat ratio (γ) of the charge. Moreover, NVO fuel injection, and the corresponding reactions and heat release, produce reformate, which itself has a high specific heat ratio (~1.40), which further enhances the overall γ of the charge prior to the subsequent main-combustion event. As an outcome, increased thermal efficiency can be expected. On the other hand, NVO-reformate products can reduce the mixture’s overall ignition delay and expedite the mixture’s chemical kinetics (i.e., a mixture with higher reactivity than the base fuel), which leads to improved stabilization of the main combustion and low-load limit of the engine. Here, temperature and available oxygen in the residuals during NVO link both effects together.

Song et al. [554] noticed that there is a competing effect between thermal and chemical effects by performing simulations on a gasoline HCCI engine operating at various equivalence ratios from 0.6 to 1 with NVO pilot injection, which resulted in optimum oxygen availability (equivalence ratio) for successfully reducing ignition delay. At lean conditions (high oxygen concentration) and near-stoichiometric (low-oxygen concentration), exothermic reactions and endothermic reactions (from fuel pyrolysis) will become dominant, respectively. Szybist et al. [555] pointed out that a large amount of reformate and other short-chain hydrocarbons could be obtained in the low-O2 environment. Reported oxygen concentrations from documents are in a range of 2-4% during the NVO period.

Due to the complexity of measuring in-cylinder temperature, especially at the IVC of an engine cycle with NVO fuel reforming, several thermodynamic-based predictor models have been developed, relying in the case of the SI engine, low-temperature combustion modes such as HCCI and spark assisted compression ignition (SACI) have been used to switch the stoichiometric mode of a traditional SI engine to an effective dilution mode, presenting a higher fuel economy than before; however, they encounter a narrower load range for the HCCI engine along with TWC efficiency. As a solution, employing NVO fuel reforming in stoichiometric SI engines has recently drawn attention, resulting in extending the dilution limit at low and maybe part engine loads. For instance, Chang et al. [550] explored the effects of sweeping the start of injection (SOI) timing, from 300 to 420 CAD BTDC, during a fixed NVO period of 80 CAD and varying the NVO periods dilution limit in a stoichiometric SI engine fueled with E10 (baseline engine fuel) at BMEP=3 bar and engine speed of 1800 rpm. At a fixed NVO period of 80 CAD, while the maximum peak heat release rate with lowest CoV of IMEP belonged to the SOI=380 CAD BTDC case, the volumetric efficiency remained unaffected by the swept NVO SOI, which means that no variation was seen in BMEP. Also, an extended dilution limit was seen with a total EGR rate of 32%, and a 22% reduction in BSFC as compared to the reference engine version, in the case of TDC injection (SOI=360 CAD BTDC) and 80 CAD NVO.

A comparison between symmetric NVO and PVO strategies has been conducted by Rodriguez and Cheng [551], which resulted in NVO benefits at low load by 7% improvement in fuel consumption due to reduced pumping losses. At part load, IMEP can increase up to 6 bar by combining symmetric NVO with optimized EVO timing to minimize losses of the blowdown process; which means that the PVO strategy is superior to the NVO strategy at part-load of a SI engine. More recently, the possibility of using NVO fuel reforming in a gasoline/diesel dual fuel engine [552] and RCCI engine fueled with natural gas/NG/diesel has been proposed and evaluated through the simulation based on a developed in-house code [553]. The low-load efficiency of NG/diesel RCCI with NVO reforming was better than a lean strategy and EGR baselines by 5.5% and 3%, respectively, due to increased combustion efficiency and despite NVO’s increased pumping losses.

NVO fuel reforming effects:
the evolving reactive species, various sampling approaches in conjunction with gas analyzers have been implemented experimentally to characterize the NVO-period reformate [558,559]. In this regard, researchers at the Sandia National Laboratories (SNL), Oak Ridge National Laboratories (ORNL), and the University of Minnesota had valuable contributions [544,560-568]. Through these studies the effect of molecular structure of the NVO-fuel [565] on NVO fuel reforming were explored for various fuels. The related ensemble-averaged in-cylinder pressure and heat release rate profiles during the NVO period are shown in Fig. 57. For ethanol fueling, the exothermic heat release resulted in the highest peak bulk-averaged in-cylinder temperature among the fuels. As shown, for most fuels the lack of sufficient heat release reveals that the fuel-injected was mainly converted into reformate. Later modeling work by the same authors [567] used a detailed kinetic mechanism for iso-octane in a stochastic reactor model (SRM) that examined the NVO reforming process. This work found that endothermic and exothermic reactions are mainly balanced for most fuels, limiting obvious heat release as found using in-cylinder pressure analysis. The modeling work also suggested that the in-cylinder mixture gradient during NVO reforming was responsible for producing reactive species, in addition to the main syngas components, such as allene, acetaldehyde, and acetylene, which were partially responsible for improved reactivity in the main low-temperature gasoline combustion (LTGC) ignition event. The significance of the NVO-fuel type also was reported by another work [560], in which hydrogen fraction of NVO-reformate was less than 1.5% with iso-octane and more than 8% with methanol fueling.

