
1	Comparison of De-escalation of DAPT Intensity or Duration in East Asian and Western		
2	Patients with ACS Undergoing PCI: A Systematic Review and Meta-analysis		
3	Running title: DAPT De-escalation in East Asian versus Westerners		
4 5	Diana A. Gorog MD, PhD, FESC, ^{1,2} Visvesh Jeyalan MRCP, ³ Rafaella I. L. Markides, ⁴ Eliano P. Navarese, MD, PhD, FACC, FESC, ^{5,6} Young-Hoon Jeong MD, PhD, FAHA, ^{7,8}		
6 7	Mohamed Farag MSc, PhD ^{2,3}		
/ 8 9	1. Faculty of Medicine, National Heart and Lung Institute, Imperial College, London,		
10	United Kingdom2. Postgraduate Medical School, University of Hertfordshire, Hertfordshire, United Vingdom		
11 12	Kingdom3. Department of Cardiology, Freeman Hospital, Newcastle-upon-Tyne, United		
13 14 15	 Kingdom 4. University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridgeshire, United Kingdom 		
13 16 17 18	 Interventional Cardiology and Cardiovascular Medicine Research, Department of Cardiology and Internal Medicine, Nicolaus Copernicus University, Bydgoszcz, Poland 		
19	6. Faculty of Medicine, University of Alberta, Edmonton, Canada		
20 21	7. CAU Thrombosis and Biomarker Center, Chung-Ang University Gwangmyeong Hospital		
22 22 23	 Bepartment of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Republic of Korea 		
24	Word count: 3999 words		
25			
25 26	Corresponding author:		
27	Correspondence to:		
28	Prof. Diana A Gorog		
29	Faculty of Medicine		
30 31	National Heart and Lung Institute Imperial College		
32	Dovehouse Street		
33	London SW3 6LR		
34	United Kingdom		
35	Tel +44 (0)207 034 8934		
36	Fax +44 (0)207 034 8935		
37	d.gorog@imperial.ac.uk		

1	Abstract
2 3	Background
4	Buckground
5	Guideline-recommended dual antiplatelet therapy (DAPT; aspirin plus prasugrel/ticagrelor)
6	for 12 months in acute coronary syndrome (ACS) patients increases bleeding, with East
7	Asians (EA) exhibiting higher bleeding and lower ischaemic risk, compared to non-East
8	Asians (nEA). We sought to compare DAPT "de-escalation" strategies in EA and nEA
9	populations.
10 11	Methods
11	meinous
12	A systematic review and meta-analysis of randomised controlled trials assessing reduction of
14	DAPT intensity or duration in ACS patients undergoing percutaneous coronary intervention,
15	in EA and nEA, was performed using a random effects model.
16	
17	Results
18	
19	Twenty-three trials assessed reduction of DAPT intensity $(n=12)$ or duration $(n=11)$.
20 21	Overall, reduced DAPT intensity attenuated major bleeding (odds ratio [OR] 0.78, 95% confidence interval [CI] 0.65-0.94, p=0.009), without impacting net adverse cardiovascular
21	events (NACE) or major adverse cardiovascular events (MACE). In nEA, this increased
22	MACE (OR 1.20, 95% CI 1.09-1.31, p<0.0001) without impacting NACE or bleeding; whilst
24	in EA, it reduced major bleeding (OR 0.71, 95% CI 0.53-0.95, p=0.02) without affecting
25	NACE or MACE.
26	Overall, abbreviation of DAPT duration reduced NACE (OR 0.90, 95% CI 0.82-0.99,
27	p=0.03) due to major bleeding (OR 0.69, 95% CI 0.53-0.99, p=0.006), without impacting
28	MACE. In nEA, this strategy did not impact NACE, MACE or major bleeding; whilst in EA,
29	it reduced major bleeding (OR 0.60, 95% CI 0.4-0.91, p=0.02) without impacting NACE or
30	MACE.
31 32	Conclusion
33	Conclusion
34	In EA, reduction of DAPT intensity or duration can minimise bleeding, without safety
35	concerns. In nEA, reduction of DAPT intensity may incur an ischaemic penalty, whilst DAPT
36	abbreviation has no overall benefit.
37	
38	Word count: 248
39	
40	Key words:
41	Dual antiplatelet therapy, de-escalation, acute coronary syndrome, bleeding, East Asian
42 43	
43	

1 Abbreviations

- 2 ACS = acute coronary syndrome
- 3 BARC = bleeding academic research consortium
- 4 DAPT = dual antiplatelet therapy
- 5 MACE = major adverse cardiovascular events
- 6 MI = myocardial infarction
- 7 NACE = net adverse cardiovascular events
- 8 PCI = percutaneous coronary intervention
- 9 RCT = randomised controlled trial
- 10 SAPT = single antiplatelet therapy
- 11 STEMI = ST-elevation myocardial infarction

1 INTRODUCTION

2

3 Dual antiplatelet therapy (DAPT) is the cornerstone of treatment for patients with acute 4 coronary syndromes (ACS) undergoing percutaneous coronary intervention (PCI). Current 5 ESC guidelines recommend 1 year of DAPT unless contraindicated or the presence of excess bleeding risk.^{1,2,3} The guidelines, based predominantly on the results of the Trial to Assess 6 7 Improvement in Therapeutic Outcomes by Optimizing Platelet Inhibition with Prasugrel-8 Thrombolysis in Myocardial Infarction 38 (TRITON-TIMI 38)⁴ and Study of Platelet 9 Inhibition and Patient Outcomes (PLATO)⁵ trials, recommend use of a potent P2Y₁₂ inhibitor, ticagrelor or prasugrel, over clopidogrel.¹⁻³ However, this duration and intensity of DAPT 10 11 exposes patients to an increased risk of bleeding, which is emerging as at least an equal, if not 12 potentially greater concern, than the ischaemic risk, with significant impact on mortality.⁶⁻⁸ 13 Importantly, in both TRITON-TIMI 38 and PLATO, more intense DAPT led to a reduction in 14 ischaemic events within the first 30 days, whilst excess bleeding events were more frequently 15 observed beyond this period.^{4,5} 16 17 Increased awareness of the prognostic importance of bleeding, together with observed 18 increase in bleeding rates have prompted studies that consider alternatives to 12 months of 19 high-intensity DAPT to identify the optimal strategy to balance thrombotic and bleeding 20 risks. Several randomised controlled trials (RCTs) have investigated various de-escalation 21 strategies in patients with ACS undergoing PCI, either by reducing the intensity of DAPT,

23 by shortening the duration of DAPT and continuing with single antiplatelet therapy (SAPT).

through switching from more potent P2Y₁₂ inhibitors prasugrel or ticagrelor to clopidogrel, or

24

1 East Asians have been shown to derive less anti-ischaemic benefit from and experience increased bleeding risk with antithrombotic medications, compared to Westerners.⁹ East 2 3 Asians exhibit reduced platelet inhibition in response to clopidogrel compared with 4 Caucasians.¹⁰ This can in part be attributed to a well described higher prevalence of the cytochrome P450 2C19(CYP2C19) loss-of-function allele which is twice as prevalent in East 5 Asians as in Caucasians.^{10,11} Whilst this would suggest a higher ischaemic risk, including 6 7 stent thrombosis, East Asians have in fact been shown to have a lower ischaemic risk than Westerners.^{9,10} This phenomenon has been termed the "East Asian Paradox".⁹ It is therefore 8 9 not surprising that many studies examining the safety and efficacy of antiplatelet therapy de-10 escalation in ACS were conducted in East Asian populations. Caution must be exercised 11 when extrapolating these findings to Western populations and vice-versa. Due to the excess 12 bleeding risk, in much of East Asia reduced-dose prasugrel (loading/maintenance dose 20/3.75mg) or clopidogrel are used in ACS patients undergoing PCI.¹²⁻¹⁴ 13

14

To date, there has been no formal comparison of DAPT de-escalation strategies in EA compared to non-East Asian patients with ACS. We sought to perform a systematic review and meta-analysis of the current evidence to determine the optimal de-escalation DAPT strategy for patients with ACS undergoing PCI, with separate evaluation of those studies in predominantly East Asian and non-East Asian populations.

