
Received 13 May 2023, accepted 6 June 2023, date of publication 27 June 2023, date of current version 7 July 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3290100

High-Performance Memory Allocation on FPGA
With Reduced Internal Fragmentation
MOHAMAD MEHDI SADEGHI1, SOMAYEH TIMARCHI 2, AND MAHMOOD FAZLALI2
1Faculty of Electrical Engineering, Shahid Beheshti University, Tehran 1983969411, Iran
2Cybersecurity and Computing Systems Research Group, School of Physics, Engineering and Computer Science, University of Hertfordshire, AL10 9AB
Hertfordshire, U.K.

Corresponding author: Somayeh Timarchi (s.timarchi@herts.ac.uk)

ABSTRACT In this paper, we present two distinct hardware dynamic memory allocation schemes that are
based on the binary buddy system algorithm. Our aim is to mitigate internal fragmentation without impacting
the area and performance of the system. The first scheme introduces a parallel design for calculating the
addresses of free blocks, which results in a decrease in allocation latency while maintaining acceptable
resource utilization. This scheme is particularly well-suited for managing a limited number of minimum
allocable units (MAU). On the other hand, the second allocator can handle a large number of MAUs due
to its innovative searching mechanism. This allocator exhibits lower resource consumption and operates
with an acceptable allocation latency. Furthermore, to decrease internal fragmentation, we develop a novel
update mechanism for allocating information data structures in both methods. By employing these two
allocator schemes, we can improve the efficiency and resource management of dynamic memory allocation
for hardware systems. Experimental results demonstrate that the first and second proposed schemes achieve
a minimum allocation speed-up of ×2 and ×1.8 compared to their counterparts. At the same time, they
achieve a reduction of at least 78% and %88 in resource utilization, respectively. The results show that the
total fragmentation is reduced by at least 14% due to the lower internal fragmentation.

INDEX TERMS Dynamic memory allocator, field programmable gate array (FPGA), high-performance,
internal fragmentation.

I. INTRODUCTION
Field programmable gate array (FPGA) devices outperform
CPUs and GPUs in terms of speed and power consump-
tion [1], [2], [3]. To support this in the last decade, high-level
synthesis (HLS) tools have been developed to raise the
abstraction level and ease the design of complex systems
with a performance similar to hand-written register transfer
level (RTL) codes [4]. HLS tries to convert input hardware
specification to an efficient Data path [5], [6], [7]. How-
ever, neither today’s commercial HLS tools nor hardware
description languages (HDL) support the dynamic memory
management (DMM) features. This constraint forces hard-
ware designers to statically allocate on-chip memory blocks
(BRAM), which is often a limiting factor in designing com-
plex embedded systems [8]. Although modern FPGAs are

The associate editor coordinating the review of this manuscript and

approving it for publication was Ilaria De Munari .

built with a considerable amount of BRAMs distributed
throughout the chip, Diamantopoulos et al. [9] revealed that
dynamically (de)allocating memory (from)to units that have
varying memory usage patterns through their run-time can
alleviate memory-induced dark silicon.

For decades, software designers have utilized DMM to
design memory-efficient software. Therefore, they developed
many DMM algorithms to manage dynamic memory [10].
Two widely used allocation mechanisms are sequential
fit [10] and segregated free list [11]. The former allocator
sequentially searches the memory and is generally deployed
in software. This type of allocator has a high allocation
latency. The latter allocator is faster since it employs an array
of free lists, each with free blocks of particular sizes. Some
types of segregated free lists, like the buddy system [12],
virtually split and merge the memory for efficient usage. The
buddy system has a fast allocation response at the cost of
high internal fragmentation. The most straightforward type

66672
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0002-7760-3411
https://orcid.org/0000-0002-9872-1695


M. M. Sadeghi et al.: High-Performance Memory Allocation on FPGA With Reduced Internal Fragmentation

of buddy system is the binary buddy system (BBS) [12].
However, the BBS algorithm has more internal fragmentation
compared to more complicated types of buddy systems like
Fibonacci buddies [13] and weighted buddies [14].

Some research focuses on developing dynamic memory
allocator (DyMA) algorithms for FPGA platforms [15],
[16], [17], [18], [19], [20], [21], [22]. In [17], an allocator
based on the sequential fit was presented and employed in
many-accelerator architecture to maximize memory usage
efficiency. Reference [18] offered an allocator based on
the segregated free lists for an allocation suitable for
real-time applications. Other research, like [19] and [20],
presented a BBS-based mechanism to develop high-speed
allocators capable of managing many minimum allocable
units (MAUs). Generally, choosing an appropriate hardware
allocator depends on the available resources, expected per-
formance, and required memory usage efficiency. In addition
to the mentioned cases, different memory request patterns of
applications are noticeable [15]. Therefore, there is no unique
solution for all situations.

Since FPGAs are low-latency devices and are used as
accelerators, employing DyMA algorithms with high allo-
cation latency is unreasonable. Furthermore, some FPGAs,
especially low-cost ones, have a limited amount of BRAMs,
and therefore, wasting memory through internal fragmen-
tation is not affordable. This paper focuses on the BBS
mechanism since it has a rapid allocation response and low
resource overhead for implementation compared to other
approaches.

Hardware DyMA structures based on the BBS algorithm
have at least one bit-vector, whose bit corresponds to one of
the heap’s MAU to hold the allocation status information.
According to the request memory, the algorithm allocates
memory mainly in the following three steps: 1) in the first
step, the availability of free blocks suitable for the request size
are searched, 2) if there is a free space, the start address of the
first suitable free block is computed in the second step, and 3)
in the last step, the bit-vector(s) is updated. In the context of
BBS-based hardware allocators, effectively managing Mem-
ory Access Units (MAUs) requires addressing two critical
concerns: enhancing performance and minimizing resource
overhead. Additionally, there is a pressing need to mitigate
internal fragmentation. To this end, we propose two memory
allocation strategies:

• One-Level Dynamic Memory Allocator (OLDMA):
This allocator avoids latency by minimizing the register
insertion to break critical paths and take advantage of the
speed of combinational logic. As a result, this is a low
allocation latency design but can manage a heap with a
limited number of MAUs.