Moreover, pathways to get more fuel decomposition (more reactivity) during NVO [566], and the impacts of NVO-reformate on engine performance [544] have been discussed. For instance, it was reported that more fuel decomposition was achievable with longer chemistry residence times and lower spray impingement on piston surface (i.e., an advanced NVO SOI).

As an energy recovery method: NVO fuel reforming can be regarded as a thermochemical recuperation process in which waste exhaust thermal energy converts to more accessible chemical energy for the main combustion; the injected fuel during the NVO period uses the heating provided from trapped and recompressed exhaust residuals left from the previous cycle to drive endothermic reactions, resulting in the reformate having higher overall energy content. However, heat transfer and pumping losses are two main source of losses which come from the trapped and recompressed NVO-gasses, and mixing of the NVO-period charge with the cooler intake charge, respectively. Adjusting a combination of fueling rate, fuel injection timing, and available oxygen concentration during NVO period, such that the recovered energy compensates for the losses, and the reformate species maximize at this combination is an important topic. Ekoto et al. [563] modeled a single-cylinder, LTGC engine with a NVO fuel reforming technique as a closed system (from EVC to IVC) undergoing thermodynamic processes to perform energy analysis for two fuels of ethanol and iso-octane. In comparison with iso-octane fueling, ethanol produced higher NVO-apparent heat release (AHR) despite its higher evaporative cooling effect, but with lower recovered energy due to its fast ignition chemistry. Among the findings, it has been reported that approximately 70% of usable energy recovery, which was defined as the sum of AHR and recovered fuel energy, is achievable in NVO in-cylinder fuel reforming for gasoline-like fuels with low (or zero) toluene content. As a result, a higher NVO global equivalence ratio by either reducing the NVO-period oxygen concentration or increasing fueling rates leads to a larger fraction of recovered fuel energy. Additionally, large NVO fuel injection and NVO-SOI advancement resulted in the highest overall-cycle thermodynamic efficiencies, all of which depended on NVO-fuel type (fuel chosen for the NVO reforming process).

Conclusions: To sum up, NVO fuel reforming is a direct-injection fuel method that assists the NVO technique (a valving strategy) to address problems of undesirable combustion in the SI engine and misfiring at low load in the HCCI engine fueled with low reactivity fuels by changing the chemical and thermal effects, and consequently, the reactivity of the in-cylinder combustible mixture by reforming the base fuel. Application of NVO fuel reforming to control combustion phasing and as an extender of the low-load HCCI/LTGC and stoichiometric SI engines by providing more stabilized combustion has been successfully proved. However, the resultant NVO-reformate has shown great sensitivity not only to in-cylinder conditions, but also heavily to the NVO-injection strategy, which is varied by the selected fuel. Therefore, this sensitivity leads to complex interactions that must be considered to result in an overall optimum charge to favor the main combustion. Demonstrating this onboard fuel reforming technique with a combustion mode like RCCI, developing suitable kinetic mechanisms, and achieving the best fuel energy recovery in terms of appropriate in-cylinder thermal management might be attractive research topics for the future.

4.2.2. Dedicated exhaust gas recirculation (D-EGR)

Exhaust gas recirculation (EGR) is well-known as an effective technique to improve engine efficiency. Increasing NVO reformation and EGR fraction, however, there are some severe impediments for EGR, including limited dilution and combustion instability at a higher EGR rate (10-20%). Developing concepts aiming at higher engine efficiency led to the idea of combining the EGR with the fuel reformation through dedicated cylinder(s) to perform in-cylinder partial oxidation reactions associated with rich combustion.

The idea of using one or some of the cylinders of a multi-cylinder engine as a fuel reformer (or a reactor) to perform the fuel reforming
process was first introduced by Meyers and Kubesh [569] at the Southwest Research Institute (SwRI), where they studied a lean natural gas-fueled SI engine with an assigned rich-burn cylinder to produce the EGR, primarily consisting of hydrogen and carbon monoxide. The work resulted in an efficient lean-burn SI engine with more combustion stability and thermal efficiency, called the “hybrid rich-burn/lean-burn engine.” The idea was then further developed into forming an engine technology termed dedicated exhaust gas recirculation or D-EGR [570] from the sequential works at SwRI. In this technology, while the dedicated cylinder(s) runs beyond stoichiometric (i.e., rich combustion), the rest of the cylinders can operate at nearly stoichiometric conditions to properly comply with the three-way catalyst after-treatment system in SI engines. The dedicated cylinder’s exhaust stream, containing not only the inert species (i.e., typical EGR products) but also the reactive constituents (i.e., reformate), is entirely separated from the exhaust manifold and redirected to the intake manifold to serve as the only EGR for the entire engine, as demonstrated in Fig. 58. The D-EGR concept from various aspects to its demonstration in modern engine technology will be discussed in the following.

