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Abstract 

In this study, the free vibration of a functionally graded carbon nanotube-reinforced composite (FG-

CNTRC) sandwich nanoplate with an electrorheological fluid (ERF) layer as its core under a 

longitudinal magnetic field is examined using the nonlocal elasticity theory, Hamilton's principle, the 

third-order shear deformation theory (TSDT), and for various boundary conditions. While the continuity 

of physical quantities is required between all layers, the rule of mixing allows us to analyze the 

distribution of characteristics in this system's thickness direction. Changing the electric field also alters 

the ERF parameters in the pre-yield region. The generated equations are then solved using the Galerkin 

technique. A comparison with some other item of existing literature is used to evaluate the established 

solution's accuracy and correctness. The dependency of vibration behavior on certain factors: electric 

field strength, boundary conditions, magnetic field intensity, volume fraction of the carbon nanotubes 

(CNTs), CNTs distribution and nonlocal parameter are analyzed in a comprehensive parametric study.  

Keywords: Electrorheological fluid; FG-CNTRC nanoplate; Free vibration; Nonlocal elasticity theory; 

Third-order shear deformation theory. 
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1. Introduction  

Designing lightweight structures has been a critical area of concern for engineers for a long 

time. For example, reducing the weights of an airplane and a submarine directly supports the 

decrease in their fuel consumption. However, as these structures are generally built for a few 

load cases, they are prone to all kinds of vibrations. Apart from the passive control, which relies 

on altering material characteristics, especially damping and stiffness, active control has become 

an increasingly interesting topic ever since smart materials were introduced [1–3]. The former 

type of control is usually unable to tackle severe changes in loads, whereas the latter allows the 

implementation of different smart materials, such as electrorheological fluids (ERFs) or 

piezoelectric materials in most existing systems in order to adapt to any significant change in 

their surroundings. ERFs are smart materials of immense potential, especially in engineering 

fields. ERFs are made up of particles that may be electrically polarized and that are suspended 

in an insulating liquid. Atomic processes and ionic or electronic conduction are the sources of 

particle polarization in ERFs. In the absence of an electric field, they show low viscosity, while 

a specific electric field increases their viscosity by changing the state of particles [4–6]. Most 

ERFs used presently are made up of solids suspended in a liquid, so they need to be stabilized 

to keep them from settling. When an electric field of certain magnitude influences these two 

phases, it is expected to observe a material resembling a gel [7–9]. Yeh and Chen [10] examined 

how the electric field affected the natural frequency of a sandwich ERF plate and found that 

the natural frequency rises by increasing the electric field. The nonlinear dynamic response of 

a rotating sandwich beam with an ERF core was demonstrated by Wei et al. [11] using the 

finite element method (FEM). To study the damping and dynamic characteristics of the 

orthotropic cylindrical sandwich shells with an ERF core layer, Yeh [12] employed the 

classical thin shell theory. To analyze the fundamental frequencies of an ERF plate integrated 

with CNT-reinforced nanocomposite layers, Arani et al. [13] presented a numerical model 

using Eshelby-Mori-Tanaka technique and classical plate model. Forced and free vibration 

issues of a ERF plate with functionally graded (FG) face layers under a simply supported 

boundary condition were investigated by Babaki and Shakouri [14]. Based on the first-order 

shear deformation theory (FSDT), Shahali et al. [15] proposed a semi-analytical approach for 

analyzing the influences of the gradient factor and applied electric field on the variations of the 

modal loss factors and natural frequencies of a ERF cylinder with FG face layers. Khorshidi et 

al. [16] investigated the nonlinear vibration analysis of a sandwich ERF plate in contact 

with quiescent fluid using nonlinear Von-Karman strains and higher-order shear deformable 

theory. Ghavidel et al. [17] applied FSDT to study free vibration and damping behavior of 

cylindrical sandwich panel with ERF core and graphene platelets reinforced composite facing 

sheets.  

https://www.sciencedirect.com/topics/engineering/applied-electric-field
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/free-vibration
https://www.sciencedirect.com/topics/engineering/quiescent-fluid
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Carbon nanotubes (CNTs) are small cylinder-shaped structures made up of rolled-up sheets 

of single-layer carbon atoms. Their notable properties are strong durability and aspect ratio, 

stiffness, and minimal density [18–21]. Chang et al. [22] provided closed-form formulas for 

the elastic characteristics of chiral SNTs. The aforementioned expressions exhibit concision 

while effectively establishing a direct correlation between material properties across varying 

length scales. Ghavanloo and Fazelzadeh [23] proposed an anisotropic elastic shell model 

utilizing the Flügge shell concept and complex method to investigate the vibration 

characteristics of chiral Single-wall carbon nanotubes (SWCNTs). In the study conducted by 

Strozzi et al. [24], a novel nonlocal anisotropic elastic shell model was formulated to analyze 

the nonlinear vibrations of double-walled carbon nanotubes (DWCNTs) using the Sanders-

Koiter shell theory framework. Within the past few decades, analysts have paid much 

consideration to the advancement of fiber-reinforced composites. Standard filaments are 

normally made from glass, alumina, boron and silicon carbide, among others, as fillers in such 

composites. These common place filaments are in mesoscale with different diameters and 

lengths [25–27]. At the visible level, because reinforcements are distributed uniformly or 

randomly throughout the system, traditional composites' mechanical, physical, and thermal 

characteristics do not vary considerably. In order to ameliorate this characteristic, functionally 

graded materials (FGMs) have been developed [28–32]. They are made of two or more 

constituents with properties that can change spatially, which can be a non-uniform distribution 

of reinforcements. This technique allows engineers to obtain materials that act better than their 

homogenous counterparts. FG-carbon nanotube reinforced composite (FG-CNTRC) is a new 

class of high-stiffness materials that was created as a result of the combination of FGMs with 

carbon nanotubes [33–35]. The incorporation of CNTs in the composite material provides 

several advantages, such as enhanced mechanical properties, electrical conductivity, and 

thermal conductivity. Shen [33] presented the first study on FG-CNTRC and suggested a 

certain pattern of carbon nanotubes in an isotropic matrix based on equations that were already 

known to go in any direction. Mehar et al. [36] computed the fundamental frequencies of FG-

CNTRC plate under thermal environment. Fu et al. [37] used FSDT and the generalized 

differential quadrature (GDQ) scheme for examining how FG-CNTRC annular sector plates 

buckle and vibrate. Based on the FSDT and irregular rational B-Spline foundational operations, 

Nguyen et al. [38] analyzed the natural frequencies and static performance of FG-CNTRC 

doubly-curved shell. The influences of the temperature, gradation function and inhomogeneity 

constraints on the static deflection and elastic instability of FG-CNTRC plates have been 

reported by Daikh et al. [39] utilizing Galerkin method. Huan et al. [40] used four-variable 

shear deformation refined model to solve the problem of FG-CNTRC plates vibrating in a fluid 

medium. 

Besides, the manipulation of matter on small scales, also known as nanotechnology, has 

allowed to produce an extensive array of engineered materials, structures, devices and 

complicated systems that were otherwise impossible to realize [41,42]. On this small scale, 

experimental studies require a considerable amount of time, effort and money, especially when 

dealing with a large-scale molecular simulation. Furthermore, it has been shown that if the 

theories of classical continuum mechanics are employed, accurate prediction of material 

behavior on such scales is impossible. Therefore, researchers have considered non-classical 

https://www.sciencedirect.com/science/article/abs/pii/S0263822318300709#!
https://www.sciencedirect.com/topics/engineering/free-vibration
https://link.springer.com/article/10.1007/s00366-021-01413-8#auth-Ahmed_Amine-Daikh


 
 
 
 

continuum theories that can effectively incorporate the interaction between atoms and 

molecules. Some of these non-classical continuum models are strain gradient theory (SGT) 

[43,44], Eringen's nonlocal elasticity model [45–47], modified strain gradient theory (MSGT) 

[48–52], modified couple stress theory (MCST) [53,54] and nonlocal strain gradient theory 

(NSGT) [55–58]. In accordance with Eringen's nonlocal theorem, a nonlocal parameter 

associated with the stiffness-softening effects is required to account for small-scale effects. The 

stress at one place in the continuum is a result of the strain at all other sites due to atomic forces 

and other small-scale variables, as the theory's fundamental notion makes clear. In line with 

third-order shear deformation theory (TSDT) and nonlocal elasticity theory, Aghababaei and 

Reddy [59] calculated the natural frequencies of a plate. FG-CNTRC nanoplates can be used 

in the construction of lightweight, high-strength materials for aerospace and defense 

applications. Phung-Van et al. [60] carried out the influence of the nonlocal term on the natural 

frequencies of an FG-CNTRC nanoplate applying nonlocal elasticity theory. Phung-Van et al. 

[61] investigated the dynamic behavior of an FG-CNTRC nanoplate under a homogeneous 

transverse force, considering temperature environment, nonlocal model of Eringen. Thai et al. 

[62] suggested meshfree approach with size dependence to investigate the bending behavior 

and natural frequencies of FG-CNTRC nanoplates.  

The aforementioned literature established that although there exists an extensive body of 

researches on free vibration of sandwich ERF plates, but the free vibration of a FG-CNTRC 

sandwich nanoplate with an ERF core layer based on the TSDT and nonlocal elasticity model 

and undergoing a longitudinal magnetic field has not been investigated, using theoretical or 

numerical methods. To fill this knowledge gap, the current work proposes a unique 

combination of existing methods. The ERF properties in the pre-yield region change by varying 

the electric field and four different kinds of CNTs distributions are applied. A set of systematic 

analyses of the impacts of the boundary conditions, magnetic field intensity, CNTs distribution, 

electric field strength and nonlocal term on the natural frequency are also investigated. 

The paper is structured as follows: In section 2, the methodology and main formulations of 

a FG-CNTRC sandwich nanoplate with an ERF core layer are presented. Then, the solution of 

the free vibration problem for different boundary conditions is provided in section 3. Section 4 

presents a thorough comparative analysis and related parametric findings. Finally, conclusions 

are expressed in section 5.  

 

 

2. Problem description and modeling 

Fig. 1 depicts the dimensions and geometry of a sandwich rectangular nanoplate (𝐿𝑥 × 𝐿𝑦)  

made up of three layers: a base FG-CNTRC layer (ℎ3), an ERF core layer (ℎ2), and a 

constraining FG-CNTRC layer (ℎ1). UD-CNTRC, as shown in Fig. 1, refers to a distribution 

scheme in which CNTs are uniformly distributed across the composite layer, whereas FG-V-

CNTRC, FGX-CNTRC, and FG-O-CNTRC all include distributions of CNTs. No sliding is 

assumed to occur between the FG-CNTRC and ERF layers. As a result, all points on the cross 

section of all layers have the same transverse displacement.  
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Fig. 1. Configuration of an FG-CNTRC sandwich nanoplate with ERF core layer. 

 

2.1. Structural model 

The rotating inertia and transverse shear deformation are both considered by TSDT. However, 

based on TSDT, the total displacement components (𝑈, 𝑉,𝑊) in Cartesian coordinates can be 

expressed as [63] 

𝑈𝑖(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢0𝑖(𝑥, 𝑦, 𝑡) + 𝑧휃𝑥𝑖(𝑥, 𝑦, 𝑡) − 𝐶1𝑧
3 (휃𝑥𝑖(𝑥, 𝑦, 𝑡) +

𝜕𝑊0𝑖(𝑥, 𝑦, 𝑡)

𝜕𝑥
) , 

𝑉𝑖(𝑥, 𝑦, 𝑧, 𝑡) = 𝑣0𝑖(𝑥, 𝑦, 𝑡) + 𝑧휃𝑦𝑖(𝑥, 𝑦, 𝑡) − 𝐶1𝑧
3 (휃𝑦𝑖(𝑥, 𝑦, 𝑡) +

𝜕𝑊0𝑖(𝑥, 𝑦, 𝑡)

𝜕𝑦
) , 

𝑊𝑖(𝑥, 𝑦, 𝑧, 𝑡) = 𝑊0(𝑥, 𝑦, 𝑡),    𝑖 = 𝑏, 𝑐, 𝑡. 

 

 

(1) 

where 𝑢0 and 𝑣0 are, respectively, the membrane deflections around the x-axis and y-axis. 

