
Prepared for submission to JHEP

The Loop Momentum Amplituhedron

Livia Ferro and Tomasz  Lukowski,

Department of Physics, Astronomy and Mathematics,

University of Hertfordshire,

Hatfield, Hertfordshire, AL10 9AB, United Kingdom

E-mail: l.ferro@herts.ac.uk, t.lukowski@herts.ac.uk

Abstract: In this paper we focus on scattering amplitudes in maximally supersymmetric

Yang-Mills theory and define a long sought-after geometry, the loop momentum amplituhe-

dron, which we conjecture to encode tree and (the integrands of) loop amplitudes in spinor
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tended positive space, which enhances the Grassmannian space featuring at tree level, and a

map which associates to each of its points tree-level kinematic variables and loop momenta.

The image of this map is the loop momentum amplituhedron. Importantly, our formulation

provides a global definition of the loop momenta. We conjecture that for all multiplicities and

helicity sectors, there exists a canonical logarithmic differential form defined on this space,

and provide its explicit form in a few examples.
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1 Introduction

In recent years we have seen tremendous advances in new geometric formulations of observ-

ables in Quantum Field Theories, known nowadays under the name of positive geometries

[1]. These are defined recursively as regions with boundaries of all codimensions, where each

boundary is again a positive geometry. Importantly, they are equipped with a unique differ-

ential form with logarithmic singularities along all boundaries – the canonical form – which,

for physically relevant positive geometries, is a physical quantity. A striking feature of these

geometries is that from their definition, by imposing only positivity constraints on some ex-

ternal data, they encode physical properties, such as locality and unitarity, in their boundary

structure.

In this paper we focus on positive geometries for scattering amplitudes in N � 4 super

Yang-Mills (sYM) theory, i.e. amplituhedra – see [2, 3] for extensive reviews. Two geometries

have been defined in this theory: the amplituhedron [4] and the momentum amplituhedron

[5]. The amplituhedron, which has been the prime example of a positive geometry, is defined

in momentum twistor space and is relevant for tree- and loop-level expectation values of

Wilson loops, i.e. scattering amplitudes with the maximally-helicity-violating (MHV) part

factored out. Importantly, since ordering is crucial in the definition of momentum twistors, the

amplituhedron encodes only the planar sector of N � 4 sYM. The momentum amplituhedron

is instead formulated in the non-chiral spinor helicity space and therefore provides a natural
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language to extend the positive geometry construction to the non-planar sector. However,

until now, it was defined only for amplitudes at tree level. The natural question arises whether

there exists a positive geometry formulated in the non-chiral spinor helicity space which also

produces the amplitude integrands at loop level. In this paper we provide an affirmative

answer to this question and formulate the long sought-after geometry for loop amplitudes in

spinor helicity space – the loop momentum amplituhedron.

Finding the loop momentum amplituhedron has been a long-standing and important

goal since the inception of the tree-level geometry. One of the main obstacles that had

been hindering this construction was to find a proper, global definition of the off-shell loop

momentum in the spinor helicity space. Indeed, while in the dual space, where momentum

twistors are defined, the loop momentum is uniquely determined up to a global shift, in the

Feynman approach in momentum space we can redefine it independently for each Feynman

diagram. The final answer, after performing Feynman integrals, does not depend on these

redefinitions, however, the integrand itself changes significantly. In particular, this leads to

introducing unphysical singularities that should not arise in the geometric approach. In this

paper we resolve this problem by providing a global definition of the loop momenta that serve

as parameters in the map defining the loop momentum amplituhedron. To construct this map,

we emphasize an important fact about the singularity structures of scattering amplitudes and

expectation values of Wilson loops. While at tree level their singularities differ, at loop

level there is a one-to-one correspondence between the singularities of integrands for these

quantities. Then, since amplituhedra encode physical singularities in the structure of their

boundaries, this statement is valid for the boundaries of the geometries: while at tree level the

amplituhedron and momentum amplituhedron boundaries are different, at loop level they can

be mapped to each other in a simple way. Led by this observation, we draw inspiration from

the loop amplituhedron and find its counterpart in spinor helicity variables. For this purpose,

we use the relation between momentum twistors and spinor helicity variables, which first

appeared in the Grassmannian formulations of scattering amplitudes in these two spaces [6].

This allows us to define the loop momentum amplituhedron. By enhancing the Grassmannian

space G�pk, nq present at tree level with L two-planes and requiring additional positivity

constraints, we find that the L-loop momentum amplituhedron is the image of a map which

associates to every point of this extended positive space the tree-level variables pλ, λ̃q and the

loop momenta ℓp for p � 1, . . . , L.

