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Abstract: Detecting vital signs by using a contactless camera-based approach can provide several
advantages over traditional clinical methods, such as lower financial costs, reduced visit times,
increased comfort, and enhanced safety for healthcare professionals. Specifically, Eulerian Video
Magnification (EVM) or Remote Photoplethysmography (rPPG) methods can be utilised to remotely
estimate heart rate and respiratory rate biomarkers. In this paper two contactless camera-based
health monitoring architectures are developed using EVM and rPPG, respectively; to this end, two
different CNNs, (Mediapipe’s BlazeFace and FaceMesh) are used to extract suitable regions of
interest from incoming video frames. These two methods are implemented and deployed on four
off-the-shelf edge devices as well as on a PC and evaluated in terms of latency (in each stage of the
application’s pipeline), throughput (FPS), power consumption (Watt), efficiency (throughput/Watt),
and value (throughput/cost). This work provides important insights about the computational
costs and bottlenecks of each method on each hardware platform, as well as which platform to use
depending on the target metric. One of our insights shows that the Jetson Xavier NX platform is the
best platform in terms of throughput and efficiency, while Raspberry Pi 4 8 GB is the best platform in
terms of value.

Keywords: embedded systems; AI/ML health monitoring algorithms; efficient health monitoring
hardware platforms; real-time health monitoring

1. Introduction

Heart rate and respiratory rate are crucial biomarkers whose anomalous patterns can
indicate various health conditions. Detecting such biomarkers using contactless camera-
based health monitoring methods provides several advantages over traditional clinical
methods, such as lower financial costs, reduced visit times, increased comfort, and enhanced
safety for healthcare professionals [1]. Eulerian Video Magnification (EVM) and remote
Photoplethysmography (rPPG) typify such contactless camera-based health monitoring
methods to estimate human vital signs, e.g., heart rate (HR) and respiratory rate (RR).

Developing efficient contactless camera-based health monitoring applications is a non-
trivial and challenging task for several reasons. First, the input video normally suffers from
low SNR and high variability in PPG estimation due to sensor–subject angles, different
types of cameras, or exposed light types [1]. Second, these applications are normally
both compute- and memory intensive and therefore their deployment in resource-limited
edge devices is not always feasible. Third, a wide range of computer vision and signal
processing models and techniques are available, providing different trade-offs between
accuracy and complexity. Fourth, a wide range of edge devices exist, with diverse hardware
architectures, providing trade-offs among throughput (processed Frames per Second (FPS)),
development time, energy consumption, financial cost, efficiency (throughput/watt), and
value (throughput/cost).
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In this article, we present two contactless camera-based health monitoring architectures
that can estimate the vital signs (heart rate and respiratory rate) of an individual from
distance. To this end, the EVM [2–5] and rPPG [4,6] widely used methods are implemented
and deployed on four off-the-shelf edge devices as well as on a PC; these edge devices
are: (a) Raspberry Pi 4 4 GB with 32-bit OS (RP4_32bit), (b) Raspberry Pi 4 8 GB with
64-bit OS (RP4_64bit), (c) Jetson Nano, (d) Jetson Xavier NX. The regions of interest (ROIs)
are extracted from each frame by using computer vision and in particular two different
Convolutional Neural Networks (CNNs).

A thorough performance evaluation of the entire end-to-end application (full video
pipeline) is performed, including all application steps (e.g., pre/post processing, reading
the input frame) and various performance metrics. Furthermore, the five hardware plat-
forms are compared in terms of throughput (FPS), value (throughput/cost), and efficiency
(throughput/Watt). We provide important insights around the capabilities and bottlenecks
of each hardware platform as well as which platform to use depending on the target metric.
We show that Jetson Xavier NX is the best platform in terms of throughput and efficiency;
meanwhile, Raspberry Pi 4 8 GB is the best platform in terms of value. Last, we show that
rPPG achieves a higher throughput compared to EVM.

This research work has resulted in the following contributions:

• The development of two contactless camera-based health monitoring architectures for
edge devices, estimating heart rate and respiratory rate.

• The evaluation and comparison of five hardware platforms in terms of throughput
(FPS), value (throughput/cost), and efficiency (throughput/Watt) metrics, when run-
ning camera-based health monitoring software applications.

• Important insights regarding the capabilities of each hardware platform, which can
inform the selection of a platform based on the target metric or metrics.

• An overview of the computational cost of each application stage, with
identified bottlenecks.

The remainder of this paper is organized as follows. Section 2 reviews the related
work and Section 3 describes the system architecture of the edge devices. In Section 4,
the experimental setup is presented. In Section 5, the experimental results are shown and
discussed and finally, Section 6 is dedicated to conclusions.

2. Related Work

The estimation of biomarkers can be separated into two categories, contact-based and
contactless. Various medical devices today utilise contact-based approaches to determine
physiological measurements around a person’s health condition. A popular contact-based
approach is electrocardiography (ECG) [7] where by attaching electrode sensors to a per-
son’s skin, the observed voltage between heart beats can be used to derive the heart’s
rhythm. Another popular method is photoplethysmography (PPG) [8,9], which takes
a different approach and measures the volumetric changes in blood with infrared light
placed upon the skin. While ECG is more accurate, PPG is a less intrusive and lower cost
solution, and therefore it is normally used as a reference point for evaluation of various PPG
methods [10]. Although contact-based methods are more accurate, contactless methods are
popular too, since they provide several advantages such as lower financial costs, reduced
visit times, and increased comfort. Two popular contactless methods are Eulerian Video
Magnification (EVM) and remote photoplethysmography (rPPG), which are the topic of
this paper.