Furthermore, 𝐶1 =
4

3ℎ𝑗
2 , (𝑗 = 1,2,3) and 𝑏, 𝑐 and 𝑡 denote, respectively, the bottom, core and 

top layers. The transverse displacement factor is denoted by 𝑊0, whereas rotations of the 

central plane about the y- and x-axes are denoted by 휃𝑦 and 휃𝑥. As previously stated, it is 

supposed that there is no slipping between the FG-CNTRC and ERF layers, consequently, 

through the thickness, the deformation distribution is continuous. Accordingly, displacement 

continuity condition in the FG-CNTRC/ERF interfaces can be resulted as 

𝑢0𝑐 −
ℎ2

2
휃𝑥𝑐 −

ℎ2

6
(휃𝑥𝑐 +

𝜕𝑊0

𝜕𝑥
) = 𝑢0𝑏 +

ℎ3

2
휃𝑥𝑏 +

ℎ3

6
(휃𝑥𝑏 +

𝜕𝑊0

𝜕𝑥
),  

𝑣0𝑐 −
ℎ2

2
휃𝑦𝑐 −

ℎ2

6
(휃𝑦𝑐 +

𝜕𝑊0

𝜕𝑦
) = 𝑣0𝑏 +

ℎ3

2
휃𝑦𝑏 +

ℎ3

6
(휃𝑦𝑏 +

𝜕𝑊0

𝜕𝑦
),  

𝑢0𝑐 +
ℎ2

2
휃𝑥𝑐 +

ℎ2

6
(휃𝑥𝑐 +

𝜕𝑊0

𝜕𝑥
) = 𝑢0𝑡 −

ℎ1

2
휃𝑥𝑡 +

ℎ1

6
(휃𝑥𝑡 +

𝜕𝑊0

𝜕𝑥
),  

𝑣0𝑐 +
ℎ2

2
휃𝑦𝑐 +

ℎ2

6
(휃𝑦𝑐 +

𝜕𝑊0

𝜕𝑦
) = 𝑣0𝑡 −

ℎ1

2
휃𝑦𝑡 +

ℎ1

6
(휃𝑦𝑡 +

𝜕𝑊0

𝜕𝑦
),  

 

 

(2) 

which results in 

𝑢0𝑐 =
1

4
(𝑢0𝑡 + 3𝑢0𝑏) −

ℎ1

3
휃𝑥𝑡 +

ℎ3

3
휃𝑥𝑏 −

1

12

𝜕𝑊0

𝜕𝑥
(ℎ1 − ℎ3),  

𝑣0𝑐 =
1

4
(𝑣0𝑡 + 3𝑣0𝑏) −

ℎ1

3
휃𝑦𝑡 +

ℎ3

3
휃𝑦𝑏 −

1

12

𝜕𝑊0

𝜕𝑦
(ℎ1 − ℎ3),  

 

 



 
 
 
 

 휃𝑥𝑐 =
3

4ℎ2
(𝑢0𝑡 − 𝑢0𝑏) −

1

2ℎ2
(ℎ1휃𝑥𝑡 + ℎ3휃𝑥𝑏) −

1

4

𝜕𝑊0

𝜕𝑥
(1 +

ℎ1

2ℎ2
+

ℎ3

2ℎ2
),  

휃𝑦𝑐 =
3

4ℎ2
(𝑣0𝑡 − 𝑣0𝑏) −

1

2ℎ2
(ℎ1휃𝑦𝑡 + ℎ3휃𝑦𝑏) −

1

4

𝜕𝑊0

𝜕𝑦
(1 +

ℎ1

2ℎ2
+

ℎ3

2ℎ2
),  

(3) 

The following is a definition of the strain elements in FG-CNTRC layers: 

휀𝑥𝑥𝑖 =
𝜕𝑢0𝑖

𝜕𝑥
+ 𝑧

𝜕𝜃𝑥𝑖

𝜕𝑥
− 𝐶1𝑧

3 (
𝜕𝜃𝑥𝑖

𝜕𝑥
+
𝜕2𝑊0

𝜕𝑥2
), 

휀𝑦𝑦𝑖 =
𝜕𝑣0𝑖

𝜕𝑦
+ 𝑧

𝜕𝜃𝑦𝑖

𝜕𝑦
− 𝐶1𝑧

3 (
𝜕𝜃𝑦𝑖

𝜕𝑦
+
𝜕2𝑊0

𝜕𝑦2
),  

𝛾𝑥𝑦𝑖 =
𝜕𝑢0𝑖

𝜕𝑦
+
𝜕𝑣0𝑖

𝜕𝑥
+ 𝑧 (

𝜕𝜃𝑥𝑖

𝜕𝑦
+
𝜕𝜃𝑦𝑖

𝜕𝑥
) − 𝐶1𝑧

3 (
𝜕𝜃𝑥𝑖

𝜕𝑦
+
𝜕𝜃𝑦𝑖

𝜕𝑥
+ 2

𝜕2𝑊0

𝜕𝑥𝜕𝑦
),  

 𝛾𝑥𝑧𝑖 = (1 − 3𝐶1𝑧
2) (휃𝑥𝑖 +

𝜕𝑊0

𝜕𝑥
), 

 𝛾𝑦𝑧𝑖 = (1 − 3𝐶1𝑧
2) (휃𝑦𝑖 +

𝜕𝑊0

𝜕𝑦
).    𝑖 = 𝑏, 𝑡. 

 

 

(4) 

As well, for the ERF layer, the transverse shear strain elements may be written as 

 𝛾𝑥𝑧𝑐 = (1 − 3𝐶1𝑧
2) (휃𝑥𝑐 +

𝜕𝑊0

𝜕𝑥
) = (1 − 3𝐶1𝑧

2) [
3

4ℎ2
(𝑢0𝑡 − 𝑢0𝑏) −

1

2ℎ2
(ℎ1휃𝑥𝑡 + ℎ3휃𝑥𝑏) −

1

4

𝜕𝑊0

𝜕𝑥
(−3 +

ℎ1

2ℎ2
+

ℎ3

2ℎ2
)], 

 𝛾𝑦𝑧𝑐 = (1 − 3𝐶1𝑧
2) (휃𝑦𝑐 +

𝜕𝑊0

𝜕𝑦
) = (1 − 3𝐶1𝑧

2) [
3

4ℎ2
(𝑣0𝑡 − 𝑣0𝑏) −

1

2ℎ2
(ℎ1휃𝑦𝑡 + ℎ3휃𝑦𝑏) −

1

4

𝜕𝑊0

𝜕𝑦
(−3 +

ℎ1

2ℎ2
+

ℎ3

2ℎ2
)].     

 

 

(5) 

The nonclassical basic stress-strain relationships containing normal (𝜎𝑥𝑥, 𝜎𝜃𝜃) and shear 

(𝜏𝑥𝑧, 𝜏𝜃𝑧, 𝜏𝑥𝜃) stress components for each FG-CNTRC layer in accordance with the nonlocal 

elasticity model of Eringen, are given as [64] 

[1 − (𝑒0𝑎)
2∇2]

[
 
 
 
 
𝜎𝑥𝑥𝑖
𝜎𝑦𝑦𝑖
𝜏𝑥𝑦𝑖
𝜏𝑦𝑧𝑖
𝜏𝑥𝑧𝑖 ]

 
 
 
 

=

{
 
 

 
 
𝑄11 𝑄12 0 0 0
𝑄21 𝑄22 0 0 0
0 0 𝑄66 0 0
0 0 0 𝑄44 0
0 0 0 0 𝑄55}

 
 

 
 

[
 
 
 
 
휀𝑥𝑥𝑖
휀𝑦𝑦𝑖
𝛾𝑥𝑦𝑖
𝛾𝑦𝑧𝑖
𝛾𝑥𝑧𝑖]

 
 
 
 

 ,  𝑖 = 𝑏, 𝑡. 

𝑄11 =
𝐸11

1−𝜗12𝜗21
, 𝑄22 =

𝐸22

1−𝜗12𝜗21
, 𝑄12 =

𝜗12𝐸22

1−𝜗12𝜗21
, 𝑄66 = 𝐺12, 𝑄44 = 𝐺23, 𝑄55 =

𝐺13  

 

 

(6) 

Here, 𝑒0𝑎 and 𝑒0 are, respectively, the nonlocal parameter and the calibration constant. These 

parameters can be changed to verify other reported models in the literature. For instance, 

Eringen [45,46] has mentioned a value of 0.39 for 𝑒0. Moreover, 𝑎 is the internal effective 

length. If 𝑎 is much smaller than its external counterpart, the traditional elasticity and nonlocal 

models become identical. If the external and internal effective lengths are relatively close, the 

nonlocal elasticity theory matches the theory of lattice dynamics [65,66]. The inclusion of 

Lamé parameters and one or more length scale parameters allow us to study the nano scale 

effects in a nonlocal elasticity theory. At this point, the effective Young's modulus of the FG-

CNTRC layer is denoted by 𝐸11 and 𝐸22; Poisson's ratio is indicated by 𝜗12 and 𝜗21; and the 

shear modulus is shown by 𝐺12, 𝐺23, and 𝐺13. Applying the rule of mixture, such material 

characteristics of FG-CNTRC layer are defined as [67] 

𝐸11 = 휁1𝑉𝐶𝑁𝑇𝐸11
𝐶𝑁𝑇 + 𝑉𝑚𝐸𝑚,   
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𝜁2

𝐸22
=

𝑉𝐶𝑁𝑇

𝐸22
𝐶𝑁𝑇 +

𝑉𝑚

𝐸𝑚
, 

𝜁3

𝐺12
=

𝑉𝐶𝑁𝑇

𝐺12
𝐶𝑁𝑇 +

𝑉𝑚

𝐺𝑚
 , 

 

(7) 

where the material properties of CNTs are denoted with (𝐸11
𝐶𝑁𝑇, 𝐸22

𝐶𝑁𝑇 , 𝐺12
𝐶𝑁𝑇), and the isotropic 

matrix moduli are expressed by (𝐸𝑚, 𝐺𝑚). Furthermore, the parameters for CNT efficiency are 

휁1, 휁2, and 휁3, and 

𝑉𝑚 + 𝑉𝐶𝑁𝑇 = 1, 

𝜗12 = 𝑉𝐶𝑁𝑇
∗ 𝜗12

𝐶𝑁𝑇 + 𝑉𝑚𝜗𝑚,  

(8) 

where 𝑉𝐶𝑁𝑇
∗  and 𝑉𝐶𝑁𝑇 represent the volume fractions of the FG-O, FG-X, UD, and FG-V 

patterns of the FG-CNTRC [67] 

𝑉𝐶𝑁𝑇 =

{
 
 

 
 

𝑉𝐶𝑁𝑇
∗                         (UD)

(1 +
2𝑧

ℎ𝑐
)𝑉𝐶𝑁𝑇

∗ ,      (FG − V)

2 (1 −
2|𝑧|

ℎ𝑐
)𝑉𝐶𝑁𝑇

∗ ,   (FG − O)

4
|𝑧|

ℎ𝑐
𝑉𝐶𝑁𝑇
∗ ,                 (FG − X)

     

 

(9) 

Comparatively, in the ERF layer, the nonclassical transverse shear stresses are given as 

[10,68] 

[1 − (𝑒0𝑎)
2∇2]𝜏𝑥𝑧𝑐 = 𝐺

(𝑐)𝛾𝑥𝑧𝑐 ,   [1 − (𝑒0𝑎)
2∇2]𝜏𝑦𝑧𝑐 = 𝐺

(𝑐)𝛾𝑦𝑧𝑐  (10) 

in which 𝐺(𝑐) refers to the complex shear modulus of the electric field-dependent ERF. Using 

Maxwell's equations, we can calculate the Lorentz force that is generated when a longitudinal 

magnetic field with intensity of (𝐻𝑥, 0,0) is applied to the sandwich plate [69]. Additionally, it 

is supposed that the Lorentz force only acts in the z direction on the structure as 

𝑓𝑧 = 휂𝐻𝑥
2 (

𝜕2𝑊𝑖

𝜕𝑥2
+
𝜕2𝑊𝑖

𝜕𝑧2
+

𝜕2𝑉𝑖

𝜕𝑧𝜕𝑦
) = 휂𝐻𝑥

2 (
𝜕2𝑊0

𝜕𝑥2
+
𝜕𝜃𝑦𝑖

𝜕𝑦
− 2𝐶1𝑧

2 𝜕𝜃𝑦𝑖

𝜕𝑦
) ,   𝑖 = 𝑏, 𝑐, 𝑡.  (11) 

where the magnetic field permeability is expressed by 휂. The final form of the equilibrium 

equations for the studied structure is obtained in this section by using the Hamilton's principle 

[70,71]. 