This paper is organized as follows. In section 2 we review the basic facts about ampli-

tuhedra. In particular, we start by recalling, and afterwards refining, the definition of the

momentum amplituhedron at tree level. After a review of the amplituhedron, we present the

motivation for our definition of momentum amplituhedron at loop level. Section 3 is the main

part of the paper and contains the definition of the loop momentum amplituhedron. We then

present a few examples in section 4, before closing with conclusions and outlook. Appendix

A collects the definitions of all variables used throughout the paper.
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2 Amplituhedra

In this section we provide a brief review of the definitions of the momentum amplituhedron

Mn,k at tree level and the amplituhedron An,k1,L at tree and loop level. This will set the

stage for our new definition of the momentum amplituhedron at loop level that we introduce

in the subsequent section.

2.1 The Momentum Amplituhedron Revisited

Let us start by recalling the original definition of the (tree) momentum amplituhedron intro-

duced in [5]. First, we consider the Grassmannian Gpk, nq, which is the space of all k � n

matrices modulo GLpkq row transformations, and the positive Grassmannian G�pk, nq, which

is the subset of Gpk, nq consisting of all positive matrices, i.e. matrices with all maximal or-

dered minors positive. We also introduce a pair of fixed matrices pΛ, Λ̃q and demands that

Λ̃ PM�pk� 2, nq is a positive matrix and Λ PM�,τ pn� k� 2, nq is a twisted positive matrix,

i.e. a matrix whose orthogonal complement is a positive matrix. Then, the momentum am-

plituhedron Mn,k � ΦΛ,Λ̃pG�pk, nqq, for 2 ¤ k ¤ n�2, is defined as the image of the positive

Grassmannian G�pk, nq through a linear map ΦΛ,Λ̃ specified by the two fixed matrices Λ and

Λ̃:

ΦΛ,Λ̃ : G�pk, nq Ñ Gpk, k � 2q �Gpn� k, n� k � 2q . (2.1)

Explicitly, we have for pY, Ỹ q P Gpk, k � 2q � Gpn � k, n � k � 2q and C � pc
9αiq P G�pk, nq

that

Y A
α �

¸
i

pcKqαiΛ
A
i , Ỹ

9A
9α �

¸
i

c
9αiΛ̃

9A
i , (2.2)

where pcKqαi for α � 1, . . . , k and i � 1, . . . , n are the elements of the orthogonal complement

CK of the matrix C.

The linear map ΦΛ,Λ̃ can be further composed with a projection

PΛ,Λ̃ : Gpk, k � 2q �Gpn� k, n� k � 2q Ñ Gp2, nq �Gp2, nq , (2.3)

to extract the familiar spinor helicity variables

λa
i �

¸
A

pY KqaA ΛA
i , λ̃ 9a

i �
¸

9A

pỸ Kq 9a
9A
Λ̃

9A
i . (2.4)

The image Mn,k :� pPΛ,Λ̃ � ΦΛ,Λ̃qpG�pk, nqq of the positive Grassmannian through the

composition of these maps is then a region defined directly in spinor helicity space. As

shown in [5], definition (2.2) implies that for any point pλ, λ̃q P Mn,k the spinor brackets

xii � 1y :� λ1
iλ

2
j � λ2

iλ
1
j ¡ 0 and rii � 1s :� λ̃1

i λ̃
2
j � λ̃2

i λ̃
1
j ¡ 0 are positive. Moreover, for

particular choices of matrices Λ and Λ̃ also all planar Mandelstam variables si,i�1,...,i�j ¡ 0

are positive, ensuring that the boundary structure of Mn,k reflects the correct singularity

structure of the tree-level amplitudes in planar N � 4 sYM. Additionally, the following sign
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flip patterns are satisfied by the spinor brackets:

tx12y, x13y, . . . , x1nyu has k � 2 sign flips , (2.5)

tr12s, r13s, . . . , r1nsu has k sign flips . (2.6)

Before moving on to the definition of the amplituhedron, we want to make an important

comment regarding the properties of Mn,k that has not been previously spelled out in the

literature but will be crucial in the following. Notice that the definitions (2.2) and (2.4)

trivially imply that for any point pλ, λ̃q PMn,k we have¸
i

λa
i pc

Kqαi � 0 ,
¸
i

λ̃ 9a
i c 9αi � 0 , (2.7)

and therefore1 λ̃ � C � 0 and λ � C. Let us make the latter statement more precise. To this

extent, we will use the observation made in [5] that allows to rewrite the λ part of (2.2) and

(2.4) in an alternative way. Let us modify the previous definition and define a map ϕΛK,Λ̃

labelled by two positive matrices ΛK PM�pk � 2, nq and Λ̃ PM�pk � 2, nq:

ϕΛK,Λ̃ : G�pk, nq Ñ Gp2, nq �Gp2, nq , (2.8)

that will generalize the compositions of functions in our original definition. To every element

in the positive Grassmannian G�pk, nq it associates a pair of matrices pλ, λ̃q:

λa
i �

¸
α

pXKqaαcαi , λ̃ 9a
i �

¸
9A

pỸ Kq 9a
9A
Λ̃

9A
i , (2.9)

where X ā
α �

°
i

�
ΛK
�ā
i
cαi P Gpk � 2, kq. Then Mn,k � ϕΛK,Λ̃pG�pk, nqq. The equivalence

between this definition and the one in (2.4) descends from the fact that for all i, j we have

xijy � xY ijy � pXijqC , where the last equality was proven in [5] . Importantly, the variables

X that we introduced allow one to construct a GLpkq matrix

G �

�
XK

2,k

0k�2,2 1k�2,k�2

�
, (2.10)

such that

GC �

�
λ

c

�
, (2.11)

where c P Mpk � 2, nq. Therefore, for any element C P G�pk, nq and for the corresponding

image point pλpCq, λ̃pCqq P Mn,k, it is always possible to find a representative for C such

that the first two rows of the matrix C are the λs.

1These relations between λ, λ̃ and C were the starting point of the development of the Grassmannian
approach to scattering amplitudes in [7]. Here, instead they rather result from the definition of the momentum
amplituhedron.
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The final comment in this section is related to the fact that points in the positive Grass-

mannian space G�pk, nq featuring in the definition of the momentum amplituhedron have a

well-known relation to the points in the positive Grassmannian space G�pk
1, nq � G�pk�2, nq

in the definition of the amplituhedron [6]. Provided λ P Gp2, nq, and using relation (2.11),

one can define the matrix

č � Qc , (2.12)

where

Qij �
xi� 1 iyδi�1,j � xi i� 1yδi�1,j � xi� 1 i� 1yδi,j

xi� 1 iyxi i� 1y
. (2.13)

Importantly, we checked in various examples that if λ is inside the momentum amplituhedron

Mn,k, then č P G�pk� 2, nq is a positive matrix, and we conjecture this holds for all n and k.

2.2 The Amplituhedron

Similar to the momentum amplituhedron, the L-loop amplituhedron An,k1,L can be defined [8]

as the image of a particular space, generalizing the positive Grassmannian, through a linear

map

ΦZ : G�pk
1, nq�Gp2, nqL Ñ Gpk1, k1 � 4q �Gp2, k1 � 4qL , (2.14)

where k1 � k � 2 and Z P M�pk
1 � 4, nq is a positive matrix. The map ΦZ assigns to every

point C � pcαiq P G�pk
1, nq and a collection of points Dl � pdl,γiq P Gp2, nq the values

pYZq
I
α �

ņ

i�1

cαi Z
I
i , LI

l,γ �
ņ

i�1

dl,γi Z
I
i , (2.15)

with l � 1, . . . , L enumerating the loops and γ � A,B. The domain G�pk
1, nq �Gp2, nqL of

ΦZ is defined as all points pC,D1, . . . , DLq P Gpk1, nq � Gp2, nq � . . . � Gp2, nq such that all

matrices

�
C
	
,

�
Dl1

C

�
, . . .

������
Dl1

...

DlL

C

�����, (2.16)

are positive for li � 1, . . . , L. Then the loop amplituhedron is defined as

An,k1,L � ΦZpG�pk
1, nq�Gp2, nqLq . (2.17)

As for the momentum amplituhedron, we can compose ΦZ with a projection

PZ : Gpk1, k1 � 4q �Gp2, k1 � 4qL Ñ Gp4, nq �Gp2, 4qL , (2.18)
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and define the bosonic part of the momentum twistors zai as

zai �
¸
I

pY K
Z q

a
IZ

I
i . (2.19)

The momentum twistor line parametrizing the loop momenta is specified by a pair of points

pABql where

zal,γ �
¸
I

pY K
Z q

a
ILI

l,γ . (2.20)

This allows us to define the loop amplituhedron directly in the momentum twistor space

An,k1,L � pPZ � ΦZqpG�pk
1, nq�Gp2, nqLq . (2.21)

For completeness, we recall an important property of An,k1,L that follows from the defini-

tions of the maps ΦZ and PZ : given a point pzi, pABq1, . . . , pABqLq P An,k1,L, the brackets of

momentum twistors xi i � 1 j j � 1y ¡ 0 are positive, where xijkly � ϵIJKLz
I
i z

J
j z

K
k zLl . Simi-

larly, for brackets involving loop variables we have xpABql i i�1y ¡ 0 and xpABqapABqby ¡ 0.