• Two-Level Dynamic Memory Allocator (TLDMA):
This allocator offers a novel approach to allocation infor-
mation storage, along with a sophisticated two-level
search method. By utilizing resource-sharing tech-
niques, the TLDMA significantly reduces the overhead

of consumed resources. This design is particularly
suitable for managing heaps with numerous Memory
Allocation Units (MAUs), making it a low-resource
overhead solution compared to the first design. The
proposed method is appropriate for managing a heap
with many MAUs.

The two proposed schemes make noteworthy contributions in
the following ways:

• Firstly, they introduce a novel mechanism that can allo-
cate any number of MAUs without the requirement of
rounding it up to the nearest power of two.

• Secondly, they enhance the hardware by replacing all
multipliers with shift circuits and promoting resource
sharing between components whenever feasible.

• Lastly, to maintain maximum frequency (Fmax), the
combinational logic with high fan-outs is segregated
into multiple subparts with lower fan-outs, thus enabling
parallel execution and breaking critical paths.

The achievements of the paper are:
1) Both schemes have low resource utilization overhead

compared to their counterparts.
2) Both schemes have high-performance allocation

responses suitable for real-time application.
3) Both schemes significantly reduce internal fragmenta-

tion compared to standard BBS.
The rest of this paper is as follows: in Section II, we review

the related works. In Section III, the proposed DyMA archi-
tectures are discussed. In Section IV, the implementation
results on FPGA and the comparison will be conducted, and
finally, in Section V, we conclude this paper.

II. RELATED WORK
In this section, we review related works and highlight the pros
and cons of each method.

Dessouky et al. [16] proposed a DyMA unit based on a
fixed-size allocator called DOMMU, which is customized to
apply the dynamic management of on-chip memory to par-
allel FPGA-based processing elements (PEs). In DOMMU,
PEs cannot explicitly request memory because all allocation
and deallocation are done automatically by adding/removing
one page to/from PEs. The internal memory fragmentation
is high when applications need variable sizes of memory.
A crossbar interconnection switch is used to simultaneously
access PEs to thememory blocks allocated to them, which is a
limiting factor of Fmax and introduces a considerable amount
of resource utilization.

Diamantopoulos et al. [17] studied DMM in many-
accelerators systems and proposed HLS-DMM. The method
is a DyMAbased on the sequential first fit policy. The internal
fragmentation rate of HLS-DMM is low due to the ability to
allocate any desired number of MAUs. However, since this
method sequentially searches for free memory, in addition
to high allocation latency, the external fragmentation rate at
the beginning of the heap increases as the procedure con-
tinues. So Kokkinis, in another study [22], uses HLS-DMM

VOLUME 11, 2023 66673



M. M. Sadeghi et al.: High-Performance Memory Allocation on FPGA With Reduced Internal Fragmentation

in a framework for optimizing memory by defragmenting
memory.

Özer [18] proposed a free list manager (FLM) designed
with the objective of allocation with minimum memory frag-
mentation by allocating non-continuous blocks and bounded
allocation response time to be applicable in real-time systems.
The FLM is limited to allocate memory with a size of 1 to
32 MAUs. However, a complicated address translator for
accessing BRAM is needed, whose cost is extra cycles to
access the BRAM. The high access latency of BRAM causes
a decrease in the overall system performance.

Liang et al. [19] introduced an HLS dynamic memory
management scheme called Hi-DMM. The method is a
computer-aided design (CAD) tool and contains four DyMAs
based on the BBS. Hi-DMM analyzes the C source code to
replace all malloc/free functions with an appropriate DyMA
instance. The DyMAs are designed to be high-performance
and use the HLS directive in the implementation process
for efficient implementation. Although all DyMAs have low
allocation latency, the FPGA’s resource consumption is high,
and more importantly, Hi-DMM does not address the high
internal fragmentation issue of the buddy system algorithm.

Xue and Thomas [20] proposed a DyMA called Sysalloc
to improve the hardware allocator developed by Chang and
Gehringer [21] to scale up the management capability. The
Sysalloc is a BBS-based allocator that can manage dual-data
rate (DDR)memories. So, Sysalloc can be used as a DyMAof
internal and external memories. Nevertheless, Sysalloc suf-
fers from high allocation latency around hundreds of cycles
and does not address the high internal fragmentation of the
buddy system algorithm.

Giambalanco et al. have presented a library of HLS alloca-
tors in [15] that includes five allocators. These allocators are
tool independent, and some of them are efficient in memory
usage. However, they have an allocation latency of hundreds
of clock cycles that varies depending on the number ofMAUs.
According to the authors’ claim, the proposed scheme aimed
to reduce memory usage and area consumption and achieve
high Fmax.

The characteristics of an ideal allocator include low
fragmentation, as well as low allocation and maintenance
latencies. For hardware realization, the implementation cost
and Fmax are also noticeable. Our work attempts to improve
these characteristics of the allocator, although compromise is
inevitable.

III. PROPOSED DYNAMIC MEMORY ALLOCATORS
This section discusses on the proposed allocation methods
and their corresponding implementations. Let’s assume the
input signals of the allocator are request-size, free-addr,
and allocate. The request-size indicates the number of MAUs
that are required to be allocated/deallocated. It indicates the
number of bits that will be flipped in the bit-vector at the
end of process. The free-addr is the start address of flipped
bits in deallocation process. The allocate signal is used to
indicate the allocation/deallocation command. The output

signal, actual-addr, is the start address of allocated memory.
The two proposed allocators are presented in the following.

A. OLDMA
The first proposed allocator, called OLDMA, is shown in
Fig. 1. As shown in the figure, this structure uses a bit-
vector, called pBV, with a length of 2n bits equivalent to the
number ofMAUs to hold their allocation status. TheOLDMA
comprises threemain components: OR-TREE, Find-Address,
and Bit-Flipper.

