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Abstract 

Adhesively bonded joints have been extensively employed in the aeronautical and 

automotive industries to join thin-layer materials for developing lightweight components. To 

strengthen the structural integrity of joints, it is critical to estimate and improve joint failure 

loads effectually. To accomplish the aforementioned purpose, this paper presents a novel deep 

neural network (DNN) model-enabled approach, and a single lap joint (SLJ) design is used to 

support research development and validation. The approach is innovative in the following 

aspects: (i) the DNN model is reinforced with a transfer learning (TL) mechanism to realise an 

adaptive prediction on a new SLJ design, and the requirement to re-create new training samples 

and re-train the DNN model from scratch for the design can be alleviated; (ii) a fruit fly 

optimisation (FFO) algorithm featured with the parallel computing capability is incorporated 

into the approach to efficiently optimise joint parameters based on joint failure load predictions. 

Case studies were developed to validate the effectiveness of the approach. Experimental results 

demonstrate that, with this approach, the number of datasets and the computational time 

required to re-train the DNN model for a new SLJ design were significantly reduced by 92.00% 

and 99.57% respectively, and the joint failure load was substantially increased by 9.96%. 
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1. Introduction 

Adhesively bonded joints have been widely used to attach thin-layer materials together to 

develop structural components for fulfilling versatile functions in aerospace, automotive, civil 

engineering, etc. The joints possess some distinguishing advantages over traditional joints, such 

as weight reduction, stress concentration minimisation along joint overlapping lengths, good 

manufacturability, and bondability of similar/dissimilar materials (Kim et al., 2021). According 

to the summary of the adhesively bonded joint technology (Sadeghi et al., 2020), some widely-

adopted forms include single lap joints, double lap joints, scarf joints, single L-shape joints, 

and single T-shape joints (some of them are illustrated in Fig. 1). Owing to the relatively simpler 

geometrical configuration and manufacturing process, the single lap joint (SLJ) is one of the 

most typical forms and it has been extensively adopted in various industrial applications 

(Djebbar et al., 2022). In this paper, SLJs are used to exemplify the research innovations in 

predicting and optimising adhesively bonded joints. 

 

Fig. 1: Several typical configurations of adhesively bonded joints. 

It is a paramount research topic to strengthen the structural integrity of adhesively bonded 

joints. An integral joint should exhibit good shear properties, generate uniform stress 

distributions upon loading, hold high fatigue resistance and impermeability, and have good 

compatibility properties with a wide range of different dissimilar materials (Shi et al., 2019; 

Demir et al., 2020; Gavgali et al., 2021). When a tensile load is applied to an SLJ, a bending 

moment will be created, causing peeling stress on the edges of the overlapping regions in the 

joint (Demir et al., 2020). During this process, the joint failure load is a critical factor reflecting 
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the integrity and performance of bonded structures (Akpinar and Sahin, 2021; Abdel-Monsef 

et al., 2021). The joint failure load is correlated with various variables, such as type, size, 

alkaline treatment, weight ratio, elastic modulus and fracture toughness of adherends and 

adhesives (Liu et al., 2021). Usually, the value of the joint failure load is acquired through lap 

shear tests on bundles of joint coupons. Physical tests, however, are expensive in setup or even 

impractical to be carried out for every category of adherends and adhesives. To minimise the 

number of required tests and associated costs, finite element analysis (FEA) models have been 

adopted (Kupski and Teixeira de Freitas, 2021). Based on FEA models, bonding conditions and 

failure loads of adhesively bonded joints in complex geometrical shapes and joining 

configurations can be assessed more conveniently in comparison with physical tests. For FEA-

models, just a small number of physical tests will be required to calibrate the established FEA 

models so that the total number of tests would be diminished to a great extent. Nevertheless, 

FEA modelling is highly expertise-dependent, and therefore it is not an ideal solution for 

industries, especially small and medium-sized enterprises, to adopt. Moreover, FEA modelling 

is computationally intensive, making the optimisation process of a new joint design inefficient. 

The reason is that a large number of iterative FEA-based simulations will take place. 

Recently, deep learning algorithms have been actively investigated to develop effective 

assessment or prediction models in supporting various applications. One significant 

characteristic of deep learning algorithms is that features and their underlying correlations can 

be mined from a large amount of data intelligently and autonomously. The algorithms, once 

trained, can be used in applications as a black-box decision-making tool and therefore, the 

expertise of engineering physics is less required. Owing to this distinguishing advantage, deep 

learning algorithms have demonstrated great potential to facilitate the estimation and 

optimisation of joint failure loads. Nevertheless, relevant research has not been actively carried 

out yet.  

Based on the strength of deep learning algorithms, in this research, a deep neural network 

(DNN) model-enabled approach is devised to efficiently predict the failure loads of SLJs and 

optimise the joint design. Firstly, the DNN model is initially trained using datasets generated 



by FEA modelling and calibrated by a small number of critical physical tests. Secondly, for 

new SLJs with different materials and parameters, the DNN model is reinforced with a transfer 

learning (TL) mechanism to realise adaptive predictions on the new designs. In this way, the 

expertise required in FEA modelling for new SLJ designs can be greatly alleviated. Finally, a 

fruit fly optimisation (FFO) algorithm is embedded in the approach to iteratively fine-tune key 

joint parameters for optimised joint design based on predictions on joint failure loads. In this 

research, case studies were introduced to justify the effectiveness and robustness of the 

approach. Experimental results showed that, in comparison with FEA modelling, the number 

of datasets and computational time required for re-training the DNN model for a new SLJ 

design were diminished by 92.00% and 99.57%, respectively. The case study also demonstrated 

that, with optimised parameters achieved by the FFO algorithm, the joint failure load was 

upscaled by 9.96%. Furthermore, in this research, optimal configurations of the approach were 

pinpointed through benchmarking analyses, and the effectiveness and superiority of the FFO 

algorithm over some mainstream algorithms were evidenced based on comparative results. 

The rest of this paper is organised as follows. In Section 2, related research is summarised, 

and research gaps arising from the survey are identified. In Section 3, the developed approach 

is detailed from the perspectives of methodology framework, experimental setup, FEA 

modelling, improved DNN modelling with the TL mechanism, and the FFO algorithm design. 

In Section 4, case study results and comparisons of the approach are presented, visualised and 

analysed. In Section 5, conclusions are drawn and future research directions are outlined.  