D-EGR / TFR concept:

In the first practical attempt, Alger and Mangold [572] reconfigured a 2.4 L gasoline engine to dedicate one of its four cylinders for only EGR production of the entire engine by a fixed rate of 25% (by vol.). Prior to metal engine experiments, they calculated the concentration of reformate relative to the air-to-fuel (A/F) ratio variations from stoichiometric to rich, by measuring the gasses in the D-EGR cylinder exhaust (see Fig. 59). Then, they investigated the effects of the D-EGR products on the engine performance for the various engine speed/load combinations. The results obtained showed substantial improvements in thermal efficiency and emissions at both high and, in particular, low loads when the D-EGR cylinder steadily undergoes rich combustion up to about an equivalence ratio of 1.2 ($\phi_{\text{D-EGR cylinder}} = 1.2$) and the other cylinders run at fixed stoichiometric conditions ($\phi_{\text{others cylinders}} = 1$). Fig. 60 shows the low-load results in which fuel consumption, stability in terms of CoV IMEP, and emissions have been improved over the baseline case. Also, it was observed that the total burn duration decreased significantly by reducing the early stages of kernel formation near the spark plug (i.e., 0-2% MFB duration), resulting in increased in-cylinder temperature and elevated NOx emissions, but still lower than the baseline.

Later, Zhu et al. [573] from Shanghai Jiao Tong University employed the analogous concept to D-EGR, named the thermochemical fuel reforming (TFR) concept (see Fig. 61 right). Initially, they applied it to a turbocharged, 4-cylinder SI engine specifically designed for natural gas fueling with stoichiometric operation to exhibit the potential benefits of the TFR concept over conventional EGR. Moreover, they defined the term in-cylinder TFR to evaluate the in-cylinder thermochemical process, in which a higher in-cylinder TFR would result in a greater amount of H_2 and CO and lower unreformed CH$_4$ fraction in the exhaust gas of the TFR cylinder (the cylinder dedicated to the TFR process). At a fixed speed of 1500 rpm and the same ignition timing of 20° BTDC applied to all cylinders, they performed a line of experimental works coupled with laminar flame calculations using CHEMKIN to evaluate in-cylinder TFR
and engine uniformity by sweeping the equivalence ratio (ϕ) of the TFR cylinder from 1 to 1.4. At $\phi=1.2$, where the maximum CO and H$_2$ concentrations were achieved, an upper limit for stability of the rich-combustion with natural gas fueling in the TFR cylinder was found over a range of low-to-high loads. Therefore, $\phi_{\text{TFR}} = 1$ indicated a constant EGR rate of 25%, and $\phi_{\text{TFR}} = 1.2$ is representative of the same rate but containing reformate gas. Early results indicated that the CoV of IMEP improved by about 65% for low engine loads and engine performance and emissions except that NOx was elevated over the entire load range tested in the case of $\phi_{\text{TFR}} = 1.2$ compared to $\phi_{\text{TFR}} = 1$ (conventional EGR).

New term definition:
From the literature reviewed here cylinder(s) dedicated to run under on-board fuel reforming conditions and rich combustion can be marked as the D-EGR/TFR or rich cylinder(s) and the rest referred to as normal or stoichiometric cylinders. Additional fuel required for performing fuel-rich combustion in the D-EGR cylinder(s) can also be referred to by the over-fueling or reformation ratio, e.g., 30% over-fueling/reformation ratio that means $\phi_{\text{DEGR}} = 1.3$. The produced reformate is also called D-EGR/TFR gas. Some new terms have also been extracted from the comparison between traditional EGR (inert gases) and D-EGR (EGR + reformate) that are explained in the following.

In this concept, when routing the reformate-enriched EGR (or EGR in D-EGR engine) back to the intake manifold, it is vital to characterize the intake concentrations, since highly reactive species like H$_2$ in the intake charge could promote backfiring, which can damage the intake system. Moreover, the contributions of isolated reactive species and inert gases from D-EGR in the intake charge are not well-known, and eventually, affect the main combustion. Thus, a new parameter of total inert dilution ratio (TIDR) was empirically defined by Alger et al. [574] as a common basis for comparison EGR and D-EGR. The definition is:

$$\text{TIDR} = \frac{X_{\text{N}_2}\text{in} + X_{\text{CO}_2}\text{in} + X_{\text{H}_2}\text{O}\text{in}}{X_{\text{N}_2}\text{in} + X_{\text{CO}_2}\text{in} + X_{\text{H}_2}\text{O}\text{in} + X_{\text{O}_2}\text{in}}$$

where the X is mole fraction of intake constituents.