20

21 METHODS

22

This review was conducted in accordance with the guidelines set by Preferred Reporting
Items for Systemic Reviews and Meta-analyses (PRISMA). The study was registered on the
PROSPERO database (ID CRD42022288577). For this meta-analysis, we defined "standard

1	DAPT" therapy for ACS as aspirin in combination with either ticagrelor or prasugrel, for a		
2	total of 12 months. We excluded studies assessing de-escalation based on platelet function		
3	testing or genotyping, because these techniques are still not widely available, and such		
4	studies have been mainly performed in non-East Asian populations, with insufficient		
5	comparative data in matched East Asian populations.		
6			
7	Search Strategy and Data Extraction		
8			
9	Digital databases (PubMed and Cochrane Library) were searched from inception through to		
10	June 2022, using various combinations of medical subject headings (MeSH) (Supplementary		
11	List 1). The subsets were combined in various combinations, with the search restricted to full		
12	length articles published in English in peer-reviewed journals. Abstracts were screened and		
13	potentially relevant articles underwent full-text review.		
14	Two reviewers (MF and DAG) independently reviewed all titles, or titles and abstracts to		
15	identify articles that met the study inclusion criteria, with backward snowballing to retrieve		
16	studies that were missed on the initial database search. Selected studies were compared, and		
17	disagreement resolved by discussion and consensus. Data extraction was carried out		
18	independently and in duplicate by the study investigators. Articles selected for the final		
19	review were checked to avoid inclusion of duplicate data. Data was collected from each study		
20	on baseline characteristics, DAPT strategy, and efficacy and safety clinical outcomes at the		
21	longest follow-up.		
22			
23	Inclusion and Exclusion Criteria		

24

1	The inclusion criteria were: 1) randomised controlled trials, 2) at least 2 comparator arms, 3)		
2	study population of patients with ACS, with either all or at least a clearly defined subgroup		
3	undergoing revascularization, 4) treatment with oral $P2Y_{12}$ inhibitors (clopidogrel, ticagrelor,		
4	or prasugrel), 5) reporting bleeding and ischaemic outcomes. Exclusion criteria were: 1) non-		
5	randomised trials, 2) trials that excluded ACS patients or those in which ACS patients formed		
6	only a minority of subjects, 3) trials that included alternative antiplatelet therapy other than		
7	clopidogrel, ticagrelor, or prasugrel in addition to aspirin, 4) trials that compared only DAPT		
8	containing ticagrelor with DAPT containing prasugrel, 5) studies that employed de-escalation		
9	"guided" by either platelet function tests or genotyping, 6) trials that focused on patients with		
10	an indication for oral anticoagulation, 7) studies in which randomisation occurred beyond 6		
11	months after the index ACS, and 8) trials with follow-up of less than 6 months.		
12			
13	Study endpoints		
14			
15	The primary efficacy endpoint was the occurrence of net adverse cardiovascular events		
16	(NACE) defined as the composite of ischaemic endpoints (including major adverse		
17	cardiovascular events [MACE] comprising all cause death, recurrent myocardial infarction		
18	[MI] and cerebrovascular accident); secondary endpoints were trial-defined MACE and major		
19	bleeding at longest follow-up.		
20			
21	Statistical analysis		
22	Pooled odds ratios (OR) with 95% confidence interval (CI) were estimated for binary		
	Pooled odds ratios (OR) with 95% confidence interval (CI) were estimated for binary		
23	Pooled odds ratios (OR) with 95% confidence interval (CI) were estimated for binary variables using a random-effects model with the method of DerSimonian and Laird (14).		
23 24	· · · · ·		

1	In addition to a comprehensive analysis of all "de-escalation" strategies, we performed a		
2	sensitivity analysis to analyse trials separately based on the type of antiplatelet strategy,		
3	namely (1) standard vs. lower intensity DAPT and (2) non-abbreviated vs. abbreviated		
4	duration of DAPT. Studies in each strategy were further analysed based on the ethnicity of		
5	trial	participants.	
6	Inclu	ided studies were assessed using the Cochrane risk-of-bias tool by two authors. ¹³ We also	
7	used	funnel plots to assess for publication bias. All analyses were performed using RevMan	
8	Vers	ion 5.3.5 software (The Nordic Cochrane Centre, The Cochrane Collaboration, 2014).	
9			
10	RESULTS		
11			
12	A to	tal of 8,352 studies were identified, leaving 6,313 after removal of duplicates. A further	
13	6,277 were excluded after review of the title and/or abstract. Twenty-three trials met our		
14	inclusion and exclusion criteria, which included the two landmark trials PLATO and		
15	5 TRITON-TIMI 38 (Figure 1). ^{4,5} Following the establishment of "standard DAPT" comprisin		
16	of aspirin plus either ticagrelor or prasugrel for 1 year in patients with ACS, ^{4,5} subsequent		
17	trials assessing the safety and efficacy of various antiplatelet de-escalation strategies were		
18	those that compared		
19	(i)	standard versus reduced intensity DAPT, namely DAPT comprising of aspirin plus	
20		ticagrelor/prasugrel compared with DAPT containing aspirin plus clopidogrel, (Figure	
21		2) or	
22	(ii)	non-abbreviated versus abbreviated duration of DAPT, namely DAPT comprising	
23		aspirin plus ticagrelor/prasugrel for 6-12 months compared with DAPT comprising	
24		aspirin plus ticagrelor/prasugrel only for 1-4 weeks followed by de-escalation from	
25		prasugrel/ticagrelor to clopidogrel or low-dose prasugrel (Figure 3).	

1	Results are reported in accordance with the PRISMA guideline (Supplementary Table 1),	
2	with RCT-level definitions of outcomes (Tables 1-2, Supplementary Table 2). The overall	
3	risk of bias is considered moderate in the included studies (Supplementary Table 3), with	
4	funnel plots to reflect publication bias (Supplementary Figure 1).	
5		
6	Trials of standard versus reduced intensity DAPT	
7		
8	Since the initial landmark studies which established the standard for DAPT in ACS, ^{4,5} there	
9	have been 10 trials which compared standard with lower intensity DAPT (Table 1), ¹⁶⁻²⁵	
10	including 7 in East Asian populations. ¹⁶⁻²² Characteristics of the trial participants, including	
11	ACS type and cardiovascular risk factors, are shown in Figures 4 and 5.	
12	Overall, reduced intensity DAPT had no impact on NACE (OR 0.87, 95% CI 0.73-1.04,	
13	p=0.13) or MACE (OR 1.06, 95% CI 0.91-1.23, p=0.43) but significantly reduced major	
14	bleeding (OR 0.78, 95% CI 0.65- 0.94, p=0.009) (Figure 6).	
15		
16	Trials comparing standard DAPT with potent $P2Y_{12}$ inhibitors vs. reduced intensity DAPT in	
17	non-East Asians	
18		
19	Reducing the intensity of DAPT had no impact on NACE (OR 0.94, 95% CI 0.77-1.13,	
20	p=0.50), but significantly increased MACE (OR 1.20, 95% CI 1.09-1.31, p<0.0001) without	
21	reduction in major bleeding (OR 0.82, 95% CI 0.65-1.03, p=0.08) (Figure 7). All 3 studies in	
22	this category were open-label, and two were conducted specifically in elderly populations.	
23	The Elderly-ACS 2 trial, ²⁴ which enrolled patients \geq 75 years undergoing revascularization,	
24	was prematurely terminated for futility after an interim analysis showing no difference in the	
25	primary endpoint. The Clopidogrel versus ticagrelor or prasugrel in patients aged	

