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Abstract: This paper presents a finite element model for predicting the performance and failure
behaviour of a hybrid joint assembling fibrous composites to a metal part with reinforcement micro
pins for enhancing the damage tolerance performance. A unit-strip model using the cohesive
elements at the bond interface is employed to simulate the onset and propagation of debonding
cracks. Two different traction–separation laws for the interface cohesive elements are employed,
representing the fracture toughness properties of the plain adhesive bond and a pin-reinforced
interface, respectively. This approach can account for the large-scale crack-bridging effect of the pins.
It avoids using concentrated pin forces in the numerical model, thus removing mesh-size dependency,
and permitting more accurate and robust computational analysis. Lap joints reinforced with various
pin arrays were tested under quasi-static load. Predicted load versus applied displacement relations
are in good agreement with the test results, especially for the debonding onset and early stage of
crack propagation.

Keywords: composite hybrid joints; pin-reinforcement; static strength; FEA; experiment

1. Introduction

One of the major issues in using composite materials for aerostructures is their integra-
tion with metallic components. Conventional joining techniques such as adhesive bonding
and mechanical fastening have major drawbacks. Adhesively bonded joints do not have
sufficient strength at the joint runout regions due to the effect of stress concentration [1–3].
Inherent risk of delamination or debonding exists, together with poor damage tolerance
capability [4,5]. On the other hand, mechanical fastening with bolts or metallic inserts adds
weight; the hole drilling can cause damage to the laminate and raise local stress by a factor
of three [6]. Strength reduction due to holes is much greater for laminated composites than
metals due to composites’ being more sensitive to the notch effect [2].

Development of new joining methods is vital to promote applications of composite
materials in aerospace and automotive structures. Hybrid joining techniques such as
bonding plus bolting [7,8], interleaving [9–12] and surface structuring [6,13–15] have been
developed, offering some compromise between reduced weight and increased structural
redundancy. To avoid drilling fastener holes in composites, surface-structuring technology
has attracted much attention. It is a combination of adhesive bonding and mechanical
reinforcement by inserting small metal pins into the composite laminate to form an “in-
terlocking system” to bridge debonding cracks, consequently increasing the resistance to
fatigue crack growth rate. These through-thickness reinforcements with either metallic or
fibre-polymer pins (referred to as micro pins) are typically 0.28–1.5 mm in diameter, to join
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two similar or hybrid materials together [16]. A variety of reinforcement pins have been
developed over the past decades. The Surfi-Sculpt™ technique used protruded or sculpted
surface features such as blunt pins made with a laser beam [13,14]. Pins can also be made
by additive manufacturing [6,17], arc welding (cold metal transfer, CMT [15,18,19]), cold
discharge stud weld (CDSW) [20] or sheet pins [21]. The hybrid penetrative reinforcement
(HYPER) pin is one such technology that involves using small pins that are built onto
a titanium substrate by additive manufacturing. HYPER pins only penetrate partway
through the thickness of the laminate, providing an aerodynamic benefit compared to even
a countersunk fastener. The sheet pins are produced by stamping a specific pattern on
a metal sheet and then rotating the reinforcing elements perpendicular to the substrate,
which has the advantage of having the reinforcement element unaffected by mechanical or
thermal stresses during manufacturing [22].

One of the promising manufacturing technologies to produce these small pins and
integrate them as part of the metal part is a welding technique called cold metal transfer
(CMT) [15,18]. Micro pins are welded onto the surface of a metallic part (Figure 1a) and
then pushed into the composite laminate (Figure 1b) during joint assembly with a special
ultrasonic gun before the joint is cured at an elevated temperature. The high-frequency
vibration of the ultrasonic gun produces heat at the contact points between the pins and
laminate. The local heat reduces the resin viscosity, allowing pins to be pushed in, causing
minimal fibre breakage. The in-plane fibres must move around the inserted pins, resulting
in small resin-rich pockets around the pins. The resin-rich zones have an elongated shape,
extending in the local fibre direction (Figure 1c).
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Figure 1. The concept of metal-composite joint reinforced with micro pins: (a) metal plate and
reinforcement pins manufactured by the cold metal transfer (CMT) process [18], (b) schematic
diagram of a pin-reinforced metal-composite joint, (c) resin-rich pockets and fibre movement due to
inserted pins.