Moreover, points in the loop amplituhedron are known to have the following sign flip patterns

txpABqa12y, xpABqa13y, . . . , xpABqa1nyu has pk1 � 2q sign flips for each loop ,

tx1234y, x1235y, . . . , x123nyu has k1 sign flips . (2.22)

2.3 Boundaries of Amplituhedra

The amplituhedra we reviewed in the previous sections are conjectured2 to define positive

geometries3 [1] and therefore can be equipped with canonical differential forms that encode

physical quantities. For the tree momentum amplituhedron, the canonical form encodes

the tree-level scattering amplitudes in planar N � 4 sYM, written in the non-chiral spinor

helicity superspace. On the other hand, the loop amplituhedron canonical form provides

the loop integrand in the same theory but written in the momentum twistor space instead.

Importantly, in the latter case the tree-level MHV factor is removed. This last statement

has significant implications for the singularity structure of the canonical form of the ampli-

tuhedron, and therefore for the boundary structure of the amplituhedron itself. In partic-

ular, at tree level, the codimension one boundaries of the momentum amplituhedron Mn,k

are given by the collinear limits, xi i � 1y � 0 , ri i � 1s � 0, and the factorization limits

si,i�1...,i�p � 0 ,with p � 2, . . . , n � 4. On the other hand, for the amplituhedron the facets

are given by the points satisfying xi i � 1 j j � 1y � 0. When j � i � 2, the boundary

xi i� 1 i� 2 i� 3y � 0 translates into the boundary rii� 1s � 0 of the tree momentum ampli-

tuhedron. When j ¡ i� 2, the boundary corresponds to a factorization channel and one can

map it to the boundary of the momentum amplituhedron where one of the planar Mandelstam

2There is no general proof of this fact, but in all cases where the explicit answer has been found, one can
check that it is indeed true.

3To be more precise they are weighted positive geometries as advocated in [9].
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variables vanishes. However, since the MHV amplitude is factored out for the amplituhedron,

there is no boundary of the amplituhedron that would correspond to xi i � 1y � 0. There-

fore, the boundary structure of the tree momentum amplituhedron is very different from the

boundary structure of the tree amplituhedron. This has the important implication that there

is no simple map relating the points in the two amplituhedra. However, there exists a di-

rect translation of all singularities of loop-level integrands from momentum twistors to spinor

helicity space:

xABi i� 1y � 0 ÐÑ pℓ�
¸
j

pjq
2 � 0 , (2.23)

xpABq1pABq2y � 0 ÐÑ pℓ1 � ℓ2q
2 � 0 , (2.24)

where ℓl is a particular choice of off-shell loop momenta that we will discuss in detail in the

following. Equipped with this observation, we provide in the next section the definition of

the loop momentum amplituhedron.

3 The Loop Momentum Amplituhedron

We want to extend the definition of momentum amplituhedron from the previous section to

include loops. As we argued before, since there is a one-to-one correspondence between singu-

larities of loop-level integrands written in terms of momentum twistors and in the momentum

space (after we translate between kinematic variables), we will adapt the construction of the

loop amplituhedron from section 2.2 into spinor helicity variables. To start, let us recall that

in the momentum twistor space each loop momentum is encoded as a line pABql that can be

defined by specifying two momentum twistors zl,A and zl,B, up to a GLp2q transformation. To

simplify our notation, we will drop the loop index l in the remaining part of this section, and

discuss a single loop variable. In the amplituhedron construction, after we use the projections

(2.19) and (2.20), the line is parametrised in terms of the external momentum twistors as

zaγ �
¸
i

dγiz
a
i , γ � A,B . (3.1)

Moreover, momentum twistors can be written in terms of the spinor helicity variables λ and

dual space coordinates xi as

zi �

�
λi

µ̃i

�
�

�
λi

xiλi

�
, i � 1, . . . , n , (3.2)

and similarly for the loop momentum twistors in terms of a single dual space coordinate x:

zγ �

�
λγ

µ̃γ

�
�

�
λγ

xλγ

�
, γ � A,B . (3.3)
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Combining the expansion (3.1) with (3.3), we immediately get an expansion of λA and

λB in terms of the external particles:

λα
γ �

¸
i

dγiλ
α
i , γ � A,B . (3.4)

Since D � pdγiq P Gp2, nq, then there is a natural GLp2q transformation between λA and λB.