2. Review on Related Work 

Research work for modelling and analysing the joint failure loads of adhesively bonded 

joints has been steadily carried out. Several survey papers were published to update the relevant 

progress (Shang et al., 2019; Ramalho et al., 2020a, 2020b). The surveys reported that 

mainstream analytical methods include the Ojalvo–Eidinoff model (Ojalvo and Eidinoff, 1978), 

the Volkersen’s model (Carbas et al., 2014), the Goland-Reissner model (Stein et al., 2016a), 

the Shear-Lag model (Stein et al., 2016b), etc. These models usually only require the acquisition 



of stress/strain values from the adhesive layer of a joint to estimate its failure load. Nevertheless, 

when the geometries and configurations of joints are intricate, these analytic models are less 

accurate and ineffective. To tackle the issue, in recent years, FEA-based analytic and prediction 

models have been developed. Matta and Ramji (2019) developed a 2D FEA model to estimate 

the mechanical behaviour of an adhesive bonded joint under the tensile load. FEA simulation 

results, including the initial stiffness, failure load and displacement, were compared with 

experimental results to ensure the validity of the FEA model. Jairaja and Naik (2019) analysed 

the bonding stress and failure patterns of both single and dual adhesively bonded joints using 

FEA models and experimental models. FEA-based simulations proved that the design of the 

dual joint increased the failure loads of joints. Ye et al. (2019) designed an improved 3D 

coupled exponential cohesive zone model enabled by an FEA model to analyse the tensile 

failure load of an adhesively bonded joint. The FEA model was justified by experimental data, 

and the influence of joint parameters such as overlapping lengths on the joint failure load was 

analysed. Behera et al. (2020) examined the critical damage location of an adhesively bonded 

joint. It proved that the variations of peeling stress and shear stress in the overlapping regions 

of a joint were complicated, so an FEA model was a preferable tool used to visualise the stress 

distribution. Dehaghani et al. (2021) developed a 3D FEA model to envisage the failure load of 

SLJs. The model was used to guide an optimal surface treatment process to maximise the failure 

load of a joint to meet the requirements of engineering applications.  

In recent years, machine learning (including deep learning) technologies have been 

leveraged to model and predict the failure loads of adhesively bonded joints to better facilitate 

joint design optimisation. Once well-trained offline, a machine learning algorithm will perform 

online prediction much faster than FEA-based simulations, and the expensive setups for 

laboratory experiments are not necessary. Atta et al. (2019) adopted FEA and artificial neural 

networks (ANNs) to assess the failure stages of double lap bolted joints. Training samples for 

the ANNs were generated from the FEA model, so that the cost to set up and conduct laboratory 

experiments was greatly minimised. Wang et al. (2021) designed ANNs-driven prediction 

models to estimate the curved cracks of joints under variable amplitude loads. However, the 



proposed ANNs models were unable to achieve enough prediction accuracy. Gu et al. (2021) 

developed a deep learning model to predict the failure load of an SLJ. The model was trained 

based on 300 data samples produced by an FEA model and validated with experimental data. 

The issue in this research is that the trained DNN model was rigid and only applicable to the 

designed SLJ with specific parameters. It is inappropriate to support joint optimisation design 

as the parameters of the joint need to be fine-tuned iteratively. 

To optimise the design of adhesively bonded joints, optimisation algorithms were developed 

to identify the best parameters for the joints. Barzegar et al. (2021) designed three optimisation 

algorithms, i.e., SGDM (the stochastic gradient descent with momentum), SVRG (the 

stochastic variance-reduced gradient), and FISTA (the fast iterative shrinkage-thresholding 

algorithm), to identify the optimal parameters of adhesively bonded aluminium joints. 

However, it was challenging to determine suitable initial parameters in the algorithms (e.g., 

learning rate and weighting parameters). Arhore et al. (2021) developed two optimisation 

algorithms, i.e., the genetic algorithm (GA)-based optimisation and the topology optimisation 

(TOP), to resolve this problem. Results showed that TOP can find the joint failure load in a 

more robust means, and the GA algorithms can identify an optimal strength-to-weight ratio of 

the joint. Nevertheless, there is still no research reported to integrate the failure load prediction 

and parameter optimisation of adhesively bonded joints to effectively improve the joint design. 

In summary, research gaps arising from the aforementioned survey are identified below: 

• Existing works based on FEA-enabled prediction models are hindered by the challenging 

issues of expertise dependency and heavy computational workloads. It means that a 

designed FEA model is only applicable to a specific joint design, instead of multiple ones 

with different joint parameters. It is imperative to develop more versatile models that are 

adaptive to various joint designs in an efficient means; 

• Existing works based on machine learning-enabled models can accelerate the efficiency of 

online predictions significantly.  However, the models are less adaptive in supporting new 

joint designs, and it is inevitable to re-collect and re-train for the new design; 



• It is desirable to develop a systematic process of integrating a machine learning algorithm 

and a robust metaheuristic optimisation algorithm to provide effectual prediction and 

optimisation functions to improve new joint designs. 

3. Research Methodology  

3.1 The overall procedure of the approach 

This paper presents a novel approach to address the aforementioned research gaps. The 

functions and information flow of the approach, which are illustrated in Fig. 2, are described 

below. More technical details are further elaborated on and discussed in later sub-sections. 

(i) FEA modelling for training sample generation and validation via critical physical tests: 

A FEA model is developed to simulate aluminium alloy SLJs bonded with epoxy adhesives. 

The inputs to the model are several key joint parameters, including E1 (the elastic modulus of 

the upper adherend), E2 (the elastic modulus of the lower adherend), G1 (Mode I fracture 

toughness of the adhesive), and G2 (Mode II fracture toughness of the adhesive). Lap shear tests 

for the joints are set up, and joint load-displacement data are collected via the experiments. The 

experiments are used to calibrate the training samples from the FEA model. During the above 

experimental procedures, G1 and G2 are measured from the mode I double cantilever beam 

(DCB) and the mode II end notch flexure (ENF) standard tests according to the ISO 15024 

standard (2001) and ASTM D6671 (2006). For SLJs, prediction of the lap shear strength 

depends on the accuracy of the measured G1 and G2; 

(ii) Design of the DNN model to be trained using the above simulation datasets: Different 

DNN structures and hyperparameters are compared and analysed to determine an optimal DNN 

model. Datasets generated by the above FEA model are employed for the DNN model training. 

The optimal number of FEA datasets is evaluated to identify the best computational accuracy 

and efficiency of the DNN model; 

(iii) Design of the TL mechanism to optimise the re-training process of the DNN model: 

When joint parameters are changed to be a new joint design, only a small number of new 



datasets need to be generated via experiments and FEA simulation to calibrate the DNN model 

based on the TL mechanism embedded in the DNN model; 

(iv) Design of the FFO algorithm to pursue the best joint parameters: Based on the predictive 

model, the FFO algorithm is designed and conducted to pinpoint optimal joint parameters to 

extend the joint failure load. The DNN model will generate the joint failure loads of an 

adhesively bonded joint in different parameters (E1, E2, G1, G2) to support joint optimisation 

enabled by the FFO algorithm. 