• In the allocation process, the OR-TREE component
checks if there are continuous free blocks. If there are
continuous free blocks, the Find-Address component
will compute the start address of the first free block,
called start-addr. Then, the Bit-Flipper updates the pBV.

• In the deallocation process, Bit-Flipper will flip an
appropriate number of bits specified by the request-size
to zero, starting from free-addr.

The performance bottleneck in BBS-based allocators is
to search for allocable memory blocks and update the
OR-GATE tree bit-vectors. The key ideas of the proposed
OLDMA are accelerating these two procedures. The issue
is done by exploring new methods for searching, performed
by the Find-Address component, and updating the bit-vector,
performed by the Bit-Flipper component. This paper develops
an architecture for the Find-Address component to perform
the searching process. Besides, our new method for updating
the bit-vector is to employ the basic idea of bitmask to specify
the flipped MAUs.

1) OR-TREE COMPONENT
The main part of the OR-TREE component is the OR-GATE
tree presented in [21] to determine if there are continuous
free blocks. As shown in the article, each row in the tree has
a depth and a bit-vector. The tree needs a depth parameter,
called D, to specify which bit-vector must be searched and is
calculated according to the following relation:

D = L−ceil(log2(request − size)) (1)

where L is equal to log2(sizeof (pBV)). Based on the depth
calculated by (1), the OR-TREE loads the bit-vector at depth
D of the OR-GATE tree into the Reg-Arr register. Then
the Find-Address uses the Reg-Arr to calculate the start
address of the first 2L−D continuous zero-bits in the pBV.
In our implementation, the logarithm operation is imple-
mented using 2:1 multiplexers.

2) FIND-ADDRESS COMPONENT
To reduce the critical path delay caused by the combinational
implementation of the AND-GATE tree presented in [21]
and to avoid inserting registers to break the critical path,
which causes latency, as presented in [20], the proposed
OLDMA uses a new architecture to extracts the first zero in
the bit-vector at depth D of the OR-GATE. The basic idea is
to design a new structure to reduce the critical path delay of
finding the address.

66674 VOLUME 11, 2023



M. M. Sadeghi et al.: High-Performance Memory Allocation on FPGA With Reduced Internal Fragmentation

FIGURE 1. Proposed OLDMA block diagram without depicting control
signals by assuming MAU size equal to 8 words.

FIGURE 2. Block diagram of proposed Find-Address component with
two-level hierarchy. The Reg-Arr divides into 4 regions. Also, each 128-bit
region divides into 4 subregions.

The rest of the subsection discusses the implementation
of the Find-Address component of the proposed OLDMA.
As shown in Fig. 2, the Reg-Arr is divided into multiple
regions and subregions in the proposed architecture. Let us
assume there are four regions (region0 to region3), and each
region is divided into four 32-bit subregions (subregion0 to
subregion3), as shown in Fig. 2. Each subregion’s first-zero-
bit index, i.e., the index of the first bit with a zero value,
in this architecture is extracted using a 32-bit AND-GATE
tree. Since any subregion may not have a zero-bit, a signal
named

valid, calculated by AND32 in the figure, indicates the
validity of the AND-GATE tree’s output, i.e., index. The
AND-GATE tree as well as AND32 are shown by a unit called
Cell as shown in the figure.

The index of first-zero-bit in the region is computed
using the concatenation of the highest priority subregion’s
index with a valid index and the corresponding subregion
number, assuming that the highest priority subregion number
is 0. The process is performed by a priority encoder for
each subregion. So far, the index of first-zero-bit in each
region is computed by LOHunits. Finally, a similar procedure
that computes the whole region’s first-zero-bit is employed
to compute the first-zero-bit of the Reg-Arr. The following
equation is used to compute the start-addr of the first block
of 2L−D continuous zero-bits in the pBV [21].

start − addr =2L−D
×index (2)

where D is the depth calculated by (1), start-addr is the start
address of the first 2L−D continuous zero-bits in the pBV,
and index shows the least significant zero-bit in the Reg-
Arr. Since the MAUs size could be greater than 1, the actual
address of the allocated block in a heap, represented by
actual-addr, which is returned to the application, is calculated
as follows:

actual − addr = start − addr × sizeof(MAU) (3)

In the case of allocation / deallocation, the start-addr/free-
addr is entered into the Bit-Flipper to update the pBV.

3) BIT-FLIPPER COMPONENT
As performance issues have been found to be connected to the
method of updating the OR-GATE tree in BBS-based alloca-
tors, the OLDMA presents a novel approach that steers clear
of the traditional iterative update mechanism used in previous
works. Specifically, the OLDMAdoesn’t store the OR-GATE
tree in memory but instead integrates it as a combinational
circuit. This allows the tree to be updated instantaneously
when the relevant pBV changes, and without memory access.
The result is a significantly faster update process. Besides,
updating only pBV offers more control to flip any desired
number of bits compared to the marking downward employed
in [19] and [20]. The marking downward approach updates
the OR-GATE tree from the layer located in the allocation
stage to the bottom layer. In the approach, the input combi-
nation of the OR logic must be determined by knowing the
result of OR logic which is not possible in all cases, and
over-allocation is inevitable.

In the updating process, the bits corresponding to the allo-
cated and deallocated MAUs flip to ’1’ and ’0’, respectively.
Bit-Flipper adopts the basic idea of bitmask to specify the
flipped MAUs. As shown in Fig. 3, to specify the flipped
bits, the pBV is divided into N groups with size S. So,
assigning values to pBV’s bits is done based on the group
type of the bits. Since each group belongs to one of the fol-
lowing types: macro-region, micro-region, or const-region,
the type of each group must be determined first. All bits of

VOLUME 11, 2023 66675



M. M. Sadeghi et al.: High-Performance Memory Allocation on FPGA With Reduced Internal Fragmentation

FIGURE 3. Example of updating pBV’bits based on the group type by
assuming that the pBV is divided into N group with S-bit size.