Based on the TIDR definition, a decrease of nearly 2% in the con-
ventional EGR rate (calculated by the ratio of CO\textsubscript{2} at the intake and exhaust manifold) has been shown when the air-fuel mixture's equivalence ratio in the D-EGR cylinder was swept from 1 to about 1.5. Therefore, this term shows the discrepancy between conventional EGR (i.e., stoichiometric EGR with 100% diluents) and D-EGR (i.e., rich EGR with a mixture of diluents and reactive species). Nevertheless, since TIDR has a slight variation range (0% and 30% EGR rate = 0.77 and 0.83 of TIDR, respectively) and the largest constituent of diluents is N\textsubscript{2}, a substitute term named EGR* [575] also is defined to show sufficiently the differences between the nominal rate of conventional EGR (e.g., low-pressure loop EGR) and D-EGR, as shown in Fig. 62, and:

\[
\text{EGR}^* [0 - 1] = \frac{\dot{m}_\text{EGR} \times \left(\frac{\text{m}_{\text{inert}}}{\text{m}_\text{EGR}} \right)}{\dot{m}_\text{EGR} \times \left(\frac{\text{m}_{\text{inert}}}{\text{m}_\text{EGR}} \right) + \dot{m}_\text{air}} = 1 \times \phi_{D\text{-EGR}}^{-0.2501}
\]

where \(\dot{m}_\text{EGR}\) and \(\dot{m}_\text{air}\) are the mass flow rate of EGR and air; \(\text{m}_{\text{inert}}\) and \(\text{m}_\text{EGR}\) are inert mass and total EGR (inert + reactive species) mass, respectively, and \(\phi_{D\text{-EGR}}\) denotes the fuel/air equivalence ratio of the dedicated cylinder.

Comparison with conventional EGR:

The D-EGR concept was introduced to overcome conventional EGR shortcomings, such as combustion instability and misfiring at a high rate, and inappropriate flow control. Therefore, in most earlier studies, the D-EGR concept was compared to conventional EGR.

In a direct comparison study, Gukelberger et al. [576,577] compared D-EGR with low-pressure loop (LPL) cooled EGR at part- and high-load operation in a turbocharged, 2L PFI SI engine. They found that at low engine load, combustion stability of \(\phi_{D\text{-EGR}}=1.45\) is comparable with almost 13-14% LPL cooled EGR. Both HC and CO emissions were reduced; however, NO\textsubscript{x} emissions were increased slightly with D-EGR operation. Generally, at low loads, the findings indicated that the D-EGR engine could withstand higher levels of EGR dilution, allow faster burning speeds, and afford a further improvement in efficiency, and at high loads, provides superior knock tolerance and stability over the LPL EGR system. It is noteworthy that the D-EGR engine was allowed to operate with higher compression ratios (12.5:1 and 13.5:1 at high load) than the baseline case (9:1). The engine operation map for 25% LPL EGR is demonstrated in Fig. 63. It can be seen that only 25% EGR has comparable performance with D-EGR (with the same nominal EGR rate, i.e., 25%) in the green region. The yellow region could be covered with EGR but at a lower rate of 25% and approximately a 5% increase in BSFC. The region colored red could be covered with D-EGR and an adequate boosting system, but cannot be accessed with the LPL EGR setup due to knocking propensity.

Overall, the D-EGR concept is a revision of conventional EGR (cooled EGR) concepts, and has advantages over those, including eliminating any uncertainty in EGR production and the need for the EGR valve,
providing an easy way for transient control, and increasing the EGR quality by the reformate from in-cylinder fuel reforming. Interestingly, the potential of more than 25% nominal EGR has numerically been explored for a V6 engine modified to run at 50% D-EGR using three of the six cylinders in D-EGR mode [578, 579].

Fuel type effects:
The main research related to D-EGR have been carried out on gasoline or natural gas fueled SI engines. Gasoline with various research octane number (RON) or anti-knock indices (RON+MON/2) and with different ethanol blended (EO:100% gasoline [by vol.] and E47: 47% ethanol [by vol.] [580, 581], and natural gas [573] blended with alcohol fuels like ethanol [582], methanol [583-585], propanol isomers [585, 586], n-heptane [587, 588], iso-octane [588] and propane [589] fuels have been studied so far.

Gasoline fuels with various anti-knock indices (AKI) were selected to examine the relationship between the reformation rate (over-fueling) and octane number [580]. It was shown that a 1.8 AKI increase corresponds to a 10% increase in the reformation rate. As shown in Fig. 64, higher octane fuel would be the same as lower octane fuel at a reformation ratio of 30%. Additionally, more than 30% over-fueling could worsen the IMEP balance between the dedicated cylinder and non-catalyst fuel reforming technique, catalyst formulation such as the WGS catalyst with Rhodium and Barium was employed in the exhaust system, including an advanced high-energy dual coil offset (DCO) ignition system [581] for facilitating ignition of dilute mixtures and a

combined with ethanol, propanol, ethylene glycol, aiding to the higher formation of H2 and CO, due to the presence of OH. Thus, methanol is the optimal enrichment fuel for the TFR-cylinder operating on natural gas.