The function of these metal pins is similar to that of the Z-Fiber® pinning technology
(also known as z-pins) used to reinforce composite laminates [5,23–25], in which the pins
bridge the delamination cracks by exerting traction forces at the crack wake. The bridging
forces shield the crack opening displacement and decrease the crack-tip strain energy
release rate, hence increasing the joint strength and damage tolerance capability; the latter
is a mandatory requirement for passenger aircraft structures.

Cohesive zone modelling (CZM) is currently the most powerful technique for static
fracture modelling of adhesive joints [26,27]. The cohesive laws take advantage of mixing
a stress criterion for crack initiation and a fracture criterion for crack propagation. The
main advantage of CZM is mesh independence, since damage growth is predicted by an
energy-based criterion averaged over an area, instead of stress-based concepts [28]. In
recent years, more complicated traction–separation curve shapes were proposed to increase
model accuracy over the traditional CZM curves, such as the Park–Paulino–Roesler law [29],
which includes a parameter to vary the softening curvature, thus enabling the simulation
of varying adhesive plasticity. A review of various cohesive zone models and associated
traction–separation curves for implementation in the cohesive elements can be found
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in [30], in which a new traction–separation law was also proposed that covers the linear
and exponential softening models provided in the software library of ABAQUS v6.9. As
the model contains a three-stage softening part, most of the experimental test results with
linear, polynomial or exponential behaviour can be modelled.

The key input into a cohesive zone model is the traction–separation law, expressed as
stress vs. crack-opening displacement. The successful use of cohesive zone modelling relies
on this traction–separation law to represent accurately the fracture of the material or inter-
face. The traction–separation law therefore must be calibrated experimentally. Standard
test methods for determining traction–separation curves use the double cantilever beam
(DCB) specimen for mode-I, end notch flexure (ENF) for mode-II, and mixed-mode bending
(MMB) for mixed modes I/II. These standard tests are used for testing the adhesive bond
strength without reinforcement pins [31]. For pin-reinforced joints, single-pin pullout tests
were undertaken to obtain the pin’s traction–separation laws in either mode-I or mode-II.
To improve the computational efficiency and overcome the difficulties caused by mesh
dependence, a moving mesh approach was proposed recently to model z-pin-reinforced
specimens. It can also reduce the computational cost and potentially be implemented in
realistic structures in pin reinforcement zones [32]. To incorporate small pins in structural
models, single-pin bridging behaviour is characterised by the pin’s traction–separation
curves. Nguyen et al. studied specimens containing a titanium pin in carbon-epoxy lami-
nate by means of finite element modelling [33]. The model delivered traction–separation
laws that are in good agreement with the experiments in mode-I and mode-II.

Experimental studies on composite-to-metal joints reinforced with micro-sized pins
(micro pins) have also been carried out recently. A novel joint of carbon-epoxy laminate
and aluminium alloy was reinforced with an array of steel micro pins of 0.51 mm diameter
inserted into pre-drilled holes to achieve an interference fit of 1%. Both the ultimate strength
and ductility were increased under lap shear and peel load conditions [34]. In another study
of carbon-fibre composite and aluminium joints, fatigue tests were performed in addition
to static load tests; both tests demonstrated the beneficial effect of penetrative thin pins [35].
Another joining method used metal pins that were additively manufactured with different
pin diameters and tip geometries, which were inserted into the locally infrared-heated
composite part [17]. The study focused on the effect of fibre orientation on joint efficiency.

This paper presents a finite element model to simulate the enhanced damage toler-
ance capability and failure process of pin-reinforced metal-composite joints. The model
presented in Section 3 employs the cohesive failure elements at the bondline interface. Two
different cohesive failure laws are used: one represents an unreinforced adhesive bond, and
the other models the pin-enhanced fracture toughness, which is measured experimentally to
find the bridging law parameters of a single-pin configuration that quantitatively describes
the pin’s energy absorption rate (enhanced toughness) during its failure process, from its
debonding from the laminate to its being pulled out from the laminate. Section 4 shows the
modelling results and parametric studies. Section 5 presents experimental investigation
of the effect of pin array arrangement on the joint strength. Content in Sections 2–4 is an
extension of a conference paper [36]. Work reported in Section 5 is new from a co-author’s
PhD thesis that has not been published.