Algorithm 1 Bit-Flipper (ibv, size, address, allocate)
1: MacSize = floor(size÷)S
2: MacAddr = floor(address÷)S
3: MacroGroup = 2MacAddr

×(2MacSize
−1)

4: MicroGroup = 2MacAddr+MacSize

5: MicSize= size%S
6: MicroMask= (2MicSize

−1)
7: MicroMask′

= firstcomplement(MicroMask)
8: for idx in 0 to N-1:
9: for idyin 0 to S-1:
10: i= idx×S+idy
11: ifMacroGroup [idx]ORMicroGroup[idx] = 1 then
12: if allocate = 1 then
13: Tmp = ibv[i]ORMicroMask[idy]
14: obv[i] = TmpORMacroGroup[idx]
15: Else
16: Tmp= ibv[i]ANDMicroMask′[idy]
17: obv[i]=TmpANDNOT(MacroGroup[idx])
18: end if
19: Else
20: obv[i] = ibv[i]
21: end if
22: end for
23: end for
24: returnobv

the macro-region group are flipped, but in the micro- region
group, just some bits will flip. The bits of the const-region
do not change at all. Multiple macro-regions may exist in
each (de)allocation, but at most, one micro-region may exist.
Two vectors are used to specify the macro-regions and micro-
region, called MacroGroup and MicroGroup, respectively.
Furthermore, MicroMask is used to represent the flipping bits
in the micro-region.

The proposed Bit-Flipper component is implemented
based on Algorithm 1, which receives the pBV (ibv), the
number of bits that must be flipped (size), the start addresses
of flipped bits (address) which in the case of allocation and
deallocation is the start-addr returned by the Find-Address
component, and free-addr, respectively, and (de)allocation
command (allocate = 1 for allocation and allocate = 0 for
deallocation). In Algorithm 1, to calculate MacroGroup in
line 3, two parameters, MacSize and MacAddr, are needed,
which indicate the number and start address of macro-region
groups, respectively. TheMicroGroup value is also calculated
in line 4 to indicate the micro-region group. Also,

FIGURE 4. TLDMA block diagram without representing control unit
signals. The 216-bit pBV is divided into 256 subBVs with size 28 bits.

to specify the flipped bits in the micro-region, the Micro-
Mask vector is calculated in line 6, which only needs the
number of flipped bits in that micro-region. Lines 8-21 assign
a value to the bits of the pBV according to their corresponding
group and allocation command.

In the algorithm, the inner loop is repeated over the group
bits (0 to S-1), and the outer loop is repeated over the groups
(0 to N -1). In line 9, each group type is checked, and if it
is a macro-region or micro-region, the corresponding bits are
assigned by a value accordingly. In the case of allocation, the
value of flipped bits is calculated and assigned in lines 13 and
14. In the case of deallocation, the value of flipped bits is
calculated and assigned in lines 16 and 17.

The proposed OLDMA allocates memory with very low
latency. Nevertheless, by increasing the pBV size, resource
consumption becomes the bottleneck of the OLDMA.
To overcome this shortcoming, the second allocator is pro-
posed.

B. TLDMA
To manage a large number of MAUs, the proposed TLDMA
design is motivated by the hierarchical structure idea based
on the group tree [20], except that TLDMA constructs the

group tree rather than storing them in memory. Therefore,
the allocation process is performed with less memory access,
resulting in a lower allocation latency. As mentioned in the
previous subsection, updating from the bottom layer to the top
layer of the OR-GATE tree allows more control to allocate
any desired number of MAUs. The TLDMA utilizes this
approach for updating.

Fig. 4 depicts the block diagram of TLDMA composed
of these components: BRAM, Find-Address, OR-TREE,
two Bit-Flipper, and HLBV-Gen. The Find-Address and
Bit-Flipper components were discussed in the previous

66676 VOLUME 11, 2023



M. M. Sadeghi et al.: High-Performance Memory Allocation on FPGA With Reduced Internal Fragmentation

FIGURE 5. Top and sub parts of the OR-GATE tree in the proposed TLDMA
scheme.

FIGURE 6. Proposed OR-TREE block diagram. Assuming that size of bv1
and bv2 is 22, and 23 respectively, and MAXSIZE has 3-bits.

subsection. TLDMA divides the pBV into multiple subBV,
where the number of subBV s is a power of two, and stores
them in a BRAM, with the word size equal to the subBV size.
The rest of this section explains the new components, steps of
allocation, and update processes.

1) OR-TREE COMPONENT
In the two-level search mechanism, the OR-GATE tree con-
sists of two parts as shown in Fig. 5. If the requested size is
larger than the size of a subBV, a bit-vector named HLBV
takes a value such that the top part of the OR-GATE tree
is constructed, and the memory search is performed in a
specific layer in the top part. If the requested size is smaller
than the subBV size, the memory search is performed in
a particular layer in the sub part. In this case, the HLBV
specifies the subBVs with a free node in the desired layer.
Then the OR-GATE tree corresponding to the first allocable
subBV is formed, and the memory search resumes. In both
cases, the largest allocable continuous zero-bits (LACZB) of
each subBV is used to generate the HLBV. In the two-level

search mechanism, the OR-GATE tree is formed once for
HLBV and once for subBV at two different times.

The proposed OR-TREE in TLDMA manages two differ-
ent bit-vectors. As depicted in Fig. 6, this structure employs
resource sharing between two separate trees. Let’s assume
two OR-GATE constructed on top of the two bit-vectors bv1
and bv2 with the size equal to 22 and 23, respectively. In this
case, the top two layers of the larger tree share with the
smaller tree. When the smaller tree is selected, the value of
the bit-vector at depth 1 is set based on the bit-vector bv1.
Otherwise, the value of the bit-vector at layer 1 is based
on the underlayer bit-vector at depth 2. Also, the proposed
OR-TREE calculates the MAXSIZE for the larger bit-vector
according to the following equation.

MAXSIZE = (!LACZB)?2ceil(log2(L)+1)

− 1 : L−ceil(log2(LACZB)) (4)

In (4), L is a constant and equal to log2(sizeof(subBV)).