Reformate analysis:
D-EGR reformate gas provided by running fuel-rich combustion depends on how the fuel-air mixture’s rich limit behaves under engine-relevant conditions, which itself depends upon the fuel type used. Alger et al. [590] reported that only 0.2% and about 0.4% hydrogen by volume is needed in the intake stream of a SI engine fueled with gasoline and natural gas, respectively, to enhance engine stability significantly. For instance, Fig. 59 and Fig. 65(b) represent the reactive species generated in the D-EGR and TRF concepts, respectively, based on the fuel used.

Liu et al. [591] ran a single-cylinder, natural gas SI engine, retrofitted from a diesel engine, in a fuel-rich combustion mode (as a D-EGR cylinder) to characterize the generated reformate quantitatively by gas chromatography. They found that both H2 and CO mole fractions were increased linearly from ϕ=1 to ϕ=1.4 by about 8% with a nearly constant H2/CO ratio (1:1 by vol.). They also employed rapid compression machine (RCM) experiments [592] for the CH4 ignition at similar conditions. They also examined the effect of 1% (ϕD–EGR=1.2) and 2% (ϕD–EGR=1.4) H2/CO ratio (by vol.) on stoichiometric natural gas combustion at a part load condition of ~ 6 bar IMEP at two nominal EGR rates of 15% and 20%.

From the literature, ϕD–EGR between 1.2-1.4 is a decent range in terms of stability while ϕD–EGR>1.4 imposes a rich limit for fuels used. The possibility of ϕD–EGR up to 3 and its effects on reformate generation were investigated numerically [579]. Although D-EGR is indeed a non-catalyst fuel reforming technique, catalyst formulation such as the WGS catalyst with Rhodium and Barium was employed in the exhaust stream of the D-EGR cylinder to further boost H2 generation [593]; it was shown that H2 generation reaches 7% (by volume) through optimizing the catalyst formulation, though an activity loss was seen after about 12 hours. This imposes durability challenges.

Demonstration of D-EGR vehicle:
As mentioned before, the constraints of a downsized boosted SI engine operating stoichiometric with traditional (cooled or uncooled) EGR pertain to knock limitations, EGR tolerance, and combustion instability, which can be improved using reformate along with EGR. Therefore, the D-EGR concept provides the pathways of achieving high-efficiency SI engines. To better demonstrate an actual D-EGR vehicle, several instruments, including an advanced high-energy dual coil offset (DCO) ignition system [594] for facilitating ignition of dilute mixtures and a

Fig. 64. Engine stability as a function of ϕD–EGR in D-EGR cylinder with varying AKI – solid line related to a normal cylinder [580] (left), H2 concentration and BTE for a specific designed high energy ignition system (DCO) [581] (right), at 2 bar BMEP / 2000 rpm.
Fig. 65. Comparison natural gas with ethanol enrichment [582], in terms of laminar flame speed from calculation of CH$_4$-air and C$_2$H$_5$OH-air mixtures (a), and reformate production (b), IMEP cyclic variability (c) and IMEP discrepancy (c), from experiment. (With permission of Elsevier).

Fig. 66. New designed air handling system for D-EGR engine (left) and D-EGR and LEA power and torque comparisons (right) [571,599].
D-EGR mixer [595] for promoting reformate distribution to suppress sudden imbalances in CoV of IMEP of the normal cylinders, have been developed together with applying improvements in order to increase the reformate yield such as improved injection strategies (more effective with split and late DI than PFI, except at low speed) [596], valve timing (more sensitive to retardation of exhaust valve compared to advance intake valve) [596] and ignition timing based on transient control [597, 598].

Chadwell et al. [571] first successfully replaced a 2.4 L, NA PFI SI engine (LEA, engine produced by GM) with a converted D-EGR, 2.1 L, TC DISI engine (LHU, engine produced by GM) fueling with Haltermann EEE certification gasoline with an anti-knock index of 92 on a production vehicle (2012 Buick Regal) with a designed air handling system consisting of EGR control, boosting and D-EGR mixing systems, as seen in Fig. 66 (left), and with an increased compression ratio of OEM LHU from 9.3:1 to 11.7:1. The target operating points of torque and power for vehicle-based D-EGR with a nominal EGR ratio of 25% were designed beyond the reference vehicle with GM LEA (see Fig. 66 (right)). It was observed that BSFC is reduced by an average of 10% across most operating points relative to the reference engine. The most considerable reduction occurred at high speeds and high engine loads due to completely removing the over-fueling in the D-EGR cylinder. This fuel economy improvement was attributed primarily to increased compression ratio due to enhanced knock tolerance resulting from the reformate existing in the charge and stoichiometric operation. Also, it was reported that the sufficient hydrogen concentration to stabilize the combustion at existing in the charge and stoichiometric operation. Also, potential demonstration of D-EGR system in a moderately large small gas engine in power generation applications. Osaka Gas Co. [603] has also considered applying a D-EGR system to a turbocharged lean HCCI engine as a long-term pathway for a high-efficiency bridge.