1	70 years or older with non-ST-elevation acute coronary syndrome (POPular AGE) trial in		
2	patients aged \geq 70 years included only non-ST-elevation MI patients (STEMI excluded) and		
3	less than half the patients underwent revascularization. ²³ Notably, in the Timing Of Platelet		
4	Inhibition after acute Coronary syndrome (TOPIC) trial, ²⁵ de-escalation of DAPT occurred at		
5	1 month post-index MI, unlike in the other two studies. Further, MI was not included in the		
6	composite primary endpoint, but urgent re-hospitalisation requiring revascularisation was		
7	included and would likely have captured a significant proportion of MIs. Taken together,		
8	three studies would appear underpowered to assess the safety of low intensity DAPT,		
9	especially in the first month, in the majority of ACS patients undergoing revascularisation,		
10	particularly in those with STEMI. Both TOPIC and the Elderly-ACS 2 trials included minor,		
11	in addition to major bleeding in the safety endpoint.		
12			
13	Trials comparing DAPT with potent $P2Y_{12}$ inhibitors vs. reduced intensity DAPT in East		
14	Asians		
15			
16	Compared to standard DAPT, use of lower intensity DAPT had no impact on NACE (OR		
17	0.87, 95% CI 0.62-1.23, p=0.43) or MACE (OR 0.98, 95% CI 0.68-1.41, p=0.91), but		
18	significantly reduced major bleeding (OR 0.71, 95% CI 0.53-0.95, p=0.02) (Figure 8).		
19	Whilst most trials randomised patients to the different DAPT strategies within the index		
20	admission, in the Unguided de-escalation from ticagrelor to clopidogrel in stabilised patients		
21	with acute myocardial infarction undergoing percutaneous coronary intervention (TALOS-		
22	AMI) ²¹ and Prasugrel-based de-escalation of dual antiplatelet therapy after percutaneous		
23	coronary intervention in patients with acute coronary syndrome (HOST-REDUCE-		
24	POLYTECH-ACS) ²² trials, de-escalation occurred 1-month post-ACS. In Efficacy and Safety		

1	Coronary Syndrome (PRASFIT-ACS), ¹⁶ DAPT comprising of prasugrel 3.75mg daily plus			
2	aspirin significantly reduced MACE compared with clopidogrel plus aspirin, reflecting the			
3	benefit seen in TRITON-TIMI 38 ⁴ with full dose prasugrel compared to clopidogrel in			
4	predominantly non-East Asians. In the HOST-REDUCE-POLYTECH-ACS trial, ²² only a			
5	third of participants had MI. The PHILO trial showed no significant difference between			
6	ticagrelor and clopidogrel, in addition to aspirin, on bleeding or ischaemic endpoints,			
7	although the event rate was rather low and some clinical risk factors were more prevalent in			
8	the ticagrelor group. ¹⁷ The Clinically Significant Bleeding With Ticagrelor Versus			
9	Clopidogrel in Korean Patients With Acute Coronary Syndromes Intended for Invasive			
10	Management (TICAKOREA) study comparing ticagrelor with clopidogrel as part of DAPT,			
11	showed a lower risk of major bleeding with ticagrelor, but was not designed to assess			
12	ischaemic endpoints. ²⁰ In the TALOS-AMI study, de-escalation from ticagrelor plus aspirin			
13	to clopidogrel plus aspirin one month post-ACS significantly reduced bleeding, including			
14	major bleeding, without an increase in ischaemic endpoints. ²¹ By comparison, a small study			
15	of elderly patients with STEMI showed that ticagrelor effectively reduced the composite of			
16	cardiovascular death, MI and stroke compared to clopidogrel without impact on bleeding. ²⁴			
17				
18	Trials of standard (non-abbreviated) versus abbreviated DAPT duration			
19				
20	Eleven trials assessed shortening of DAPT duration (Table 2), ²⁷⁻³⁸ of which 7 were conducted			
21	in East Asian populations. ^{27-29,34-37} The characteristics of the trial participants, including			
22	ACS-type and cardiovascular risk factors, are shown in Figures 9 and 10.			
23	Compared to non-abbreviated DAPT duration, abbreviated DAPT reduced NACE (OR 0.90,			
24	95% CI 0.82-0.99, p=0.03), without effect on MACE (OR 1.01, 95% CI 0.90-1.12, p=0.93)			

- and a very significant reduction in major bleeding (OR 0.69, 95% CI 0.53-0.99, p=0.006)
 (Figure 6).
- 3

4 Trials comparing non-abbreviated vs. abbreviated DAPT duration in non-East Asians
5

Reducing the duration of DAPT had no significant impact on NACE (OR 0.93, 95% CI 0.851.00, p=0.06), MACE (OR 0.92, 95% CI 0.83-1.03, p=0.14) or major bleeding (OR 0.79,
95% CI 0.58-1.06, p=0.12) (Figure 11).

9 Importantly, in 3 out 4 studies in this category, de-escalation from DAPT involved switching to monotherapy with a P2Y₁₂ inhibitor. The GLOBAL LEADERS³⁰ and Ticagrelor with or 10 without Aspirin in High-Risk Patients after PCI (TWILIGHT)³³ trials assessed de-escalation 11 12 of DAPT from aspirin plus ticagrelor, to ticagrelor monotherapy, after 1-3 months of DAPT, 13 respectively. The GLOBAL LEADERS trial randomised patients undergoing PCI for stable 14 coronary disease or ACS, and in the ACS cohort, compared a strategy of aspirin plus 15 ticagrelor for 12 months followed by aspirin, with a strategy of aspirin plus ticagrelor for 1 month, followed by 23 months of ticagrelor monotherapy.³¹ Ticagrelor monotherapy had no 16 17 impact on ischaemic or bleeding endpoints compared to DAPT, including in ACS patients. 18 However, in TWILIGHT, de-escalation of DAPT to ticagrelor monotherapy significantly 19 reduced clinically-relevant bleeding, without an ischaemic penalty.³³ In Dual Antiplatelet 20 Therapy after PCI in Patients at High Bleeding Risk (MASTER DAPT),³⁸ 1 month of DAPT 21 followed by clopidogrel (54%) or aspirin monotherapy, significantly reduced major or 22 clinically-relevant nonmajor bleeding, and was noninferior to \geq 3 months DAPT with respect to NACE. Notably, patients were at high bleeding risk although ACS patients comprised only 23 24 40%, with a significant proportion taking anticoagulation.