2. Materials and Test Specimens

Test specimens representing the pin-reinforced lap joint were fabricated and tested [18].
Figure 2 shows the specimen geometry and dimensions. An unreinforced joint was also
tested as a baseline to evaluate the effect of the pins. The test method was informed
by ASTM D5868, with adaptation of a larger interface area to accommodate pin array
patterns. Carbon-fibre epoxy prepreg (Hexcel Corporation HexPly® T700/M21, Hexcel,
Duxford, UK) and steel alloy AISI 304 were used to fabricate the joints. The adhesive
bond was strengthened with pins arranged in a 5 × 7 array. Spike-headed pins of 0.8 mm
diameter and 4 mm height were welded onto the surface of the metallic part using the
Fronius International GmbH CMT pin process [37]. The metal part of the overlap was
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sand-blasted to improve the adhesion between the composite and metal part. The com-
posite part forms the middle section (M-section) and two side sections (S-section); it
has quasi-isotropic layups: [0/45/90/−45/0/45/−45/0/−45/90/45/0] for the “M” and
[0/45/90/−45/0/45/90/−45/0]S for the “S” sections. Nominal ply thickness was 0.25 mm.
An initial crack of 5 mm length was created by inserting a thin FEP (fluorinated ethylene
propylene) film at the runout of the composite part, as indicated in Figure 2. A Branson
ultrasonic horn with a ‘hammer’ attachment was used to insert the pins into the prepared
laminate, which did not cause damage to the fibres (Figure 3a). The assembled specimens
were then enclosed within a vacuum bag and cured in an autoclave, following the manu-
facturer’s specified cure schedule of 150 ◦C for 180 min, followed by 180 ◦C for 180 min,
under an autoclave pressure of 7 bar throughout (Figure 3b). The prepreg epoxy matrix
system was used as the joint adhesive, therefore forming a co-bonded joint simultaneously
during the laminate cure cycle (Figure 3c).
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specimen ready for mechanical testing.

All specimens were tested under static tension load using a 100 kN test machine under
the displacement-controlled loading condition at loading speed 1 mm/min. Debond crack
propagation was measured with an optical microscope.

3. Model Descriptions
3.1. Single-Pin Model

It is assumed that the crack-bridging force of the pins can be characterised by the load-
carrying capability of a collection of single pins, as shown in Figure 4. The crack-bridging
force exerted by a pin was measured by testing single-pin specimens under the mode-II
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loading condition [18]. The adhesive bond in the double-lap joint mainly suffers from
the shear-driving fracture, i.e., the mode-II loading condition, especially at the early and
middle stages of crack growth. The test rig is shown in Figure 5a. The specimen is a square
block laminate (20 × 20 × 4.6 mm3) with the same layup as the composite part of the joint
and contains a metal pin of the same material and same pin size as the pins used in the joint.
The single pin was welded by the CMT process onto a thick cylindrical metal substrate (of
12 mm diameter and 12 mm height). This specimen can be regarded as a single pin unit
cell. The test was carried out by constraining the crack opening displacement to avoid a
mixed-mode load condition. Due to the yielding and bending deformation of the metal pin,
the pin bridging force showed high nonlinearity in the rising part of the force–displacement
relation (Figure 5b).
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separation laws used for the two different pin models (one is based on the spring pin behaviour, the
other on the cohesive pin behaviour).

To implement this nonlinear traction–separation law in the FE model of the joint, a
governing equation in terms of pin stress versus crack displacement is deduced from the
measured pin force:

T(u) =
P(u)
πr2

0
(1)

where u is the shear displacement, T(u) the pin bridging stress and P(u) the bridging force.
Equation (1) is used to represent a fitting curve to test data, as plotted in Figure 5b (solid
line), based on the experimental test data shown by the symbols. The key parameters
in the bridging law are the initial stiffness in the linear-elastic part and the yield load.
Since the double-lap joint is mainly under the shear load (mode-II), the pin’s bridging law
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used in the models presented in this paper was based on the single-pin mode-II test [38].
Three experiments were performed in [38] and with a FE model in [39]. Considering
the variability in the measured bridging curves in the nonlinear response part (i.e., large
scatter for the ultimate load), only the linear-elastic part (the initial stiffness) and the yield
load were considered an accurate representation of the pin’s bridging law, i.e., as the key
parameters, which were used in the model in this paper.