The remainder of the related work section is structured into three subsections. Sec-
tion 2.1 discusses EVM, Section 2.2 covers rPPG, and Section 2.3 outlines the various
health monitoring implementations on edge hardware. Each subsection provides a detailed
discussion of the topic, including relevant research and findings.
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2.1. Eulerian Video Magnification (EVM)

Eulerian video magnification (EVM) has been shown to be highly effective for non-
contact, unobtrusive, and non-invasive patient heart-rate estimation systems [11]. The
EVM approach was developed at the Computer Science and Artificial Intelligence Lab
of the Massachusetts Institute of Technology (MIT CSAIL) in 2012 [12] and can be used
to enhance motion or colour in order to reveal information hidden to the naked eye. By
applying this to multiple video frames, enhancing the colours, and plotting the colour
variations over time, one can process that and derive the heart rate and other vital signs
without making physical contact with the patient.

Regarding the ability of EVM to estimate heart rate and respiratory rate, it is important
to note that there is a lack of common datasets; however, various previous research studies
have evaluated EVM by using their own datasets and different metrics, and their reported
performance has shown the validity of EVM in this task. Previous studies have reported
accuracies of 94.0% from eleven subjects [2] and 93.0% from one subject [5], based on
Equation (1). In [4], evaluations with twenty subjects were performed, and the performance
was evaluated in terms of absolute errors, resulting in 98.0% and 96.6% accuracy based on
Equation (2) for supervised and unsupervised EVM approaches, respectively. In [13], the
authors evaluated EVM on RGB video streams using two human subjects and two monkey
subjects, measuring the mean pulse rates with an accuracy equal to 93.2% for humans and
97.3% for monkeys based on Equation (1). For respiratory rate estimation via EVM, an
error rate of 1.5% was reported, which based on Equation (1) equals 98.5% accuracy [14].

Accuracy = 100− 100×
(
|Estimation− Real|

Estimation

)
(1)

Accuracy = 100− |error| (2)

Since the introduction of EVM, various efforts have been made to further investigate
and improve the robustness of this approach. For example, the effectiveness can be im-
proved by using temporal [15] or spatio-temporal [16] filtering, while other efforts focused
on feeding specific region of interests [17] in order to remove redundant data from the
image frame.

2.2. Remote Photoplethysmography (rPPG)

Similar to photoplethysmography (PPG), remote photoplethysmography (rPPG) is
another approach for the contactless estimation of the heart rate and other vital signs; rPPG
detects blood volume changes by capturing pixel intensity changes from the skin [18].
During cardiac cycles, changes in blood volume cause changes on the skin, which can be
picked up by optical sensors [19] and a plethysmography signal can be derived and used to
estimate biomarkers. There have been variations in the algorithm (in terms of the method)
used to extract and process the data, with Table 1 showing some of the most popular signal
extraction methods. In [20], eight image-based photoplethysmography (iPPG) extraction
methods (GRD, AGRD, PCA, ICA, LE, SPE, CHROM, and POS) were compared in terms of
Spearman correlation and Normalized Root-Mean-Square Error (NRMSE).

Table 1. Summary of rPPG signal extraction methods [21].

rPPG Method Summary

GREEN [22] Of the three channels, the green channel is most likely the PPG signal and can be used as its estimate.

ICA [23] To recover three separate source signals, independent component analysis (ICA) is applied to the
RGB signal. A significant rPPG signal was usually found in the second component.

PCA [24] Principal component analysis (PCA) is applied to distinguish the rPPG signal from the RGB signal.



Sensors 2023, 23, 4550 4 of 17

Table 1. Cont.

rPPG Method Summary

CHROM [25] The chrominance (CHROM)-based method generates an rPPG signal by removing the noise caused
by the light reflection using a ratio of the normalized colour channels.

PBV [26] PBV calculates the rPPG signal with blood-volume pulse fluctuations in the RGB signal to identify
the pulse-induced colour changes from motion

POS [27] The plane-orthogonal-to-skin (POS) method uses the plane orthogonal to the skin tone in the RGB
signal to extract the rPPG signal.

LGI [28] The local group invariance (LGI) calculates an rPPG signal with a robust algorithm as a result of
local transformations.

OMIT [29]
Orthogonal matrix image transformation (OMIT) recovers the rPPG signal by generating an

orthogonal matrix with linearly uncorrelated components representing the orthonormal components
in the RGB signal, relying on matrix decomposition.

Previous studies used different datasets and metrics to evaluate the accuracy of rPPG
method for heart rate estimation. A study involving 140 subjects reported an error (mean
difference of estimated and ground truth) of 2.0% [18]. Other studies evaluated rPPG
heart rate estimation using various metrics such as MAE (Mean Absolute Error), r (Pearson
correlation coefficient), SNR (Signal-to-Noise Ratio), and TMC (Template Match Correlation)
with the reported MAE on the VIPL dataset of 3.9 bpm [30], and r and MAE values of
0.86 and 3.14%, respectively, for 67 subjects with underlying cardiovascular disease [31].
For respiratory rate estimation, RMSE results of 1.7014 and 2.5026 were reported using
Hue (HSV colour space) and GREEN rPPG methods, respectively [32]. Additionally, a
method was developed in [33] to detect influenza using rPPG to estimate HR and RR, with
a reported r of 0.87 for both.