∫ (δΠ𝑇 − δΠ𝑉 + δΠ𝐹)𝑑𝑡
𝑡

𝑡0
= 0.  (12) 

where Π𝑉 signifies the virtual strain energy, Π𝑇 expresses the virtual kinetic energy; Π𝐹 

displays the virtual work applied by mechanical loads. The kinetic energy for ERF sandwich 

nanoplate can be presented as 

Π𝑇 =
1

2
∫ ∫ 𝜌 (�̇�𝑏

2
+ �̇�𝑏

2
+ �̇�𝑏

2
)

ℎ3/2

−ℎ3/2𝐴𝑏
𝑑𝑧𝑑𝐴𝑏 +

1

2
∫ ∫ 𝜌𝑓�̇�𝑐

2ℎ2/2

−ℎ2/2𝐴𝑐
𝑑𝑧𝑑𝐴𝑐 +

1

2
∫ ∫ 𝜌 (�̇�𝑡

2
+ �̇�𝑡

2
+ �̇�𝑡

2
)

ℎ1/2

−ℎ1/2𝐴𝑡
𝑑𝑧𝑑𝐴𝑡,  

 

(13) 

However, the variation of kinetic energy for ERF sandwich nanoplate is expressed as 



 
 
 
 

δΠ𝑇 = ∫ ∫ 𝜌
ℎ3/2

−ℎ3/2
[�̇�𝑏𝛿�̇�𝑏 + �̇�𝑏𝛿�̇�𝑏 + �̇�𝑏𝛿�̇�𝑏]𝑑𝑧d𝐴𝑏𝐴𝑏

+

∫ ∫ 𝜌𝑓
ℎ2/2

−ℎ2/2
�̇�𝑐𝛿�̇�𝑐𝑑𝑧d𝐴𝑐𝐴𝑐

+ ∫ ∫ 𝜌
ℎ1/2

−ℎ1/2
[�̇�𝑡𝛿�̇�𝑡 + �̇�𝑡𝛿�̇�𝑡 + �̇�𝑡𝛿�̇�𝑡]𝑑𝑧d𝐴𝑡𝐴𝑡

,  

 

(14) 

where 𝜌𝑓 signifies the mass density of ERF layer, cross-sectional area is represented by 𝐴, and 

𝜌 indicates the FG-CNTRC layer's mass density, which is presented as  

𝜌 = 𝑉𝐶𝑁𝑇𝜌
𝐶𝑁𝑇 + 𝑉𝑚𝜌𝑚.  (15) 

The strain energy can be calculated by integrating the stress-strain curve of the material over 

the region of elastic deformation as follows 

Π𝑉 = ∫ ∫ (𝜎𝑥𝑥𝑏휀𝑥𝑥𝑏 + 𝜎𝑦𝑦𝑏휀𝑦𝑦𝑏 + 𝜏𝑦𝑧𝑏𝛾𝑦𝑧𝑏 + 𝜏𝑥𝑧𝑏𝛾𝑥𝑧𝑏 +
ℎ3/2

−ℎ3/2𝐴𝑏

𝜏𝑥𝑦𝑏𝛾𝑥𝑦𝑏)𝑑𝑧d𝐴𝑏 + ∫ ∫ (𝜏𝑦𝑧𝑐𝛾𝑦𝑧𝑐 + 𝜏𝑥𝑧𝑐𝛾𝑥𝑧𝑐)𝑑𝑧d𝐴𝑐
ℎ2/2

−ℎ2/2𝐴𝑐
+ ∫ ∫ (𝜎𝑥𝑥𝑡휀𝑥𝑥𝑡 +

ℎ1/2

−ℎ1/2𝐴𝑡

𝜎𝑦𝑦𝑡𝛿휀𝑦𝑦𝑡 + 𝜏𝑦𝑧𝑡𝛾𝑦𝑧𝑡 + 𝜏𝑥𝑧𝑡𝛾𝑥𝑧𝑡 + 𝜏𝑥𝑦𝑡𝛾𝑥𝑦𝑡)𝑑𝑧d𝐴𝑡,  

 

(16) 

The entire strain energy's variation is written as 

δΠ𝑉 = ∫ ∫ (𝜎𝑥𝑥𝑏𝛿휀𝑥𝑥𝑏 + 𝜎𝑦𝑦𝑏𝛿휀𝑦𝑦𝑏 + 𝜏𝑦𝑧𝑏𝛿𝛾𝑦𝑧𝑏 + 𝜏𝑥𝑧𝑏𝛿𝛾𝑥𝑧𝑏 +
ℎ3/2

−ℎ3/2𝐴𝑏

𝜏𝑥𝑦𝑏𝛿𝛾𝑥𝑦𝑏)𝑑𝑧d𝐴𝑏 + ∫ ∫ (𝜏𝑦𝑧𝑐𝛿𝛾𝑦𝑧𝑐 + 𝜏𝑥𝑧𝑐𝛿𝛾𝑥𝑧𝑐)𝑑𝑧d𝐴𝑐
ℎ2/2

−ℎ2/2𝐴𝑐
+

∫ ∫ (𝜎𝑥𝑥𝑡𝛿휀𝑥𝑥𝑡 + 𝜎𝑦𝑦𝑡𝛿휀𝑦𝑦𝑡 + 𝜏𝑦𝑧𝑡𝛿𝛾𝑦𝑧𝑡 + 𝜏𝑥𝑧𝑡𝛿𝛾𝑥𝑧𝑡 + 𝜏𝑥𝑦𝑡𝛿𝛾𝑥𝑦𝑡)𝑑𝑧d𝐴𝑡
ℎ1/2

−ℎ1/2𝐴𝑡
,  

 

(17) 

Lastly, the variation of virtual work, due to mechanical loads, is stated as  

δΠ𝐹 = ∫ 𝑞𝛿𝑊0d𝐴𝐴
,  (18) 

where 𝑞 = ∫ 𝑓𝑧𝑑𝑧
ℎ1/2

−ℎ3/2
. However, substituting Eqs (14), (17) and (18) into Eq. (12), performing 

some manipulations, and by taking into account the coefficients  

𝛿𝑢0𝑏 , 𝛿𝑢0𝑡 , 𝛿𝑣0𝑏 , 𝛿𝑣0𝑡 , 𝛿𝑊0, 𝛿휃𝑥𝑏, 𝛿휃𝑥𝑡,𝛿휃𝑦𝑏 and 𝛿휃𝑦𝑡 equal to zero, the governing equations 

are ultimately obtained and provided in Appendix A. Lastly, replacing Eq. (A10) into Eqs. (A1-

A9), and considering Eqs (1-6), assuming ℎ3 = ℎ1, the size-dependent equations for sandwich 

nanoplate are attained and expressed in Appendix B. 

 

3. Solution method 

The process of solving the derived equations requires proper definitions of boundary 

conditions. Therefore: 

Clamped (C) edge boundary conditions 

𝑢0𝑡 = 𝑢0𝑏 = 𝑣0𝑡 = 𝑣0𝑏 = 𝑊0 = 휃𝑥𝑡 = 휃𝑥𝑏 = 휃𝑦𝑡 = 휃𝑦𝑏 = 0,     𝑎𝑡 𝑥 =

0, 𝐿𝑥;   𝑦 = 0, 𝐿𝑦. 

(19) 

Simply supported (S) edge boundary conditions 

𝑣0𝑡 = 𝑣0𝑏 = 𝑊0 = 휃𝑦𝑡 = 휃𝑦𝑏 = 𝑁𝑥𝑥𝑡 = 𝑁𝑥𝑥𝑏 = 𝑀𝑥𝑥𝑡 = 𝑀𝑥𝑥𝑏 = 𝑃𝑥𝑥𝑡 = 𝑃𝑥𝑥𝑏 =

0,     𝑎𝑡 𝑥 = 0, 𝐿𝑥, 

𝑢0𝑡 = 𝑢0𝑏 = 𝑊0 = 휃𝑥𝑡 = 휃𝑥𝑏 = 𝑁𝑦𝑦𝑡 = 𝑁𝑦𝑦𝑏 = 𝑀𝑦𝑦𝑡 = 𝑀𝑦𝑦𝑏 = 𝑃𝑦𝑦𝑡 =

𝑃𝑦𝑦𝑏 = 0,     𝑎𝑡 𝑦 = 0, 𝐿𝑦. 

 

(20) 
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For the relevant boundary conditions, the following suitable formulations are used [72,73] 

𝑢0𝑡 = ∑ ∑ �̃�𝑡
𝜕𝑋𝑚(𝑥)

𝜕𝑥
𝑌𝑛(𝑦)𝑒

𝑖𝜔𝑡∞
𝑛

∞
𝑚 ,    𝑢0𝑏 = ∑ ∑ �̃�𝑏

𝜕𝑋𝑚(𝑥)

𝜕𝑥
𝑌𝑛(𝑦)𝑒

𝑖𝜔𝑡∞
𝑛

∞
𝑚  , 

𝑣0𝑡 = ∑ ∑ �̃�𝑡𝑋𝑚(𝑥)
𝜕𝑌𝑛(𝑦)

𝜕𝑦
𝑒𝑖𝜔𝓉∞

𝑛
∞
𝑚 ,    𝑣0𝑏 = ∑ ∑ �̃�𝑏𝑋𝑚(𝑥)

𝜕𝑌𝑛(𝑦)

𝜕𝑦
𝑒𝑖𝜔𝓉∞

𝑛
∞
𝑚  , 

𝑊0 = ∑ ∑ �̃�𝑌𝑛(𝑦)𝑋𝑚(𝑥)𝑒
𝑖𝜔𝑡∞

𝑛
∞
𝑚 ,    휃𝑥𝑡 = ∑ ∑ 휃̃𝑥𝑡

𝜕𝑋𝑚(𝑥)

𝜕𝑥
𝑌𝑛(𝑦)𝑒

𝑖𝜔𝑡∞
𝑛

∞
𝑚 , 

휃𝑥𝑏 = ∑ ∑ 휃̃𝑥𝑏
𝜕𝑋𝑚(𝑥)

𝜕𝑥
𝑌𝑛(𝑦)𝑒

𝑖𝜔𝑡∞
𝑛

∞
𝑚  ,   휃𝑦𝑡 = ∑ ∑ 휃̃𝑦𝑡𝑋𝑚(𝑥)

𝜕𝑌𝑛(𝑦)

𝜕𝑦
𝑒𝑖𝜔𝑡∞

𝑛
∞
𝑚 , 

휃𝑦𝑏 = ∑ ∑ 휃̃𝑦𝑏𝑋𝑚(𝑥)
𝜕𝑌𝑛(𝑦)

𝜕𝑦
𝑒𝑖𝜔𝑡∞

𝑛
∞
𝑚  , 

 

 

 

(21) 

where the angular frequency is represented by 𝜔. Correspondingly, the half wave numbers of 

𝑥 and 𝑦 direction are, respectively, expressed by 𝑚 and 𝑛. The set of variables 

(�̃�𝑡, �̃�𝑏 , �̃�𝑡 , �̃�𝑏 , �̃�, 휃̃𝑥𝑡 , 휃̃𝑥𝑏 , 휃̃𝑦𝑡 and 휃̃𝑦𝑏) are unknown modal coefficients for the considered 

sandwich nanoplate. 𝑋𝑚 and 𝑌𝑛 are expressed as functions to satisfy the boundary conditions 

[72] 

SSSS: 

𝑋𝑚(𝑥) = 𝑠𝑖𝑛 (
𝑚𝜋𝑥

𝐿𝑥
),  𝑌𝑛(𝑦) = 𝑠𝑖𝑛 (

𝑛𝜋𝑦

𝐿𝑦
) , (22) 

SSCS: 

𝑋𝑚(𝑥) = 𝑠𝑖𝑛 (
𝑚𝜋𝑥

𝐿𝑥
),   𝑌𝑛(𝑦) = [𝑠𝑖𝑛 (

(𝑛+0.25)𝜋𝑦

𝐿𝑦
) − 𝑠𝑖𝑛ℎ (

(𝑛+0.25)𝜋𝑦

𝐿𝑦
)] −

[
𝑠𝑖𝑛((𝑛+0.25)𝜋)+𝑠𝑖𝑛ℎ((𝑛+0.25)𝜋)

𝑐𝑜𝑠((𝑛+0.25)𝜋)+𝑐𝑜𝑠ℎ((𝑛+0.25)𝜋)
] [𝑐𝑜𝑠 (

(𝑛+0.25)𝜋𝑦

𝐿𝑦
) − 𝑐𝑜𝑠ℎ (

(𝑛+0.25)𝜋𝑦

𝐿𝑦
)] , 

 

(23) 

SSCC: 

𝑋𝑚(𝑥) = 𝑠𝑖𝑛 (
𝑚𝜋𝑥

𝐿𝑥
),  𝑌𝑛(𝑦) = [𝑠𝑖𝑛 (

(𝑛+0.5)𝜋𝑦

𝐿𝑦
) − 𝑠𝑖𝑛ℎ (

(𝑛+0.5)𝜋𝑦

𝐿𝑦
)] −

[
𝑠𝑖𝑛((𝑛+0.5)𝜋)−𝑠𝑖𝑛ℎ((𝑛+0.5)𝜋)