To implement the single-pin bridging law in the joint (or structural) models, two
different models were used. The “spring pin” model represents the test-measured nonlinear
bridging curve; the “cohesive pin” is the bilinear curve (dashed line), which approximates
the nonlinear bridging law. Curves representing the two bridging laws are equivalent in
terms of the pin-enhanced fracture toughness (Gpin

I IC), which is the area under the stress–
displacement curve; both curves have the same energy absorption rate due to the pin
bridging and pullout effect.

3.2. Structural Model of Pin-Reinforced Joints

First of all, the unpinned joint was modelled by a plane-strain model. The model was
used to calibrate the cohesive element properties of the adhesive bond and the cohesive
failure model parameters according to the test result. Material properties of the adherends
are given in Table 1. Plastic deformation of the metal part was modelled by an iterative
procedure using the Ramberg–Osgood stress-strain relationship [40]:

ε =
σ

E
+ 0.002

(
σ

σY

)n
(2)

Table 1. Material properties and cohesive element parameters used in the FE model.

Property Value

Composite adherend (unidirectional carbon fibre/epoxy Hexcel T700/M21)

Young’s modulus in longitudinal direction (E11) 120 GPa
Young’s moduli in transverse directions (E22, E33) 11 GPa
Shear moduli (G12, G13, G23) 4.6 GPa
Poisson’s ratio (υ12, υ13, υ23) 0.35
Metal adherend (Stainless steel AISI-304)

Young’s modulus (E) 190 GPa
Poisson’s ratio (υ) 0.33
Yield strength (σY) 290 MPa
Ramberg–Osgood parameter used in Equation (1) (n) 3.8
Adhesive: cohesive element properties (same material as the prepreg resin M21)

Mode-I traction stiffness (KI) 2.5 × 1013 N/m3

Mode-II traction stiffness (KII) 2.5 × 1013 N/m3

Mode-I cohesive strength (TI0) 30 MPa
Mode-II cohesive strength (TII0) 70 MPa
Mode-I fracture toughness (GIC) 200 J/m2

Mode-II fracture toughness (GIIC) 550 J/m2

The model of the pin-reinforced joint has the same geometry as the unpinned joint, but
the plane-strain model for the unpinned joint cannot be used because of the pins. According
to the periodic placement of the pins, a unit-strip model is used to represent a “periodic
unit” of the joint that contains half of a pin row. As shown in Figure 6, the unit-strip model
consists of pins placed at a regular interval according to the pin pitch in the longitudinal
direction (e.g., px = 3.75 mm), and the width of the strip is half of the pin pitch in the joint
lateral direction (py = 4.16 mm). However, it should be noted that this model represents a
pinned joint of infinite width (i.e., similar to a plane-strain model). Model details can be
found in [36,39,41,42].



Materials 2023, 16, 3297 7 of 16

Materials 2023, 16, 3297 7 of 17 
 

 

Table 1. Material properties and cohesive element parameters used in the FE model. 

Property Value 
Composite adherend (unidirectional carbon fibre/epoxy Hexcel T700/M21) 
Young’s modulus in longitudinal direction (E11) 120 GPa 
Young’s moduli in transverse directions (E22, E33) 11 GPa 
Shear moduli (G12, G13, G23) 4.6 GPa 
Poisson’s ratio (υ12, υ13, υ23) 0.35 
Metal adherend (Stainless steel AISI-304) 
Young’s modulus (E) 190 GPa 
Poisson’s ratio (υ) 0.33 
Yield strength (σY) 290 MPa 
Ramberg–Osgood parameter used in Equation (1) (n) 3.8 
Adhesive: cohesive element properties (same material as the prepreg resin M21) 
Mode-I traction stiffness (KI) 2.5 × 1013 N/m3 
Mode-II traction stiffness (KII) 2.5 x 1013 N/m3 
Mode-I cohesive strength (TI0) 30 MPa 
Mode-II cohesive strength (TII0) 70 MPa 
Mode-I fracture toughness (GIC) 200 J/m2 
Mode-II fracture toughness (GIIC) 550 J/m2 

 
Figure 6. A unit-strip model of pin-reinforced composite-metal lap joint; inserts (a,b) show the two 
different single-pin models used in the joint model. 