One of the most important insights from this simple calculation is that, if we want to

translate the momentum twistors loop variables to spinor helicity space, we should look for

a parametrisation of the loop momenta that renders manifest this GLp2q transformation. In

the following, we will use the following parametrisation of off-shell momentum, written in

terms of spinor helicity variables

ℓ � λAλ̃
A � λBλ̃

B , (3.5)

where, in order for ℓ to be GLp2q-invariant, λ̃A, λ̃B need to transform as

�
λ1A λ1B

	
�
�
λA λB

	
�G ,

�
λ̃1A

λ̃1B

�
� G�1 �

�
λ̃A

λ̃B

�
, (3.6)

for G P GLp2q.

In the next step, we want to derive the expansion of λ̃A and λ̃B in terms of external

particles by considering the remaining part of the condition (3.1). First, let us introduce

λ̃γ �
¸

δ�A,B

ϵγδλ̃
δ , γ � A,B . (3.7)

Taking the last two entries in the expansion (3.1), we have that

µ̃γ �
¸
i

dγiµ̃i (3.8)

with µ̃i � xiλi and µ̃γ � xγλγ . A simple calculation results in

xλA �
¸
i

dAixiλi �
¸
i

dAi

�
x1 �

i�1̧

j�1

pj

�
λi � x1λA �

¸
j i

dAixjiyλ̃j . (3.9)

As the last step, we need to identify the loop momentum ℓ with the dual coordinate x.

There are various choices that we could make which would result in different loop momentum

amplituhedron geometries. Importantly, the canonical forms on these geometries can be

related to each other by the change of variables between these choices. Motivated by the

explicit form of the relation (3.9), we settled for the following relation

ℓ � x� x1 � λAλ̃
A � λBλ̃

B � λAλ̃B � λBλ̃A . (3.10)
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This allows us to find the explicit expansion of λ̃γ in terms of the external particles

λ̃γ �
¸
j i

dγi
xijy

xABy
λ̃j . (3.11)

Using (3.10), we find the loop momentum written in terms of external spinor helicity variables,

as well as of elements of the matrix D:

ℓ �

�¸
i

dAiλi

��¸
j i

dBi
xijy

xABy
λ̃j

�
�

�¸
i

dBiλi

��¸
j i

dAi
xijy

xABy
λ̃j

�
. (3.12)

Importantly, this formula provides a global definition of loop momentum.

We are now ready to define the loop momentum amplituhedron. To this effect, we extend

the map from section 2.1 to include also loop momenta. We define

ϕ̃pΛK,Λ̃q : G�pk, nq � Gp2, nqL Ñ Gp2, nq � Gp2, nq � GLp2qL

C Dl ÞÑ λ λ̃ ℓl

where ΛK P M�pk � 2, nq, Λ̃ P M�pk � 2, nq and we will define the product � shortly. The

map ϕ̃pΛK,Λ̃q associates to every point C P G�pk, nq and a collection of points Dl P Gp2, nq,

the tree-level variables pλ, λ̃q given by (2.4) and the loop momenta ℓl given by (3.10). To

complete our definition, we need to explain what we mean by the � product present in the

domain of ϕ̃pΛK,Λ̃q. We have already introduced in (2.13) the matrix Qpλq that relates the

Grassmannian points in the definition of the tree amplituhedron to the Grassmannian points

in the definition of the tree momentum amplituhedron. In particular, we conjectured that

for pλ, λ̃q P Mn,k and C P G�pk, nq, if we can define č � Q � c then č P G�pk � 2, nq. The

product � is defined by additional positivity conditions relating the matrix č with the loop-

level matrices Dl. We define G�pk, nq � Gp2, nqL as the set of all points C P G�pk, nq and

Dl P Gp2, nq for l � 1, . . . L such that all matrices

�
č
	
,

�
Dl1

č

�
, . . .

������
Dl1

...

DlL

č

�����, (3.13)

are positive for all li � 1, . . . , L.

The loop momentum amplituhedron Mn,k,L is then defined as the image

Mn,k,L � ϕ̃pΛK,Λ̃q
�
G�pk, nq�Gp2, nqL

�
. (3.14)

This is the main result of our paper. We emphasize that although (3.4) and (3.11) provide

a direct translation of the momentum twistor variables for loop momenta pzAzBq to the
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spinor helicity space, the loop momentum amplituhedron Mn,k,L is not isomorphic to the

loop amplituhedron An,k1,L. The reason is that the tree-level parts of these amplituhedra

differ (most importantly they have different dimensions) and there is no direct translation

relating the geometries at tree level. This has important implications since, for example, the

boundary stratifications of the two geometries will be significantly different.