2.3. Health Monitoring on Edge Hardware

Developing and deploying efficient contactless camera-based health monitoring appli-
cations on resource-limited edge devices introduces several challenges as the computation
and memory requirements of these applications are normally high. The most popular
techniques to address this problem are briefly reported below.

First, lightweight computer vision models have been developed, that adopt various
innovative techniques to reduce the number of parameters and tensor operations while
maintaining satisfactory accuracy [34]; a wide range of computer vision and signal processing
models are available, providing different trade-offs between accuracy and complexity. For
our use case, artificial intelligence (AI) models serve the purpose of identifying the regions
of interest (ROIs) within a given frame, with the objective of providing the most appropriate
data to facilitate algorithmic estimation of heart rate and respiratory rate. Consequently, in
the context of developing systems targeted for the edge, it is imperative to comprehend the
trade-offs between the quality of the models, computational costs, commercial costs, and
power consumption. In [35,36], several computer vision models are evaluated and compared
to six popular edge devices in terms of accuracy and inference time.

Second, various hardware platforms (accelerators) have been designed with diverse
hardware architectures, such as NVIDIA Jetson, Intel NCS2, Google Edge TPU, and oth-
ers, providing trade-offs between latency time, development time, energy consumption,
financial cost, efficiency (throughput/watt), and value (throughput/cost). Such hardware
platforms offer various benefits such as energy efficiency, ultra-low latency, and low finan-
cial costs, that allow the efficient deployment of health applications on the edge; something
that was not feasible previously [37].

There have been various research studies covering contactless biomarker estimation;
however, the majority of them do not employ a common dataset for validation and they
focus only on a few hardware performance metrics. In [37], a contactless rPPG pulse-rate
detection system with face recognition was developed on an Nvidia Jetson TX2 platform,
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but only explored accuracy results on their custom dataset. In [38], an rPPG solution was
developed on an Nvidia Jetson AGX Xavier too, exploring only MAE and FPS metrics.
Field Programmable Gate Arrays (FPGAs) have also been used in this area and are an
excellent choice for custom health application implementations because of their power
efficiency, latency, throughput, flexibility in interfaces, and reconfigurability; in [39], an
rPPG implementation was proposed where the heart rate estimation processing part runs
on a soft CPU while the rest of the system is implemented on the reconfigurable logic. Note
that to leverage such complex hardware platforms, advanced optimization frameworks are
needed, such as TFLITE [40] for ARM microcontrollers and microprocessors and TensorRT
for Nvidia edge GPUs [41].

Furthermore, compression-based techniques have been introduced, such as quanti-
zation [34], weight pruning [42], and low rank factorization [43]; these techniques reduce
both the memory size of the model and the number of executed instructions, by normally
sacrificing accuracy. In [1], quantization and pruning were used when detecting changes in
blood volume on three edge devices.

Compared to all the aforementioned methods, this work evaluates two end-to-end
contactless camera-based health monitoring applications, first, on a wide range of off-
the-shelf edge devices and second, by using several metrics such throughput, energy
consumption, value (throughput/cost), and efficiency (throughput/Watt).

3. System Architecture

The system architecture was implemented with the intention of deploying EVM and
rPPG on various edge devices, which would have limited computational capabilities in
terms of memory and processing speed. For both approaches, the estimation of heart rate
and respiratory rate relies on buffering data, specifically regions of interest (ROIs) obtained
through CNNs, prior to executing the corresponding algorithms.

This section is divided into three subsections. Section 3.1 describes the general block
diagram of the system architecture aimed for the hardware platforms. This is followed by
Sections 3.2 and 3.3 providing a more detailed explanation of the implementations steps of
EVM and rPPG, respectively.

3.1. Edge Device System Architecture

In this subsection, we present the general system architecture, which is designed for edge
device deployment (see Figure 1). The flow of the system is similar for both the EVM and
rPPG approaches, and each step of the data pipeline is explained in further detail below.
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1. Source

The source of data input can be a video file or live video streaming from a USB
webcam. For the benchmarking performance of each edge device, a recorded video file of
11 s long was used in three different resolutions, 1920× 1080 (1080p), 1280× 720 (720p) and
640 × 360 (360p), at 30 frames per second.

2. Read Frame

Reading a frame from either a webcam or a video file would have different processing
times depending on the resolution and processing capabilities of the CPU. For EVM, it
possesses an additional function of resizing the frame to 640 × 360, as anything bigger than
that will cause most of the edge devices to run out of memory and crash the application,
while for rPPG the target frame size is maintained.

3. CNN

The CNN stage has two parts, with a pre-process step being the first. Its purpose is to
format the incoming frame to be compatible with the target CNN requirements, e.g., change
the input resolution. For ROI detection, two different CNN models were used, both from
Google’s MediaPipe tool [44]. The first one, a face detection model based on BlazeFace [45],
is an ultrafast face-detection solution that besides estimating bounding boxes, also displays
six face landmarks (not used in this instance). It accepts 128 × 128 input resolution, and it
is based on MobileNetV1/V2 architecture, with three very distinct differences. The first
difference is that it uses 5 × 5 kernel sizes for its depthwise separable convolutions, as it
was found that increasing the kernel size is relative cheap. The second difference is that
it uses a modified version of the popular Single Shot Detection (SSD) method [46], aimed
at more effective mobile GPU utilization. Third, it uses a blending strategy, an alternative
post-processing algorithm to non-maximum suppression (NMS) which the authors stated
provided a 10% increase in the accuracy of their results.