 
Fig. 2: The overall framework of the research methodology. 

3.2 Experimental setup 

The specifications of joint coupons in the experiment to support the approach are described 

below. Aluminium and composite SLJs, which were designed according to the ASTM D3165 

standard (2014) (ASTM D3165, 2014), were tested for research methodology development and 

validation. The technical details of the two joints are given in Fig. 3. For the aluminium and 

composite joints, the adherends were manufactured from the aluminium alloy 6110-T6 and the 

woven Carbon Fibre Reinforced Plastic (CFRP), respectively. The adhesive used for both joints 

is Araldite® 2015.  
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Fig. 3: Two SLJ designs adopted from the ASTM D3165 standard (unit in mm). 

For the aluminium SLJ, the nominal thicknesses of the adherends and the adhesive are 2.00 

mm and 0.25 mm, respectively. The surfaces of adherends were treated by abrasive sanding 

using a P40 sandpaper followed by a cleaning process with an ethanol solvent. A thin layer of 

the Sika Primer 204N was applied to favour the chemical bond at the adherend-adhesive 

interface. For the composite joint, the nominal thicknesses of the adherends and the adhesive 

were 2.30 mm and 0.10 mm, respectively. A coupled surface treatment was conducted by using 

grit blasting (Guyson Grade 13) followed by a cleaning process with a Propan-2-ol solvent to 

improve the bonding quality. The thickness of the adhesive was controlled using glass beads in 

a given diameter for both cases. The joint specimens were cured at 120 ºC for 40 minutes by 

using a clamping jig with fasteners to ensure a uniform adhesive layer. Aluminium-based end 

tabs were prepared to reduce the bending moment and avoid damage to the adherends during 

the experimental tests. The material properties of both adherends and adhesive, and cohesive 

parameters of the adhesive are given in Table 1. 

Table 1: Properties of the adherends and adhesives (Huntsman, 2015). 

Property Aluminium Woven CFRP Araldite® 2015 

Young’s modulus, E (GPa) 70.00 E1=76.39, E2=69.69 1.85 ± 0.21 

Poisson ratio, ν 0.30 ν12= ν21=0.51 0.33 

Tensile failure strength, σf (MPa) 

Not required 

21.63 ± 1.61 

Shear failure strength, τf (MPa) 17.90 ± 1.80 

Toughness in tension, 𝐺𝑛
𝑐 (N/mm) 0.43 ± 0.02 

Toughness in shear, 𝐺𝑠
𝑐 (N/mm) 4.70 ± 0.34 



Physical lap shear tests for the aluminium- and composite-based SLJs were performed. The 

aluminium one was tested using an Instron 5500R machine with a 30 kN load cell, wedge-

action grips and a displacement rate of 1.0 mm/min at the room temperature, as shown in Fig. 

4(a). A mechanical extensometer was mounted at a defined distance of 12.5 mm to measure the 

relative displacement to the bonded overlapping area of the joint. The experiment for composite 

one was executed using an Instron 5,800R machine with a 50.0 kN load cell. A video 

extensometer was used to measure the relative displacement between the two dots at a distance 

of 10 mm to the adhesive overlap, as shown in Fig. 4(b). All the specimens were loaded under 

the displacement control. The load and crosshead displacement were re-set to the zero position 

after a small pre-loading. The aluminium joint was in adhesive failure, and most of the 

adhesives were left at one side of the adherend, as shown in Fig. 4(c). The composite joint was 

in cohesive failure, and a thin layer of adhesive was left on both side of the adherends, as shown 

in Fig. 4(d). It showed that the composite joint was bonded in a comparably better quality as 

the joint failed within the adhesive, whereas the quality of the aluminium joint could be 

improved by comparing Fig. 4(c) and Fig. 4(d). 

  



Fig. 4: (a) The setup of a test machine for the aluminium-based SLJs with a mechanical 

extensometer; (b) The test setup of the composite SLJs with a video extensometer; (c) The failure 

surfaces of the aluminium SLJs; (d) The failure surfaces of the composite SLJs. 

3.3 FEA modelling 

Based on the Cohesive Zone Method (CZM), a 2D FEA model was built using the Abaqus 

software to simulate the failure load of the aluminium and composite SLJs. Apart from constant 

inputs (material properties) to the FEA model, variable inputs to the FEA model are E1, E2, G1, 

G2, and the output of the FEA model is the joint failure load. In this research, the purpose of 

the FEA model is to generate training samples for the DNN model, which process is depicted 

in Section 3.4. 

In the FEA model, four-noded plane strain elements and cohesive elements were employed 

to model adherends and adhesive, respectively. The displacements and rotations of the entire 

nodes at one end were restrained on all the directions, whereas those at the other ends were 

fixed in the z-direction displacement and rotation. A displacement was applied to the joint till 

final failure occurred. A mesh size of 0.2 mm was designed at the bonded area after a mesh 

convergence study, and a gradual mesh size was used for the adherends to save the 

computational time. The setup of the entire model is shown in Fig. 5. The non-linear 

geometrical analysis using an explicit solver was taken for a large deformation. 

 

Fig. 5: The loading and boundary conditions of the cohesive zone model. 

To ensure the validation of the FEA model, the nodal displacements corresponding to the 

locations of extensometers were extracted. The joint failure load and its slope against the 

displacement curve within the linear region of joints were calculated for both experimental and 

FEA results based on the following Equations (1) and (2). The reason to choose the linear region 

is that it indicates the stiffness of a joint, which is a key design factor to evaluate the joint’s 



capability. When an applied load exceeds the linear region, adherend and adhesive materials 

will rapidly deform plastically and a permanent damage is generated. 

𝐿𝑜𝑎𝑑𝑓(𝑚𝑎𝑡𝑙, 𝑖) = 𝑚𝑎𝑥(𝐹, 𝑖)                                              (1) 

where 𝐿𝑜𝑎𝑑𝑓(𝑚𝑎𝑡𝑙, 𝑖) represents the failure load of a joint in a specific adherend material 

(matl) for the ith sample (a sample of a joint means a different set of joint parameters used); 𝐹 

denotes the load matrix in the experiment or the FEA-based simulation. 

The load difference between experimental and FEA results (∅1) is calculated below: 

∅1 =
|𝐿𝑜𝑎𝑑𝑓(𝑚𝑎𝑡𝑙,𝑖)_𝑒𝑥𝑝−𝐿𝑜𝑎𝑑𝑓(𝑚𝑎𝑡𝑙,𝑖)_𝐹𝐸𝐴|

𝐿𝑜𝑎𝑑𝑓(𝑚𝑎𝑡𝑙,𝑖)_𝑒𝑥𝑝
× 100                                  (2) 

where 𝐿𝑜𝑎𝑑𝑓(𝑚𝑎𝑡𝑙, 𝑖)_𝑒𝑥𝑝 and 𝐿𝑜𝑎𝑑𝑓(𝑚𝑎𝑡𝑙, 𝑖)_𝐹𝐸𝐴 are joint failure loads obtained based 

on an experiment and a FEA simulation for the i-th sample, respectively.  