2) HLBV-GEN COMPONENT
The general operation of this component is that a bit vector
called HLBV is generated in the first step of the alloca-
tion process by using the corresponding MAXSIZE of each
subBV stored in the matrix called HLRA and according to
the requested size. Each bit of HLBV corresponds to the
availability of a subBV, ’1’ indicates subBV is occupied,
and ’0’ shows it is free. The OR-TREE component takes
HLBV and generates the top layers of the OR-GATE tree.
The comparator employed in this component is implemented
according to the following equations.

r = (hlsize > 0) ?0 :L−ceil(log2(llsize)) (5)

resulti = (MAXSIZEi > r) ?1 : 0 (6)

In (5), the hlsize is the number of totally occupied sub-
BVs, and the llsize is equal to the remainder of dividing
request-size by subBV size. This way, the output bit-vector
called HLBV is generated by concatenating the comparison
results. After each memory allocation or in the deallocation
process, MAXSIZEs corresponding to the subBVs involved
in the allocation/deallocation process must be updated. The
two update modes are as follows.

• umode1: In this mode, in the allocation process, if the ith
bit of ubv, the input signal to the HLBV-Gen, is ’1’, the
updated value of the MAXSIZEi is 2ceil(log2(L)+1)−1.
In the deallocation process, if the ith bit of ubv is ’0’,
the updated value of the MAXSIZEi is 0.

• umode2: In this mode, onlyMAXSIZE corresponding to
the subBV loaded in the LLBV register is updated using
MAXSIZE computed by the proposed OR-TREE.

3) ALLOCATION AND UPDATE STEPS
As previously discussed, in TLDMA, memory allocation is
done in three steps. The steps and active components in each
step are described in the following.

VOLUME 11, 2023 66677



M. M. Sadeghi et al.: High-Performance Memory Allocation on FPGA With Reduced Internal Fragmentation

TABLE 1. Hardware characteristics of the dynamic memory allocators.

a: STEP1
In step1, according to the requested size, the HLBV-Gen
generates the HLBVwhich specifies the appropriate subBVs.
Since the requested size may be larger than a subBV, an ade-
quate number of continuous free subBVs must be available.
Otherwise, the allocation process will fail. The OR-TREE
loads the bit-vector at depth D of the OR-GATE tree into
the Reg-Arr and Find-Address calculates the start address
of the first suitable group of subBV s. The Find-Address’s
output is loaded into the most significant bits of the address
register. Since the requested size is not always a factor of
the subBV size, to prevent memory wastage due to internal
fragmentation, the last subBV of the group is loaded into the
LLBV register to be processed in step2. In cases where only
one subBV is required, the subBV is loaded into the LLBV
register after calculating the address of the first appropriate
subBV. In this step, the bv1 is selected in the OR-TREE. The
start-addr calculated by Find-Address is loaded into the most
significant bits of the address register.

In step1, theD assigned to theOR-TREE and Find-Address
is calculated by (1) where the request-size is the number of
totally occupied subBVs in the allocation.

b: STEP2
As discussed earlier, since multiple subBV s may need to
be allocated, after computing the address of the first suitable
group of subBVs, all the subBVs in the group except the last
subBV will be occupied thoroughly.

So, to speed up the updating process, in this step, the
corresponding MAXSIZEs of the subBVs specified by
the Bit-Flipper1 output are updated according to umode1.
To continue the allocation process in step2, by selecting
the bv2, the OR-TREE loads the bit-vector at the D of the
OR-GATE tree into the Reg-Arr and Find-Address calcu-
lates the start address of the first suitable group of bits. The
calculated address by Find-Address is loaded into the least
significant bits of the address register. When the allocation
and updating processes in step2 are finished, the BRAM and
LLBV are updated by Bit-Flipper2 output.

In step2, theD assigned to theOR-TREE and Find-Address
is calculated by (1) where request-size is the number of
flipped bits in LLBV.

c: STEP3
In the third step, the corresponding MAXSIZE of the subBV
loaded into the LLBV is generated by the OR-TREE compo-
nent and sent to the HLBV-Gen to update the HLRA matrix
according to the umode2.

IV. EVALUATION AND ANALYSIS
To evaluate the designs in terms of resource utilization,
we implemented the proposed designs in Zynq-7000 SoC
XC7Z020 and set the frequency at 100 MHZ. To synthesize
and simulate the proposed allocators, we use Vivado suite
version 2019.2. The Sysalloc presented in [20], FBTA and
HTA presented in [19] are selected as the methods for com-
parison. We consider resource utilization (LUT and BRAM
utilization), as well as allocation and update latencies as the
metrics to evaluate the DyMAs. Another metric is memory
utilization because the objective of using DyMAs is to reduce
memory inefficiency. To evaluate memory usage, the appli-
cations and DyMAs emulator have been implemented using
Python. The required parameters, such as the actual requested
size, allocated memory size, and the largest allocated address,
are monitored in the software. The allocation latency is the
number of clock cycles that an application must wait for
memory allocation.

On the other hand, the update latency is the number of
clock cycles required for an allocator to update its bit-vector.
So, the (de)allocation request will not be responded until the
update is finished.

Table 1 reveals the hardware characteristics of existing
allocators. In the table, memory utilization means reusing the
memory space while keeping the internal fragmentation low.

A. RESOURCE UTILIZATION
For each allocator, the BRAM and LUT utilization corre-
sponding to different numbers of MAUs is shown in Fig. 7.(a)
and Fig. 7.(b), respectively. The implementation parameters,

66678 VOLUME 11, 2023



M. M. Sadeghi et al.: High-Performance Memory Allocation on FPGA With Reduced Internal Fragmentation

TABLE 2. Configuration parameters of the proposed OLDMA.