5. Summary and outlook

5.1. Summary

This paper provides a critical comprehensive review on the use of syngas for IC engines over the last few decades, since syngas has become more attractive as an alternative and potentially renewable fuel for IC engines. Generally, engine configurations studied in the literature are considerably different and the results have been rather difficult to compare. An overall observation based on the literature is that the selection of the base fuel for reforming, the syngas production method, its physicochemical properties, engine operating conditions, and the engine design parameters play important roles in dictating the potential advantages of syngas use in IC engines. Some important conclusions from this review are summarized below:

- Variation of the hydrogen fraction in syngas has been a factor, prohibiting its widespread usage. In addition, other gaseous elements such as CO₂, N₂, and CH₄ in the syngas can have adverse effects on engine combustion characteristics. To address these issues, a better understanding of fundamental combustion properties is vital. A large set of experimental data is available for the combustion of syngas with various H₂/CO contents. However, studies related to ignition delay times and laminar flame speeds measurements of syngas mixed with other gases under engine relevant conditions are still limited. Detailed numerical and experimental studies are required to gap the bridge.

- The most important factors that cause power de-rating in an SI engine are the low energy density of syngas/air mixtures and reduced engine volumetric efficiency due to air replacement. With high H₂-content syngas addition to the engine as the secondary fuel, combustion and performance were better than with low H₂-content syngas. Using higher compression ratios in syngas-fueled engines led to reduced power de-rating without any increase in the knock tendency. Power de-rating can also be eliminated by direct injection of syngas, which is a promising solution to avoid problems of reduced volumetric efficiency and unwanted pre-ignition or surface ignition in the intake system.

- Among the different types of engines, syngas as the secondary fuel or blended with other fuels in dual-fuel engines showed very interesting results due to their lower power de-rating capability compared to syngas-fueled SI engines, which have problems running the engine under near stoichiometric conditions and increased PM emissions with 100% syngas. High efficiencies with low emissions can be also obtained in the whole operating range with the use of appropriate strategies in dual-fuel engines. Recently, efforts have been directed towards the optimization of these engines with advanced numerical techniques. However, the presence of two distinct fuel supply lines is a complexity that points out problems related to the storage and the transportation of the fuels.
Fuel reforming combined with dual-fuel combustion is capable of increasing the global efficiency of the system over conventional diesel combustion. On-board fuel reforming is an attractive method to convert a dual-fuel RCCI combustion strategy into a single-fuel RCCI concept and thus eliminates the need for two fuel lines and fuel tanks, which is one of the important demerits of RCCI combustion. On-board catalytic fuel reforming is also a promising technique for improving efficiency and reducing pollutant emissions from IC engines. Overall, it seems that syngas in a single/dual-fuel engine is a promising technique for controlling both NOx and soot emissions in existing engines, but with slight engine hardware modifications needed.

In HCCI engines, 100% reformate at higher intake temperature would be a suitable strategy, compared to the 100% reformate, which was more favorable for SI engines at conventional operating conditions. RG blending was found to be an effective method for retarding combustion phasing, since it reduces the heat release at low temperatures, followed by a prolongation of the NTC delay period and a delay in the high-temperature heat release. RG can act like an ignition controller for the main engine fuel and can eliminate the need for preheating the intake charge. The levels of exhaust CO and UHC emissions increase as the RG concentration increases while NOx decreases. The chemical effects of RG on HCCI combustion of PRFs were found to be stronger than thermodynamic effects and dilution.

Exhaust gas reforming systems are currently being considered in different configurations. Fuel choice dictates which R-EGR method is preferred. Catalytic on-board fuel reforming can be challenging since some hydrocarbon fuels like gasoline require high temperatures to reform, and the sulfur content in some fuels can poison the catalyst. Another drawback of on-board fuel reforming method using the POX method is the reduced LHV of the fuels, thus reducing overall engine efficiency. Catalytic R-EGR results showed that good hydrogen rates could be produced with adequate control of the reaction parameters at temperatures typical of the exhaust gas temperatures of diesel engines operating at part load without any external heat source or air and steam supply requirements. Overall, the use of R-EGR allowed the realization of the benefits of both EGR and waste heat. Moreover, a mixture diluted by R-EGR can reduce the knock tendency compared to EGR dilution cases. With faster laminar burning velocities, the R-EGR technology is a promising approach to support high levels of EGR dilution in advanced SI engines for increased thermal efficiency.