 The FEA model is valid when ∅1  is smaller than a pre-defined threshold value. After 

validation, FEA simulations will be conducted using different joint parameters to produce a 

training database for the DNN model. The elastic modulus of the materials used for adherends 

and adhesives has a significant effect on joint performance (Campilho et al., 2012; Campilho 

et al., 2013). As the cohesive zone model is developed for modelling adhesives, fracture 

toughness (cohesive energy) in tension and shear are the most critical parameters compared to 

other cohesive parameters.  

The upper and lower ranges of the elastic modulus of upper and lower adherends (E1 and E2) 

were from 60.0 GPa to 200.0 GPa with 4 intervals in a 35.0 GPa gap each (i.e., 60.0, 95.0, 

130.0, 165.0, 200.0 GPa). The ranges covered most of the materials, including aluminium, 

composite and steel. The range of the fracture toughness (G1) in tension covers from 0.2 N/mm 

to 1.6 N/mm with 4 intervals in a 0.35 N/mm gap each (i.e., 0.2, 0.55, 0.9, 1.25, 1.6 N/mm). 

The fracture toughness in shear (G2) covered from 0.4 to 8.0 N/mm with 4 intervals in a 1.9 

N/mm gap each (i.e., 0.4, 2.3, 4.2, 6.1, 8.0 N/mm). The four joint parameters and their values 

are summarised in Table 2. With the combinations of joint parameter values, a total of 625 

samples for a joint were generated. 

 



Table 2: Value settings for the four essential joint parameters. 

Parameter (unit)/No. of values 1 2 3 4 5 

Parameter a: E1 (GPa) 60.0 95.0 130.0 165.0 200.0 

Parameter b: E2 (GPa) 60.0 95.0 130.0 165.0 200.0 

Parameter c: G1 (N/mm) 0.2 0.55 0.9 1.25 1.6 

Parameter d: G2 (N/mm) 0.4 2.3 4.2 6.1 8.0 

3.4 The improved DNN modelling 

3.4.1 The structure of the model 

To mine the underlying relationship between joint parameters and the joint failure load, an 

improved DNN model is designed. A classic DNN model exhibits the following features (Li et 

al., 2021): (i) It has an ability to represent highly complex and non-linear relationships between 

input and output; (ii) It does not require much prior physical knowledge regarding adhesively 

bonded joints, which might be necessary for many other analytical methods; (iii) It can be 

updated incrementally when new training samples are generated. 

In this research, based on the classic DNN model, an improved DNN model with an 

embedded TL mechanism is designed for joint predictions. Fig. 6 illustrates the structure of the 

improved DNN model, including fully connected layers, a dropout layer, a batch normalisation 

layer, a ReLU layer and a TL layer. The input for the improved DNN model is a set of key joint 

parameters represented as a vector 𝑋 = [𝐸1, 𝐸2, 𝐺1, 𝐺2], and the output is the predicted joint 

failure load based on the joint parameters. The key parameters of the DNN model and the 

chosen values in this research are shown in Table 3. In the table, the dropout probability was 

set to 0.2 as instructed in previous research (Hinton et al., 2012). The learning rate of the 

optimiser was selected from the allowable range of the parameter, which is usually within 0.01-

0.1. Trials showed that 0.05 was the appropriate value of the learning rate for this research. 

The TL mechanism was implemented after each block of the DNN model. The design was 

adopted from the authors’ previous research (Li et al., 2021). Different structures of the 

improved DNN model were benchmarked to justify the model design in Section 4.2. 



 

Fig. 6: The structure of the improved DNN model. 

Table 3: Key parameters of the improved DNN model. 

Functions 
Dropout 

probability 

Number of 

the hidden 

layers 

Number of 

the hidden 

neurons 

Optimiser 
Learning 

rate 

Parameter’s value 

or choice 
0.2 8 10 

Gradient 

descent 
0.05 

3.4.2 Transfer learning 

Joint specimens using the same type of adherend materials show a similar trend in 

displacement against load. As shown in Fig. 7, all aluminium specimens had relatively similar 

slope ranges (74,784.87N/mm-88,519.93N/mm) and failure load ranges (20,191.91N-

20,907.69N) against displacement. All composite specimens also had the similar slope ranges 

(29,591.29N/mm-39,147.06N/mm) and failure load ranges (8,973.76N-9,307.09N) against 

displacement. In the meantime, the trends of the joint specimens using dissimilar adherend 

materials were significantly different. To predict joint failure loads accurately, a normal 

practice is that a set of new physical tests are conducted, an FEA model is developed and 

calibrated to enrich the training samples, and the DNN model is re-trained based on the physical 

tests and FEA simulations. Obviously, it is not an economic process, and the advantage of using 

the DNN model to perform efficient prediction on joint failure loads is compromised. 
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Fig. 7: Displacement vs loads for the aluminium and composite SLJs. 

TL is an effective intelligent mechanism to enhance the adaptability of a deep learning 

model pre-trained for a task (denoted as a source domain) to support a new task (denoted as a 

target domain) in an efficient and cost-effective means (Zhu et al., 2021). Knowledge is 

transferred on the basis of resolving the dissimilarities of features and their distributions across 

different domains, and collected data from a source domain can be re-used in a target domain. 

In this research, TL is incorporated into the DNN model to alleviate the re-training requirement 

for the model on a new joint design. To be more specific, based on TL, only a small number of 

new experimental and FEA simulations for the composite SLJs (the target domain) need to be 

generated, and the training samples previously collected from the aluminium SLJs (the source 

domain) can be re-used to support the prediction of the failure loads of the composite SLJs. The 

process of the TL mechanism is illustrated in Fig 8. 
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Fig. 8: The transfer learning (TL) process. 