We conclude this section by having a preliminary look at the boundary structure of the

loop momentum amplituhedron. First, it is clear from our construction that Mn,k,L has

boundaries when the tree-level invariants vanish, reflecting the facet structure of the tree

momentum amplituhedron. In particular, it has boundaries that correspond to factorisations

when the planar Mandelstam variables vanish si,i�1,...,i�p � 0. It also has boundaries coming

from collinear limits of two types4 when xii� 1y � 0 or rii� 1s � 0. These are supplemented

by the codimension-one boundaries of two types coming from loop level:

� pℓr �
°

j pjq
2 � 0 corresponding to a sufficient number of minors of the matrix

�
Dr

č

�
vanishing for some r � 1, . . . , L;

� pℓr1 � ℓr2q
2 � 0 corresponding to a sufficient number of minors of the matrix

���Dr1

Dr2

č

��
vanishing for some r1 � r2.

Finding the complete stratification of boundaries of Mn,k,L remains an open and interesting

problem that we plan to address in the future.

4 Examples

In this section we present a few examples of the loop momentum amplituhedron and the

related amplitudes.

Let us start with the simplest case, the MHV amplitudes. Since in this case we have

k1 � k � 2 � 0, then the matrix č in (3.13) is an empty matrix and there is no positivity

condition mixing C and the loop matrices Dl. This means that each matrix Dl P G�p2, nq is

positive on its own, and there are additional mutual positivity conditions between Ds as in

(3.13). Therefore, the geometry in this case is simply the product of the tree-level geometry

and the loop geometry. This immediately implies that the canonical form Ωn,2,L for the loop

momentum amplituhedron Mn,2,L is the wedge product of the canonical form for the tree

momentum amplituhedron Mn,2,0 times the 4L-form coming from the loop geometry:

Ωn,2,L � Ωn,2,0 ^ Ω̃n,2,L , (4.1)

4It is possible that these boundaries are not facets of the loop momentum amplituhedron but instead they
are lower dimensional, as for example in the 4-point case.
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where Ω̃n,2,L is a 4L-form coming purely from the loop geometry. Since we know from [5] the

exact form of the tree-level canonical form, we just need to find the canonical form of the

loop geometry. The latter can be found as a direct translation of the canonical differential

form of An,0,L. Despite this, in the following paragraphs we summarise some basic direct

checks that we performed on the loop momentum amplituhedron geometry to ensure that the

rational map (3.12) does not introduce any unwanted behaviour. We also provide explicit

expressions of the canonical differential forms directly in the spinor helicity space for a few

simple examples.

Because of the factorisation of the tree and loop geometries we described above, it is

possible for a direct translation of the loop canonical forms from the loop amplituhedron

[4]. In particular, the one-loop amplituhedron An,0,1 is the union of images of the so-called

kermits [4, 10] with associated matrices:

Ki,j :

�
1 0 . . . �i � . . . 0 0 . . .

1 0 . . . 0 0 . . . �j � . . .

�
, (4.2)

through the map PZ �ΦZ . Then, we conjecture that also the one-loop momentum amplituhe-

dron Mn,2,1 is the union of the images of the kermits

Mn,2,1 �
¤
i j

ϕ̃pΛK,Λ̃qpC,Ki,jq . (4.3)

The canonical form ωn,0,1 of An,0,1 is known and reads

ωn,0,1 �
¸

1 i j n

ωKi,j , (4.4)

where

ωKi,j � dlog
xAB1iy

xAB1i� 1y
^ dlog

xABii� 1y

xAB1i� 1y
^ dlog

xAB1jy

xAB1j � 1y
^ dlog

xABjj � 1y

xAB1j � 1y
. (4.5)

We claim that the canonical form for the one-loop momentum amplituhedron is

Ωn,2,1 � Ωn,2,0 ^
¸
i j

ΩKi,j , (4.6)

where

ΩKi,j � dlog
pℓ� ℓ�1 iq

2

pℓ� ℓ�1 i�1q
2
^ dlog

pℓ�
°i

a�1 paq
2

pℓ� ℓ�1 i�1q
2

^ dlog
pℓ� ℓ�1 jq

2

pℓ� ℓ�1 j�1q
2
^ dlog

pℓ�
°j

a�1 paq
2

pℓ� ℓ�1 j�1q
2

,

(4.7)

and we have defined

ℓ�ij �
1

xijy

�
λi

j�1̧

l�1

xljyλ̃l � λj

i�1̧

l�1

xliyλ̃l

�
. (4.8)
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xAB xCD

p1 p2

p3p4

x1

x2

x4

x3
ℓ1

ℓ1 + p1 ℓ2 + p1

ℓ2 + p1 + p2

ℓ2 − p4ℓ1 − p4

ℓ1 − ℓ2
xCD

xAB

p4

p1 p2

p3x4

x1 x3

x2
ℓ1 + p1

ℓ1 + p1 + p2

ℓ2 + p1 + p2

ℓ2 − p4

ℓ2

ℓ1

ℓ1 − ℓ2

Figure 1. The two diagrams corresponding to the two terms in (4.9). The remaining two terms have
identical diagrams with xAB and xCD exchanged.