The pin bridging law, Equation (1), was implemented in the global FE model of the 
joint specimen using two different single-pin models representing the nonlinear and bi-
linear bridging laws, as shown in Figure 6 inserts (a) and (b), respectively. The “spring 
pin” model employs nonlinear spring elements with a user-defined force–displacement 
relation representing the nonlinear curve in Figure 5b. As depicted in Figure 6a, these 
springs are connected to the two adherends through the multiple-point constraints. The 
“cohesive pin” model represented by a bilinear traction–separation law using cohesive 
interface elements, Figure 6b, is easier to implement in the commercial software package 
ABAQUS. The suitability of these two different single-pin models is discussed in Section 
4. The plain adhesive was modelled by cohesive elements with the cohesive properties in 
Table 1.  

The reaction or applied force on the joint (P) is calculated by the unit-strip model 
(Pstrip) by Equation (3): 

0.5 Strip
y

WP P
p

=  (3) 

Figure 6. A unit-strip model of pin-reinforced composite-metal lap joint; inserts (a,b) show the two
different single-pin models used in the joint model.

Eight-node linear continuum shell elements with reduced integration (designated as
CS8R in ABAQUS) were used for the composite and metal adherends, whereas the adhesive
bond interface was modelled by a layer of 8-node cohesive elements (COH8). The boundary
condition of the unit-strip model was set according to the periodic pin arrangement to
represent an infinitely wide joint. The nodal displacement at periodical boundaries is
constrained in the y-direction. The two planes that delimit the unit-strip are constrained to
remain in-plane, but also allowed to contract laterally due to the Poisson effect. Half of the
specimen was modelled, owing to the symmetry; the vertical displacement of the symmetry
plane is constrained. Numerical simulation was performed applying a monotonically
increasing displacement at the joint ends.

The pin bridging law, Equation (1), was implemented in the global FE model of
the joint specimen using two different single-pin models representing the nonlinear and
bilinear bridging laws, as shown in Figure 6 inserts (a) and (b), respectively. The “spring
pin” model employs nonlinear spring elements with a user-defined force–displacement
relation representing the nonlinear curve in Figure 5b. As depicted in Figure 6a, these
springs are connected to the two adherends through the multiple-point constraints. The
“cohesive pin” model represented by a bilinear traction–separation law using cohesive
interface elements, Figure 6b, is easier to implement in the commercial software package
ABAQUS. The suitability of these two different single-pin models is discussed in Section 4.
The plain adhesive was modelled by cohesive elements with the cohesive properties in
Table 1.

The reaction or applied force on the joint (P) is calculated by the unit-strip model
(Pstrip) by Equation (3):

P =
W

0.5py
PStrip (3)

where W is the joint width and py the pin pitch in the width direction. The scaling factor is
simply the ratio between the joint and the model width, i.e., the number of strips over the
joint width.

Due to the finite width of the structure, the number of pins bridging the crack over the
joint width (Npin) generally differs from the scaling factor calculated by Equation (3). To
account for this influence, the pin bridging traction used in the unit-strip model (Tstrip) is
corrected by Equation (4). It is worth noting that this factor can vary in the range between
(Npin ± 1) and Npin. For wider joints, such as aircraft fuselage or wing panels, this correcting
factor is close to unit.

Tstrip =
0.5py

W
NpinT (4)
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4. Modelling Results
4.1. Force vs. Applied Displacement

Figure 7 shows the reaction force vs. applied displacement relationship. First, the
agreement between the predicted and experimental is very good in terms of the peak
load points. Both the cohesive-pin model and spring-pin model predicted similar force–
displacement responses up to the peak load point, with 5% difference between the pre-
diction and test. The sudden load-drop immediately after the peak load corresponds
to debonding onset. Second, both models predicted the load recovery process after the
initial debond damage. From this point onwards, the load is completely carried by the
pins’ bridging traction forces. The spring-pin model has better agreement with the test
result, whereas the cohesive-pin model predicts a stiffer response post the peak load and a
smaller displacement at final failure. This is owing to the cohesive-pin model’s employing
a simplified bilinear traction–separation law. However, the comparison also shows that
the models are less stiff than the test specimens, as shown in the initial rising part of the
load vs. displacement curves before reaching the peak load point. This might be due to the
elastic modulus in models being lower than the testing materials, including the adhesive
and/or the material thickness variations.
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Figure 7. Predicted force vs. displacement relations and comparison with tests. Inserted images show
the pins at various stages of the test, demonstrating that the pins carried the load after the initial
debonding. (Metal adherend thickness 3 mm).