To elaborate the TL mechanism in the improved DNN model, some representations are 

defined. For the aluminium and composite SLJs, assume there are n samples each. Each sample, 

denoted as the ith sample, comprises a set of joint parameters (E1, E2, G1, G2), and the 

corresponding joint failure load ( 𝐿𝑜𝑎𝑑𝑓(𝐴𝑙, 𝑖)  or 𝐿𝑜𝑎𝑑𝑓(𝐶𝑜𝑚𝑝𝑜𝑠, 𝑖) ). 𝐷𝑠𝑜𝑢𝑟𝑐𝑒 =

{𝐿𝑜𝑎𝑑𝑓(𝐴𝑙, 𝑖), 𝑃(𝐿𝑜𝑎𝑑𝑓(𝐴𝑙, 𝑖))} represents the source domain, where  𝑃(𝐿𝑜𝑎𝑑𝑓(𝐴𝑙, 𝑖)) is the 

distribution probability of the sample in the source domain. 𝐷𝑡𝑎𝑟𝑔𝑒𝑡 =

{𝐿𝑜𝑎𝑑𝑓(𝐶𝑜𝑚𝑝𝑜𝑠, 𝑖), 𝑃(𝐿𝑜𝑎𝑑𝑓(𝐶𝑜𝑚𝑝𝑜𝑠, 𝑖))}  represents the target domain, where  

𝑃(𝐿𝑜𝑎𝑑𝑓(𝐶𝑜𝑚𝑝𝑜𝑠, 𝑖)) is the distribution probability of the sample in the target domain. The 

distribution categories of the 375 samples (selected from 625 samples to optimise the 

computational time) for the aluminium SLJs are presented in Table 4, where the parameter 

symbols (a, b, c, d for E1, E2, G1, G2) and the No. of values (1, 2, 3, 4, 5) are shown in Table 2. 

Data in the source domain (aluminium SLJs)  Data in the target domain (composite SLJs) 
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The distribution of data samples is significant to the training accuracy of the DNN model. 

For instance, if the data samples are mostly located within a certain range (i.e., most data are 

distributed within the distribution categories from 1 to 8 only), the training accuracy will be 

compromised as there is no interpolation from other ranges. Therefore, the 30 data samples 

were randomly selected from all the distribution categories. In this research, the distribution 

categories were designed to ensure data samples were evenly distributed within the range of the 

parameters. Fifteen categories were designed as there were 30 data samples in the target 

domain, so there was at least one data sample from each category to ensure the training accuracy 

of the DNN model. Critical steps for the TL mechanism in this research are elaborated below. 

Table 4: Distributions of the 375 samples of the aluminium SLJ (the source domain). 

 a1b1 a1b2 a1b3 a1b4 a1b5 a2b1 a2b2 a2b3 a2b4 a2b5 a3b1 a3b2 a3b3 a3b4 a3b5 

c1d1, c1d2 

c1d3, c1d4 

c1d5 
Distribution category 1 Distribution category 6 Distribution category 11 

c2d1, c2d2 

c2d3, c2d4 

c2d5 
Distribution category 2 Distribution category 7 Distribution category 12 

c3d1, c3d2 

c3d3, c3d4 

c3d5 
Distribution category 3 Distribution category 8 Distribution category 13 

c4d1, c4d2 

c4d3, c4d4 

c4d5 
Distribution category 4 Distribution category 9 Distribution category 14 

c5d1, c5d2 

c5d3, c5d4 

c5d5 
Distribution category 5 Distribution category 10 Distribution category 15 

(1) Data alignment between domains 

To ensure the effectiveness of the TL mechanism across domains, alignment of the failure 

loads between the aluminium and composite SLJs is essential (the data alignment process is 

explained in Fig. 8). The difference between the maximum failure loads of the aluminium and 

composite SLJs was calculated and minimised based on Equations (3) and (4), respectively. In 

this research, 30 samples of the composite SLJ were generated using FEA. The selected joint 

parameters for the composite SLJ are shown in Table 5.  

Table 5: Distributions of the samples of the composite SLJ (the target domain). 

Distribution 

category 1 

Distribution 

category 2 

Distribution 

category 3 

Distribution 

category 4 

Distribution 

category 5 

a1b5c1d1, a1b3c1d3, 

a1b5c1d5 
a2b2c2d2, a1b5c2d5 a1b5c3d5 a2b2c4d2, a1b5c4d5 a1b3c5d2, a1b5c5d5 

Distribution 

category 6 

Distribution 

category 7 

Distribution 

category 8 

Distribution 

category 9 

Distribution 

category 10 

a2b5c1d1, a2b5c1d5 a2b5c2d5, a2b3c2d4 a3b2c3d2, a2b5c3d5 a2b5c4d5, a2b5c4d4 a3b2c5d3, a2b5c5d5 



Distribution 

category 11 

Distribution 

category 12 

Distribution 

category 13 

Distribution 

category 14 

Distribution 

category 15 

a3b5c1d1, a3b5c1d5 a3b4c2d2, a3b5c2d5 a3b4c3d4, a3b5c3d5 a3b1c4d3, a3b5c4d5 a3b4c5d1, a3b5c5d5 

 

The difference of samples between two domains (i.e., the aluminium and composite SLJs) 

can be calculated as follows: 

 ∅2 =
∑ |𝐿𝑜𝑎𝑑𝑓(𝐴𝑙,𝑖)−𝐿𝑜𝑎𝑑𝑓(𝐶𝑜𝑚𝑝𝑜𝑠,𝑖)|30
𝑖=1

𝐿𝑜𝑎𝑑𝑓(𝐴𝑙,𝑖)
                                        (3) 

To minimise the overall difference, the failure load of the aluminium SLJ is aligned to that 

of the composite SLJ as follows: 

𝐿𝑜𝑎𝑑𝑓(𝐴𝑙, 𝑖)
∗ = 𝐿𝑜𝑎𝑑𝑓(𝐴𝑙, 𝑖) ∙ (1 + ∅2)                                      (4) 

where 𝐿𝑜𝑎𝑑𝑓(𝑎𝑙, 𝑖)
∗ is the aligned failure load of the aluminium joint. 

The aligned 375 data samples from the source domain will be combined with the 30 samples 

in the target domain to train the DNN model (which means that 405 samples were collected for 

the composite joint for the DNN training, and the data collection time was significantly reduced 

by 88.63% (i.e., (405-30)/405) in comparison to the solution of generating all the data using 

FEA).  