In-cylinder fuel reforming techniques like D-EGR/TFR are capable of delivering up to 15% more efficient engines than today’s mainstream ones, while simultaneously improving engine performance. It allows manufacturers to address future, more aggressive fuel economy standards and meet LEV III/Tier 3 emissions levels [604] cost-effectively. The results reported in this paper indicate that the D-EGR engine can tolerate higher levels of EGR dilution at low loads, allow faster burn speeds, minimize cycle-to-cycle variations, and can further boost performance and emissions. At high loads, the D-EGR technique provides superior knock tolerance and stability over the LPL EGR. Disadvantages of in-cylinder reforming strategies include slow kinetics and limited reforming stoichiometry. Furthermore, homogeneous in-cylinder reforming of heavier fuels like diesel can potentially lead to excessive carbon formation at rich equivalence ratios.

Overall, syngas combustion technology seems to have reached a considerable level of technical development, and the analysis of the literature on syngas combustion in IC engines shows the potential for widespread research and development work on syngas in the automotive industry in future.

5.2. Outlook

Syngas-fueled IC engines with technological advancements are attractive and economically viable and can serve as a future option for power and transportation applications. New measurements of the laminar flame speed of syngas diluted with other gaseous compositions at elevated pressures would help further understand syngas combustion kinetics. The main issue with modelling combustion kinetics is the demand for expert knowledge and optimization against experiments, as well as the lack of understanding of the associated uncertainties. Therefore, data-driven ML approaches that enable efficient discovery and calibration of kinetic models can be employed for syngas combustion modeling in coming years. The ML model can be a promising alternative to time-consuming experimental measurements or numerical calculations.

It is well documented that supplying syngas directly to the intake manifold has several limitations, including backfire, pre-ignition, and power loss through reduced volumetric efficiency. Transient operation is also limited due to the time required for gas to travel through the intake system, depending on where it is mixed. Syngas direct injection technology can eliminate these limitations but requires high-pressure reforming, which could be an area for future study. Numerical models should also account for the intake and exhaust processes, which are usually not considered in the simulations of syngas-fueled PFI engines. Since a considerable fraction of the power derating is related to the decrease of volumetric efficiency, those processes should be included in the simulations. Similar to DI technology, stratified lean-burn combustion is also an effective way of using syngas in modern engines to address problems associated with air-handling at lean stoichiometric air-fuel ratios. However, the required injection durations should be taken due into account. For better performance and emissions, further investigation of the optimization of injection timing, fuel composition, air-fuel ratio, and ignition advance are required.

Studies have shown that single-fuel RCCI combustion can achieve high efficiencies while maintaining low NOx and soot emissions. Conversely, the transient performance of the combustion process alone (i.e., without the reformer) is assumed to be similar to other gaseous dual-fuel engines operating at early direct injection times, which may pose additional challenges in combustion control [605,606] if hydrogen percentages in the reformer fuel are not kept below those resulting in the high-pressure oscillation region. Future work should further analyze reformate concentrations and examine fuel reactivity as a function of reactor stoichiometry and temperature. In addition, matching reformer performance with the engine conditions that enable it to run effectively should also be considered. Such studies would provide invaluable information to more optimally control combustion, and further define the operability range of thermally integrated reforming reactor systems.

To minimize HC and CO emissions, the efficiency of syngas-operated dual-fuel CI engines must be optimized. Moreover, other engine operational parameters should be tuned in addition to the amount of combustible mixture inside the combustion chamber for achieving better combustion characteristics. Based on the present review, detailed numerical and experimental studies with different compositions of the syngas and engine parameters are therefore needed.

Syngas production and combustion research for IC engines have mainly focused on steady-state operating conditions, and very few transient operation studies have been investigated. It is expected that there will be challenges to allow reforming systems to work efficiently over the entire operating load and speed range. The long-term viability of the reforming catalyst and the reforming reaction’s response to a variety of fuels should be examined. In-cylinder reforming processes like D-EGR/TFR and NVO are the most promising for on-board syngas production. The products of these processes should be evaluated for controlling combustion phasing and enabling advanced combustion strategies. For D-EGR vehicles, the low exhaust temperatures are a challenge for meeting future emissions regulations because some
catalytic aftertreatment solutions for reducing emissions are not currently feasible due to poor low temperature activity. Hydrocarbon traps are an area of future work for D-EGR-equipped vehicles. The effect of reformate composition on combustion and exhaust emissions can also be studied in future work. The stability and efficiency of combustion in the D-EGR cylinder may be a major concern for D-EGR natural gas engines and optimizing the equivalence ratio of the D-EGR cylinder is crucial for D-EGR in order to improve the overall engine combustion output.