4.2. Interlaminar Shear Stresses

Figure 8 shows the interlaminar shear stresses at the bonding plane, with an applied
displacement of 0.65 mm (main crack length 14 mm). Higher stresses were predicted by the
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cohesive-pin model on the pin rows close to the crack tip, owing to the bilinear cohesive-pin
model being stiffer than the spring-pin model before the force reaches its peak (Figure 5b).
It is worth noting that the pin stresses in Figure 8 should not be interpreted as the pin
internal stress, but rather as an equivalent stress derived from dividing the bridging force
by the pin cross-sectional area. The figure reveals the crack growth retardation mechanism
of the pins’ traction forces in the crack wake (left side of the main crack front) picking up
higher stresses. It also shows the failure behaviour of the joint, i.e., as the applied load
increases, a secondary debond crack initiates at the other runout and propagates toward
the main crack front. Final failure occurs when the two crack fronts meet at the centre of
the joint. This behaviour is predicted by both the cohesive-pin and the spring-pin models.
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Figure 8. Shear stress distribution over the bond interface (contour map with stress values being
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model (unit: MPa, main delamination crack is on the left, with length of 14 mm).

4.3. Parametric Studies by FEA and Discussions

To better understand the pin bridging mechanisms and the way to improve joint
performance, a parametric study was conducted by FEA. Bridging parameters are cate-
gorised as either geometrical or physical. The geometrical parameters are relative to the
macroscopic dimensions, such as the adherend thickness, overlap length and pin pitch,
whereas the physical parameters are associated with the pin’s traction–separation law: the
initial stiffness (Kpin

I IC), cohesive strength (Tpin
I IC) and fracture toughness (Gpin

I IC).

4.3.1. Thickness of Metal Adherend

The FE analysis has shown that the onset of delamination occurred when the stress
exceeded the yield strength of the material, which was manifested by large plastic defor-
mation. The large deformation increased the local shear stress at the bond interface at the
runout location. Joint response against metal thickness is shown in Figure 9a. Increasing
the metal thickness makes the joint stiffer, and higher peak loads are achieved, whereas
large plastic deformation in the thinner adherend showed a lower peak force. Beyond the
peak load, the joint response is less sensitive to the metal thickness. This confirms that after
the bondline failure (i.e., beyond the peak load), the strains are carried by the pins, and the
joint response is totally characterised by the pin bridging force and the number of pins.
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Figure 9. (a) Effect of metal thickness on the joint peak force, (b) crack initiation from the laminate
runout with thin metal adherend, (c) crack initiation from the metal runout with thicker metal
adherend. Strains in load direction measured by digital image correlation (DIC) for joints with
5 × 7 array micro pins with a 6 mm thick metal adherend under an applied load of (d) 26.0 kN,
(e) 37.9 kN, and (f) 47.8 kN (metal adherend thickness 6 mm).

Metal adherend thickness also influences the location of debonding onset; joints with
thin adherend tend to debond from the laminate runout, as depicted in Figure 9b, whereas
a thicker adherend promotes cracking from the opposite runout (Figure 9c). This behaviour
is owing to the stiffness change; a higher shear stress peak corresponds to higher axial
strain, whereas increasing the thickness reduces the peak stress at the laminate runout;
hence, the debond crack starts from the opposite side. The analysis showed that a metal
thickness of 6 mm achieved the maximum strength. Therefore, this thickness was used for
all following analyses. Details can be found in [39].

Digital image correlation (DIC) was used to examine the side-on edge of a 5 × 7 pin
array during mechanical testing. A Dantec Dynamics Q-400 DIC system was used to
capture the series of images that were subsequently processed using ISTRA 4D software
(Istra 4.2.3.82 Cranfield University). It can be seen from the processed images of Figure 9d–f
that the debond initiates and propagates from the metal runout end of the joint, confirming
the FE prediction for debond behaviour when a 6 mm adherent is used. Details can be
found in [18].