𝑐𝑜𝑠((𝑛+025)𝜋)−𝑐𝑜𝑠ℎ((𝑛+0.5)𝜋)
] [𝑐𝑜𝑠 (

(𝑛+0.5)𝜋𝑦

𝐿𝑦
) − 𝑐𝑜𝑠ℎ (

(𝑛+0.5)𝜋𝑦

𝐿𝑦
)] , 

(24) 

   

CSCC: 

𝑋𝑚(𝑥) = [𝑠𝑖𝑛 (
(𝑛+0.25)𝜋𝑥

𝐿𝑥
) − 𝑠𝑖𝑛ℎ (

(𝑛+0.25)𝜋𝑥

𝐿𝑥
)] −

[
𝑠𝑖𝑛((𝑛+0.25)𝜋)+𝑠𝑖𝑛ℎ((𝑛+0.25)𝜋)

𝑐𝑜𝑠((𝑛+0.25)𝜋)+𝑐𝑜𝑠ℎ((𝑛+0.25)𝜋)
] [𝑐𝑜𝑠 (

(𝑛+0.25)𝜋𝑥

𝐿𝑥
) − 𝑐𝑜𝑠ℎ (

(𝑛+0.25)𝜋𝑥

𝐿𝑥
)] , 

𝑌𝑛(𝑦) = [𝑠𝑖𝑛 (
(𝑛+0.5)𝜋𝑦

𝐿𝑦
) − 𝑠𝑖𝑛ℎ (

(𝑛+0.5)𝜋𝑦

𝐿𝑦
)] −

[
𝑠𝑖𝑛((𝑛+0.5)𝜋)−𝑠𝑖𝑛ℎ((𝑛+0.5)𝜋)

𝑐𝑜𝑠((𝑛+025)𝜋)−𝑐𝑜𝑠ℎ((𝑛+0.5)𝜋)
] [𝑐𝑜𝑠 (

(𝑛+0.5)𝜋𝑦

𝐿𝑦
) − 𝑐𝑜𝑠ℎ (

(𝑛+0.5)𝜋𝑦

𝐿𝑦
)] , 

(25) 

    

CCCC: 



 
 
 
 

𝑋𝑚(𝑥) = [𝑠𝑖𝑛 (
(𝑛+0.5)𝜋𝑥

𝐿𝑥
) − 𝑠𝑖𝑛ℎ (

(𝑛+0.5)𝜋𝑥

𝐿𝑥
)] −

[
𝑠𝑖𝑛((𝑛+0.5)𝜋)−𝑠𝑖𝑛ℎ((𝑛+0.5)𝜋)

𝑐𝑜𝑠((𝑛+0.5)𝜋)−𝑐𝑜𝑠ℎ((𝑛+0.5)𝜋)
] [𝑐𝑜𝑠 (

(𝑛+0.5)𝜋𝑥

𝐿𝑥
) − 𝑐𝑜𝑠ℎ (

(𝑛+0.5)𝜋𝑥

𝐿𝑥
)] , 

𝑌𝑛(𝑦) = [𝑠𝑖𝑛 (
(𝑛+0.5)𝜋𝑦

𝐿𝑦
) − 𝑠𝑖𝑛ℎ (

(𝑛+0.5)𝜋𝑦

𝐿𝑦
)] −

[
𝑠𝑖𝑛((𝑛+0.5)𝜋)−𝑠𝑖𝑛ℎ((𝑛+0.5)𝜋)

𝑐𝑜𝑠((𝑛+025)𝜋)−𝑐𝑜𝑠ℎ((𝑛+0.5)𝜋)
] [𝑐𝑜𝑠 (

(𝑛+0.5)𝜋𝑦

𝐿𝑦
) − 𝑐𝑜𝑠ℎ (

(𝑛+0.5)𝜋𝑦

𝐿𝑦
)] , 

 

(26) 

The matrix representation of the equilibrium equations is found by substituting Eq. (21) in 

Eqs. (B1-B9). The final results are written as 

([𝐌]𝟗×𝟗𝜔
2 − [𝐊]𝟗×𝟗)�̅� = 0  (27) 

where the matrices [𝐊]𝟗×𝟗 and [𝐌]𝟗×𝟗 indicates, respectively, stiffness and mass and matrices. 

The natural frequencies, 𝜔∗ = √Re(𝜔2) and the modal loss factors, 휂𝑣 =
Im(𝜔2)

Re(𝜔2)
 are obtained 

from the non-trivial solution of Eq. (27). To achieve this aim, in the last equation, the left-side 

matrix's determinant should be set to zero, yielding the eigenfrequencies and eigenvectors. 

 

4. Findings and discussion 

This section is followed by a series of numerical investigations, according to the properties 

shown in Table 1 [74]. Furthermore, Table 2 denotes the characteristics of CNT efficiency for 

various volume fractions [67]. Moreover, Poly {(m-phenylenevinylene) -co- [(2.5-dioctoxy-p-

phenylene) vinylene]} is considered as polymeric matrix [67]. 

Table 1: Material characteristics of an FG-CNTRC nanoplate with ERF core layer. 

 Properties (ERF core Layer) 

𝐺(𝑐) = 𝐺′(Ξ) + i𝐺′′(Ξ), 
𝐺′(Ξ) = 50000Ξ2, 

𝐺′′(Ξ) = 2600Ξ + 1700 

Shear modulus 

𝜌𝑓 = 1700 Mass density (kg m−3) 

Poly Matrix CNT Properties (FG-CNTRC) 

 
𝐸𝑚 = 2.1GPa,  

 

𝐸11
𝐶𝑁𝑇 = 5.6466TPa, 
𝐸22
𝐶𝑁𝑇 = 7.08TPa, 

𝐺12
𝐶𝑁𝑇 = 1.944TPa 

Elastic  

ϑ𝑚 = 0.34 𝜗12
𝐶𝑁𝑇 = 0.175 Poisson’s Ratio 

𝜌𝑚 = 1160 𝜌𝐶𝑁𝑇 = 1400 Mass density (Kg m−3) 

 

Table 2: Efficiency coefficients for different CNTs volume fractions. 

𝑉𝐶𝑁𝑇
∗  Efficiency parameters 

휁1 휁1 휁1 

0.11 0.149 0.934 0.934 

0.14 0.15 0.941 0.941 

0.17 0.14 1.381 1.381 

 
 

4.1 Validation of the model 
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The formulation validation is provided via the means of a few examples. As the first 

comparison study, by eliminating ERF and FG-CNTRC properties, the first three non-

dimensional frequencies, �̅� = 𝜔∗ℎ1√
𝜌
𝐺12
⁄  of an elastic nanoplate (

𝐿𝑥

𝐿𝑦
= 1, 𝐿𝑥 = 10ℎ) for 

various boundary conditions and nonlocal parameters are computed after which they were 

compared to those found in Ref. [72] as provided in Table 3. By comparing the current findings 

to the analytic predictions of Ref. [72], as shown in Table 3, we find that the current findings 

are quite close to those expected. 

Table 3: Comparison of dimensionless natural frequency of an elastic nanoplate for different boundary 

conditions and nonlocal parameters. 

B.C (𝑒0𝑎)
2(𝑛𝑚2) Study �̅�1 �̅�2 �̅�3 

SSSS 

0 
present 0.092 0.221 0.338 

Ref. [72]  0.093 0.222 0.341 

2 
present 0.078 0.157 0.210 

Ref. [72] 0.079 0.157 0.212 

4 
present 0.069 0.128 0.166 

Ref. [72] 0.070 0.129 0.167 

CSCS 

0 
present 0.125 0.267 0.389 

Ref. [72] 0.126 0.268 0.392 

2 
present 0.104 0.184 0.235 

Ref. [72] 0.104 0.185 0.237 

4 
present 0.903 0.149 0.184 

Ref. [72] 0.908 0.150 0.186 

CCCC 

0 
present 0.161 0.313 0.442 

Ref. [72] 0.162 0.315 0.445 

2 
present 0.132 0.212 0.261 

Ref. [72] 0.132 0.213 0.263 

4 
present 0.114 0.171 0.203 

Ref. [72] 0.115 0.171 0.204 

 

Considering another comparison investigation, by ignoring FG-CNTRC layers and nonlocal 

parameter, the natural frequencies (Hz) and the corresponding modal loss factor of a simply 

supported ERF sandwich plate for different aspect ratios and ERF core thickness terms are 

evaluated. Results from the present system are shown in Table 4 and evaluated with those from 

Ref. [74] that employ classical plate theory. It is significantly evident from this table that the 

proposed model in the present work has high accuracy in calculating the frequencies of the 

ERF plate. Another point of interest is that as the electric field intensifies, the natural frequency 

rises. This is because there has been a rise in the ERF's electric modulus. 

Table 4: Comparison of natural frequencies (Hz) and the corresponding modal loss factor of the simply 

supported ERF sandwich plate versus the electric field. 

Mode 
h2
/h1 

Ly
/Lx 

Ξ = 0kV/mm Ξ = 2kV/mm 

𝜔∗, (Hz) ηυ 𝜔∗, (Hz) ηυ 

Ref. 

[74] 
present 

Ref. 

[74] 
present 

Ref. 

[74] 
present 

Ref. 

[74] 
present 

(1,1) 

1 
1 13.1925 13.1926 0.0172 0.0172 21.8035 21.8041 0.0187 0.0187 

2 32.9809 32.9812 0.0069 0.0069 43.7317 43.7322 0.0139 0.0139 

4 
1 10.0639 10.0646 0.0269 0.0269 20.2119 20.2140 0.0249 0.0249 

2 25.159 25.1604 0.0107 0.0107 37.6844 37.6867 0.0188 0.0188 



 
 
 
 

(1,2) 

1 
1 32.9809 32.9806 0.0069 0.0069 43.7317 43.7323 0.0139 0.0139 

2 52.7693 52.7683 0.0043 0.0043 64.3128 64.3128 0.0108 0.0108 

4 
1 25.159 25.1600 0.0107 0.0107 37.6844 37.6875 0.0188 0.0188 

2 40.2533 40.2554 0.0067 0.0067 53.736 53.7402 0.015 0.015 

(2,2) 

1 
1 52.7693 52.7694 0.0043 0.0043 64.3128 64.3133 0.0108 0.0108 

2 131.922 131.918 0.0017 0.0017 144.452 144.446 0.0056 0.0056 

4 
1 40.2533 40.2563 0.0067 0.0067 53.736 53.7412 0.015 0.015 

2 100.623 100.636 0.0027 0.0027 115.379 115.396 0.0082 0.0082 

Also, Table 5 presents the dimensionless frequencies, �̅� = 𝜔∗
𝐿𝑥
2

ℎ1
√
𝜌𝑚

𝐸𝑚
⁄  of an FG-

CNTRC square plate at various boundary conditions for four categories of CNTRC when the 

properties of ERF core layer and nonlocal parameter are neglected. Comparison of the 

outcomes of the current formulation and those presented by Ref. [67] clearly support the 

acceptable performance of the developed formulation. 

Table 5: Comparison of dimensionless natural frequency of an FG-CNTRC plate for four types of CNTRC. 

B.C VCNT
∗  

h1
/Lx 

UD FG-V FG-O FG-X 

Ref. 

[67] 
present 

Ref. 

[67] 
present 

Ref. 

[67] 
present 

Ref. 

[67] 
present 

SSSS 

0.11 
0.1 14.024 13.882 12.755 12.793 11.773 11.701 15.254 15.213 

0.05 17.503 17.711 15.127 15.291 13.500 13.625 20.241 20.342 

0.14 
0.1 14.925 14.770 13.653 13.607 12.662 12.501 16.104 16.008 

0.05 19.196 19.248 16.606 16.724 14.838 14.933 22.084 22.192 

0.17 
0.1 17.409 17.301 15.788 15.616 14.563 14.432 18.969 18.851 

0.05 21.624 21.738 18.632 18.675 16.625 16.705 25.049 24.966 

CCCC 

0.11 
0.1 19.473 19.515 18.811 18.976 18.198 18.056 20.195 20.308 

0.05 30.391 30.405 27.709 27.816 25.592 25.634 32.901 33.005 

0.14 
0.1 20.112 20.194 19.516 19.588 18.962 19.071 20.566 20.611 

0.05 32.268 32.299 29.627 29.722 27.517 27.546 34.639 34.702 

0.17 
0.1 24.299 24.364 23.437 23.509 22.655 22.697 24.970 25.007 

0.05 37.741 37.831 34.300 34.386 31.644 31.681 40.936 41.064 

 

 

4.2. Parametric study 

To describe the structure's free vibration behavior in response to various factors, parametric 

analyses are carried out. Tables 6 and 7 present the corresponding modal loss factor and natural 

frequency of the system under different boundary conditions, thickness ratios, electric field 

strengths (Ξ = 0,1.5,3,4.5) and the CNTs distributions, when ℎ1 = ℎ3 = 1 nm, 𝐿𝑥 = 𝐿𝑦 =

10 nm,𝐻𝑥 = 0, 𝑒0𝑎 = 0, 𝑉𝐶𝑁𝑇
∗ = 0.11. Both geometric aspect ratio and electric field intensity 

are directly proportional to the natural frequency. By decreasing mode number, the effect of 

the electric field on the natural frequency becomes more pronounced. More also, the value of 

the geometric thickness ratio determines the impact of the electric field on the modal loss factor. 