The second model, FaceMesh [47] is a 2-step model that estimates 468 3D face land-
marks; it accepts 192 × 192 input resolution. It consists of a face detection model (can
be any lightweight architecture, but BlazeFace is used) and a face landmark model. The
cropped image of the face and several core landmarks are provided by the face detector
and then processed by the mesh neural network to produce a vector of 3D landmark
coordinates. These coordinates are used to detect and crop the ROIs for our use case, which
are the forehead and left/right cheek regions of the detected face, in order to eliminate any
redundant areas of the face that do not contribute to HR or RR estimation.

Both CNNs (example in Figure 2) were deployed on each platform in their original
datatype form (TFLITE FP16 models) with no further optimizations for the target hardware.
Optimising each model for the respective target hardware to maximise performance could
be a potential case study for future work.

4. Post-Process

In the post-process stage, the CNN model coordinates’ results are processed, and the
corresponding ROI is derived from the original frame. For EVM, the ROI are resized to a
180 × 180 resolution due to requiring a squared input (width and length being equal) and
a fixed image size for the Signal Processing stage. For rPPG, the green channel of the RGB
frame is extracted and then the mean value is calculated.

5. Buffer

Before feeding data for HR/RR estimation (EVM or rPPG), ROIs data are buffered
until a sufficient amount is obtained for the signal process stage. In our use case, we used
180 frames for data buffering, until vital signs can start being estimated. After the buffer is
full, it acts as a shift register.
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6. Signal Process

In the signal process stage, the incoming data are processed by the corresponding
algorithm to estimate the heart rate and respiratory rate using either EVM (described in
Section 3.2) or rPPG algorithm (described in Section 3.3).

7. Overlay/Display

Lastly, the overlay/display stage is where the processed frame is displayed, showcas-
ing heart rate, respiratory rate, FPS and any overlays, which include pre-processed video
data derived from either rPPG or EVM. Performance may vary based on resolution, and
the number of overlays.
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3.2. Eulerian Video Magnification (EVM) Implementation

The EVM method works by decomposing the video frames into distinct spatial fre-
quency bands using full Laplacian pyramids [12]. The Laplacian pyramid is based on
the Gaussian pyramid with l levels for each frame, which is basically down sampling
by a factor of 2 for each level of the pyramid. Then, the spatial image derived from the
Laplacian pyramid is converted to the frequency domain via Fast Fourier Transform (FFT)
and using a temporal filter the frequency bands of interested are isolated and extracted.
In the next stage, the filtered bandpass signal can be amplified by a magnification factor
(a factor). Then, finding the peaks within those certain frequency bands results in the
estimation of vital signs. For heart rate, frequencies of interest are between 0.83 and 3.0 Hz
(50 to 180 beats per minute); meanwhile, for respiratory rate, the frequencies of interest are
between 0.18 and 0.5 Hz (11 to 30 breaths per minute) [50]. Finally, to reconstruct amplified
frames, iteratively each processed frame is up sampled using a Gaussian filter until the size
of the original frame is reached, where the variations in colours can be revealed; this is an
optional step to visualise subtle changes in colour. The complete flow of EVM is depicted
in Figure 3.

3.3. Remote Photoplethysmography (rPPG) Implementation

The rPPG algorithm can be divided into three key stages; the first stage is the signal
extraction of several ROIs frames, the second stage is the signal pre-processing, and the
third stage estimates vital signs. The software flowchart used in our implementation
approach for rPPG can be seen in Figure 4, depicting the stages that were mentioned.
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Given that the target implementation is aimed at resource-constrained edge devices,
we selected the least computationally intensive signal extraction method (GREEN in
Table 1). In the GREEN method (Table 1), only the green channel is processed and therefore
the number of computations is highly reduced; it should be noted that [51] proved that
the usage of the green channel results in less signal-to-noise-ratio (SNR) than using all
the channel colours of RGB. After extracting and calculating the mean of the green pixel
values of multiple ROIs frames, common signal pre-processing techniques are applied to
clean and derive the pulse signal. Signal pre-processing starts with detrending, in order
to remove unwanted noise from light changes in the frame [30]. Next, by interpolating
the detrended signal by one, we obtain an even signal, since its sampling could have been
performed at non-periodic intervals. Followed by applying a Hamming window, the signal
becomes more periodic and reduces any spectral leakage that might have been introduced.
Afterwards, the signal is normalised by dividing it by its L2 norm. Lastly, using a 1D Fast
Fourier Transform (FFT), the signal is transformed into the frequency domain. Once in
the frequency domain, within the frequency bands of interest, the highest peak of the
amplitude spectrum contains the vital signs. Similarly to EVM, the same cut-off frequencies
for heart rate (0.83–3.0 Hz) and respiratory rate (0.18–0.5 Hz) were used.

4. Experimental Setup

The EVM and rPPG methods were benchmarked on four different commercial off-
the-shelf hardware platforms, specifically in terms of their inference times, efficiency, and
value. While it may appear meaningless to conduct these evaluations on a PC, given that
the objective is to assess the capabilities of edge technology, this was a good reference point
for comparison. The embedded hardware setups that were used in this work are shown in
Table 2, with their core characteristics described below.
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Table 2. List of benchmarked hardware platforms and their core specifications.