4.3.2. Pin Row Number

The experiments and FE analysis have demonstrated that at the bondline failure, no
pin was completely pulled out (Figure 7), and stresses in the pins were still within the
elastic limit. The most stressed pins were the ones near the joint runouts, where the shear
deformation was the largest. The purpose of this modelling work was to understand the
relative importance of the pin row numbers and locations in terms of their effectiveness
in bridging debond cracks. Figure 10 shows the influence of the pin row numbers and
locations on the joint strength (peak load at which complete debond occurs) and load
recovery after the peak load. The joint strength increases with the number of pin rows;
however, the enhancement on the peak load is not pronounced, the increment per pin row
is not proportional, and it decreases with the pin row number. The smaller benefit of more
pin rows may be due to the larger distance from the runout: the further the pin is from
the joint runout, the less bridging action it exerts. Load recovery after the bond failure is
totally due to the pins’ load-carrying capability; for this reason, the distance from runout
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is irrelevant: the load recovery is proportional to the number of pins only. Details can be
found in [39].
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Figure 10. Effect of pin row numbers on the performance of the joints (metal adherend thickness
3 mm).

4.3.3. Parameters of Single-Pin Traction–Separation Laws

As described before, the pin traction–separation laws can be characterised by three
parameters: the initial stiffness (Kpin

I IC), the cohesive strength (Tpin
I IC) and fracture toughness

(Gpin
I IC). A sensitivity study of these parameters was performed by FEA to understand how

the variation in a single-pin parameter affects the response of a joint.
Variation in the initial stiffness is found to have negligible effect on the joint perfor-

mance; only marginal difference is shown in the first load drop (see Figure 11a). The
pin’s cohesive strength has strong influence on the joint response after the first load drop,
which corresponds to the debonding damage (Figure 11b). Pin toughness does not affect
the load vs. displacement relation of joints before the first load drop; after that point, a
higher pin toughness results in higher displacement of the joint at failure. However, the
joint ultimate strength (the failure load) is insensitive to the variations of mode-II fracture
toughness of a single pin (Figure 11c). Details can be found in [39]. It should be noted that
the delamination behaviour in a double-lap joint is mode-II dominating. However, when a
delamination crack is longer, mode-I will play a role owing to the beam deflection. This is a
limitation of this study.
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Figure 11. Joint performance against variations of single-pin cohesive law parameters: (a) initial
stiffness, (b) cohesive strength, (c) fracture toughness.

4.4. Summary of Important Points Based on the Modelling Work

One of the advantages of this modelling technique is that the single-pin and structural
joint performance are modelled separately, meaning that the model can be readily employed
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for structures of different sizes and parameters (e.g., pin diameter, areal density, pin row
number, and materials) by implementing a single-pin traction–separation law in a global FE
model of the structure. This modelling technique has been previously used for predicting
delamination retardation of z-fibre-reinforced composites and achieved good prediction
results [6,18,36,43].

The model has shown that avoiding yield deformation of the metal adherend will
increase the stiffness of the joint system, as depicted in Figure 12. This implies that at a
fixed bridging force exerted by a pin (i.e., under fixed shear displacement), the shear strain
at the crack tip is smaller if the joint system is stiffer. Therefore, increasing the axial stiffness
of adherends, or yield strength of the metal part, makes the pins work better. The combined
effect of the adhesive bond and pins may be seen as an analogy of two springs working
in parallel (Figure 12 insert): one representing the pins, and the other the adhesive bond.
If one is much stiffer than the other, then the two act at different stages (i.e., the one with
lower stiffness fails much earlier), and there is no synergy between them, hence less benefit
to the joint strength enhancement. On the other hand, if their stiffness values are similar,
their synergistic action will increase the joint strength.
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Figure 12. Schematic illustration of the effect of adherend axial stiffness on the effectiveness of pin
traction in shielding the crack tip (left); the red arrows indicate the shear stresses. Insert figure
(right) shows the two stress transfer elements: the pins and adhesive bond act like two springs
working in parallel, transferring stress between the two adherends.