- 1 Trials comparing non-abbreviated vs. abbreviated DAPT duration in East Asians
- 2

3 Reducing the duration of DAPT had no impact on NACE (OR 0.88, 95% CI 0.74-1.06, 4 p=0.18) or MACE (OR 1.11, 95% CI 0.93-1.33, p=0.26), but significantly reduced major 5 bleeding (OR 0.60, 95% CI 0.4-0.91, p=0.02) (Figure 12). 6 Almost all trials in this category were open label and in more than half, de-escalation 7 involved switching to P2Y₁₂ inhibitor monotherapy. In the STOPDAPT-2 (Short and Optimal 8 Duration of Dual Antiplatelet Therapy After Everolimus-Eluting Cobalt-Chromium Stent)³⁵ 9 trial in which ACS patients comprised only 38% of participants, abbreviated DAPT for 1 10 month followed by clopidogrel monotherapy significantly reduced the secondary endpoint of 11 major bleeding and met the criteria for noninferiority for NACE, including in the ACS subgroup. In the subsequent STOPDAPT-2 ACS trial,³⁶ de-escalation of DAPT after 1-2 12 13 months to clopidogrel monotherapy, compared with 12 months DAPT, reduced the secondary 14 endpoint of bleeding, but did not meet criteria for non-inferiority with respect to NACE, with 15 a signal for harm with a 2-fold increase in MI. This signal was also seen in the SMART-16 DATE study,²⁹ in which de-escalation of DAPT after 6-months to aspirin met the criteria for 17 non-inferiority with respect to the composite of all cause death, MI or stroke, but a significant 18 increase in MI was observed with abbreviated DAPT, without reduction in bleeding. In the 19 SMART-CHOICE (Effect of P2Y12 Inhibitor Monotherapy vs Dual Antiplatelet Therapy on 20 Cardiovascular Events in Patients Undergoing Percutaneous Coronary Intervention) trial,³⁴ 21 two-thirds of patients had ACS and de-escalation at 3 months reduced the occurrence of 22 bleeding without an ischaemic penalty. In the Effect of Ticagrelor Monotherapy vs Ticagrelor 23 With Aspirin on Major Bleeding and Cardiovascular Events in Patients With Acute Coronary Syndrome (TICO) trial,³⁷ de-escalation of DAPT after 3 months to ticagrelor monotherapy 24 25 reduced NACE, driven by a significant reduction in major bleeding. Sub-analysis of the

1	TWILIGHT trial focusing on the 13% of patients enrolled in China showed that 3 months of
2	DAPT followed by ticagrelor monotherapy compared to 12-month DAPT reduced the
3	primary end point of BARC type 2, 3 or 5 bleeding (3.5% vs. 6.2%, 95% CI 0.31-
4	0.99; p=0.048), with no significant difference in the composite of all-cause death, MI or
5	stroke. ³⁹
6	
7	DISCUSSION
8	
9	Whilst there have been previous reviews of DAPT de-escalation options and strategies in
10	ACS patients undergoing PCI,45,46 ours is the first systematic review and meta-analysis to
11	directly address the differences in outcomes amongst these studies between East Asian and
12	non-East Asian patients. Our study is unique in showing that there are significant ethnic
13	differences between East Asian and non-East Asian patients with respect to strategies that
14	involve either reducing DAPT intensity or duration (Central Illustration). We summarise our
15	analyses below.
16	
17	Use of lower intensity vs. standard intensity DAPT
18	
19	Overall, reducing the intensity of DAPT significantly reduced major bleeding, without
20	impacting NACE or MACE. This benefit was mainly evidenced in East Asian patients, where
21	use of lower intensity DAPT had no impact on NACE or MACE, but very significantly
22	reduced major bleeding.
23	In comparison, in non-East Asian patients, although there was a trend for lower intensity
24	DAPT to reduce major bleeding, this approach significantly increased the risk of MACE,
25	without overall impact on NACE.

1	This indicates that reduced intensity DAPT should be considered in East Asian patients	
2	where it can reduce bleeding without adverse ischaemic effects. On the other hand, in	
3	predominantly non-East Asian populations, the PLATO ⁵ and TRITON-TIMI 38 ⁴ studies	
4	showed reduction in ischaemic risk with standard compared to low intensity DAPT and our	
5	data support this, indicating that reduction of DAPT intensity may have an ischaemic penalty	
6	in non-East Asians. Furthermore, reduction of DAPT intensity in non-East Asians was	
7	predominantly assessed in the elderly, and findings therefore cannot be extrapolated to	
8	younger patients.	
9		
10	Use of abbreviated vs. non-abbreviated duration DAPT	
11		
12	Overall, abbreviated DAPT reduced NACE, a benefit driven by very significant reduction in	
13	major bleeding, with no adverse effect on MACE. In non-East Asian patients, abbreviation of	
14	DAPT showed a trend towards reduction of NACE, but without effect on MACE or major	
15	bleeding. On the other hand, in East Asian patients, abbreviation of DAPT significantly	
16	reduced major bleeding, without impacting NACE or MACE.	
17	This would indicate that abbreviated DAPT should be considered in East Asian patients, to	
18	reduce bleeding. Evidence for a benefit in non-East Asians is lacking, although there is no	
19	apparent signal for harm with this approach.	
20		
21	De-escalation of DAPT intensity -when to de-escalate?	
22		
23	The benefit of reduced DAPT intensity was predominantly seen in East Asians. Of the 7	
24	trials, 5 initiated reduced intensity DAPT during the index hospitalisation ¹⁶⁻²⁰ and the others	
25	at one-month post-ACS. ²¹⁻²² Of those that randomised during the index admission, two	

1	demonstrated an increase in ischaemic endpoints and the others showed overall reduction in	
2	MACE. The two largest studies assessing reduced DAPT intensity in East Asians. ^{21,22} both	
3	de-escalated at 1-month post-ACS, and neither showed an excess ischaemic risk. Therefore,	
4	in East Asians, it may be safest to de-escalate at one-month post-ACS.	
5		
6	De-escalation of DAPT duration -when to reduce and which monotherapy?	
7		
8	The net benefit of abbreviated DAPT was mainly seen in East Asians. Amongst these, DAPT	
9	was stopped at 6 months in 3 studies, at 3 months in 2 studies, and at 1 month in 2 studies.	
10	The two largest studies stopped DAPT at 1 month and showed the greatest reduction in	
11	bleeding. However, one of these showed a signal for increase in ischaemic events, ³⁶	
12	suggesting that perhaps abbreviation of DAPT at 3 months may be safer.	
13	Following abbreviated DAPT, 3 studies continued with aspirin, whereas the subsequent 4	
14	larger studies de-escalated to a P2Y ₁₂ inhibitor, with no significant difference in outcomes	
15	between the monotherapies. Importantly, $P2Y_{12}$ inhibitor monotherapy did not increase	
16	bleeding compared to aspirin monotherapy in East Asians.	
17		
18	Possible explanations for ethnic differences	
19		
20	The "East Asian Paradox" refers to enhanced pharmacokinetic and pharmacodynamic	
21	profiles with most antithrombotic medications in East Asian compared to Caucasian subjects,	
22	including $P2Y_{12}$ inhibitors and oral anticoagulants, resulting in more frequent bleeding	
23	complications, with consequent recommendations for reduced dose antithrombotic	
24	prescribing regimens in East Asian patients. ¹¹⁻¹⁴ Additionally, East Asians appear to have a	
25	lower genetic predisposition to coronary disease but a higher propensity for bleeding	