(2) Maximum Mean Discrepancy (MMD) 

MMD was popularly used to measure the distance metric for distribution probabilities 

between two domains to ensure the effectiveness of TL. The MMDs of the source and target 

domains are defined below: 

𝑀𝑒𝑎𝑛𝐻(𝐿𝑜𝑎𝑑𝑓(𝐴𝑙, 𝑖)
∗) =

1

𝑚
∑ 𝐻(𝐿𝑜𝑎𝑑𝑓(𝐴𝑙, 𝑖)

∗)𝑚
𝑖=1                             (5) 

𝑀𝑒𝑎𝑛𝐻(𝐿𝑜𝑎𝑑𝑓(𝐶𝑜𝑚𝑝𝑜𝑠, 𝑖)) =
1

𝑚
∑ 𝐻(𝐿𝑜𝑎𝑑𝑓(𝐶𝑜𝑚𝑝𝑜𝑠, 𝑖)
𝑚
𝑖=1 )                       (6) 

𝑀𝑀𝐷𝐻(𝐿𝑜𝑎𝑑𝑓(𝐴𝑙, 𝑖)
∗, 𝐿𝑜𝑎𝑑𝑓(𝐶𝑜𝑚𝑝𝑜𝑠, 𝑖)) = 𝑠𝑢𝑝(𝑀𝑒𝑎𝑛𝐻(𝐿𝑜𝑎𝑑𝑓(𝐴𝑙, 𝑖)

∗) −𝑀𝑒𝑎𝑛𝐻(𝐿𝑜𝑎𝑑𝑓(𝑐𝑜𝑚𝑝𝑜𝑠, 𝑖)))    (7) 

where 𝑠𝑢𝑝(∙) is the supremum of the aggregate; 𝐻(∙) is a RKHS (Reproducing Kernel 

Hilbert Space).  

Calculated MMD is used as part of the loss function to re-train the DNN model. The loss 

function (∅3) is calculated based on MMD and Mean Squared Error (MSE) below: 



𝑀𝑆𝐸 =
∑ (𝑧𝑖−𝑦𝑧𝑖)

2𝑛
𝑖=1

𝑛
   (8) 

where n is the total results of the of the DNN model (n=1 in this case as there is only 1 

output); 𝑧𝑖 is the i-th ground-truth and 𝑦𝑧𝑖 is the i-th predicted output. 

∅3 = 𝑤1 ∙𝑀𝑀𝐷𝐻(𝐿𝑜𝑎𝑑𝑓(𝐴𝑙, 𝑖)
∗, 𝐿𝑜𝑎𝑑𝑓(𝐶𝑜𝑚𝑝𝑜𝑠, 𝑖)) + 𝑤2 ∙ 𝑀𝑆𝐸                 (9) 

where  𝑤1 and 𝑤2 are the weights. 𝑀𝑆𝐸 is calculated according to Equation (8). The DNN 

model is trained by minimising the loss function using the gradient descent optimiser (Zhao et 

al., 2021). In this study MMD and MSE are equally important to ensure the training accuracy 

of the DNN model, so that 𝑤1 = 𝑤2 = 0.5. 

3.5 Fruit fly optimisation 

Based on the prediction results from the improved DNN model, a designed FFO algorithm 

can be conducted to search for optimal joint parameters (E1, E2, G1, G2) iteratively to identify 

the maximised value of the joint failure load. The FFO algorithm is a relatively new swarm 

algorithm being capable of providing multiple swarm groups around each swarm centre to 

implement parallel search. The algorithm imitates the behaviours of fruit flies according to the 

following two steps: (i) Smell-based search: fruit flies are randomly generated around each 

swarm centre, and the smell concentration (fitness) of each fruit fly is calculated. The optimal 

solution is usually unknown due to its non-linearity characteristics, so that local optimal 

solutions can be avoided (Qin et al., 2022); (ii) Vision-based search: the fruit fly with the best 

fitness in each swarm centre replaces the original swarm centre, through which the best fitness 

can be maintained while the swarm centres are approaching the best solution efficiently 

(Ibrahim et al., 2022). In summary, the FFO algorithm is featured with parallel search, local 

optima avoidance, simple implementation and quick convergence (Liang et al., 2021). Based 

on benchmarking analyses with several main-stream optimisation algorithms (details are given 

in Section 4.3), it reveals that the FFO algorithm is suitable for this multi-parameter and non-

linear optimisation problem, and easy to be integrated with the DNN model. The process of the 

FFO algorithm is illustrated in Fig. 9, and the step-wise flow is elaborated in Fig. 10. 



 

Fig. 9: The illustration of the FFO algorithm. 

 

Fig. 10: The flow of the FFO algorithm for the joint parameter optimisation. 

The major steps in the FFO algorithm are below: 

I. Initialisation: An initial fruit fly swarm with 𝑛 fruit flies (each fruit fly is a joint design) 

are randomly generated. Each fruit fly is modelled to contain four joint parameters, i.e., E1, E2, 
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G1, and G2. Random values of the joint parameters within their upper and lower boundaries are 

assigned to the fruit flies: 

𝑓𝑙𝑦𝑖 = 𝐿𝐵𝑖 + (𝑈𝐵𝑖 − 𝐿𝐵𝑖) × 𝑟𝑎𝑛𝑑()                                    (10) 

where 𝑓𝑙𝑦𝑖 (𝑖 = 1,… , 𝑛) is a fruit fly; 𝐿𝐵𝑖 and 𝑈𝐵𝑖 are the lower and upper boundaries of the 

joint parameters for the fruit fly, respectively; 𝑟𝑎𝑛𝑑() is a random value between 0 and 1. 

II. Iterations: The following steps are iteratively conducted until the maximum number of 

iterations is reached: 

(2.1)  Selection of the swarm centre: For 𝑓𝑙𝑦𝑖  ( 𝑖 = 1,… , 𝑛 ), the trained DNN model is 

employed to predict the joint failure load of the fruit fly (the joint failure load of the fruit fly is 

represented as 𝐿𝑜𝑎𝑑𝑓(𝑓𝑙𝑦𝑖)). The fruit fly in the swarm with the maximum failure load is chosen 

as the swarm centre (𝑓𝑙𝑦𝑐𝑒𝑛𝑡𝑟𝑒); 

(2.2)  Smell-based search: A fruit fly around the swarm centre is generated as a new fruit fly 

according to the following: 

𝑛𝑒𝑤_𝑓𝑙𝑦𝑖 = 𝑓𝑙𝑦𝑖 × (1 + 𝑎 × (𝑟𝑎𝑛𝑑() − 0.5))                               (11) 

where 𝑛𝑒𝑤_𝑓𝑙𝑦𝑖 is a new fruit fly; 𝑟𝑎𝑛𝑑() is a randomly generated value between 0 and 1 

to ensure that randomness is embedded in the search process to avoid local optima; 𝑎 is the 

search step (trials show that when 𝑎 was chosen 0.2 in this case study, the fruit fly approached 

an optimal solution more efficiently). 

(2.3)  Vision-based search: The joint failure loads of all new fruit flies are predicted by using 

the trained DNN model. If the joint failure load of a fruit fly, denoted as 𝑛𝑒𝑤_𝑓𝑙𝑦𝑘, is greater 

than that of the original swarm centre, this fruit fly will be used to replace the original swarm 

centre. However, there is a possibility of accepting the new fruit fly even with a lower value of 

the joint failure load in order to avoid local optima when the following conditions are satisfied: 

𝑐 > 𝑟𝑎𝑛𝑑()                                                        (12) 

𝑐 = 𝑒𝑥𝑝(−|𝐿𝑜𝑎𝑑𝑓(𝑛𝑒𝑤_𝑓𝑙𝑦𝑘)− 𝐿𝑜𝑎𝑑𝑓(𝑓𝑙𝑦𝑐𝑒𝑛𝑡𝑟𝑒)|/𝐼)                    (13) 



where 𝑐 is the value to determine whether the swarm centre with a worse joint failure load 

will be accepted or not;𝐼 is the current iteration. 

