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Colour–kinematics duality is a remarkable property of Yang–Mills theory. Its validity implies a
relation between gauge theory and gravity scattering amplitudes, known as double copy. Albeit
fully established at the tree level, its extension to the loop level is conjectural. Lifting the on-shell,
scattering amplitudes-based description to the level of action functionals, we argue that a theory
that exhibits tree-level colour–kinematics duality can be reformulated in a way such that its loop
integrands manifest a generalised form of colour–kinematics duality. Moreover, we show how
the structures of higher homotopy theory naturally describe this off-shell reformulation of colour–
kinematics duality.
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1. Introduction

Yang–Mills theory and Einstein–Hilbert gravity are very different theories: while the former is
a renormalisable theory of interacting massless spin 1 fields, invariant under the action of compact-
Lie-group-valued functions, the latter is a non-renormalisable, diffeomorphism-invariant theory
describing the dynamics of the space–time metric. If we consider the semi-classical perturbative
description of said theories in terms of tree-level Feynman diagrams, the usual Yang–Mills action
produces only cubic and quartic interaction vertices, while the Einstein–Hilbert action for gravity
produces vertices of arbitrarily high degree.

It is surprising then to find that tree-level gravity scattering amplitudes can be obtained by
“squaring” Yang–Mills amplitudes through a procedure known as double copy [3–5]. This relation,
which may be considered a reflection of Kawai–Lewellen–Tye relations that hold between closed
and open string amplitudes, relies on a remarkable property of Yang–Mills theory, namely colour–
kinematics duality. Consider an 𝑛-point, 𝐿-loop Yang–Mills amplitude 𝒜𝑛,𝐿 , parameterised as

𝒜𝑛,𝐿 = (−i)𝑛−3+3𝐿𝑔𝑛−2+2𝐿
∑︁

𝑖∈Γ𝑛,𝐿

∫ (
𝐿∏
𝑙=1

d𝑑𝑝𝑙
(2𝜋)𝑑

)
c𝑖n𝑖
𝑆𝑖𝑑𝑖

, (1)

where 𝑔 is the Yang–Mills coupling constant and Γ𝑛,𝐿 is the set of cubic graphs1 with 𝑛 labelled
external lines. The denominators 𝑑𝑖 are given by products of the Feynman–’t Hooft propagators,
i.e. products of factors 1

𝑝2
𝑙

where 𝑝𝑙 is the momentum flowing through the internal line 𝑙. The c𝑖
are colour factors, consisting of contractions of the gauge Lie algebra structure constants and the
Killing form according to the structure of the graph 𝑖 ∈ Γ𝑛,𝐿 . The kinematic factors n𝑖 are sums
of Lorentz-invariant contractions of the Minkowski metric, external momenta and the polarisation
vectors labelling the external scattering states.

We have some freedom in the choice of kinematic factors. Indeed, 𝒜𝑛,𝐿 is invariant under any
shift n𝑖 → n𝑖 + Δ𝑖 with

0 =
∑︁

𝑖∈Γ𝑛,𝐿

∫ (
𝐿∏
𝑙=1

d𝑑𝑝𝑙
(2𝜋)𝑑

)
Δ𝑖n𝑖
𝑆𝑖𝑑𝑖

. (2)

We call these shifts generalised gauge transformations. We say that the integrands of 𝒜𝑛,𝐿 are
colour–kinematics dual if there is a choice of kinematic factors that obey the same algebraic
identities (e.g., Jacobi identity) of their correspondent colour factors. Colour–kinematics duality
holds if every amplitude is colour–kinematics dual.

Several theories exhibit this property. Tree-level colour–kinematics duality has been proved
for Yang–Mills theory [6, 17] and the non-linear sigma model (NLSM) [11–13], while full off-shell
colour–kinematics duality was shown for (the currents of) self-dual Yang–Mills theory [15] and
Chern–Simons theory [2]. Colour–kinematics duality for Yang–Mills theory implies that if we
replace the colour factors c𝑖 in (1) with a second copy of the kinematic factor n𝑖 , we obtain a gravity
scattering amplitude [3–5]. The double copy prescription is a perturbative all-loop statement, and
its loop-level validity relies on loop-level colour–kinematics duality, which has not been proved so
far.

1i.e. graphs with vertices that all have degree three
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To overcome the difficulties in proving loop-level colour–kinematics duality, we bootstrap
the scattering amplitude paradigm to an off-shell, action-based description of colour–kinematics
duality and the double copy. In the following we propose a weaker, generalised off-shell notion
of colour–kinematics duality, implied by standard colour–kinematics duality at the tree level. We
then provide a natural characterisation of colour–kinematics duality in terms of homotopy algebraic
structures. Finally, we introduce the notion of syngamy to generalise the double copy procedure,
and we describe a homotopy algebraic interpretation of colour–kinematics duality.

2. Generalised colour–kinematics duality

Loop integrands are unphysical objects, affected by field redefinitions. This motivates us to
state that a theory described by an action functional 𝑆 satisfies generalised colour–kinematics duality
if there exists an action semi-classically equivalent to 𝑆 (that is, an action obtained from 𝑆 via field
redefinitions and introducing auxiliary fields) such that the associated Feynman diagram expansion
produces colour–kinematics dual loop integrands [10].