1 compared to non-East Asians. Interaction between genetic and epigenetic factors also likely 2 contributes. East Asians tend to manifest lower body mass index (BMI) and total cholesterol, 3 and more frequent hypertension⁴⁰, although in this meta-analysis, risk factors including 4 BMI were similar, apart from smoking which was more prevalent in East Asians (Figures 5, 10).⁴⁰ Lower coagulant and inflammatory profiles have also been reported in East Asians 5 compared with Caucasians.41-44 6 7 8 What is not known 9 10 Firstly, there has been no head-to-head comparison of the two "de-escalation" approaches, 11 namely reduced intensity vs. reduced duration DAPT, overall, and no comparisons by 12 ethnicity. The optimal timing for de-escalation to lower intensity DAPT, the optimal time to 13 abbreviate DAPT and the subsequent optimal SAPT are unclear. Finally, the optimal patient 14 for de-escalation of DAPT intensity or duration, is not clearly defined. We consider that the 15 ideal study should be a 2 x 2 factorial design, comparing de-escalation of DAPT intensity and 16 de-escalation of DAPT duration, and comparing the two strategies in East Asian and non-East 17 Asian patients. 18 19 Limitations 20 21 Our review has number of limitations. Amongst the 3 trials of reduced intensity DAPT in non-East Asians, two were conducted in elderly populations,^{23,24} so the benefit of this 22 23 approach in younger patients is unclear. There was heterogeneity in reporting bleeding, 24 including BARC, PLATO, TIMI classifications. Even amongst studies that included the same 25 classification (e.g. BARC), some included grades 2, 3 and 5, whilst others only grades 3 and

5 bleeding. For studies not formally reporting NACE, ^{7,16-20,33} we compiled extrapolated 1 2 NACE by amalgamating ischaemic (MACE) and bleeding risks, a potential source of error. 3 There was also some heterogeneity in reporting MACE, and where possible, we limited 4 MACE in the analysis to cardiovascular death, MI and stroke. There was heterogeneity in 5 trial participants, with some including chronic coronary syndrome or medically-managed 6 ACS patients, and some including a minority of patients on anticoagulation. Antiplatelet 7 regimens and doses varied, particularly in East Asians. Abbreviated DAPT durations ranged 8 from 1-6 months, with further heterogeneity in monotherapy following DAPT. Amongst 9 studies investigating reduced DAPT intensity, there was heterogeneity in the "intense" 10 regimen. Many studies were open label and generally, high risk bleeding patients were under-11 represented. The studies included span a period of 14 years and the stents used have changed 12 significantly over that period, and the stent-type may affect the safety of de-escalation. In earlier trials, some 50% of patients undergoing PCI received bare metal stents,¹⁶ whereas 13 14 subsequently trials used predominantly drug-eluting stents. Even amongst the latter, there is 15 significant heterogeneity over time and more recent studies employing the latest generation 16 drug-eluting stents may evidence more the benefit of a de-escalation strategy. The overall 17 duration of follow-up was shorter for some studies recruiting East Asian patients than for 18 some recruiting non-East Asian patients. Among studies assessing de-escalation of DAPT 19 intensity, all East Asian studies and the majority of non-East Asian studies had 12 months 20 follow up. For de-escalation of DAPT duration, all East Asian patients and more than half of 21 all non-East Asian patients had follow-up of 18 m or less. Although it is possible, we feel this difference in follow-up overall is unlikely to have affected the results of the analyses. 22 23 In the REDUCE trial, some 30% of the population were East Asians. Lastly, we grouped 24 together East Asians from several countries who may not share similar genetic profiles,

whilst significant differences may exist within non-East Asian populations, that include
 Caucasian, South Asian, Black, American Indian, and Hispanic ethnicities.

- 3
- 4

5 *Conclusions*

6

7 In the first head-to-head comparison between East Asian and non-East Asian ACS patients,

8 we show that there are significant ethnic differences in risk and benefit between strategies

9 that involve either reducing DAPT intensity or duration.

10 In East Asians, evidence supports reduction in either DAPT intensity or duration, to minimise

11 the risk of bleeding, with no safety concerns. Abbreviation of DAPT could occur at 1-6

12 months post-ACS, and beyond that, monotherapy with aspirin or a P2Y₁₂ inhibitor

13 (clopidogrel or ticagrelor) can be used. In non-East Asians, reduced intensity DAPT should

14 be avoided, as it may incur an ischaemic penalty. Abbreviation of DAPT duration can be

15 considered, but without proven benefit.

16 Although standard DAPT favours patients at high ischaemic risk, while shorter or less intense

17 DAPT may benefit those at high bleeding risk, many patients have overlapping risk factors.

18 Individualisation of DAPT strategy may be preferable to personalise care based on both

19 ethnicity and prevailing risks.

- 1 **Funding:** This work was not funded.
- 2

3 Disclosures: There are no disclosures pertaining to this work. Outside of this work, DAG has 4 received institutional grants from Bayer Plc, AstraZeneca, Werfen, Medtronic and AlphaMD 5 and honoraria for lectures from AstraZeneca and Boehringer Ingelheim. EPN: has received 6 speaker fees from Astra-Zeneca, Bayer, Amgen, Sanofi-Regeneron. YHJ has received 7 honoraria for lectures from AstraZeneca, Daiichi Sankyo, Sanofi-Aventis, Han-mi 8 Pharmaceuticals, and Yuhan Pharmaceuticals; and research grants or support from Yuhan 9 Pharmaceuticals, Han-mi Pharmaceuticals, Sam-jin Pharmaceuticals, Biotronik, and U&I 10 Corporation. All other authors have no disclosures to declare.

1	Refere	nces

2	1.	Collet J-P, Thiele H, Barbato E, et al. 2020 ESC guidelines for the management of acute
3		coronary syndromes in patients presenting without persistent ST-segment elevation. Eur
4		Heart J 2021;42:1289–1367
5		
6	2.	Ibanez B, James S, Agewall S, et al. 2017 ESC Guidelines for the management of acute
7		myocardial infarction in patients presenting with ST-segment elevation: The Task Force
8		for the management of acute myocardial infarction in patients presenting with ST-
9		segment elevation of the European Society of Cardiology (ESC). Eur Heart J
10		2018;39:119-177
11		
12	3.	Valgimigli M, Bueno H, Byrne RA, et al. Society of Cardiology (ESC) and of the
13		European Association for Cardio-Thoracic Surgery (EACTS2017 ESC focused update on
14		dual antiplatelet therapy in coronary artery disease developed in collaboration with
15		EACTS: The Task Force for dual antiplatelet therapy in coronary artery disease of the
16		European). Eur Heart J 2018;39:213-260
17		
18	4.	Wiviott SD, Braunwald E, McCabe CH, et al. Prasugrel versus clopidogrel in patients
19		with acute coronary syndromes. N Engl J Med 2007;357:2001-2015
20		
21	5.	Wallentin L, Becker RC, Budaj A, et al. Ticagrelor versus clopidogrel in patients with
22		acute coronary syndromes. N Engl J Med 2009;361:1045-1057
23		
24	6.	Eisen A, Giugliano RP, Braunwald E. Updates on Acute Coronary Syndrome: A Review.
25		JAMA Cardiol 2016;1:718-730