TABLE 3. Configuration parameters of the proposed TLDMA.

i.e., region and subregion sizes, the number of hierarchical
levels in the Find-Address, the group size in Bit-Flipper,
and the number and size of subBVs in the TLDMA, are
given in Tables 2 and 3. All allocators except OLDMA use
BRAMs to store bit-vector. As shown in Fig. 7.(a), in the
worst case, the BRAM utilization of TLDMA is 2.86% of
FPGA’s BRAMs, around 40% lower than HTA [19] and
Sysalloc [20]. The OLDMA does not need any BRAM, while
FBTA [19] needs up to 24% of available BRAMs, as its
counterpart. As depicted in Fig. 7.(b), the LUT utiliza-
tion of both OLDMA and TLDMA increases exponentially
when the number of MAUs increases. So, they are lim-
ited to manage a certain number of MAUs. Both OLDMA
and TLDMA consume considerably fewer LUTs compared
to their counterparts. To (de)allocate 512 and 64K MAUs,
FBTA [19] and HTA [19] consume around 19% and 23% of
FPGALUTs compared to 4.08% and 2.66% for OLDMA and
TLDMA,respectively.

B. ALLOCATION LATENCY
There are two types of latencies: allocation and update. The
allocation latency of both OLDMA and TLDMA is constant
and equal to 3 and 8 clock cycles, respectively. OLDMA is
faster than TLDMA at the cost of more resource utilization
because TLDMA searches the HLBV first and then searches
the LLBV. TheHTA [19] and Sysalloc [20] have variable allo-
cation latency, depending on the requested size and MAUs
number, but FBTA [19] has a constant allocation latency of
7-8 cycles depending on theMAUs number. Nevertheless, the
actual latency of an allocator is equal to the summation of the
allocation and update latencies. Let’s assume that an allocator
has the allocation and update latencies of M and N clock
cycles, respectively. When two applications request memory
allocation with I clock cycles interval, i.e., the second request
came I clock cycles after the first request, in cases where
I≤M + N , the second application must wait for 2×M +

N − I clock cycles until the memory is allocated to it. So,
as depicted in Fig. 7.(c), the actual latency of OLDMA and
TLDMA with a request interval of 2 clock cycles is 7 and

FIGURE 7. Resource utilization compared to FBTA [19], HTA [19], and
Sysalloc [20]. a) BRAM utilization. b) LUT utilization. c) actual allocation
latency.

19 clock cycles, respectively. TLDMA has higher latency due
to its structure, which needs to update multiple bit-vectors but
is not much greater than other allocators.

C. MEMORY UTILIZATION
Although OLDMA and TLDMA can allocate any desired
number of MAUs, if the requested size is not a factor of the
MAU size, the internal fragmentation may not be zero. The
internal fragmentation rate depends on the MAU size and
distribution of requests [23]. Since internal fragmentation is
the main factor of memory waste in the BBS algorithm [21],

VOLUME 11, 2023 66679



M. M. Sadeghi et al.: High-Performance Memory Allocation on FPGA With Reduced Internal Fragmentation

FIGURE 8. Comparison of internal fragmentation of proposed DyMA with
standard binary buddy system, where ‘‘ms’’ is the MAU size.

we create a software-desired request pattern generator with
uniform request size distribution to evaluate internal frag-
mentation. The internal fragmentation metric, considered in
this paper, is the ratio of over-allocated memory to totally
allocated memory [21]. As shown in Fig. 8, the internal
fragmentation rate in the proposed DyMAs goes to zero
by expanding the requested size range. Although external
fragmentation depends on the memory usage footprint of an
application, two widely used machine learning applications
have been used in this study to evaluate the effect of reducing
the internal fragmentation rate on memory consumption. The
evaluation metric for external fragmentation is the highest
allocated address [21]. The k-means algorithm is the first
algorithm implemented and tested based on [21]. The SVM
algorithm [24] is also implemented, and datasets a1a to
a9a [25] are selected to train a model. The memory usage
monitoring shows that the proposed DyMAs allocate 28.71%
less memory than the standard BBS because it has a lower
internal fragmentation rate. The lower internal fragmentation
causes a smaller highest address allocated, such that the high-
est memory address in the k-means and SVM algorithms is
17.94% and 14.71% smaller when using the proposedDyMA.
However, it is possible that in some particular footprints [21],
the proposed DyMA fails to allocate the memory where the
standard buddy system works fine.

The proposed DyMA is designed to be used in HLS, mak-
ing it versatile for use in both conventional number system
hardware (like two’s complement, and binary-coded deci-
mal [26]) and unconventional number system hardware, such
as redundant or residue number system [27], [28].

V. CONCLUSION
This paper presents two high-speed and low-area hardware
DyMA schemes based on the BBS algorithm. These schemes
have been designed to ensure a fast response time without
internal fragmentation. To accomplish this, we introduced
new solutions such as minimizing memory access, utilizing
low fan-out circuits to break the critical path of combina-
tional logic, and reorganizing the critical path for parallel
implementation. Our OLDMA scheme prioritizes rapid allo-
cation, which can be achieved by dividing the heap into fewer
but larger MAUs, providing applications with an efficient

allocator. Alternatively, the TLDMA scheme is optimized
to manage numerous MAUs while consuming very few
resources. OLDMA and TLDMA schemes require at most
4.08% and 2.66% of Zynq-7000 SoC XC7Z020 FPGA LUTs
for implementation, considerably lower than other reported
DyMAs, without compromising the allocation or mainte-
nance latencies. The proposed allocators also improve the
allocation latency compared to the other allocators, such that
OLDMA and TLDMA have at least ×2, ×1.8 allocation
latency improvement over their counterparts, respectively.
The internal fragmentation rate in both schemes has been
diminished by allocating 28% less memory than the standard
BBS algorithm.

REFERENCES
[1] C. Liu, ‘‘YOLOv2 acceleration using embedded GPU and FPGAs: Pros,

cons, and a hybrid method,’’ Evol. Intell., vol. 15, no. 4, pp. 2581–2587,
Dec. 2022, doi: 10.1007/s12065-021-00612-y.

[2] E. Nurvitadhi, G. Venkatesh, J. Sim, D. Marr, R. Huang, J. O. G. Hock,
Y. T. Liew, K. Srivatsan, D. Moss, S. Subhaschandra, and G. Boudoukh,
‘‘Can FPGAs beat GPUs in accelerating next-generation deep
neural networks?’’ in Proc. ACM/SIGDA Int. Symp. Field-Program.
Gate Arrays, New York, NY, USA, Feb. 2017, pp. 5–14, doi:
10.1145/3020078.3021740.