The research aimed at improving IC engine start-up and transient behavior is needed to broaden the range of possible applications. Examination of heat transfer processes is necessary to illustrate the optimum configuration for complex systems, compared to conventional IC engines, including multiple fuel heating, evaporation, and reforming processes when using exhaust gas heat, and refreshing the reforming products before they are delivered to the engine.

Finally, syngas-fueled engines can be optimally designed for hybrid electric vehicle application [607], allowing high efficiency operation at target engine speed and loads. For hybrid configuration research, investigating low-carbon fuels and optimized engines according to upcoming emissions regulations for CO₂ will be of particular interest. In addition, since most literature research has focused on light duty vehicles, multi-mode hybrid powertrains can be investigated for commercial and medium/heavy duty trucks. Thus, there are still numerous issues that require further numerical and experimental investigation, particularly in the field of on-board fuel reforming and fundamental syngas combustion studies in IC engines for transport applications.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

Firstly, we thank the reviewers for their contributions that significantly improved the manuscript. A. Paykani acknowledges the financial support by the Engineering and Physical Science Research Council (EPSRC) through the grant number EP/T033800/1. T. Alger would like to acknowledge the HEDGE consortium and Southwest Research Institute for providing funding for their work. The authors thank Dr Frouzaki at ETH Zurich for the useful discussion on the fundamentals of the syngas combustion section.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.pecs.2022.100995.

References

A. Paykani et al.

A. Paykani et al.

Progress in Energy and Combustion Science 90 (2022) 100995

A. Paykani et al.

[404] Spath CT. Performance characteristics of a diesel fuel piloted syngas compression ignition engine: Queen’s University (Canada); 2012.

Dr Terry Alger is the Director of Engine & Vehicle R&D at Southwest Research Institute® (SwRI®). Alger holds doctorate and master’s degrees in mechanical engineering from UT Austin, a master’s degree in business administration from The University of Texas at San Antonio and a bachelor’s degree in mechanical engineering from the United States Military Academy. Alger joined the SwRI staff in 2003 following employment at the Ford Motor Company. Alger specializes in combustion research and optical diagnostics. His current research concerns improving engine efficiency and emissions through in-cylinder combustion processes and advanced engine technologies. He also manages SwRI’s HEDGE® II Consortium, which focuses on improving gasoline engine efficiency through the use of cooled EGR, advanced ignition systems and other technologies. Alger is one of the inventors of SwRI’s DCO® (Dual Coil Offset) Ignition system and the D-EGR® engine, both winners of R&D 100 Awards. Alger is a Fellow of the Society of Automotive Engineers. He has been selected to receive the Forest R. McFarland Award. He has been awarded 23 patents and published over 50 papers on topics covering engine efficiency and emissions. Alger has been inducted into the Mechanical Engineering Academy of Distinguished Alumni.

Dr William Northrop is an Associate Professor in mechanical engineering and the director of the Thomas E Murphy Engine Research Laboratory at the University of Minnesota. Northrop received a bachelor’s degree in mechanical engineering from Carnegie Mellon in 1997 and M.S. and Ph.D. degrees in mechanical engineering from University of Michigan in 2004 and 2009, respectively. After receiving his doctorate, he held the position of senior researcher at General Motors R&D, where he worked in the Propulsion Systems Research Laboratory. Northrop’s research interests are in the area of internal combustion engines and energy conversion. His work involves fundamental combustion research, emissions characterization, novel engine cycle development, and alternative fuel use. He is leading projects to characterize and reduce harmful emissions from combustion-powered devices and to reduce fuel consumption from engines used primarily in transportation applications.

Prof Rolf D. Reitz is an emeritus professor at the University of Wisconsin-Madison and currently Senior Partner at Wisconsin Engine Research Consultants. His research interest is in the area of internal combustion engines. His recent work on diesel/gasoline dual-fuel reactivity controlled compression ignition (RCCI) has demonstrated dramatic improvements in fuel economy while meeting stringent emissions mandates, reducing the need for NOx and particulate (soot) after-treatment. His spray research has revealed new understandings about atomization mechanisms. Prof. Reitz has authored and co-authored more than 500 journal publications and he has 5 patents. He has lectured widely and has won major research awards, including the Soichiro Honda medal. He is co-founding editor (Americas) of the International Journal of Engine Research, and serves as an industry consultant. He has served on the executive board of the Institute of Liquid Atomization and Spraying Systems and is director of the UW-Madison Mechanical Engineering Department’s Engine Research Center. Before joining the university in 1989, Reitz spent six years at the General Motors Research Laboratories, three years as a research staff member at Princeton University, and two years as a research scientist at the Courant Institute of Mathematical Sciences, New York University. He received the PhD degree from Princeton University in 1978.