2	7.	Mehran R, Pocock SJ, Stone GW, et al. Associations of major bleeding and myocardial
3		infarction with the incidence and timing of mortality in patients presenting with non-ST-
4		elevation acute coronary syndromes: a risk model from the ACUITY trial. Eur Heart J
5		2009;30:1457-1466
6		
7	8.	Cao D, Mehran R, Dangas G, et al. Validation of the Academic Research Consortium
8		High Bleeding Risk Definition in Contemporary PCI Patients. J Am Coll Cardiol
9		2020;75:2711-2722
10		
11	9.	Kim HK, Tantry US, Smith SC, et al. The East Asian Paradox: An Updated Position
12		Statement on the Challenges to the Current Antithrombotic Strategy in Patients with
13		Cardiovascular Disease. Thromb Haemost 2021;121:422-432
14		
15	10.	Cho H, Kang J, Kim HS, Park KW. Ethnic Differences in Oral Antithrombotic Therapy.
16		Korean Circ J 2020, 50:645-657
17		
18	11.	Scott SA, Sangkuhl K, Stein CM, Hulot JS, Mega JL, Roden DM, et al. Clinical
19		Pharmacogenetics Implementation Consortium guidelines for CYP2C19 genotype and
20		clopidogrel therapy: 2013 update. Clin Pharmacol Ther 2013;94:317-323
21		
22	12.	Levine GN, Jeong YH, Goto S, et al. Expert consensus document: World Heart
23		Federation expert consensus statement on antiplatelet therapy in East Asian patients with
24		ACS or undergoing PCI. Nat Rev Cardiol 2014;11:597-606
25		

1	13. Huo Y, Jeong YH, Gong Y, et al. 2018 update of expert consensus statement on
2	antiplatelet therapy in East Asian patients with ACS or undergoing PCI. Sci Bull
3	2019;64:166-179
4	
5	14. Kwon O, Park DW. Antithrombotic Therapy After Acute Coronary Syndromes or
6	Percutaneous Coronary Interventions in East Asian Populations. JACC Asia 2022;2:1-18
7	
8	15. Higgins JPT, Altman DG, Gøtzsche PC, et al. The Cochrane Collaboration's tool for
9	assessing risk of bias in randomised trials. BMJ 2011;343:d5928
10	
11	16. Saito S, Isshiki T, Kimura T, et al. Efficacy and safety of adjusted-dose prasugrel
12	compared with clopidogrel in Japanese patients with acute coronary syndrome: the
13	PRASFIT-ACS study. Circ J 2014;78:1684-1692
14	
15	17. Goto S, Huang CH, Park SJ, Emanuelsson H, Kimura T. Ticagrelor vs. clopidogrel in
16	Japanese, Korean and Taiwanese patients with acute coronary syndrome - randomized,
17	double-blind, phase III PHILO study. Circ J 2015;79:2452-2460
18	
19	18. Tang X, Li R, Jing Q, et al. Assessment of Ticagrelor Versus Clopidogrel Treatment in
20	Patients With ST-elevation Myocardial Infarction Undergoing Primary Percutaneous
21	Coronary Intervention. J Cardiovasc Pharmacol 2016;68:115-120
22	
23	19. Wang H, Wang X. Efficacy and safety outcomes of ticagrelor compared with clopidogrel
24	in elderly Chinese patients with acute coronary syndrome. Ther Clin Risk Manag
25	2016;12:1101-1105

2	20. Park DW, Kwon O, Jang JS, et al. Clinically significant bleeding with ticagrelor versus
3	clopidogrel in Korean patients with acute coronary syndromes intended for invasive
4	management: a randomized clinical trial. Circulation 2019;140:1865-1877
5	
6	21. Kim CJ, Park MW, Kim MC, et al. Unguided de-escalation from ticagrelor to clopidogrel
7	in stabilised patients with acute myocardial infarction undergoing percutaneous coronary
8	intervention (TALOS-AMI): an investigator-initiated, open-label, multicentre, non-
9	inferiority, randomised trial. Lancet 2021;398:1305-1316
10	
11	22. Kim H, Kang J, Hwang D, et al. Prasugrel-based de-escalation of dual antiplatelet therapy
12	after percutaneous coronary intervention in patients with acute coronary syndrome
13	(HOST-REDUCEPOLYTECH-ACS): an open-label, multicentre, noninferiority
14	randomised trial. Lancet 2020;396:1079–1089
15	
16	23. Gimbel M, Qaderdan K, Willemsen L, et al. Clopidogrel versus ticagrelor or prasugrel in
17	patients aged 70 years or older with non-ST-elevation acute coronary syndrome (POPular
18	AGE): the randomised, open-label, non-inferiority trial. Lancet 2020;395:1374-1381
19	
20	24. Savonitto S, Ferri LA, Piatti L, et al. Comparison of Reduced-Dose Prasugrel and
21	Standard-Dose Clopidogrel in Elderly Patients With Acute Coronary Syndromes
22	Undergoing Early Percutaneous Revascularization. Circulation 2018;137:2435-2445
23	

1	25. Cuisset T, Deharo P, Quilici J, et al. Benefit of switching dual antiplatelet therapy after
2	acute coronary syndrome: the TOPIC (timing of platelet inhibition after acute coronary
3	syndrome) randomized study. Eur Heart J 2017;38:2524–2529
4	
5	26. Schmucker J, Fach A, Mata Marin LA, et al. Efficacy and Safety of Ticagrelor in
6	Comparison to Clopidogrel in Elderly Patients With ST-Segment-Elevation Myocardial
7	Infarctions. J Am Heart Assoc 2019;8:e012530
8	
9	27. Gwon HC, Hahn JY, Park KW, et al. Six-month versus 12-month dual antiplatelet
10	therapy after implantation of drug-eluting stents: the Efficacy of Xience/Promus Versus
11	Cypher to Reduce Late Loss After Stenting (EXCELLENT) randomized, multicenter
12	study. Circulation 2012;125:505-513
13	
14	28. Han Y, Xu B, Xu K, et al. Six Versus 12 Months of Dual Antiplatelet Therapy After
15	Implantation of Biodegradable Polymer Sirolimus-Eluting Stent: Randomized Substudy
16	of the I-LOVE-IT 2 Trial. Circ Cardiovasc Interv 2016;9:e003145
17	
18	
	29. Hahn JY, Song YB, Oh JH, et al. 6-month versus 12-month or longer dual antiplatelet
19	29. Hahn JY, Song YB, Oh JH, et al. 6-month versus 12-month or longer dual antiplatelet therapy after percutaneous coronary intervention in patients with acute coronary
19	therapy after percutaneous coronary intervention in patients with acute coronary
19 20	therapy after percutaneous coronary intervention in patients with acute coronary syndrome (SMART-DATE): a randomised, open-label, non-inferiority trial. Lancet
19 20 21	therapy after percutaneous coronary intervention in patients with acute coronary syndrome (SMART-DATE): a randomised, open-label, non-inferiority trial. Lancet
19 20 21 22	therapy after percutaneous coronary intervention in patients with acute coronary syndrome (SMART-DATE): a randomised, open-label, non-inferiority trial. Lancet 2018;391:1274-1284