It appears that the loss factor grows at small electric fields, then it peaks at a medium electric 

field, and finally decreases with at higher values of electric field intensity. The structural 

stiffness is strongly dependent upon the CNTs distribution. Natural frequencies' smallest and 

greatest ranges belong to FG-O and FG-X distributions, respectively. Actually, in FG-X case, 

each FG-CNTRC layer's top and bottom surfaces have the highest volume fractions, bringing 

about a larger structural stiffness and system strength. However, it can be observed that the 
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boundary conditions have important effects on the variations of the natural frequencies. It also 

seems that the loss factor behavior is opposite to the natural frequency under different boundary 

conditions and the CNTs distributions. The described concepts of this analytical study can also 

be used to better understand the vibration behavior. The thickness ratio (
ℎ2

ℎ1
) strongly affects the 

natural frequency. This article also provides valuable insight into the potential applications of 

CNTs, including the structural parts of different sensors and nanodevices.  

Table 6: The effects of the electric field, thickness ratio, mode number, and CNTs distributions on the natural 

frequency and modal loss factor (SSSS). 

Type Mode 
h2/
h1  

Ξ = 0 Ξ = 1.5 Ξ = 3 Ξ = 4.5 

ω∗, (GHz) ηυ ω∗, (GHz) ηυ ω∗, (GHz) ηυ ω∗, (GHz) ηυ 

UD (1,1) 1 23.747 0.011 24.563 0.023 26.503 0.029 28.794 0.031 

4 15.848 0.020 16.880 0.042 19.545 0.058 23.046 0.059 

(1,2) 1 30.878 0.0017 32.607 0.0036 36.913 0.0048 42.187 0.005 

4 20.668 0.0031 22.689 0.0061 27.777 0.0077 34.353 0.008 

(2,2) 1 61.346 0.0014 62.416 0.0024 65.308 0.0033 69.314 0.0038 

4 41.053 0.0021 42.552 0.0032 46.703 0.0040 52.738 0.0045 

FG-V (1,1) 1 21.746 0.0138 22.677 0.0277 24.880 0.0357 27.471 0.0372 

4 14.516 0.0242 15.657 0.0456 18.549 0.0595 22.278 0.0611 

(1,2) 1 29.620 0.0020 31.443 0.0041 35.953 0.0052 41.442 0.0055 

4 19.831 0.0034 21.940 0.0065 27.198 0.0079 33.924 0.0081 

(2,2) 1 59.535 0.0018 60.665 0.0027 63.723 0.0043 67.958 0.0047 

4 39.848 0.0026 41.408 0.0037 45.710 0.0046 51.929 0.0049 

FG-O (1,1) 1 20.160 0.017 21.194 0.0329 23.629 0.0413 26.471 0.0435 

4 13.457 0.029 14.695 0.057 17.784 0.061 21.697 0.0635 

(1,2) 1 28.274 0.0022 30.206 0.0043 34.947 0.0054 40.666 0.0056 

4 18.928 0.0038 21.142 0.0067 26.589 0.0082 33.477 0.0083 

(2,2) 1 57.596 0.0021 58.798 0.0029 62.044 0.0044 66.527 0.0048 

4 38.552 0.0031 40.180 0.0042 44.650 0.0049 51.068 0.0051 

FG-X (1,1) 1 25.674 0.0091 26.396 0.0185 28.117 0.024 30.152 0.025 

4 17.132 0.017 18.074 0.036 20.541 0.052 23.837 0.056 

(1,2) 1 32.512 0.0015 34.131 0.0033 38.196 0.0045 43.220 0.0048 

4 21.761 0.0028 23.675 0.0056 28.555 0.0071 34.494 0.0077 

(2,2) 1 63.157 0.0011 64.171 0.0021 66.918 0.0030 70.725 0.0035 

4 42.263 0.0017 43.705 0.0029 47.716 0.0037 53.581 0.0043 

 

Table 7: The effects of the electric field, thickness ratio, mode number and CNTs distributions on the natural 

frequency and modal loss factor (CCCC). 

Type Mode 
h2/
h1  

Ξ = 0 Ξ = 1.5 Ξ = 3 Ξ = 4.5 

ω∗, (GHz) ηυ ω∗, (GHz) ηυ ω∗, (GHz) ηυ ω∗, (GHz) ηυ 

UD (1,1) 1 33.787 0.0006 34.440 0.0125 36.052 0.0199 38.322 0.0224 

4 22.545 0.0012 23.397 0.0257 25.747 0.0407 29.146 0.0454 

(1,2) 1 43.036 0.0004 44.360 0.0105 47.911 0.0142 52.767 0.0198 

4 28.798 0.0008 30.464 0.0163 34.932 0.0257 41.162 0.0306 

(2,2) 1 71.679 0.0003 72.656 0.0088 75.387 0.0111 79.387 0.0163 

4 47.958 0.0004 49.410 0.0124 53.495 0.0187 59.584 0.0225 

FG-V (1,1) 1 32.670 0.0009 33.323 0.0156 35.080 0.0226 37.491 0.0249 

4 21.803 0.0015 22.692 0.0279 25.138 0.0420 28.652 0.0463 

(1,2) 1 42.319 0.0005 43.676 0.0121 47.313 0.0159 52.277 0.0215 

4 28.319 0.0009 30.019 0.0175 34.563 0.0268 40.876 0.0310 

(2,2) 1 70.675 0.0004 71.681 0.0101 74.496 0.0136 78.616 0.0179 

4 47.289 0.0005 48.771 0.0132 52.934 0.0197 59.123 0.0240 



 
 
 
 

FG-O (1,1) 1 31.511 0.0012 32.208 0.0173 34.078 0.0241 36.640 0.0258 

4 21.028 0.0016 21.961 0.0296 24.510 0.0450 28.143 0.0487 

(1,2) 1 41.164 0.0006 42.580 0.0145 46.359 0.0174 51.495 0.0229 

4 27.547 0.0012 29.303 0.0199 33.971 0.0295 40.414 0.0331 

(2,2) 1 69.272 0.0005 70.322 0.0251 73.256 0.0172 77.538 0.0196 

4 46.352 0.0006 47.877 0.0158 52.147 0.0213 58.470 0.0264 

FG-X (1,1) 1 34.853 0.0004 35.432 0.0108 36.994 0.0174 39.148 0.0209 

4 23.255 0.0010 24.073 0.0223 26.340 0.0387 29.638 0.0439 

(1,2) 1 44.167 0.0003 45.442 0.0088 48.868 0.0122 53.576 0.0180 

4 29.555 0.0007 31.171 0.0139 35.527 0.0238 41.636 0.0287 

(2,2) 1 72.972 0.0002 73.914 0.0065 76.553 0.0087 80.424 0.0143 

4 48.821 0.0003 50.238 0.0106 54.234 0.0163 60.209 0.0204 

 

Figs 2-6 depict the variations of the first natural frequency (𝑚 = 𝑛 = 1) versus the nonlocal 

factor for different boundary conditions (SSSS, SSCS, CSCS, CCCS and CCCC), electric field 

strengths, the CNTs distributions and CNT volume fractions, when ℎ1 = ℎ3 = 1 nm,
ℎ2

ℎ1
=

1, 𝐻𝑥 = 0, 𝐿𝑥 = 𝐿𝑦 = 10 nm. It is obvious that the natural frequency for CCCC boundary 

conditions is generally higher than SSSS boundary conditions because clamped edges are 

stiffer than simply supported edges. When a sandwich nanoplate is clamped on all four sides, 

the edges cannot move, and this results in higher stiffness compared to the simply supported 

edges. As a result, the natural frequency of vibration of the sandwich nanoplate with CCCC 

boundary conditions is higher than the natural frequency of vibration of the sandwich nanoplate 

with SSSS boundary conditions. The natural frequency is seen to decrease as the nonlocal 

parameter increases, which is mostly attributed to the softening effect on this parameter in such 

small-scale structures. The nonlocal parameter in this context refers to the length scale 

parameter that accounts for the effects of small-scale phenomena on the behavior of the 

sandwich nanoplate. As the nonlocal parameter increases, the effects of small-scale phenomena 

become more pronounced, and the behavior of the nanoplate deviates from classical mechanics. 

Specifically, the higher-order terms in the governing equations become more significant, which 

affects the natural frequency of the nanoplate. This means that as the nonlocal parameter 

increases, the natural frequency decreases. This is because the higher-order terms in the 

governing equations that become more significant with increasing nonlocality introduce 

additional stiffness and mass to the nanoplate, which lowers its natural frequency. Moreover, 

via raising the nonlocal term, the effects of the boundary conditions on the natural frequency 

decrease. Furthermore, as shown in Figs. 2-6, for the boundary conditions of CCCC, the 

influences of the electric field on the frequency variations are greater than the SSSS case. As 

well, it should be stated that the reason behind the higher natural frequency via raising volume 

fraction is the larger resulting CNTRC stiffness. 
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Fig. 2. The effects of the nonlocal parameter, electric field strengths, the CNTs distributions and CNT volume 

fractions on the variations of the first natural frequency (SSSS). 

 

 
Fig. 3. The effects of the nonlocal parameter, electric field strengths, the CNTs distributions and CNT volume 

fractions on the variations of the first natural frequency (SSCS). 



 
 
 
 

 
Fig. 4. The effects of the nonlocal parameter, electric field strengths, the CNTs distributions and CNT volume 

fractions on the variations of the first natural frequency (CSCS). 

 

 
Fig. 5. The effects of the nonlocal parameter, electric field strengths, the CNTs distributions and CNT volume 

fractions on the variations of the first natural frequency (CCCS). 
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Fig. 6. The effects of the nonlocal parameter, electric field strengths, the CNTs distributions and CNT volume 

fractions on the variations of the first natural frequency (CCCC). 

 

Fig. 7 illustrates how the thickness ratio, the CNTs' distribution, and the electric field affect 

variations in the natural frequency for the case of SSSS, when ℎ1 = ℎ3 = 1 nm, 𝐿𝑥 = 𝐿𝑦 =

10 nm,𝐻𝑥 = 0, 𝑒0𝑎 = 0, 𝑉𝐶𝑁𝑇
∗ = 0.11,𝑚 = 𝑛 = 1. As seen in Fig. 7, by raising the thickness 

ratio value (
ℎ2

ℎ1
), the system's natural frequency is greatly reduced. This behavior is due to the 

fact that 
ℎ2

ℎ1
 has a softening influence on the structure's stiffness, because of the reduction of the 

total elasticity modulus. The ERF layer and FG-CNTRC layer are two key components that 

affect the natural frequency of a sandwich plate. The ERF layer is a special fluid that changes 

its rheological properties (viscosity, stiffness) when an electric field is applied, while the elastic 

layer is a solid material that provides the sandwich plate's stiffness. Furthermore, the ERF layer 

also affects the damping of the sandwich plate. Damping is a measure of the ability of the 

sandwich nanoplate to dissipate energy in response to mechanical loads. As the ERF thickness 

is increased, the damping of the sandwich nanoplate also increases. This increase in damping 

leads to a further decrease in the natural frequency of the sandwich plate. When an electric 

field is applied to an ERF sandwich nanoplate, the fluid undergoes a change in its 

nanostructure, which results in an increase in its stiffness and natural frequency. The 

nanostructure of an ERF consists of dispersed particles that are suspended in a carrier fluid. 

When an electric field is applied, the particles align themselves in the direction of the field, 

creating chain-like structures called "electrorheological chains." These chains increase the 

stiffness of the fluid, which in turn increases the natural frequency of the sandwich plate. 



 
 
 
 

Furthermore, it is evident that for a constant value of the ERF electric field, the impact of the 

various kinds of the CNTs distribution on the natural frequency decreases by increasing 
ℎ2

ℎ1
. 

This point is also true for the ERF electric field. Thus, the influence of the various kinds of the 

CNTs distribution on the variation of the natural frequency decreases when the electric field 

becomes stronger. 

 

Fig. 7. The effects of the thickness ratio, electric field strengths and CNTs distributions on the variations of the 

first natural frequency. 