Moving on beyond one loop, general triangulations of the loop amplituhedron can be ob-

tained from the BCFW recursion relation [10] together with the on-shell diagram parametri-

sation proposed in [11]. We conjecture that for MHV amplitudes, the images of the same

BCFW matrices will triangulate the loop momentum amplituhedron and loop amplituhe-

dron. To support our claim, we provide the simplest example beyond one loop: two-loop

four-point amplitude. In this case, there are 16 BCFW terms [11] and we have performed

extensive numerical checks that given a set of positive data and a point inside the loop mo-

mentum amplituhedron, it lies in one and only one of the images of the 16 cells corresponding

to these BCFW terms. Then we can translate the known canonical forms to spinor helicity

space and sum them together. Ultimately, we get the well-known formula

Ω̃4,2,2 �

"
s2td4ℓ1d

4ℓ2
ℓ21pℓ1 � p1q2pℓ1 � p4q2pℓ1 � ℓ2q2pℓ2 � p1q2pℓ2 � p1 � p2q2pℓ2 � p4q2

�
st2 d4ℓ1d

4ℓ2
ℓ21pℓ1 � p1q2pℓ1 � p1 � p2q2pℓ1 � ℓ2q2ℓ22pℓ2 � p1 � p2q2pℓ2 � p4q2

*
� pℓ1 Ø ℓ2q ,(4.9)

where as defined before we have ℓ1 � xAB � x1 and ℓ2 � xCD � x1. Each term in this

expansion corresponds to the expression associated to a standard Feynman diagram, see fig.

4. Since for MHV amplitudes the parametrization of the BCFW cells is known at any loop

[11], then it is in principle possible to extend our calculation beyond four points and beyond

two loops to find canonical differential forms for the loop momentum amplituhedron Mn,2,L.

We conclude this section by having a first look at examples beyond the MHV sector.

In this case, the geometry is not the product of the tree-level and loop geometries anymore.

Indeed, the matrix č is not empty, and therefore there are positivity conditions mixing the
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matrices č and Dl. For instance, for next-to-MHV (NMHV) amplitudes at one loop, we

require that the 3� n matrix C is positive (that implies that the 1� n matrix č is positive),

and the 3�n matrix obtained by stacking a single D matrix on top of the č is positive. Let us

consider the 5-point case. One would naively think to be able to use the BCFW triangulations

of the loop amplituhedron given in [4, 12], where one can find three BCFW terms with their

parametrisations of pD, čq matrices. Then, one considers points in the domain of the loop

momentum amplituhedron map C �D corresponding to points in these BCFW cells, namely

points for which č � Qc. Since Q has rank n � 2 and is therefore not an invertible matrix,

this is however not possible5. Therefore, it is a non-trivial task to find triangulations of the

loop momentum amplituhedron using the known results about the loop amplituhedron, and

the problem of triangulating Mn,k,L for k ¡ 2 remains the most urgent unresolved question.

The fact that the triangulations of amplituhedron and momentum amplituhedron cannot be

easily matched also means that the geometry of the loop momentum amplituhedron beyond

MHV level is much richer in structure and deserves further study.

5 Conclusions and Outlook

In this paper we presented the geometry for scattering amplitudes in N � 4 sYM at tree and

loop level in spinor helicity space, i.e. the loop momentum amplituhedron. Taking inspiration

from the singularity structure of amplitudes and expectation values of Wilson loops, we used

the known construction of the loop amplituhedron and adapted it to spinor helicity space.

Importantly, while all facets of the loop part of the amplituhedron are mapped to facets of

the momentum amplituhedron at loop level, the complete boundary stratification of the two

geometries is different, due to the differences at tree level.

There are many natural questions which arise from this work. The most pressing direction

is to investigate how to triangulate the loop momentum amplituhedron geometry. Unlike for

the MHV loop momentum amplituhedron, where the triangulation can be directly obtained

from the triangulations of the loop amplituhedron, for higher helicity sectors it is not possible

anymore due to the mixing of tree and loop geometries. As for the momentum twistor space,

the most natural starting point would be the BCFW recursion relation solved in terms of

on-shell diagrams, which should provide parametrisations for the tree-level matrix C and the

loop-level matrices Dp.