1	eluting stent: a multicentre, open-label, randomised superiority trial. Lancet 2018;39:940-
2	949
3	
4	31. Vranckx P, Valgimigli M, Odutayo A et al. Efficacy and Safety of Ticagrelor
5	Monotherapy by Clinical Presentation: Pre-Specified Analysis of the GLOBAL
6	LEADERS Trial. J Am Heart Assoc 2021;10:e015560
7	
8	32. De Luca G, Damen SA, Camaro C, et al. Final results of the randomised evaluation of
9	short-term dual antiplatelet therapy in patients with acute coronary syndrome treated with
10	a new-generation stent (REDUCE trial). EuroIntervention 2019;15:e990-e8
11	
12	33. Mehran R, Baber U, Sharma SK, et al. Ticagrelor with or without Aspirin in High-Risk
13	Patients after PCI. N Engl J Med 2019;381:2032-2042
14	
15	34. Hahn JY, Song YB, Oh JH, et al. Effect of P2Y12 Inhibitor Monotherapy vs Dual
16	Antiplatelet Therapy on Cardiovascular Events in Patients Undergoing Percutaneous
17	Coronary Intervention: The SMART-CHOICE Randomized Clinical Trial. JAMA
18	2019;321:2428-2437
19	
20	35. Watanabe H, Domei T, Morimoto T, et al. Effect of 1-Month Dual Antiplatelet Therapy
21	Followed by Clopidogrel vs 12-Month Dual Antiplatelet Therapy on Cardiovascular and
22	Bleeding Events in Patients Receiving PCI: The STOPDAPT-2 Randomized Clinical
23	Trial. JAMA 2019;321:2414-2427
24	

1	36. Watanabe H, Morimoto T, Natsuaki M, et al. Comparison of Clopidogrel Monotherapy
2	After 1 to 2 Months of Dual Antiplatelet Therapy With 12 Months of Dual Antiplatelet
3	Therapy in Patients With Acute Coronary Syndrome: The STOPDAPT-2 ACS
4	Randomized Clinical Trial. JAMA Cardiol 2022;7:407-417
5	
6	37. Kim BK, Hong SJ, Cho YH, et al. Effect of Ticagrelor Monotherapy vs Ticagrelor With
7	Aspirin on Major Bleeding and Cardiovascular Events in Patients With Acute Coronary
8	Syndrome: The TICO Randomized Clinical Trial. JAMA 2020;323:2407-2416
9	
10	38. Valgimigli M, Frigoli E, Heg D, et al. Dual Antiplatelet Therapy after PCI in Patients at
11	High Bleeding Risk. N Engl J Med 2021;385:1643-1655
12	
13	39. Han Y, Claessen BE, Chen SL, et al. Ticagrelor With or Without Aspirin in Chinese
14	Patients Undergoing Percutaneous Coronary Intervention: A TWILIGHT China
15	Substudy. Circ Cardiovasc Interv 2022;15:e009495
16	
17	40. Ueshima H, Sekikawa A, Miura K, et al. Cardiovascular disease and risk factors in Asia:
18	a selected review. Circulation 2008;118:2702-2709
19	
20	41. M.A. Albert, R.J. Glynn, J. Buring, P.M. Ridker. C-reactive protein levels among women
21	of various ethnic groups living in the United States (from the Women's Health Study).
22	Am J Cardiol 2004;93:1238-1242
23	
24	42. Kelley-Hedgepeth A, Lloyd-Jones DM, Colvin A, et al. Ethnic differences in C-reactive
25	protein concentrations. Clin Chem 2008;54:1027-1037

1	
2	43. Kim HK, Tantry US, Park HW, et al. Ethnic Difference of Thrombogenicity in Patients
3	with Cardiovascular Disease: a Pandora Box to Explain Prognostic Differences. Korean
4	Circ J 2021;51:202-221
5	
6	44. Lutsey PL, Cushman M, Steffen LM, et al. Plasma hemostatic factors and endothelial
7	markers in four racial/ethnic groups: the MESA study. J Thromb Haemost 2006;4:2629-
8	2635
9	
10	45. Laudani C, Greco A, Occhipinti G, et al. Short Duration of DAPT Versus De-Escalation
11	After Percutaneous Coronary Intervention for Acute Coronary Syndromes. JACC
12	Cardiovasc Interv. 2022;15:268-277
13	
14	46. Shoji S, Kuno T, Fujisaki T, et al. De-Escalation of Dual Antiplatelet Therapy in Patients
15	With Acute Coronary Syndromes. J Am Coll Cardiol 2021;78:763-777

List of Figures

2 Figure – Visual Summary

3 Key Question

4 Guideline-directed dual antiplatelet therapy (DAPT) in ACS with PCI comprises aspirin plus

5 prasugrel/ticagrelor for 12 months. East Asians have lower ischaemic and greater bleeding

6 risks than Westerners. We aimed to compare DAPT "de-escalation" strategies in East Asians

7 and non-East Asians.

8 Key finding

9 Among 23 trials in ACS with PCI, reduction of DAPT intensity or duration in East Asians

10 reduced bleeding, without safety concerns. In non-East Asians, reduction in DAPT intensity

11 could incur an ischaemic penalty, whilst DAPT abbreviation had no overall benefit.

12 **Take home message**

13 Ethnic differences exist in the risks and benefits of DAPT de-escalation. In East Asians,

14 reduction of DAPT intensity or duration appears safe, reducing bleeding. In non-East Asians,

15 reducing DAPT intensity may increase ischaemic risk; whilst DAPT abbreviation is without

16 net benefit.

17

18 Figure 1. PRISMA flow chart

19

20 Figure 2. Trials assessing standard versus reduced intensity DAPT

21 Studies were conducted predominantly in East Asian (EA) or Western (W) populations, with

- 22 duration of DAPT in months shown in brackets on panels.
- 23 A=aspirin, T=ticagrelor, P=prasugrel. Studies are grouped based on the type of reduced

24 intensity dual antiplatelet strategy (DAPT) employed.

1	Figure 3. Trials assessing non-abbreviated versus abbreviated DAPT
2	Studies were conducted predominantly in East Asian (EA) or Western (W) populations, with
3	duration of DAPT in months shown in brackets on panels.
4	A=aspirin, T=ticagrelor, P=prasugrel. Studies are grouped based on the duration of
5	abbreviated dual antiplatelet strategy (DAPT) employed and the monotherapy chosen to
6	follow cessation of DAPT.
7	
8	Figure 4. ACS-type and PCI undertaken in trials comparing standard versus reduced
9	intensity DAPT
10	ACS=acute coronary syndrome, DAPT=dual antiplatelet therapy, NSTEMI=non-ST-segment
11	elevation myocardial infarction, STEMI=ST-segment elevation myocardial infarction,
12	PCI=percutaneous coronary intervention, UA=unstable angina
13	
14	Figure 5. Cardiovascular risk factors in trials assessing standard versus reduced
15	intensity DAPT
16	BMI=body mass index.
17	
18	Figure 6. Impact of reduction in DAPT intensity or duration on net adverse
19	cardiovascular events (all studies)
20	Panels (A) studies comparing standard intensity with lower intensity DAPT, (B) studies
21	comparing standard duration with lower intensity DAPT.
22	DAPT=dual antiplatelet therapy, NACE=net adverse cardiovascular events
23	
24	Figure 7. Comparison of standard versus reduced intensity DAPT in Western patients

1	Panels (A) net adverse cardiovascular events (NACE), (B) major adverse cardiovascular
2	events (MACE) and (C) major bleeding.
3	
4	Figure 8. Comparison of standard versus reduced intensity DAPT in East Asian
5	patients
6	Panels (A) net adverse cardiovascular events (NACE), (B) major adverse cardiovascular
7	events (MACE) and (C) major bleeding.
8	
9	Figure 9. ACS-type and PCI undertaken in trials comparing standard versus
10	abbreviated DAPT
11	ACS=acute coronary syndrome, DAPT=dual antiplatelet therapy, NSTEMI=non-ST-segment
12	elevation myocardial infarction, STEMI=ST-segment elevation myocardial infarction,
13	PCI=percutaneous coronary intervention, UA=unstable angina
14	
15	Figure 10. Cardiovascular risk factors in trials assessing standard versus reduced
16	intensity DAPT
17	BMI= body mass index.
18	
19	Figure 11. Comparison of standard versus abbreviated DAPT in Western patients
20	Panels (A) net adverse cardiovascular events (NACE), (B) major adverse cardiovascular
21	events (MACE) and (C) major bleeding.
22	
23	Figure 12. Comparison of standard versus abbreviated DAPT in East Asian patients
24	Panels (A) net adverse cardiovascular events (NACE), (B) major adverse cardiovascular
25	events (MACE) and (C) major bleeding.