Finally, Fig. 8 depicts the influences of magnetic field strength and the CNTs distributions 

on the change in natural frequency of the sandwich nanoplate for the case of SSSS when ℎ1 =

ℎ3 = 1 nm,
ℎ2

ℎ1
= 1, Ξ = 0, 𝐿𝑥 = 𝐿𝑦 = 10 nm, 𝑉𝐶𝑁𝑇

∗ = 0.11,𝑚 = 𝑛 = 1. Longitudinal 

magnetic fields have a stiffening effect on a structure, as seen in the figure, which causes the 

fundamental frequency to rise. When a sandwich nanoplate is placed in a longitudinal magnetic 

field, it experiences a Lorentz force that is proportional to the strength of the magnetic field 

and the current flowing through the sandwich nanoplate. This Lorentz force causes the 

sandwich nanoplate to vibrate in a particular mode, and the natural frequency of this vibration 

mode is proportional to the Lorentz force. Therefore, as the longitudinal magnetic field is 

increased, the Lorentz force on the nanoplate increases, which causes the natural frequency of 

its vibration mode to increase. This effect can be useful in applications where precise control 

of the natural frequency of a sandwich nanoplate is required, such as in nanomechanical 

resonators used for sensing and measurement. 
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Fig. 8. The effects of the longitudinal magnetic field strength and the CNTs distributions on the change in the 

first natural frequency.  

 

5. Conclusions 

In this study, the free vibration problem of an FG-CNTRC sandwich nanoplate with ERF core 

layer under longitudinal magnetic field has been analytically examined using TSDT and 

nonlocal elasticity theory. In TSDT, the plate is assumed to deform in three directions: two in-

plane translations and one out-of-plane rotation. This allows for the consideration of transverse 

shear deformations that are not accounted for in lower-order theories, such as the classical plate 

theory and the FSDT. All layers of the sandwich plate must maintain physical continuity, and 

the rule of mixing allows us to examine how mechanical characteristics are distributed in the 

thickness direction of this system. In order to solve the resulting equations, the Galerkin method 

is employed. Parameter investigations demonstrate the influences of the ERF electric field, 

boundary conditions, CNTs distributions, CNT volume fraction, and nonlocal parameter on the 

free vibration. Following are some noteworthy conclusions that may be derived from the 

results: 

 The geometric thickness ratio value controls how much the electric field affects the modal 

loss factor. It appears that the loss factor grows at small electric fields, then it peaks at a 

medium electric field, and finally decreases at higher values of electric field intensity.  

 The structural stiffness is strongly dependent upon the CNTs distribution. Natural 

frequencies' smallest and greatest ranges are exhibited by FG-O and FG-X distributions, 

respectively. 

 The thickness ratio (
ℎ2

ℎ1
) strongly affects the natural frequency of an FG-CNTRC sandwich 

nanoplate with ERF core layer. This study also provides valuable insight into the potential 

applications of CNTs, including the structural parts of different sensors and nanodevices. 



 
 
 
 

 Longitudinal magnetic fields have a stiffening effect on a structure, which causes the 

natural frequency to rise. 

 The natural frequency is seen to decrease as the nonlocal parameter increases, which is 

mostly attributed to the softening effect on this parameter in such small-scale structures. 

 Via raising 
ℎ2

ℎ1
 and ERF electric field, the influence of the various categories of the CNTs 

distribution on the natural frequency decreases.  

 The natural frequency for CCCC boundary conditions is generally higher than SSSS 

boundary conditions because clamped edges are stiffer than simply supported edges.  

 

 

APPENDIX A 

The governing equations of the sandwich nanoplate are provided as 
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𝜕𝑥
+
𝜕𝑄𝑦𝑧

𝑐

𝜕𝑦
) − (

9

4
−
3ℎ1

8ℎ2
−
3ℎ3

8ℎ2
) 𝐶1 (

𝜕𝑅𝑥𝑧
𝑐

𝜕𝑥
+
𝜕𝑅𝑦𝑧

𝑐

𝜕𝑦
) = 𝑞 + (𝐼0

𝑡 + 𝐼0
𝑐 + 𝐼0

𝑏)�̈�0 +

𝐼3
𝑡𝐶1 (

𝜕�̈�0𝑡

𝜕𝑥
+
𝜕𝑣0𝑡

..

𝜕𝑦
) + 𝐼3

𝑏𝐶1 (
𝜕�̈�0𝑏

𝜕𝑥
+
𝜕𝑣0𝑏

..

𝜕𝑦
) − (𝐼6

𝑡 + 𝐼3
𝑏)𝐶1

2 (
𝜕2�̈�0

𝜕𝑥2
+
𝜕2�̈�0

𝜕𝑦2
) +

𝐼4
𝑡𝐶1 (

𝜕�̈�𝑥𝑡

𝜕𝑥
+
𝜕�̈�𝑦𝑡

𝜕𝑦
) + 𝐼4

𝑏𝐶1 (
𝜕�̈�𝑥𝑏

𝜕𝑥
+
𝜕�̈�𝑦𝑏

𝜕𝑦
),  

𝛿휃𝑥𝑡 →
𝜕𝑀𝑥𝑥

𝑡

𝜕𝑥
+
𝜕𝑀𝑥𝑦

𝑡

𝜕𝑦
− 𝐶1 (

𝜕𝑃𝑥𝑥
𝑡

𝜕𝑥
+
𝜕𝑃𝑥𝑦

𝑡

𝜕𝑦
) − 𝑄𝑥𝑧

𝑡 + 3𝐶1𝑅𝑥𝑧
𝑡 +

ℎ1𝑄𝑥𝑧
𝑐

2ℎ2
−
3𝐶1ℎ1𝑅𝑥𝑧

𝑐

2ℎ2
=

𝐼1
𝑡�̈�0𝑡 + 𝐼2

𝑡휃̈𝑥𝑡 − 𝐶1𝐼4
𝑡 𝜕�̈�0

𝜕𝑥
 , 

𝛿휃𝑥𝑏 →
𝜕𝑀𝑥𝑥

𝑏

𝜕𝑥
+
𝜕𝑀𝑥𝑦

𝑏

𝜕𝑦
− 𝐶1 (

𝜕𝑃𝑥𝑥
𝑏

𝜕𝑥
+
𝜕𝑃𝑥𝑦

𝑏

𝜕𝑦
) − 𝑄𝑥𝑧

𝑏 + 3𝐶1𝑅𝑥𝑧
𝑏 +

ℎ3𝑄𝑥𝑧
𝑐

2ℎ2
−
3𝐶1ℎ3𝑅𝑥𝑧

𝑐

2ℎ2
=

𝐼1
𝑏�̈�0𝑏 + 𝐼2

𝑏휃̈𝑥𝑏 − 𝐶1𝐼4
𝑏 𝜕�̈�0

𝜕𝑥
 , 

𝛿휃𝑦𝑡 →
𝜕𝑀𝑦𝑦

𝑡

𝜕𝑦
+
𝜕𝑀𝑥𝑦

𝑡

𝜕𝑥
− 𝐶1 (

𝜕𝑃𝑦𝑦
𝑡

𝜕𝑦
+
𝜕𝑃𝑥𝑦

𝑡

𝜕𝑥
) − 𝑄𝑦𝑧

𝑡 + 3𝐶1𝑅𝑦𝑧
𝑡 +

ℎ1𝑄𝑦𝑧
𝑐

2ℎ2
−
3𝐶1ℎ1𝑅𝑦𝑧

𝑐

2ℎ2
=

𝐼1
𝑡�̈�0𝑡 + 𝐼2

𝑡휃̈𝑦𝑡 − 𝐶1𝐼4
𝑡 𝜕�̈�0

𝜕𝑦
 ,   

(A1) 

(A2) 

(A3) 

(A4) 
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𝛿휃𝑦𝑏 →
𝜕𝑀𝑦𝑦

𝑏 

𝜕𝑦
+
𝜕𝑀𝑥𝑦

𝑏

𝜕𝑥
− 𝐶1 (

𝜕𝑃𝑦𝑦
𝑏

𝜕𝑦
+
𝜕𝑃𝑥𝑦

𝑏

𝜕𝑥
) − 𝑄𝑦𝑧

𝑡 + 3𝐶1𝑅𝑦𝑧
𝑏 +

ℎ3𝑄𝑦𝑧
𝑐

2ℎ2
−
3𝐶1ℎ3𝑅𝑦𝑧

𝑐

2ℎ2
=

𝐼1
𝑏�̈�0𝑏 + 𝐼2

𝑏휃̈𝑦𝑏 − 𝐶1𝐼4
𝑏 𝜕�̈�0

𝜕𝑦
 , 

(A9) 

where 

(𝐼0
𝑡, 𝐼1

𝑡, 𝐼2
𝑡 , 𝐼3

𝑡, 𝐼4
𝑡 , 𝐼6

𝑡) = ∫ 𝜌(1, 𝑧, 𝑧2, 𝑧3, 𝑧4, 𝑧6)𝑑𝑧
ℎ1/2

−ℎ1/2
,  

(𝐼0
𝑏 , 𝐼1

𝑏 , 𝐼2
𝑏 , 𝐼3

𝑏 , 𝐼4
𝑏 , 𝐼6

𝑏) = ∫ 𝜌(1, 𝑧, 𝑧2, 𝑧3, 𝑧4, 𝑧6)𝑑𝑧
ℎ3/2

−ℎ3/2
, 𝐼0

𝑐 = ∫ 𝜌𝑓𝑑𝑧
ℎ2/2

−ℎ2/2
 ,  

𝐼1
𝑡 = 𝐼1

𝑡 − 𝐼3
𝑡𝐶1, 𝐼2

𝑡 = 𝐼2
𝑡 − 2𝐶1𝐼4

𝑡 + 𝐶1
2𝐼6
𝑡, 𝐼4

𝑡 = 𝐼4
𝑡 − 𝐶1𝐼6

𝑡 , 

𝐼1
𝑏 = 𝐼1

𝑏 − 𝐼3
𝑏𝐶1, 𝐼2

𝑏 = 𝐼2
𝑏 − 2𝐶1𝐼4

𝑏 + 𝐶1
2𝐼6
𝑏 , 𝐼4

𝑏 = 𝐼4
𝑏 − 𝐶1𝐼6

𝑏 , 

(𝑁𝑥𝑥
𝑡 ,𝑀𝑥𝑥

𝑡 , 𝑃𝑥𝑥
𝑡 ) = ∫ 𝜎𝑥𝑥𝑡(1, 𝑧, 𝑧

3)𝑑𝑧
ℎ1/2

−ℎ1/2
 , 

(𝑁𝑥𝑦
𝑡 , 𝑀𝑥𝑦

𝑡 , 𝑃𝑥𝑦
𝑡 ) = ∫ 𝜏𝑥𝑦𝑡(1, 𝑧, 𝑧

3)𝑑𝑧
ℎ1/2

−ℎ1/2
, 

(𝑁𝑦𝑦
𝑡 , 𝑀𝑦𝑦

𝑡 , 𝑃𝑦𝑦
𝑡 ) = ∫ 𝜎𝑦𝑦𝑡(1, 𝑧, 𝑧

3)𝑑𝑧
ℎ1/2

−ℎ1/2
, 

(𝑄𝑥𝑧
𝑡 , 𝑅𝑥𝑧

𝑡 ) = ∫ 𝜏𝑥𝑧𝑡(1, 𝑧
2)𝑑𝑧

ℎ1/2

−ℎ1/2
,   (𝑄𝑥𝑧

𝑡 , 𝑅𝑥𝑧
𝑡 ) = ∫ 𝜏𝑥𝑧𝑡(1, 𝑧

2)𝑑𝑧
ℎ1/2

−ℎ1/2
, 

(𝑁𝑥𝑥
𝑏 ,𝑀𝑥𝑥

𝑏 , 𝑃𝑥𝑥
𝑏 ) = ∫ 𝜎𝑥𝑥𝑏(1, 𝑧, 𝑧

3)𝑑𝑧
ℎ3/2

−ℎ3/2
 , 

(𝑁𝑥𝑦
𝑏 , 𝑀𝑥𝑦

𝑏 , 𝑃𝑥𝑦
𝑏 ) = ∫ 𝜏𝑥𝑦𝑏(1, 𝑧, 𝑧

3)𝑑𝑧
ℎ3/2

−ℎ3/2
, 

(𝑁𝑦𝑦
𝑏 , 𝑀𝑦𝑦

𝑏 , 𝑃𝑦𝑦
𝑏 ) = ∫ 𝜎𝑦𝑦𝑏(1, 𝑧, 𝑧

3)𝑑𝑧
ℎ3/2

−ℎ3/2
, 

(𝑄𝑥𝑧
𝑏 , 𝑅𝑥𝑧

𝑏 ) = ∫ 𝜏𝑥𝑧𝑏(1, 𝑧
2)𝑑𝑧

ℎ3/2

−ℎ3/2
,   (𝑄𝑥𝑧

𝑏 , 𝑅𝑥𝑧
𝑏 ) = ∫ 𝜏𝑥𝑧𝑏(1, 𝑧

2)𝑑𝑧
ℎ3/2

−ℎ3/2
, 

 (𝑄𝑥𝑧
𝑐 , 𝑅𝑥𝑧

𝑐 ) = ∫ 𝜏𝑥𝑧𝑐(1, 𝑧
2)𝑑𝑧

ℎ2/2

−ℎ2/2
, (𝑄𝑦𝑧

𝑐 , 𝑅𝑦𝑧
𝑐 ) = ∫ 𝜏𝑦𝑧𝑐(1, 𝑧

2)𝑑𝑧
ℎ2/2

−ℎ2/2
. 