(2.4) The smell-based search and vision-based search are iterated until reaching the 

maximum iteration  𝐼𝑚𝑎𝑥. 

4. Case Studies and Analyses 

4.1  Experiments and FEA-based simulation 

To validate the FEA model, experimental and FEA results for the load vs. extensometer 

displacement relations are demonstrated in Fig. 11. According to Equation (2), the difference 

between an experimental result and a FEA result (∅1) was calculated and summarised in Table 

6. It shows that the locations of the reflecting pads by the FEA model correlate to that of the 

experiments well. 

Table 6: Difference between the experimental and FEA results. 

Aluminium Specimen 1 Specimen 2 FEA 

Failure load (N) 20,907.69 20,191.91 21,432.25 

Failure load difference (∅1) 2.51% 6.14%  

Composite Specimen 1 Specimen 2 Specimen 3 FEA 

Failure load (N) 8,973.76 9,307.09 9,146.83 9,408.82 

Failure load difference (∅1) 4.85% 1.09% 2.86%  

 



 
Fig. 11: Comparisons of the load vs. extensometer displacement relations. 

4.2 The improved DNN model 

Datasets generated from the FEA model were used to train the DNN model. Considering the 

heavy computational load of the FEA model, it is essential to minimise the number of datasets 

generated from the FEA model as long as the trained DNN model is satisfactory. That is, it is 

expected to achieve a trade-off between the training accuracy of the DNN model and the 

computational time of the FEA model. To achieve the balance, the following evaluation and 

performance criteria are defined: 

(i) The training accuracy of the DNN model is evaluated by the loss function (∅4): 

 (b) Comparison of load vs extensometer displacement relations from 

experimental results and FEA-based prediction for the composite SLJs. 

 

 (a) Comparisons of the load vs extensometer displacement relations from 

experimental results and FEA-based prediction for the aluminium SLJs. 
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∅4(𝑖) = 𝐿𝑜𝑎𝑑𝑓(𝑚𝑎𝑡𝑙, 𝑖)_𝐷𝑁𝑁 − 𝐿𝑜𝑎𝑑𝑓(𝑚𝑎𝑡𝑙, 𝑖)_𝐹𝐸𝐴                          (14) 

where 𝐿𝑜𝑎𝑑𝑓(𝑚𝑎𝑡𝑙, 𝑖)_𝐹𝐸𝐴  is the ground-truth value by the FEA model, and 

𝐿𝑜𝑎𝑑𝑓(𝑚𝑎𝑡𝑙, 𝑖)_𝐷𝑁𝑁 is the predicted joint failure load by the DNN model for the ith dataset. 

(ii) The normalised accuracy of the trained DNN model and the normalised computational 

time required for the FEA model to generate the training samples are defined below:  

𝑁(∅4(𝑖)) =
𝑀𝑆𝐸(𝑖)−𝑀𝑖𝑛(𝑀𝑆𝐸)

𝑀𝑎𝑥(𝑀𝑆𝐸)−𝑀𝑖𝑛(𝑀𝑆𝐸)
                                          (15) 

𝑁(𝐹𝐸𝐴_𝑡𝑖𝑚𝑒(𝑖)) =
𝐹𝐸𝐴_𝑡𝑖𝑚𝑒(𝑖)−𝑀𝑖𝑛(𝐹𝐸𝐴_𝑡𝑖𝑚𝑒)

𝑀𝑎𝑥(𝐹𝐸𝐴_𝑡𝑖𝑚𝑒)−𝑀𝑖𝑛(𝐹𝐸𝐴_𝑡𝑖𝑚𝑒)
                                (16) 

where 𝑁(∅4(𝑖))  and 𝑁(𝐹𝐸𝐴_𝑡𝑖𝑚𝑒(𝑖))  are the normalised training accuracy and the 

normalised computational time. 

(iii) The prediction performance indicator is defined below: 

𝑃 = (𝑣1 ∙ 𝑁(∅4(𝑖)) + 𝑣2 ∙ 𝑁(𝐹𝐸𝐴_𝑡𝑖𝑚𝑒(𝑖))                       (17) 

where 𝑃 is the prediction performance; 𝑣1 and 𝑣2 are weights (𝑣1 + 𝑣2 = 1).  

The optimal number of training samples generated from the FEA model was determined 

when the smallest 𝑃 was achieved. In this research, the prediction accuracy is more important 

than the computational time, so that 𝑣1 and 𝑣2 were set 0.9 and 0.1, respectively. Fig. 12(a) 

shows that the normalised prediction accuracy and computational efficiency under different 

numbers of training samples generated by the FEA model (the number of the datasets range 

was set from 100 samples to 375 samples in this case study). Fig. 12(b) shows the overall 

performance under different numbers of training samples by FEA. It indicates that the best 

value of performance (𝑃) was 0.0853 when the number of the training samples was 264. 



 
Fig. 12: The model performance under different numbers of FEA-based training samples. 

To ensure the best structure of the DNN model, different structures were benchmarked over 

10 simulations, and the average result was generated. Some results are shown in Table 7 (with 

264 FEA-generated datasets for the aluminium SLJ). It indicates that, under 150 training epochs, 

the structure of the DNN model with 8 hidden layers and 10 nodes in each hidden layer 

exhibited the best average training accuracy and the second-best average test accuracy, and the 

training/prediction time is in the same scale in comparison with those of other structures. Thus, 

the structure of 8 hidden layers and 10 nodes in each hidden layer was used in the design of the 

DNN model. 

Table 7: The training accuracies with different structures of the DNN model. 

 

Average training 

accuracy 

Average test 

accuracy 

Worst training 

accuracy 

Training 

time (s) 

Prediction 

time (s) 

8 hidden layers, 

10 nodes 
0.0611 0.0741 0.0761 5.57 1.29 

8 hidden layers, 8 

nodes 
0.0863 0.0107 0.0995 5.23 1.20 

8 hidden layers, 

12 nodes 
0.0751 0.0931 0.0931 5.91 1.32 

6 hidden layers, 

10 nodes 
0.0921 0.1121 0.1040 5.11 1.19 

7 hidden layers, 

10 nodes 
0.0699 0.0883 0.0810 5.46 1.22 

9 hidden layers, 

10 nodes 
0.0677 0.0771 0.0868 5.61 1.30 

10 hidden layers, 

10 nodes 
0.0651 0.0798 0.0775 5.90 1.51 

(a) The normalised prediction accuracy and 

computational time under different numbers of 

FEA-generated training samples. 