# Hardware CPU Cores/Frequency Memory AI Accelerator

1 PC Intel i9-9900K 8/3.6 GHz 64 GB (LPDDR4) GPU: GTX1060
2 RP4_32bit ARM Cortex-A72 4/1.5 GHz 4 GB (LPDDR4) N/A
3 RP4_64bit ARM Cortex-A72 4/1.5 GHz 8 GB (LPDDR4) N/A
5 Nano ARM Cortex-A57 4/1.48 GHz 4 GB (LPDDR4) GPU: 128-core Maxwell
6 XavierNX Carmel ARM®v8.2 6/1.42–1.9 GHz 8 GB (LPDDR4) GPU: 384-core Volta

1. PC

Desktop workstation fitted with ×86 CPU (Intel i9-9900K) and 64 GB DDR4, running
Ubuntu20.04. Used as reference point and for comparison versus the benchmarked edge
solutions used in this work.

2. RP4_64bit (Raspberry Pi 4 Model B 8 GB) [52]

The main compute element of Raspberry Pi 4 Model B was its quad-core ARM Cortex-
A72 CPU that supports NEON 128-bit wide vector instructions, running at a clock speed of
1.5 GHz. This variant (RP4_64bit) was fitted with 8 GB LPDDR4 and was running a 64bit
OS (Bullseye).

3. RP4_32bit (Raspberry Pi 4 Model B 4 GB) [52]

Similar to RP4_64bit, but with the main difference of having 4 GB LPDDR4 and
running a 32-bit OS (Buster).

4. Nano (NVIDIA Jetson Nano) [53]

NVIDIA Jetson Nano (Nano) includes an embedded GPU with 128 CUDA cores, a
quad-core ARM Cortex-A57 64-bit CPU, and 4 GB LPDDR4. From the two power modes
supported, we used the power mode MAXN (10 Watts) where the 4× CPU cores ran at
1.48 GHz and the GPU at 921.6 MHz.

5. XavierNX (NVIDIA Jetson Xavier NX) [54]

NVIDIA Jetson Xavier NX (XavierNX) is a more powerful family compared to Nano, as
it includes more GPU cores, a more powerful CPU, and higher density and speed LPDDR4.
In particular, its GPU includes 384-cores and 48 Tensor Cores, while its CPU is a 64-bit
6-core NVIDIA Carmel ARMv8.2. From the various power modes it supports, we used the
power mode 6 (XavierNX:6; 20 Watts, 2× cores at 1.9 GHz/GPU at 1.1 GHz) and power
mode 8 (XavierNX:8; 20 Watts, 6× cores at 1.4 GHz/GPU at 1.1 GHz).

5. Experimental Results

The experimental results section is divided into several subsections. Section 5.1
explains the evaluation metrics used, followed by the benchmarking results for each of
the hardware platforms using EVM and rPPG approaches. Sections 5.2 and 5.3 present
the latency figures of each stage depicted in Figure 1. Section 5.4 shows the various
power consumption measurements during idle and runtime operation. Finally, Section 5.5
compares total throughput, value (throughput/cost), and efficiency (throughput/Watt) of
each hardware platform. Together, these subsections provide a comprehensive analysis of
the performance of each vital sign estimation method on different hardware platforms.

5.1. Evaluation Metrics

The metrics used to evaluate the performance of each hardware device is described below:

• Latency: The time to execute a stage from start to finish measured in milliseconds (ms).
To accurately extract the execution time, each stage was performed multiple times and
the average time was logged. Apart from this software process, other OS processes
use the hardware resources too (such as CPU cores, cache memory, etc.) and they can
add potential noise to our results if not run a sufficient number of times.
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• Throughput: Total amount of frames per second (FPS) that can be processed every
second. The FPS metric is calculated via Equation (3), where Total Latency is the total
execution time including all stages from start to finish for each approach.

FPS =
Time

TotalLatency
=

1
TotalLatency

(3)

• Power Consumption: Power consumption (Watts) was measured with a power meter.
Average power consumption was recorded for the idle state and additionally for each
of the three resolutions.

• Value: Throughput/cost is calculated with Equation (4), where FPS is the number of
processed frames per second as explained previously and cost is the financial price of
the hardware board in US dollars.

Value =
FPS
Cost

(4)

• Efficiency: Throughput/Watt is calculated with Equation (5), where FPS is the number
of processed frames per second as explained previously and Average Power is the
mean power consumption reading of the three video resolutions.

Efficiency =
FPS

AveragePower
(5)

5.2. EVM Latency Results

Detailed hardware latency results obtained for the EVM approach with BlazeFace
and FaceMesh are presented in Tables 3 and 4, respectively. Regarding the CNN model
latency performance, FaceMesh was on average x1.8 more compute demanding, which in
turn resulted in an average ×0.8 less total throughput (FPS) in comparison to BlazeFace.
Additionally, the ‘Post-Process’ stage was ×3.9 times slower with the later model because
the cropping and masking of the ROIs from the original frame was more complex (fore-
head, left/right cheek). The rest of the stages had relatively close latency figures between
each other.

Table 3. Latency results of EVM with BlazeFace on each hardware platform.