   

 (A10) 

 

 

APPENDIX B 

The size-dependent governing partial differential equations are provided as 

𝛿𝑢0𝑡 → 𝐴11 (
𝜕2𝑢0𝑡

𝜕𝑥2
) + 𝐴66 (

𝜕2𝑢0𝑡

𝜕𝑦2
) + [𝐴12 + 𝐴66] (

𝜕2𝑣0𝑡

𝜕𝑥𝜕𝑦
) + [𝐵11 −

𝐶1𝐸11] (
𝜕2𝜃𝑥𝑡

𝜕𝑥2
) + [𝐵66 − 𝐶1𝐸66] (

𝜕2𝜃𝑥𝑡

𝜕𝑦2
) + [𝐵12 + 𝐵66 − 𝐶1𝐸12 −

𝐶1𝐸66] (
𝜕2𝜃𝑦𝑡

𝜕𝑥𝜕𝑦
) − [𝐶1𝐸12 + 2𝐶1𝐸66] (

𝜕3𝑊0

𝜕𝑥𝜕𝑦2
) − 𝐶1𝐸11 (

𝜕3𝑊0

𝜕𝑥3
) − (

3

4ℎ2
𝑓1 −

9

4ℎ2
𝐶1𝑓4) (𝑢0𝑡 − 𝑢0𝑏) + (

3

4ℎ2
𝑓2 −

9

4ℎ2
𝐶1𝑓5) (ℎ1휃𝑥𝑡 + ℎ3휃𝑥𝑏) + (

3

4ℎ2
𝑓3 −

9

4ℎ2
𝐶1𝑓6)

𝜕𝑊0

𝜕𝑥
= [1 − (𝑒0𝑎)

2∇2] (𝐼0
𝑡�̈�0𝑡 + 𝐼1

𝑡휃̈𝑥𝑡 − 𝐼3
𝑡𝐶1

𝜕�̈�0

𝜕𝑥
) , 

𝛿𝑢0𝑏 → 𝐴11 (
𝜕2𝑢0𝑏

𝜕𝑥2
) + 𝐴66 (

𝜕2𝑢0𝑏

𝜕𝑦2
) + [𝐴12 + 𝐴66] (

𝜕2𝑣0𝑏

𝜕𝑥𝜕𝑦
) + [𝐵11 −

𝐶1𝐸11] (
𝜕2𝜃𝑥𝑏

𝜕𝑥2
) + [𝐵66 − 𝐶1𝐸66] (

𝜕2𝜃𝑥𝑏

𝜕𝑦2
) + [𝐵12 + 𝐵66 − 𝐶1𝐸12 −

 

(B1) 

 

 

 



 
 
 
 

𝐶1𝐸66] (
𝜕2𝜃𝑦𝑏

𝜕𝑥𝜕𝑦
) − [𝐶1𝐸12 + 2𝐶1𝐸66] (

𝜕3𝑊0

𝜕𝑥𝜕𝑦2
) − 𝐶1𝐸11 (

𝜕3𝑊0

𝜕𝑥3
) + (

3

4ℎ2
𝑓1 −

9

4ℎ2
𝐶1𝑓4) (𝑢0𝑡 − 𝑢0𝑏) − (

3

4ℎ2
𝑓2 −

9

4ℎ2
𝐶1𝑓5) (ℎ1휃𝑥𝑡 + ℎ3휃𝑥𝑏) − (

3

4ℎ2
𝑓3 −

9

4ℎ2
𝐶1𝑓6)

𝜕𝑊0

𝜕𝑥
= [1 − (𝑒0𝑎)

2∇2] (𝐼0
𝑏�̈�0𝑏 + 𝐼1

𝑏휃̈𝑥𝑏 − 𝐼3
𝑏𝐶1

𝜕�̈�0

𝜕𝑥
) , 

𝛿𝑣0𝑡 → 𝐴22 (
𝜕2𝑣0𝑡

𝜕𝑦2
) + 𝐴66 (

𝜕2𝑣0𝑡

𝜕𝑥2
) + [𝐴21 + 𝐴66] (

𝜕2𝑢0𝑡

𝜕𝑥𝜕𝑦
) + [𝐵66 −

𝐶1𝐸66] (
𝜕2𝜃𝑦𝑡

𝜕𝑥2
) + [𝐵22 − 𝐶1𝐸22] (

𝜕2𝜃𝑦𝑡

𝜕𝑦2
) + [𝐵21 + 𝐵66 − 𝐶1𝐸21 −

𝐶1𝐸66] (
𝜕2𝜃𝑥𝑡

𝜕𝑥𝜕𝑦
) − [𝐶1𝐸21 + 2𝐶1𝐸66] (

𝜕3𝑊0

𝜕𝑥2𝜕𝑦
) − 𝐶1𝐸22 (

𝜕3𝑊0

𝜕𝑦3
) − (

3

4ℎ2
𝑓1 −

9

4ℎ2
𝐶1𝑓4) (𝑣0𝑡 − 𝑣0𝑏) + (

3

4ℎ2
𝑓2 −

9

4ℎ2
𝐶1𝑓5) (ℎ1휃𝑦𝑡 + ℎ3휃𝑦𝑏) + (

3

4ℎ2
𝑓3 −

9

4ℎ2
𝐶1𝑓6)

𝜕𝑊0

𝜕𝑦
= [1 − (𝑒0𝑎)

2∇2] (𝐼0
𝑡�̈�0𝑡 + 𝐼1

𝑡휃̈𝑦𝑡 − 𝐼3
𝑡𝐶1

𝜕�̈�0

𝜕𝑦
),  

𝑣0𝑏 → 𝐴22 (
𝜕2𝑣0𝑏

𝜕𝑦2
) + 𝐴66 (

𝜕2𝑣0𝑏

𝜕𝑥2
) + [𝐴21 + 𝐴66] (

𝜕2𝑢0𝑏

𝜕𝑥𝜕𝑦
) + [𝐵66 −

𝐶1𝐸66] (
𝜕2𝜃𝑦𝑏

𝜕𝑥2
) + [𝐵22 − 𝐶1𝐸22] (

𝜕2𝜃𝑦𝑏

𝜕𝑦2
) + [𝐵21 + 𝐵66 − 𝐶1𝐸21 −

𝐶1𝐸66] (
𝜕2𝜃𝑥𝑏

𝜕𝑥𝜕𝑦
) − [𝐶1𝐸21 + 2𝐶1𝐸66] (

𝜕3𝑊0

𝜕𝑥2𝜕𝑦
) − 𝐶1𝐸22 (

𝜕3𝑊0

𝜕𝑦3
) + (

3

4ℎ2
𝑓1 −

9

4ℎ2
𝐶1𝑓4) (𝑣0𝑡 − 𝑣0𝑏) − (

3

4ℎ2
𝑓2 −

9

4ℎ2
𝐶1𝑓5) (ℎ1휃𝑦𝑡 + ℎ3휃𝑦𝑏) − (

3

4ℎ2
𝑓3 −

9

4ℎ2
𝐶1𝑓6)

𝜕𝑊0

𝜕𝑦
= [1 − (𝑒0𝑎)

2∇2] (𝐼0
𝑡�̈�0𝑡 + 𝐼1

𝑡휃̈𝑦𝑡 − 𝐼3
𝑡𝐶1

𝜕�̈�0

𝜕𝑦
),  

𝛿𝑊0 → 2[𝐴44 − 6𝐶1𝐻44 + 9𝐶1
2𝑇44] (

𝜕2𝑊0

𝜕𝑥2
+
𝜕2𝑊0

𝜕𝑦2
) + [𝐴44 − 6𝐶1𝐻44 +

9𝐶1
2𝑇44] (

𝜕𝜃𝑥𝑡

𝜕𝑥
+
𝜕𝜃𝑦𝑡

𝜕𝑦
+
𝜕𝜃𝑥𝑏

𝜕𝑥
+
𝜕𝜃𝑦𝑏

𝜕𝑦
) + 𝐶1𝐸11 (

𝜕3𝑢0𝑡

𝜕𝑥3
+
𝜕3𝑢0𝑏

𝜕𝑥3
) + 𝐶1𝐸22 (

𝜕3𝑣0𝑡

𝜕𝑦3
+

𝜕3𝑣0𝑏

𝜕𝑦3
) + [𝐶1𝐸12 + 2𝐶1𝐸66] (

𝜕3𝑢0𝑡

𝜕𝑥𝜕𝑦2
+

𝜕3𝑢0𝑏

𝜕𝑥𝜕𝑦2
+

𝜕3𝑣0𝑡

𝜕𝑥2𝜕𝑦
+

𝜕3𝑣0𝑏

𝜕𝑥2𝜕𝑦
) + [𝐶1𝑇11 −

𝐶1
2𝐷11] (

𝜕3𝜃𝑥𝑡

𝜕𝑥3
+
𝜕3𝜃𝑥𝑡

𝜕𝑥3
) + [𝐶1𝑇22 − 𝐶1

2𝐷22] (
𝜕3𝜃𝑦𝑡

𝜕𝑦3
+
𝜕3𝜃𝑦𝑏

𝜕𝑦3
) + [𝐶1𝑇12 − 𝐶1

2𝐷12 +

2(𝐶1𝑇66 − 𝐶1
2𝐷66)] (

𝜕3𝜃𝑥𝑡

𝜕𝑥𝜕𝑦2
+

𝜕3𝜃𝑦𝑡

𝜕𝑥2𝜕𝑦
+

𝜕3𝜃𝑥𝑏

𝜕𝑥𝜕𝑦2
+

𝜕3𝜃𝑦𝑏

𝜕𝑥2𝜕𝑦
) − 2𝐶1

2𝐷11 (
𝜕4𝑊0

𝜕𝑥4
) −

2𝐶1
2𝐷22 (

𝜕4𝑊0

𝜕𝑦4
) − 2[2𝐶1

2𝐷12 + 4𝐶1
2𝐷66] (

𝜕4𝑊0

𝜕𝑥2𝜕𝑦2
) − (𝑟𝑓1 − 𝑟𝐶1𝑓4) (

𝜕𝑢0𝑡

𝜕𝑥
−

𝜕𝑢0𝑏

𝜕𝑥
) + (𝑟𝑓2 − 𝑟𝐶1𝑓5) (ℎ1

𝜕𝜃𝑥𝑡

𝜕𝑥
+ ℎ2

𝜕𝜃𝑥𝑏

𝜕𝑥
) + (𝑟𝑓3 − 𝑟𝐶1𝑓6)

𝜕2𝑊0

𝜕𝑥2
− (𝑟𝑓1 −

𝑟𝐶1𝑓4) (
𝜕𝑣0𝑡

𝜕𝑦
−
𝜕𝑣0𝑏

𝜕𝑥
) + (𝑟𝑓2 − 𝑟𝐶1𝑓5) (ℎ1

𝜕𝜃𝑦𝑡

𝜕𝑦
+ ℎ2

𝜕𝜃𝑦𝑏

𝜕𝑦
) + (𝑟𝑓3 −

𝑟𝐶1𝑓6)
𝜕2𝑊0

𝜕𝑦2
= [1 − (𝑒0𝑎)

2∇2] {𝑞 + (𝐼0
𝑡 + 𝐼0

𝑐 + 𝐼0
𝑏)�̈�0 + 𝐼3

𝑡𝐶1 (
𝜕�̈�0𝑡

𝜕𝑥
+
𝜕𝑣0𝑡

..

𝜕𝑦
) +

𝐼3
𝑏𝐶1 (

𝜕�̈�0𝑏

𝜕𝑥
+
𝜕𝑣0𝑏

..