An equally pressing question is the boundary structure of the loop momentum ampli-

tuhedron. The full stratification at tree level was found in [15] and it possesses very natural

physical properties, with all boundaries labelled by Grassmannian forests that physically cor-

respond to all possible factorisations and soft and collinear limits of tree amplitudes. We

expect that also at loop level one will be able to introduce a natural, physically motivated

labelling for all boundaries of the loop momentum amplituhedron. As the starting point, one

5It differs at tree level where one can construct a map from positroid cells of G�pk� 2, nq to positroid cells
Gk,n, the so-called T-duality map [13, 14]. The T-duality map however acts on whole positroid cells and not
on their points, as is required at loop level.
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can expand the methods implemented in the Mathematica package amplituhedronBound-

aries [16] that have been crucial at tree level. This would provide us with a classification of

all singularities of amplitude integrands at any loop order.

Another interesting question is the extension of our construction to the loop level of the

orthogonal momentum amplituhedron, i.e. the positive geometry for tree-level amplitudes

in ABJM theory [17, 18], that is defined in terms of the positive orthogonal Grassmannian

[19]. For four-point ABJM amplitudes a geometry encoding all-loop amplitude integrands

has already been suggested in [20]. This has been done by projecting the N � 4 sYM loop

amplituhedron to three dimensions. Then, a natural question is if this result, combined

with our definition of the loop momentum amplituhedron, allows for generating the all-loop

orthogonal momentum amplituhedron also for other multiplicities.

Furthermore, it has been recently showed that the so-called “negative geometries” [21]

provide a geometric definition of an infrared finite quantity interpreted as the expectation

value of the Wilson loop with a single Lagrangian insertion, at least for four points. Following

the same logic, it would be interesting to study whether one can retrieve infrared finite

information about integrated amplitudes also from the loop momentum amplituhedron.

Finally, since the loop momentum amplituhedron is defined in spinor helicity space, it

should allow for generalisations to the non-planar sector of N � 4 sYM, which would result

in a geometry for non-planar loop integrands. A strong suggestion that such geometry should

exist come from the fact that also the non-planar loop amplitude integrands have logarithmic

singularities and can be converted to logarithmic differential forms [22]. One of the main

difficulties of moving to non-planar amplitudes had been the absence of a global definition

of the loop momentum. However, since our construction provides such a global definition by

defining the loop momentum as a parameter of the map ϕ̃pΛK,Λ̃q, a natural conjecture would

be to find non-planar contributions by modifying the domain of the map ϕ̃. This conjecture

is reinforced by the fact that non-planar on-shell diagrams [23–25], which represent cuts of

non-planar loop amplitudes, are connected to parts of Grassmannian spaces different from the

positive one. Therefore, they can provide a useful hint on finding a non-planar momentum

amplituhedron.
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A Kinematic Variables

In this appendix we collect the variables used in N � 4 sYM which are mentioned in the

paper.

Spinor helicity variables. In a massless theory in four dimensions with p2i � 0 for all particles,

one can write each momentum as

pa 9a
i � λa

i
rλ 9a
i , (A.1)

in terms of two spinor variables λ and rλ. In N � 4 SYM, we can consider

� the chiral superspace pλα, λ̃ 9α|ηAq: ηA are Grassmann-odd variables transforming in the

fundamental representation of the SUp4q R-symmetry,

� the non-chiral superspace pλα, ηa|λ̃ 9α, η̃ 9aq: ηa, rη 9a are two sets of Grassmann-odd variables

both transforming in the fundamental representations of SUp2q. One can think of rη 9a

as Fourier conjugate variables to η3,4.

Dual superspace. Starting from the on-shell chiral superspace, one can define a dual super-

space with coordinates px, θq with

xa 9a
i � xa 9a

i�1 � λa
i
rλ 9a
i , θaAi � θaAi�1 � λa

i η
A
i i � 1, . . . , n . (A.2)

This is the space where the n-sided null polygon Wilson loop dual to the n-point amplitude

is formulated.

Momentum twistor variables. The (super) momentum twistors are defined from the dual

superspace

Zi � pzai |χ
A
i q � pλia, µ̃

9a
i |χ

A
i q � pλia, x

a 9aλia|θ
aA
i λiaq . (A.3)

The momentum twistors are unconstrained and they determine rλ, η via,

prλ|ηqi � xi� 1 iypµ̃|χqi�1 � xi� 1 i� 1ypµ̃|χqi � xi i� 1ypµ̃|χqi�1

xi� 1 iyxi i� 1y
, (A.4)

and we also have

x2ij :� pxi � xjq
2 �

xi� 1 i k � 1 ky

xi� 1 iyxk � 1 ky
, (A.5)

where xijkly � ϵIJKLz
I
i z

J
j z

K
k zLl . Finally, in momentum twistor variables, the loop integral is

an integral over the space of lines pABq. This can be rewritten as an integral over a pair of

points A and B, modulo the GLp2q redundancies labeling their positions on the line:

d4ℓ �
d4zAd

4zB
volpGLp2qq

. (A.6)
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