Hardware Resolution Read Frame
(ms)

CNN
(ms)

Post-Process
(ms)

Signal Process
(ms)

Overlay/Display
(ms) FPS Average FPS

PC
1920 × 1080 1.66 2.63 0.16 2.61 0.36 134.18

156.51280 × 720 0.76 2.38 0.14 2.63 0.36 158.96
640 × 360 0.17 2.22 0.26 2.64 0.36 176.4

RP4_32bit
1920 × 1080 29.66 26.6 3.30 21.45 9.34 11.05

11.71280 × 720 13.67 24.22 3.30 29.17 17.19 11.41
640 × 360 4.19 24.93 3.45 29.08 17.24 12.66

RP4_64bit
1920 × 1080 15.55 20.25 1.34 13.41 5.08 17.94

22.31280 × 720 8.21 16.15 1.33 13.28 5.16 22.64
640 × 360 2.41 14.94 2.16 13.50 5.12 26.20

Nano
1920 × 1080 13.7 15.37 1.40 14.19 5.64 19.67

24.01280 × 720 6.89 12.41 1.42 14.48 5.63 24.28
640 × 360 1.91 11.13 2.02 14.44 5.58 28.18

XavierNX:6
1920 × 1080 15.89 12.26 1.41 5.31 2.00 26.43

39.21280 × 720 8.27 8.86 1.28 5.71 2.18 37.34
640 × 360 1.47 6.92 2.96 4.61 2.04 53.91

XavierNX:8
1920 × 1080 13.35 9.68 1.06 5.54 2.43 30.60

39.31280 × 720 6.83 7.68 1.04 5.77 2.59 40.81
640 × 360 1.44 7.98 3.32 5.59 2.52 46.57
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Table 4. Latency results of EVM with FaceMesh on each hardware platform.

Hardware Resolution Read Frame
(ms)

CNN
(ms)

Post-Process
(ms)

Signal Process
(ms)

Overlay/Display
(ms) FPS Average FPS

PC
1920 × 1080 1.56 3.51 1.08 2.78 0.35 107.24

121.81280 × 720 0.68 3.26 1.00 2.78 0.35 123.19
640 × 360 0.19 3.02 1.02 2.79 0.36 134.90

RP4_32bit
1920 × 1080 30.66 63.98 12.65 21.67 7.93 7.29

7.61280 × 720 14.55 61.37 10.84 29.38 16.55 7.52
640 × 360 4.34 61.58 12.75 29.37 16.52 8.01

RP4_64bit
1920 × 1080 15.30 28.91 6.15 13.05 4.59 14.68

17.21280 × 720 8.12 25.55 6.19 13.11 4.72 17.30
640 × 360 2.47 24.36 6.46 13.20 4.64 19.52

Nano
1920 × 1080 13.29 54.27 10.82 13.99 4.37 10.26

11.41280 × 720 6.32 50.12 10.75 14.07 4.36 11.59
640 × 360 1.92 49.68 10.87 14.00 4.40 12.26

XavierNX:6
1920 × 1080 11.16 12.76 4.67 4.71 1.86 27.62

36.41280 × 720 4.59 10.55 4.45 4.79 2.00 37.05
640 × 360 1.38 9.66 4.82 4.06 1.95 44.48

XavierNX:8
1920 × 1080 10.45 12.05 5.28 5.19 2.33 27.76

32.71280 × 720 5.39 11.48 5.09 5.17 2.40 33.08
640 × 360 1.70 10.98 5.79 5.30 2.43 37.19

An examination of the duration of execution for each stage (averaged out across all
edge devices) in relation to the overall processing time can provide valuable insights into
identifying the bottlenecks or stages which contribute to the majority of the processing time.
The findings, presented in Figure 5, indicate that the BlazeFace implementation expended
an average of 20.9% of the total processing time on ‘Read Frame’, followed by 32.5% on
‘CNN’, 4.5% on ‘Post-Process’, 22.1% on ‘Signal Process’, and 13.0% on ‘Overlay/Display’.
It is noteworthy that the ‘CNN’ stage accounted for almost one third of the total processing
time, whereas the second most computationally intensive stage was the ‘Post-Process’.
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In contrast, the FaceMesh implementation consumed an average of 13.0% of the total
processing time on ‘Read Frame’, followed by 48.1% on ‘CNN’, 11.7% on ‘Post-Process’,
19.1% on ‘Signal Process’, and 7.9% on ‘Overlay/Display’. The results demonstrate a differ-
ence in the processing time distribution between the two implementations, with the ‘CNN’
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stage being the most computationally demanding stage in the FaceMesh implementation,
followed by the ‘Post-Process’ stage.

Below, we provide some insightful observations when both models run on the edge
devices. Firstly, as the resolution is decreased, the ‘CNN’ stage is also decreased, but the
‘Post-Process’ time is increased. Regarding the ‘CNN’ stage, this can be explained from
the fact that, as the video resolution decreased, so did the computational toll of resizing
the image, as this was a two-step stage. Regarding the ‘Post-Process’, when ROIs were
extracted from the 640 × 360 resolution, this resulted in requiring upscaling due to very
small bounding boxes, which in turn increased the latency times of this stage. Secondly,
the FPS did increase as the resolution decreased, specifically on average a 20% increase was
seen from 1920 × 1080 to 1280 × 720, and 38% with 1920 × 1080 to 640 × 360.