𝜕𝑦
) − (𝐼6

𝑡 + 𝐼3
𝑏)𝐶1

2 (
𝜕2�̈�0

𝜕𝑥2
+
𝜕2�̈�0

𝜕𝑦2
) + 𝐼4

𝑡𝐶1 (
𝜕�̈�𝑥𝑡

𝜕𝑥
+
𝜕�̈�𝑦𝑡

𝜕𝑦
) +

𝐼4
𝑏𝐶1 (

𝜕�̈�𝑥𝑏

𝜕𝑥
+
𝜕�̈�𝑦𝑏

𝜕𝑦
)},  

𝛿휃𝑥𝑡 → [𝐵11 − 𝐶1𝐸11] (
𝜕2𝑢0𝑡

𝜕𝑥2
) + [𝐵66 − 𝐶1𝐸66] (

𝜕2𝑢0𝑡

𝜕𝑦2
) + [𝐵12 − 𝐶1𝐸12 + 𝐵66 −

𝐶1𝐸66] (
𝜕2𝑣0𝑡

𝜕𝑥𝜕𝑦
) + [𝐻11 − 2𝐶1𝑇11 + 𝐶1

2𝐷11] (
𝜕2𝜃𝑥𝑡

𝜕𝑥2
) + [𝐻66 − 2𝐶1𝑇66 +

𝐶1
2𝐷66] (

𝜕2𝜃𝑥𝑡

𝜕𝑦2
) + [𝐻12 − 2𝐶1𝑇12+𝐻66 − 2𝐶1𝑇66 + 𝐶1

2𝐷12 + 𝐶1
2𝐷66] (

𝜕2𝜃𝑦𝑡

𝜕𝑥𝜕𝑦
) +

[6𝐶1𝐻44 − 𝐴44 − 9𝐶1
2𝑇44] (휃𝑥𝑡 +

𝜕𝑊0

𝜕𝑥
) + (𝐶1

2𝐷11 − 𝐶1𝑇11) (
𝜕3𝑊0

𝜕𝑥3
) + [𝐶1

2𝐷12 −

𝐶1𝑇12 + 2(𝐶1
2𝐷66 − 𝐶1𝑇66)] (

𝜕3𝑊0

𝜕𝑥𝜕𝑦2
) + (

ℎ1

2ℎ2
𝑓1 −

3𝐶1ℎ1

2ℎ2
𝑓4) (𝑢0𝑡 − 𝑢0𝑏) −

(B2) 

 

 

 

 

(B3) 

 

 

 

(B4) 

 

 

 

 

(B5) 

 

 

 

 

 

 

 

 

(B6) 
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(
ℎ1

2ℎ2
𝑓2 −

3𝐶1ℎ1

2ℎ2
𝑓5) (ℎ1휃𝑥𝑡 + ℎ3휃𝑥𝑏) − (

ℎ1

2ℎ2
𝑓3 −

3𝐶1ℎ1

2ℎ2
𝑓6)

𝜕𝑊0

𝜕𝑥
= [1 −

(𝑒0𝑎)
2∇2] (𝐼1

𝑡�̈�0𝑡 + 𝐼2
𝑡휃̈𝑥𝑡 − 𝐶1𝐼4

𝑡 𝜕�̈�0

𝜕𝑥
) , 

𝛿휃𝑥𝑏 → [𝐵11 − 𝐶1𝐸11] (
𝜕2𝑢0𝑏

𝜕𝑥2
) + [𝐵66 − 𝐶1𝐸66] (

𝜕2𝑢0𝑏

𝜕𝑦2
) + [𝐵12 − 𝐶1𝐸12 + 𝐵66 −

𝐶1𝐸66] (
𝜕2𝑣0𝑏

𝜕𝑥𝜕𝑦
) + [𝐻11 − 2𝐶1𝑇11 + 𝐶1

2𝐷11] (
𝜕2𝜃𝑥𝑏

𝜕𝑥2
) + [𝐻66 − 2𝐶1𝑇66 +

𝐶1
2𝐷66] (

𝜕2𝜃𝑥𝑏

𝜕𝑦2
) + [𝐻12 − 2𝐶1𝑇12+𝐻66 − 2𝐶1𝑇66 + 𝐶1

2𝐷12 + 𝐶1
2𝐷66] (

𝜕2𝜃𝑦𝑏

𝜕𝑥𝜕𝑦
) +

[6𝐶1𝐻44 − 𝐴44 − 9𝐶1
2𝑇44] (휃𝑥𝑏 +

𝜕𝑊0

𝜕𝑥
) + (𝐶1

2𝐷11 − 𝐶1𝑇11) (
𝜕3𝑊0

𝜕𝑥3
) + [𝐶1

2𝐷12 −

𝐶1𝑇12 + 2(𝐶1
2𝐷66 − 𝐶1𝑇66)] (

𝜕3𝑊0

𝜕𝑥𝜕𝑦2
) + (

ℎ3

2ℎ2
𝑓1 −

3𝐶1ℎ3

2ℎ2
𝑓4) (𝑢0𝑡 − 𝑢0𝑏) −

(
ℎ3

2ℎ2
𝑓2 −

3𝐶1ℎ3

2ℎ2
𝑓5) (ℎ1휃𝑥𝑡 + ℎ3휃𝑥𝑏) − (

ℎ3

2ℎ2
𝑓3 −

3𝐶1ℎ3

2ℎ2
𝑓6)

𝜕𝑊0

𝜕𝑥
= [1 −

(𝑒0𝑎)
2∇2] (𝐼1

𝑏�̈�0𝑏 + 𝐼2
𝑏휃̈𝑥𝑏 − 𝐶1𝐼4

𝑏 𝜕�̈�0

𝜕𝑥
) , 

𝛿휃𝑦𝑡 → [𝐵22 − 𝐶1𝐸22] (
𝜕2𝑣0𝑡

𝜕𝑦2
) + [𝐵66 − 𝐶1𝐸66] (

𝜕2𝑣0𝑡

𝜕𝑥2
) + [𝐵12 − 𝐶1𝐸12 + 𝐵66 −

𝐶1𝐸66] (
𝜕2𝑢0𝑡

𝜕𝑥𝜕𝑦
) + [𝐻22 − 2𝐶1𝑇22 + 𝐶1

2𝐷22] (
𝜕2𝜃𝑦𝑡

𝜕𝑦2
) + [𝐻66 − 2𝐶1𝑇66 +

𝐶1
2𝐷66] (

𝜕2𝜃𝑦𝑡

𝜕𝑥2
) + [𝐻12 − 2𝐶1𝑇12+𝐻66 − 2𝐶1𝑇66 + 𝐶1

2𝐷12 + 𝐶1
2𝐷66] (

𝜕2𝜃𝑥𝑡

𝜕𝑥𝜕𝑦
) +

[6𝐶1𝐻44 − 𝐴44 − 9𝐶1
2𝑇44] (휃𝑦𝑡 +

𝜕𝑊0

𝜕𝑦
) + (𝐶1

2𝐷22 − 𝐶1𝑇22) (
𝜕3𝑊0

𝜕𝑦3
) + [𝐶1

2𝐷12 −

𝐶1𝑇12 + 2(𝐶1
2𝐷66 − 𝐶1𝑇66)] (

𝜕3𝑊0

𝜕𝑥2𝜕𝑦
) + (

ℎ1

2ℎ2
𝑓1 −

3𝐶1ℎ1

2ℎ2
𝑓4) (𝑣0𝑡 − 𝑣0𝑏) −

(
ℎ1

2ℎ2
𝑓2 −

3𝐶1ℎ1

2ℎ2
𝑓5) (ℎ1휃𝑦𝑡 + ℎ3휃𝑦𝑏) − (

ℎ1

2ℎ2
𝑓3 −

3𝐶1ℎ1

2ℎ2
𝑓6)

𝜕𝑊0

𝜕𝑦
= [1 −

(𝑒0𝑎)
2∇2] (𝐼1

𝑡�̈�0𝑡 + 𝐼2
𝑡휃̈𝑦𝑡 − 𝐶1𝐼4

𝑡 𝜕�̈�0

𝜕𝑦
),  

𝛿휃𝑦𝑏 → [𝐵22 − 𝐶1𝐸22] (
𝜕2𝑣0𝑏

𝜕𝑦2
) + [𝐵66 − 𝐶1𝐸66] (

𝜕2𝑣0𝑏

𝜕𝑥2
) + [𝐵12 − 𝐶1𝐸12 + 𝐵66 −

𝐶1𝐸66] (
𝜕2𝑢0𝑏

𝜕𝑥𝜕𝑦
) + [𝐻22 − 2𝐶1𝑇22 + 𝐶1

2𝐷22] (
𝜕2𝜃𝑦𝑏

𝜕𝑦2
) + [𝐻66 − 2𝐶1𝑇66 +

𝐶1
2𝐷66] (

𝜕2𝜃𝑦𝑏

𝜕𝑥2
) + [𝐻12 − 2𝐶1𝑇12+𝐻66 − 2𝐶1𝑇66 + 𝐶1

2𝐷12 + 𝐶1
2𝐷66] (

𝜕2𝜃𝑥𝑏

𝜕𝑥𝜕𝑦
) +

[6𝐶1𝐻44 − 𝐴44 − 9𝐶1
2𝑇44] (휃𝑦𝑏 +

𝜕𝑊0

𝜕𝑦
) + (𝐶1

2𝐷22 − 𝐶1𝑇22) (
𝜕3𝑊0

𝜕𝑦3
) + [𝐶1

2𝐷12 −

𝐶1𝑇12 + 2(𝐶1
2𝐷66 − 𝐶1𝑇66)] (

𝜕3𝑊0

𝜕𝑥2𝜕𝑦
) + (

ℎ3

2ℎ2
𝑓1 −

3𝐶1ℎ3

2ℎ2
𝑓4) (𝑣0𝑡 − 𝑣0𝑏) −

(
ℎ3

2ℎ2
𝑓2 −

3𝐶1ℎ3

2ℎ2
𝑓5) (ℎ1휃𝑦𝑡 + ℎ3휃𝑦𝑏) − (

ℎ3

2ℎ2
𝑓3 −

3𝐶1ℎ3

2ℎ2
𝑓6)

𝜕𝑊0

𝜕𝑦
= [1 −

(𝑒0𝑎)
2∇2] (𝐼1

𝑏�̈�0𝑏 + 𝐼2
𝑏휃̈𝑦𝑏 − 𝐶1𝐼4

𝑏 𝜕�̈�0

𝜕𝑦
),  

 

 

 

 

 

 

(B7) 

 

 

 

 

 

(B8) 

 

 

 

 

 

(B9) 

 

 

where 

(𝐴11, 𝐵11, 𝐻11, 𝐸11, 𝑇11, 𝐷11) = ∫ 𝑄11(1, 𝑧, 𝑧
2, 𝑧3, 𝑧4, 𝑧6)𝑑𝑧

ℎ1/2

−ℎ1/2
,  

(𝐴12, 𝐵12, 𝐻12, 𝐸12, 𝑇12, 𝐷12) = ∫ 𝑄12(1, 𝑧, 𝑧
2, 𝑧3, 𝑧4, 𝑧6)𝑑𝑧

ℎ1/2

−ℎ1/2
, 



 
 
 
 

(𝐴22, 𝐵22, 𝐻22, 𝐸22, 𝑇22, 𝐷22) = ∫ 𝑄22(1, 𝑧, 𝑧
2, 𝑧3, 𝑧4, 𝑧6)𝑑𝑧

ℎ1/2

−ℎ1/2
, 

(𝐴44, 𝐵44, 𝐻44, 𝐸44, 𝑇44, 𝐷44) = ∫ 𝑄44(1, 𝑧, 𝑧
2, 𝑧3, 𝑧4, 𝑧6)𝑑𝑧

ℎ1/2

−ℎ1/2
, 

(𝐴66, 𝐵66, 𝐻66, 𝐸66, 𝑇66, 𝐷66) = ∫ 𝑄66(1, 𝑧, 𝑧
2, 𝑧3, 𝑧4, 𝑧6)𝑑𝑧

ℎ1/2

−ℎ1/2
, 

𝑟 = (
ℎ1

8ℎ2
+

ℎ3

8ℎ2
−
3

4
),  𝑓1 =

3

4ℎ2
𝐺(𝑐)�̅� −

9𝐶1

4ℎ2
𝐺(𝑐)�̅�,   𝑓2 =

1

2ℎ2
𝐺(𝑐)�̅� −

3𝐶1

2ℎ2
𝐺(𝑐)�̅�, 

𝑓3 = 𝐺(𝑐)�̅�𝑟 − 3𝐶1𝐺
(𝑐)�̅�𝑟,   𝑓4 =

3

4ℎ2
𝐺(𝑐)�̅� −

9𝐶1

4ℎ2
𝐺(𝑐)�̅�,  𝑓5 =

1

2ℎ2
𝐺(𝑐)�̅� −

3𝐶1

2ℎ2
𝐺(𝑐)�̅�,   

𝑓6 = 𝐺(𝑐)�̅�𝑟 − 3𝐶1𝐺
(𝑐)�̅�𝑟 ,  (�̅�, �̅�, �̅�) = ∫ (1, 𝑧2, 𝑧4)𝑑𝑧

ℎ2/2

−ℎ2/2
. 
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