[3] L. Guo, J. Lau, Z. Ruan, P. Wei, and J. Cong, ‘‘Hardware acceleration of
long read pairwise overlapping in genome sequencing: A race between
FPGA and GPU,’’ in Proc. IEEE 27th Annu. Int. Symp. Field-Program.
Custom Comput. Mach. (FCCM), San Diego, CA, USA, Apr. 2019,
pp. 127–135, doi: 10.1109/FCCM.2019.00027.

[4] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J. H. Anderson,
S. Brown, and T. Czajkowski, ‘‘LegUp: High-level synthesis for FPGA-
based processor/accelerator systems,’’ in Proc. 19th ACM/SIGDA Int.
Symp. Field Program. Gate Arrays, New York, NY, USA, Feb. 2011,
pp. 33–36, doi: 10.1145/1950413.1950423.

[5] M. Fazlali, A. Zakerolhosseini, A. Shahbahrami, andG.Gaydadjiev, ‘‘High
speed merged-datapath design for run-time reconfigurable systems,’’
in Proc. Int. Conf. Field-Program. Technol., Sydney, NSW, Australia,
Dec. 2009, pp. 339–343, doi: 10.1109/FPT.2009.5377678.

[6] M. Fazlali, M. K. Fallah, M. Zolghadr, and A. Zakerolhosseini, ‘‘A new
datapath merging method for reconfigurable system,’’ in Reconfigurable
Computing: Architectures, Tools and Applications (Lecture Notes in
Computer Science), vol. 5453, J. Becker, R. Woods, P. Athanas, and
F. Morgan, Eds. Berlin, Germany: Springer, 2009, pp. 163–174, doi:
10.1007/978-3-642-00641-8_17.

[7] M. Fazlali, A. Zakerolhosseini, M. Sabeghi, K. Bertels, and G. Gaydadjiev,
‘‘Data path configuration time reduction for run-time reconfigurable sys-
tems,’’ in Proc. ERSA, Jul. 2009, pp. 323–327.

[8] M. Platzner and N. Wehn, Eds., Dynamically Reconfigurable Systems:
Architectures, Design Methods and Applications. New York, NY, USA:
Springer, 2010.

[9] D. Diamantopoulos, S. Xydis, K. Siozios, and D. Soudris, ‘‘Mitigat-
ing memory-induced dark silicon in many-accelerator architectures,’’
IEEE Comput. Archit. Lett., vol. 14, no. 2, pp. 136–139, Jul. 2015, doi:
10.1109/LCA.2015.2410791.

[10] P. R. Wilson, M. S. Johnstone, M. Neely, and D. Boles, ‘‘Dynamic storage
allocation: A survey and critical review,’’ inMemoryManagement (Lecture
Notes in Computer Science), vol. 986, H. G. Baler, Ed. Berlin, Germany:
Springer, 1995, pp. 1–116, doi: 10.1007/3-540-60368-9_19.

[11] W. T. Comfort, ‘‘Multiword list items,’’ Commun. ACM, vol. 7, no. 6,
pp. 357–362, Jun. 1964, doi: 10.1145/512274.512288.

[12] K. C. Knowlton, ‘‘A fast storage allocator,’’ Commun. ACM, vol. 8, no. 10,
pp. 623–624, 1965, doi: 10.1145/365628.365655.

[13] D. S. Hirschberg, ‘‘A class of dynamic memory allocation algo-
rithms,’’ Commun. ACM, vol. 16, no. 10, pp. 615–618, Oct. 1973, doi:
10.1145/362375.362392.

[14] K. K. Shen and J. L. Peterson, ‘‘A weighted buddy method for dynamic
storage allocation,’’ Commun. ACM, vol. 17, no. 10, pp. 558–562,
Oct. 1974, doi: 10.1145/355620.361164.

66680 VOLUME 11, 2023

http://dx.doi.org/10.1007/s12065-021-00612-y
http://dx.doi.org/10.1145/3020078.3021740
http://dx.doi.org/10.1109/FCCM.2019.00027
http://dx.doi.org/10.1145/1950413.1950423
http://dx.doi.org/10.1109/FPT.2009.5377678
http://dx.doi.org/10.1007/978-3-642-00641-8_17
http://dx.doi.org/10.1109/LCA.2015.2410791
http://dx.doi.org/10.1007/3-540-60368-9_19
http://dx.doi.org/10.1145/512274.512288
http://dx.doi.org/10.1145/365628.365655
http://dx.doi.org/10.1145/362375.362392
http://dx.doi.org/10.1145/355620.361164


M. M. Sadeghi et al.: High-Performance Memory Allocation on FPGA With Reduced Internal Fragmentation

[15] N. V. Giamblanco and J. H. Anderson, ‘‘A dynamic memory allocation
library for high-level synthesis,’’ in Proc. 29th Int. Conf. Field Pro-
gram. Log. Appl. (FPL), Barcelona, Spain, Sep. 2019, pp. 314–320, doi:
10.1109/FPL.2019.00057.

[16] G.Dessouky,M. J. Klaiber, D. G. Bailey, and S. Simon, ‘‘Adaptive dynamic
on-chip memory management for FPGA-based reconfigurable architec-
tures,’’ in Proc. 24th Int. Conf. Field Program. Log. Appl. (FPL), Munich,
Germany, Sep. 2014, pp. 1–8, doi: 10.1109/FPL.2014.6927471.

[17] D. Diamantopoulos, S. Xydis, K. Siozios, andD. Soudris, ‘‘Dynamicmem-
ory management in Vivado-HLS for scalable many-accelerator architec-
tures,’’ in Applied Reconfigurable Computing (Lecture Notes in Computer
Science), vol. 9040, K. Sano, D. Soudris, M. Hübner, and P. Diniz, Eds.
Cham, Switzerland: Springer, 2015, pp. 123–136, doi: 10.1007/978-3-319-
16214-0_10.