In terms of the fastest and slowest edge platforms for BlazeFace + EVM, XavierNX:8
had an average of 39.3 FPS, while RP4_32bit had only 11.7 FPS. As for FaceMesh + EVM, the
fastest edge platform was XavierNX:6 with 36.4 FPS, while the slowest one was RP4_32bit
with 7.6 FPS.

5.3. rPPG Latency Results

Tables 5 and 6 present the edge hardware results obtained for rPPG approach with
BlazeFace and FaceMesh, respectively. FaceMesh was on average ×1.8 more compute de-
manding, which in turn resulted on average×0.5 less total throughput (FPS) in comparison
to BlazeFace. Additionally, the ‘Post-Process’ stage was ×3.4 times slower with the later
model, while the rest of the stages were relatively close to each other.

Table 5. Latency results of rPPG with BlazeFace on each hardware platform.

Hardware Resolution Read Frame
(ms)

CNN
(ms)

Post-Process
(ms)

Signal Process
(ms)

Overlay/Display
(ms) FPS Average FPS

PC
1920 × 1080 1.69 3.78 11.44 0.33 0.82 49.37

66.11280 × 720 0.94 3.69 7.49 0.41 0.46 71.98
640 × 360 0.53 7.28 4.40 0.85 0.38 77.03

RP4_32bit
1920 × 1080 37.04 62.62 86.02 1.58 8.50 3.95

11.31280 × 720 16.50 36.50 36.40 1.45 4.10 8.32
640 × 360 4.51 22.86 9.40 1.54 2.84 21.71

RP4_64bit
1920 × 1080 18.75 24.33 54.92 1.50 5.21 8.17

19.31280 × 720 8.62 17.90 25.25 1.40 3.08 15.41
640 × 360 2.38 14.00 6.61 1.45 2.77 34.44

Nano
1920 × 1080 14.54 24.48 64.05 1.87 2.84 8.42

22.21280 × 720 6.48 15.78 29.30 1.74 2.06 16.61
640 × 360 1.91 10.44 7.85 1.70 1.63 41.46

XavierNX:6
1920 × 1080 10.94 16.09 33.66 2.20 3.18 13.71

34.61280 × 720 4.94 12.19 14.12 1.65 2.56 26.12
640 × 360 1.39 7.95 3.72 1.65 2.20 63.87

XavierNX:8
1920 × 1080 10.26 14.97 37.14 1.96 3.23 13.20

31.01280 × 720 5.00 11.44 16.32 1.93 2.91 24.69
640 × 360 1.42 8.37 4.47 1.90 3.00 55.18

Figure 6 presents the percentage of total execution time of each stage (averaged out
across all edge devices) for the rPPG approach, where bottlenecks can be identified. For the
BlazeFace implementation, an average of 14.9% of the total processing time was allocated
to the ‘Read Frame’ stage, followed by 31.7% on ‘CNN’, 45.5% on ‘Post-Process’, 2.7% on
‘Signal Process’, and 5.2% on ‘Overlay/Display’. Notably, the ‘Post-Process’ stage was the
most computationally demanding stage (23.4% more compared to EVM), while the ‘CNN’
stage was the second most resource intensive (13% more compared to EVM).
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Table 6. Latency results of rPPG with FaceMesh on each hardware platform.

Hardware Resolution Read Frame
(ms)

CNN
(ms)

Post-Process
(ms)

Signal Process
(ms)

Overlay/Display
(ms) FPS Average FPS

PC
1920 × 1080 1.70 4.40 38.04 0.31 0.91 22.11

41.71280 × 720 0.86 3.99 18.27 0.31 0.53 43.17
640 × 360 0.37 6.57 10.68 0.55 0.34 59.76

RP4_32bit
1920 × 1080 37.78 100.59 316.65 1.46 8.49 2.15

5.21280 × 720 16.93 74.52 145.67 1.48 4.17 4.13
640 × 360 4.74 60.64 39.57 1.53 2.69 9.36

RP4_64bit
1920 × 1080 18.64 33.58 169.92 1.39 5.00 4.38

10.61280 × 720 8.71 27.75 78.04 1.44 3.34 8.43
640 × 360 2.60 23.74 22.78 1.43 2.64 19.04

Nano
1920 × 1080 14.29 62.85 186.31 1.73 2.78 3.79

7.91280 × 720 6.43 54.31 88.08 1.74 2.06 6.76
640 × 360 1.91 49.15 28.14 1.73 1.63 13.04

XavierNX:6
1920 × 1080 10.13 17.90 103.48 1.69 2.85 7.51

19.51280 × 720 4.50 13.18 49.42 1.59 2.52 14.54
640 × 360 1.39 9.86 15.04 1.56 2.24 36.45

XavierNX:8
1920 × 1080 9.60 16.97 136.13 1.96 3.71 6.04

15.81280 × 720 4.59 13.24 65.53 1.88 3.17 11.67
640 × 360 1.40 10.78 19.71 1.85 3.05 29.61
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Moreover, for the FaceMesh implementation, an average of 6.3% of the total processing
time was devoted to the ‘Read Frame’ stage, followed by 25.0% on ‘CNN’, 65.5% on ‘Post-
Process’, 1.1% on ‘Signal Process’, and 2.2% on ‘Overlay/Display’. It is noteworthy that the
‘Post-Process’ stage was the most computationally intensive stage in this scenario, followed
by the ‘CNN’ stage.