The main result of [10] is that tree-level colour–kinematics duality implies a generalised
form of colour–kinematics duality, in which colour–kinematics duality is realised up to potential
counterterms. Starting from a colour–kinematics dual parameterisation of the tree-level scattering
amplitudes, it is possible to produce a semi-classically equivalent action for the theory that manifests
generalised colour–kinematics duality up to any desired perturbative order:

1. Consider a tree-level colour–kinematics dual quantum field theory; choose a colour–kinema-
tics dual parameterisation of tree-level scattering amplitudes. We explicitly allow terms in
𝑆 that vanish once algebraic relations for the structure constants (e.g. anti-symmetry and the
Jacobi identity of the Lie algebra structure constants as well as symmetry and invariance
of the metric) are taken into account. Set 𝑆3 = 𝑆, where 𝑆𝑛 denotes the action with off-
shell, generalised colour–kinematics duality manifest up to 𝑛 points. Now proceed with the
algorithm starting at 𝑛 = 4.

2. The 𝑛-point tree Feynman diagrams produced by 𝑆𝑛−1 partition the 𝑛-point tree scattering
amplitude into pieces corresponding to different pole structures produced by propagators
corresponding to internal edges. Compare these partitions to the colour–kinematic-dual
parameterisation of the 𝑛-point scattering amplitudes. The sum of the differences must
vanish, as the tree-level scattering amplitudes must agree.

3. Add the (vanishing) sum of the differences to the action 𝑆𝑛−1 as an 𝑛-point vertex, producing
the action 𝑆on-shell

𝑛 . The 𝑚-point tree Feynman diagrams produced by 𝑆on-shell
𝑛 then agree with

those in the colour–kinematic-dual parameterisation of the 𝑚-point scattering amplitudes for
all 𝑚 ≤ 𝑛. Observe that the action 𝑆on-shell

𝑛 may contain non-local terms of the form 𝐴 1
�𝐵.

4. From 𝑆on-shell
𝑛 , we compute off-shell amputated correlators. When restricted on shell, they

manifest colour–kinematics duality: this implies that off-shell generalised colour–kinematics
duality is violated by terms proportional to the equations of motion. These terms can be
compensated by (possibly non-local) field redefinitions.

5. If we have reached the maximal order that is of relevance for the scattering amplitudes we
are interested in, halt. Otherwise, increment 𝑛, and go back to 2.
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Explicit computations for Yang–Mills theory and NLSM are detailed in [10].

3. Double copy

The action obtained at the end of the algorithm described in the last Section can be cast in a
cubic form with the introduction of auxiliary fields

𝑆 = 1
2g𝛼𝛽 ḡ𝛼̄𝛽Φ

𝛼𝛼̄�Φ𝛽𝛽 + 1
3! f𝛼𝛽𝛾 f̄𝛼̄𝛽𝛾̄Φ

𝛼𝛼̄Φ𝛽𝛽Φ𝛾𝛾̄ . (3a)

If we consider Yang–Mills theory or the NLSM, 𝛼, 𝛽, 𝛾 are colour or flavour indices, and 𝛼̄, 𝛽, 𝛾̄

label particle species. The statement that generalised off-shell colour–kinematics duality is manifest
is equivalent to the statement that g𝛼𝛽, f𝛼𝛽𝛾 and ḡ𝛼̄𝛽 , f̄𝛼̄𝛽𝛾̄ satisfy the same algebraic relations.
Motivated by the factorisation into left and right indices, we assume the BRST operator of the
theory to be of the form

𝑄BRSTΦ
𝛼𝛼̄ = q𝛼

𝛽 𝛿
𝛼̄

𝛽
Φ𝛽𝛽 + 𝛿𝛼𝛽 q̄𝛼̄

𝛽
Φ𝛽𝛽 + 1

2 f𝛽𝛾 𝛼 q̄𝛼̄

𝛽𝛾̄
Φ𝛽𝛽Φ𝛾𝛾̄ + 1

2q𝛼
𝛽𝛾 f̄𝛽𝛾̄

𝛼̄Φ𝛽𝛽Φ𝛾𝛾̄ + · · · . (3b)

Consider a second theory that has manifest colour–kinematics duality (possibly a copy of the
first one)

𝑆 = 1
2gab ḡāāΦ

aā�Φbb̄ + 1
3! fabc f̄āb̄c̄Φ

aāΦbb̄Φcc̄ (4a)

with a BRST operator

𝑄BRSTΦ
aā = qa

b𝛿
ā
b̄Φ

bb̄ + 𝛿a
bq̄ā

b̄Φ
bb̄ + 1

2 fbc
a q̄ā

b̄c̄Φ
bb̄Φcc̄ + 1

2qa
bc f̄b̄c̄

āΦbb̄Φcc̄ + · · · . (4b)

As detailed in [8–10], we can combine the left and right components of all the fields and all the
structure constants of the parent theories to obtain new theories. We refer to this generalisation of
the double copy as syngamy. We have four possible syngamies, each one with its own action and
BRST operator:

(i) Φ𝛼a , (g𝛼𝛽 , gab, f𝛼𝛽𝛾 , fabc) , (q𝛼
𝛽 , q

a
b, . . .) ,

(ii) Φ𝛼̄a , (ḡ𝛼̄𝛽 , gab, f̄𝛼̄𝛽𝛾̄ , fabc) , (q̄𝛼̄

𝛽
, qa

b, . . .) ,

(iii) Φ𝛼ā , (g𝛼𝛽 , ḡāb̄, f𝛼𝛽𝛾 , f̄āb̄c̄) , (q𝛼
𝛽 , q̄

ā
b̄, . . .) ,

(iv) Φ𝛼̄ā , (ḡ𝛼̄𝛽 , ḡāb̄, f̄𝛼̄𝛽𝛾̄ , f̄āb̄c̄) , (q̄𝛼̄

𝛽
, q̄ā

b̄, . . .) .

(5)

In the case of two Yang–Mills theories (identified with the left and right theories) with possibly
different colour groups, these syngamies respectively correspond to:

(i) A theory where the left kinematic part is combined with the right kinematic part. This is the
syngamy that is usually called double copy. The resulting theory has the same field content
as N = 0 supergravity and is perturbatively quantum equivalent to this theory, cf. [10].

(ii) A theory where the left colour part is combined with the right kinematic part. This syngamy
is identical to the left parent theory.

(iii) A theory where the the left kinematic part is combined with the right colour part. This
syngamy is identical to the right parent theory.

(iv) A theory where the left colour part is combined with the right colour part. This syngamy is
sometimes called the zeroth copy, and the resulting theory is (quantum) equivalent to a theory
of biadjoint scalars, cf. [9].
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4. Homotopy algebraic description of colour–kinematics duality

Every Lagrangian field theory can be described as a homotopy Maurer–Cartan theory associated
to a cyclic 𝐿∞-algebra. In this final section, we employ this framework to characterise a theory whose
scattering amplitudes admit a factorisation of the form (1) [7]. Note that the algebraic structures
that characterise colour–kinematics duality of Yang–Mills theory were also explored in the work of
Reiterer [16]. The field content of the theory is organised as a graded vector space L = ⊕𝑖∈ZL𝑖 . The
bilinear part of the action is described by a linear kinematic operator 𝜇1 : L• → L•+1 of degree 1,
and the cubic interactions are captured by graded-anti-symmetric bilinear maps 𝜇2 : L × L → L

of degree 0. Gauge symmetry and gauge invariance of the action imply that (L, 𝜇1, 𝜇2) forms a
differential graded Lie algebra, cf. e.g. [9] for more details. The images of 𝜇1 and 𝜇2 appear in the
action paired to the field content of the theory by a bilinear cyclic map of degree −3. The kinematic
operator 𝜇1, restricted to a map from L/ker 𝜇1 to the image of 𝜇1, is inverted by the propagator 𝑃:
𝜇1𝑃+𝑃𝜇1+ idL |on-shell = idL. Factorising 𝑃 = h

� in terms of a linear operator h of degree −1, we can
rewrite this equation as 𝜇1h+h𝜇1 = �. The colour-stripped theory is obtained after the factorisation
L = g ⊗ B, where g is the colour Lie algebra and B is a differential graded-commutative algebra
with differential d and product − · − [9]. Denoting the colour-stripped propagator also by h

� , we
have dh + hd = �. As we admit generic colour–kinematics dual theories in which the denominators
𝑑𝑖 appearing in (1) may be different than products of the squared momenta on internal legs, we
allow a more general second order differential operator � with respect to − · −. In all the relevant
physical examples, h is also a second-order differential. We then have that

[𝑥, 𝑦] B (−1) |𝑥 | (h(𝑥 · 𝑦) − (h𝑥) · 𝑦 − (−1) |𝑥 |𝑥 · (h𝑦)) (6)

is a Gerstenhaber bracket on B, i.e. a Lie bracket of degree −1 mapping pairs of physical fields
to physical fields, whose structure constants are precisely the kinematic structure constants. The
kinematic Lie algebra is then K B (B[1], [−,−]), where B[1] indicates a shift of all fields by
−1 needed to make [−,−] an ordinary graded Lie bracket of degree 0. Observe that the kinematic
Lie algebra usually discussed in the literature is obtained truncating K to the elements of degree 0,
the physical fields. Mathematically, (B,− · −, h) forms a BV algebra in the sense of [14], i.e. a
Gerstenhaber algebra (B,− · −, [−,−]) in which the Gerstenhaber bracket [−,−] is given by the
derived bracket (6). The additional data enhance this BV algebra to what we call a 𝐵𝑉�-algebra [7]
(see also [1] for earlier generalisations of differential BV algebras).

Data Management

No additional research data beyond the data presented and cited in this work are needed to
validate the research findings in this work. For the purpose of open access, the authors have applied
a Creative Commons Attribution (CC-BY) licence to any Author Accepted Manuscript version
arising.
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