[18] C. Özer, ‘‘A dynamic memory manager for FPGA applications,’’
M.S. thesis, Graduate School Natural Appl. Sci., Middle East
Tech. Univ., Çankaya, Turkey, 2014. [Online]. Available: http://etd.lib.
metu.edu.tr/upload/12617472/index.pdf

[19] T. Liang, J. Zhao, L. Feng, S. Sinha, and W. Zhang, ‘‘Hi-DMM: High-
performance dynamic memory management in high-level synthesis,’’
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 37, no. 11,
pp. 2555–2566, Nov. 2018, doi: 10.1109/TCAD.2018.2857040.

[20] Z. Xue and D. B. Thomas, ‘‘SysAlloc: A hardware manager for dynamic
memory allocation in heterogeneous systems,’’ in Proc. 25th Int. Conf.
Field Program. Log. Appl. (FPL), London, U.K., Sep. 2015, pp. 1–7, doi:
10.1109/FPL.2015.7293959.

[21] J. M. Chang and E. F. Gehringer, ‘‘A high performance memory alloca-
tor for object-oriented systems,’’ IEEE Trans. Comput., vol. 45, no. 3,
pp. 357–366, Mar. 1996, doi: 10.1109/12.485574.

[22] A. Kokkinis, D. Diamantopoulos, and K. Siozios, ‘‘Dynamic optimiza-
tion of on-chip memories for HLS targeting many-accelerator platforms,’’
IEEE Comput. Archit. Lett., vol. 21, no. 2, pp. 41–44, Jul. 2022, doi:
10.1109/LCA.2022.3190048.

[23] J. L. Peterson and T. A. Norman, ‘‘Buddy systems,’’ Commun. ACM,
vol. 20, no. 6, pp. 421–431, Jun. 1977, doi: 10.1145/359605.359626.

[24] C.-C. Chang and C.-J. Lin, ‘‘LIBSVM: A library for support vector
machines,’’ ACM Trans. Intell. Syst. Technol., vol. 2, no. 3, pp. 1–27,
Apr. 2011, doi: 10.1145/1961189.1961199.

[25] R.-E. Fan. (Apr. 2021). LIBSVM. National Taiwan University. [Online].
Available: https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/

[26] M. Fazlali, H. Valikhani, S. Timarchi, and H. T. Malazi, ‘‘Fast architecture
for decimal digit multiplication,’’ Microprocessors Microsyst., vol. 39,
nos. 4–5, pp. 296–301, Jun. 2015, doi: 10.1016/j.micpro.2015.01.004.

[27] H. Mahdavi and S. Timarchi, ‘‘Improving architectures of binary signed-
digit CORDIC with generic/specific initial angles,’’ IEEE Trans. Circuits
Syst. I, Reg. Papers, vol. 67, no. 7, pp. 2297–2304, Jul. 2020, doi:
10.1109/TCSI.2020.2978765.

[28] S. Timarchi and M. Fazlali, ‘‘Generalised fault-tolerant stored-unibit-
transfer residue number system multiplier for moduli set {2n−1, 2n,
2n+1},’’ IET Comput. Digit. Techn., vol. 6, no. 5, pp. 269–276, Sep. 2012,
doi: 10.1049/iet-cdt.2011.0075.

MOHAMAD MEHDI SADEGHI was born in
Shiraz, Fars, Iran, in 1995. He received the B.S.
degree in electronic engineering from the Shi-
raz University of Technology (SUTECH), Fars,
in 2018, and the M.Sc. degree in digital elec-
tronic engineering from Shahid Beheshti Uni-
versity (SBU), Tehran, Iran, in 2022. His main
research interests include computer architecture
and high-performance computing.

SOMAYEH TIMARCHI received the B.Sc. degree
in computer engineering from Shahid Beheshti
University, the M.Sc. degree in computer system
architecture from the Sharif University of Technol-
ogy, in 2005, and the Ph.D. degree in computer
system architecture from Shahid Beheshti Uni-
versity, in 2010. She also performed studies on
computer arithmetic as a Postdoctoral Researcher
with the Computer Engineering Laboratory, Delft
University of Technology. She joined the Depart-

ment of Electrical Engineering, Shahid Beheshti University, as an Assistant
Professor and was promoted to Associate Professor. She is currently a
Lecturer in computer science with the University of Hertfordshire. She has
authored or coauthored more than 50 publications in journals and conference
proceedings. Her research interests include computer arithmetic, residue and
redundant number systems, low-power digital circuits for signal processing,
cryptography and IoT applications, and VLSI design.

MAHMOOD FAZLALI received the Ph.D. degree
in computer architecture from Shahid Beheshti
University (SBU), in 2010. He performed post-
doctoral research on reconfigurable computing
systems with the Computer Engineering Labora-
tory, Delft University of Technology (TU Delft),
till 2012. He joined the Department of Data and
Computer Sciences, SBU, as an Assistant Profes-
sor. He is currently a Lecturer in computer science
with the University of Hertfordshire. He pub-

lished more than 40 papers in reputable journals and scientific conferences,
especially on high-performance computing. His research interests include
high-performance computing, parallel processing, and big data processing.
He is an Associate Editor of Array (Elsevier) as well as a Reviewer of several
IEEE, ACM Transactions, and Elsevier and Springer journals.

VOLUME 11, 2023 66681

http://dx.doi.org/10.1109/FPL.2019.00057
http://dx.doi.org/10.1109/FPL.2014.6927471
http://dx.doi.org/10.1007/978-3-319-16214-0_10
http://dx.doi.org/10.1007/978-3-319-16214-0_10
http://dx.doi.org/10.1109/TCAD.2018.2857040
http://dx.doi.org/10.1109/FPL.2015.7293959
http://dx.doi.org/10.1109/12.485574
http://dx.doi.org/10.1109/LCA.2022.3190048
http://dx.doi.org/10.1145/359605.359626
http://dx.doi.org/10.1145/1961189.1961199
http://dx.doi.org/10.1016/j.micpro.2015.01.004
http://dx.doi.org/10.1109/TCSI.2020.2978765
http://dx.doi.org/10.1049/iet-cdt.2011.0075