Similar to what was observed with EVM results, as the resolution is decreased, the ‘CNN’
latency also decreased, but the ‘Post-Process’ time increased. For BlazeFace + rPPG, the fastest
edge platform was XavierNX:6 with 34.6 FPS, while the slowest one was RP4_32bit with
11.3 FPS. As for FaceMesh + rPPG, the fastest edge platform was XavierNX:6 with 19.5 FPS,
while the slowest one was RP4_32bit with 5.2 FPS.

5.4. Power Consumption Results

Table 7 presents the meter readings of power consumption across different platforms,
encompassing the idle state (i.e., no active processes), three video resolutions, and an
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average power consumption value. The results indicate that, with the exception of PC,
the platform with the lowest power consumption on average was RP4_32bit, registering
4.9 Watts, while the platform with the highest power consumption was XavierNX:8, with
an average of 10.0 Watts. In general, a 4.3% drop in power was observed when downscaling
to 1280 × 720 and 6% drop when downscaling to 640 × 360 from 1920 × 1080 resolution.

Table 7. Power consumption hardware platform results.

Hardware Idle
(Watt)

1920 × 1080
(Watt)

1280 × 720
(Watt)

640 × 360
(Watt)

Average
(Watt)

PC 49.4 120 111 104 111.7

RP4_32bit 3.4 5.2 4.9 4.6 4.9
RP4_64bit 3.4 5.8 5.5 5.2 5.5

Nano 3.8 6.5 5.9 5.7 6.0
XavierNX:6 6.7 9.5 9.1 9.1 9.2
XavierNX:8 6.9 10.0 9.9 10.0 10.0

5.5. FPS, Efficiency, and Value Results

Table 8 provides an alternative perspective on the capabilities of each edge platform,
taking into account their cost and power consumption in relation to their throughput.
Specifically, the focus of the analysis is on the efficiency metric (throughput/Watt) and the
value metric (throughput/cost), which are calculated based on the average FPS, average
power consumption, and cost of each device. For both EVM and rPPG, XavierNX:6 platform
came out on top on efficiency and RP4_64bit in terms of value in every case.

Table 8. Average FPS, efficiency, and value hardware platform results.

Hardware

EVM rPPG

BlazeFace FaceMesh BlazeFace FaceMesh

FPS Efficiency Value FPS Efficiency Value FPS Efficiency Value FPS Efficiency Value

PC 156.5 1.40 0.08 121.8 1.09 0.06 66.1 0.59 0.03 41.7 0.37 0.02

RP4_32bit 11.7 2.39 0.21 7.6 1.55 0.14 11.3 2.31 0.21 5.2 1.06 0.09
RP4_64bit 22.3 4.05 0.30 17.2 3.12 0.23 19.3 3.52 0.26 10.6 1.93 0.14
Nano 24.0 3.99 0.16 11.4 1.88 0.08 22.2 3.67 0.15 7.9 1.30 0.05
XavierNX:6 39.2 4.25 0.10 36.4 3.94 0.09 34.6 3.74 0.09 19.5 2.11 0.05
XavierNX:8 39.3 3.95 0.10 32.7 3.28 0.08 31.0 3.11 0.08 15.8 1.58 0.04

6. Conclusions

In this paper, we have evaluated the performance of four off-the-shelf edge platforms
by implementing two algorithmic approaches for estimating the heart rate and respiratory
rate of an individual. Compared to traditional methods, we have used two contactless
methods, by utilizing RGB cameras and AI in order to detect ROIs of an individual’s
face. The results showcase the capabilities of various edge hardware platforms by using
several metrics, the baseline performance people should expect when using Eulerian Video
Magnification and Remote Photoplethysmography in real-time edge applications, as well
as the performance of different application steps.

These findings contribute to the field of AI-based health monitoring and have practical
implications for implementing systems that are able to estimate vital signs of patients
without any contact, in order to lower financial costs, reduce visit times, increase comfort,
and enhance safety for healthcare professionals.

Regarding the hardware performance for both the EVM and rPPG method, the
XavierNX platform outperformed all other evaluated embedded boards in terms of latency,
throughput, and efficiency because of its advantageous CPU and accelerator; meanwhile,
in terms of value and power consumption, the RP4_64bit was found to outperform the
other tested boards. Moreover, the most computationally expensive part of the pipeline for
EVM was found to be the ‘CNN’, while for rPPG it was the ‘Post-Process’ stage.
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However, there are still several challenges and limitations associated with the use of
EVM and rPPG methods on edge hardware. While platforms such as NVIDIA Jetson Nano,
Xavier NX, and RP4_64bit are able to achieve 30 FPS and more, they must scale down the
video resolution which could affect the quality of the image and hence introduce noise
to the results. Additionally, there are various improvements that can be implemented in
order to increase throughput, by optimizing bottlenecks using hardware specific resources
(hardware optimized models, parallelization, threading, dimension reduction techniques,
etc.), but there are limitations in how accurate the algorithms can be. This opens avenues
for future research that could be built on this study, such as exploring 2D or 3D CNNs to
estimate vital signs from RGB video streams in terms of both accuracy and edge hardware
performance. A lot of the data pre-processing and algorithms could be replaced by an AI
model that could assist in reducing computational complexity, making it more suitable for
resource-constrained devices.

Overall, this study has made a valuable contribution to the field of AI-based health
monitoring and provides a starting point for further research and development in this
area. We hope that these findings will inform and guide the development of heart rate
and respiratory rate estimations via contactless methods, leading to more advanced and
effective solutions in the future.
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