5. Experimental Observations on the Effect of Pin Array Arrangement

It should be noted that the experimental results discussed in this section were based
on a modified joint interface length of 30 mm, controlled by the usage of PTFE release tape
at both ends of the joint overlap length to reduce the high local stress compared to the
samples shown in Figure 2. The diagram with the details of the joint interface, as well as
test setup, are shown in Figure 13.
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The parametric study here was used to design a series of structural joint configurations
that would test the influence of micro-pin quantity and arrangement pattern on the joining
performance. The metal thickness was chosen to be in line with the parametric study’s
identified optimum of 6 mm. The geometry of individual micro pins was the same as
previously used (in Sections 2–4), as was the hybrid-joint manufacturing method. The
materials used were also the same specification. The differences for this series of tests were
that the prepreg used was from a fresh batch that had less accumulated life, and the joints
were constructed to have crack-initiating film placed at both the metal and the composite
runout ends of the joint.

Micro-pin arrays included in this test series were as follows: a reference sample with
no pins (Figure 14a); four rows of five pins with regular spacing (total 40 pins; pins on
both sides of the metal adherend), Figure 14b; seven rows of five pins with regular spacing
(total 70 pins), Figure 14c; and a 6-5-6 quincunx pin array located at the bondline edges
(total 68 pins), Figure 14d. The same testing methodology was employed as described
in Section 2; the applied displacement was measured using a laser extensometer with
reflective targets positioned to limit the measurement gauge to that of the joint overlap
length. Details can be found in [18].
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(b) 5 × 4 pin array, (c) 5 × 7 pin array, (d) 6-5-6 quincunx pin array, (e) the metal parts prior to joining
with laminate in experiment.

Results of the mechanical testing, presented in Figure 15, showed that when relatively
fewer pins are used, there is negligible effect on the joint strength (comparing the “no pin”
to the “40 pins”). Joint strength is increased by use of a greater number of pins, and when
the location of pins is concentrated at the bondline ends, the strength is further increased.

The main difference in the load vs. displacement response between this test series with
6 mm thick metal adherend and the test with 3 mm thick metal adherend is the sudden
load drop seen in the latter case (Figure 7) that corresponds to bondline failure; from that
point, the pins take load to bridge the crack. The continuing load increase in Figure 15 can
be explained as follows. First, the parametric study of the single-pin bridging law shows
higher pin strength resulting in higher load capacity and the absence of sudden load drop
that is seen at a lower pin strength (Figure 11b). The same effect can be said for the joints in
Figure 15, where a large number of pins means increased pin strength. Second, the thicker
metal adherend allows a more uniform shear stress distribution on the adhesive bond, and
owing to the higher stiffness of the metal part (doubling the thickness), the joint system
engages more pins to delay the onset of debonding as well as bridge the crack propagation
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after bondline failure. In summary, the difference between pins bridging crack propagation
(thin metal adherend) and pins retarding crack onset (thick metal adherend) is owing to
the synergy of the adhesive strength, metal substrate stiffness and engagement of the pins.

The hybrid joint should be designed with a higher number of pins at the joint runout,
where the shear stress is the highest and hence is the most critical for debonding damage.
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6. Conclusions

A finite element model has been developed and validated by an experimental test
for a composite-metal lap joint with through-thickness reinforcement by micro pins. The
developed modelling approach can be used to evaluate the design parameters of pin-
reinforced composite-metal joints, specifically the substrate size and pin arrays. Additional
experiments are also presented on the effect of pin array arrangement. Based on these
studies, the following conclusions can be drawn:

1. The bridging force exerted by micro pins can be modelled by the nonlinear spring ele-
ments and the cohesive interface elements. Bridging laws governing these pin models
can be obtained either by testing single-pin specimens or using the unit-cell models.

2. Both pin models can be implemented in a commercial finite element software package
for modelling structural failure behaviour of lap joints.

3. The spring-pin model can better simulate the joint response to the complete fail-
ure of the joint, whereas the cohesive-pin model has less good agreement with the
experimental curve, owing to the over-simplified traction–separation law for the
single-pin model.

4. Increase in the pin numbers along the path of the debonding crack will increase the
structural performance of the joint. The hybrid joint should be designed with a higher
number of pins at the joint runout, where the shear stress is the highest, hence being
the most critical for debonding damage.

5. A synergistic effect of the metal substrate stiffness and pin array variation on the
joint strength and damage tolerance properties has been demonstrated by testing
two different metal adherend thicknesses. This should be further investigated by
modelling and parametric studies to optimise the design of hybrid joints.
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