MSE 

(accuracy) 

Computational 

time 

(b) The model performance (P) under 

different numbers of FEA-based generated 

training samples. 



To train the DNN model to support the composite SLJs, a small number of training samples 

need to be collected to support the application of the TL mechanism. In this case study, 30 data 

samples of the composite joint were collected. MMD was used to reduce the distribution 

difference in the datasets between the source domain (the aluminium SLJs) and the target 

domain (the composite SLJs). To justify the advantage of the TL mechanism, benchmarks were 

conducted and the results are illustrated in Fig. 13 and Table 8. It showed that the TL 

mechanism with sample alignment and MMD achieved the best MSE (0.0738).  

 
Fig. 13: Benchmark for different transfer learning approaches. 

Table 8: Benchmark for the TL mechanisms with different settings. 

 

Average training 

accuracy 

Average testing 

accuracy 

Worst training 

accuracy 

With alignment and MMD 0.0558 0.0738 0.0869 

With alignment but without 

MMD 0.1277 0.1475 0.1663 

With MMD but without 

alignment 0.2514 0.2799 0.2911 

Without alignment and MMD 1.5966 1.6110 1.9421 

4.3 The FFO algorithm 

The time complexities of the FFO algorithm and the DNN model can be analysed using the 

following equation: 

𝑇𝑋1 = O(𝑛 ×𝑀 × 𝑃 × 𝑁 × e)                                          (18) 

The accuracy of the different TL approaches 
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where 𝑇𝑋1 is the time complexity of the DNN model; 𝑛 is number of input variables (𝑛 =

4); M is number of hidden neurons (M= 10); 𝑃 is number of the output parameters (𝑃=1 as it 

predicts only maximum failure load); 𝑁 is number of observations (indicating the data sample 

size and it is 264 in this case); 𝑒 is the number of iterative epochs (𝑒 = 150) (Fei et al., 2019). 

𝑇𝑋2 = O(𝑛𝑔 × 𝑛0 × 𝑛𝑝
3)                                             (19) 

where 𝑇𝑋2 is the time complexity of the FFO algorithm; 𝑛𝑔 is the number of the iterations 

in the algorithm (𝑛𝑔 = 50); 𝑛0 is the number of optimisation objectives (𝑛0 = 1); 𝑛𝑝 is the 

population size (𝑛𝑝 = 5) (Liang et al., 2019). 

𝑇𝑋1 = O(1584000) and 𝑇𝑋2 = (1250), which indicates that the DNN model and the FFO 

algorithm have relatively low time complexity. Therefore, the approach has good 

computational efficiencies in optimising joint parameters for failure load enhancement. 

To further showcase the optimisation efficiency and robustness of the FFO algorithm, 

different optimisation algorithms, including PSO, NSGA-II, GA and SA, were compared. Each 

algorithm was executed 30 times, and the average results were taken. For the FFO algorithm, 

it took 9 iterations to achieve optimal results. It was quicker than the convergence time for all 

the other algorithms. All the optimisation algorithms reached the same optimised result, i.e., 

18910.57 N. E1, E2, G1 and G2 were set as 200.0 (GPa), 200.0 (GPa), 1.6 (N/mm) and 8.0 

(N/mm), respectively. 

 

Fig. 14: Benchmark of different optimisation approaches. 
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Table 9: Optimisation results compared with different optimisation algorithms. 

  FFO PSO NSGA-II GA SA 

Iterations to 

achieve optimal 

results 

9 13 14 15 17 

Optimised 

results (N) 
18,910.57 18,910.57 18,910.57 18,910.57 18,910.57 

Error in the 

failure load 

predictions (%) 

6.35% 6.35% 6.35% 6.35% 6.35% 

4.4 Result discussions and future work 

In this research, the focus was on the investigation of designing an innovative deep learning 

model enabled by a TL mechanism to realise an adaptive prediction on a new joint design using 

a smaller set of training samples. SLJ designs were used to exemplify and validate the approach. 

Tests for the adherend and adhesive were designed based on standards. That is, G1 and G2 are 

mode I and mode II fracture toughness of an adhesive. The two parameters were measured by 

the mode I double cantilever beam (DCB) and the mode II end notch flexure (ENF) standard 

tests according to the ISO 15024 standard (2001) and ASTM D6671 (2006). Nevertheless, there 

are still some limits to the research, and the following aspects should be investigated: 

More complex geometrical features (e.g., adhesive length and thickness) have significant 

effects on joints’ lap shear strength (Banea and da Silva, 2009; Budhe et al., 2017). In the future, 

geometrical features, together with key process parameters, will be investigated to improve 

joint designs. 

Furthermore, investigations will be carried out to understand how other joint parameters, 

such as the treatment parameters, the bonding type, and the density of fibres, generate impacts 

on joint failure loads. Based on the investigations, a more comprehensive DNN model to 

evaluate and predict the joint failure load could be developed. 

In the research, case studies were based on the same E (E1=E2). The approach is applicable 

to hybrid joint designs using different E1 and E2. Further investigation on joint designs with 

different E values will be carried out in the future. 



5. Conclusions 

The failure load of an adhesively bonded joint is one of the most influential factors in 

determining the integrity and bonding performance of the joint. To address this issue, this paper 

presents a novel improved DNN model and FFO algorithm-enabled approach to predict joint 

failure loads and optimise the joint design based on the prediction results efficiently. The 

innovations of this research can be summarised below:  

• A TL mechanism is incorporated into the DNN model to carry out efficient predictions on 

new joint designs by adapting the pre-trained DNN model. Case studies showed that the 

number of datasets and the computational time (compared with the FEA model) required 

to re-train the DNN model for a new SLJ design were reduced by 92.00% (i.e., (375-

30)/375)) and 99.57% (i.e., (1186.04s-5.1s)/1186.04s), respectively. It clearly evinces the 

effectiveness of the approach in terms of computational efficiency improvement and 

training sample reduction; 

• An FFO algorithm is augmented with the DNN model to fine-tune joint parameters to 

attain design optimisation based on iterative predictions on the joint failure load. A good 

optimisation efficiency is achieved by leveraging the parallel computing feature embedded 

in the FFO algorithm and the TL mechanism-driven predictions. Experiments proved that 

the approach reached optimal results much more quickly (only within 9 iterations) in 

comparison with several other mainstream optimisation algorithms. The experiments also 

revealed that the failure load of a new SLJ design was substantially increased by 9.96% 

(i.e., (18910.57N-17197.68N)/17197.68N). 
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