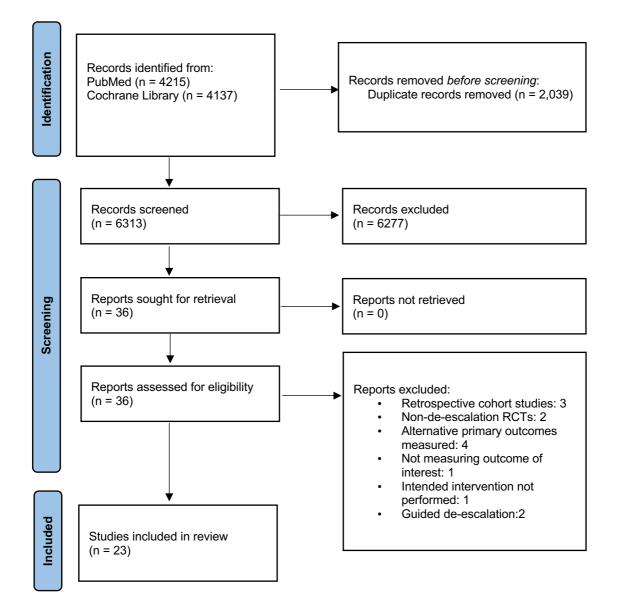
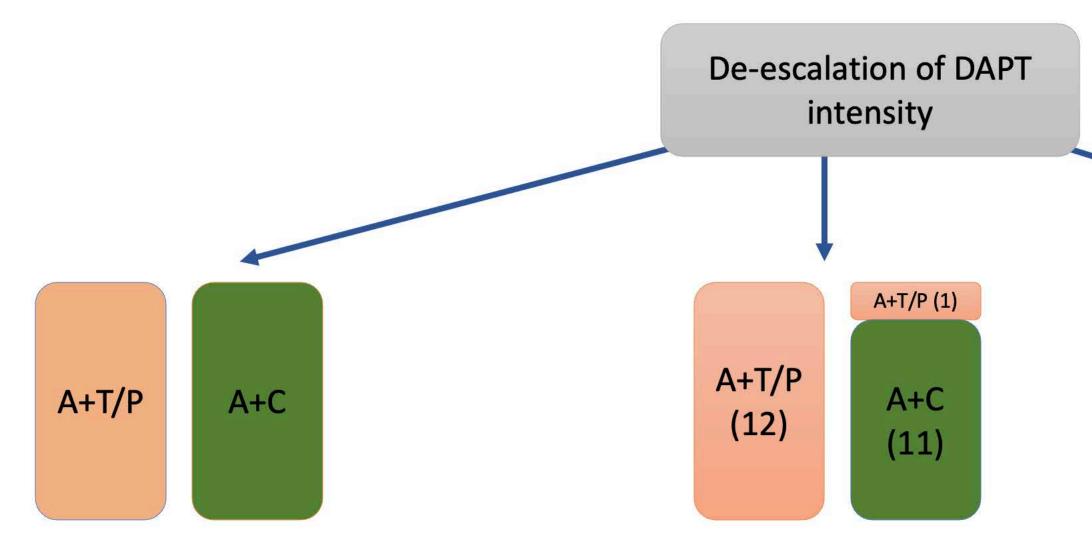
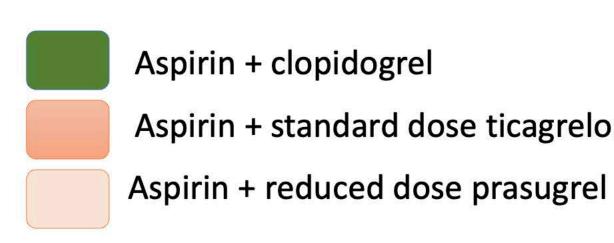
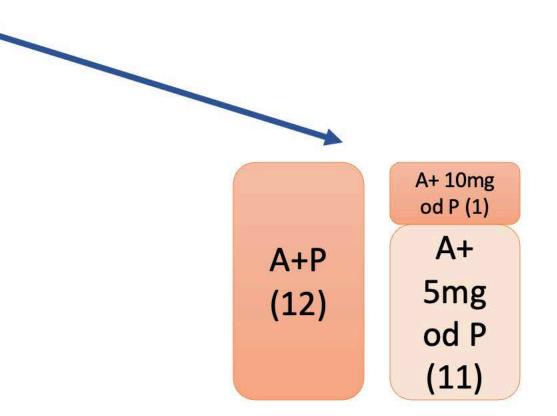
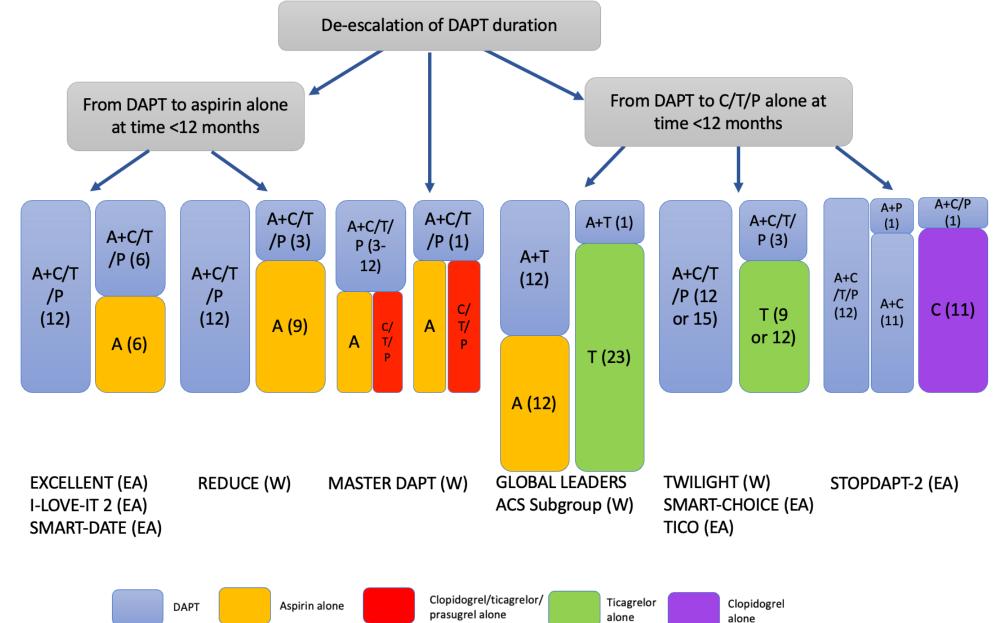




Figure 2.


PRASFIT ACS (EA) PHILO (EA) Tang et al. (EA) Wang et al. (EA) Elderly ACS-2 (W) TICAKOREA (EA) POPular AGE (W)

TOPIC (W) TALOS-AMI (EA)



Aspirin + standard dose ticagrelor or prasugrel

HOST-REDUCE (EA)

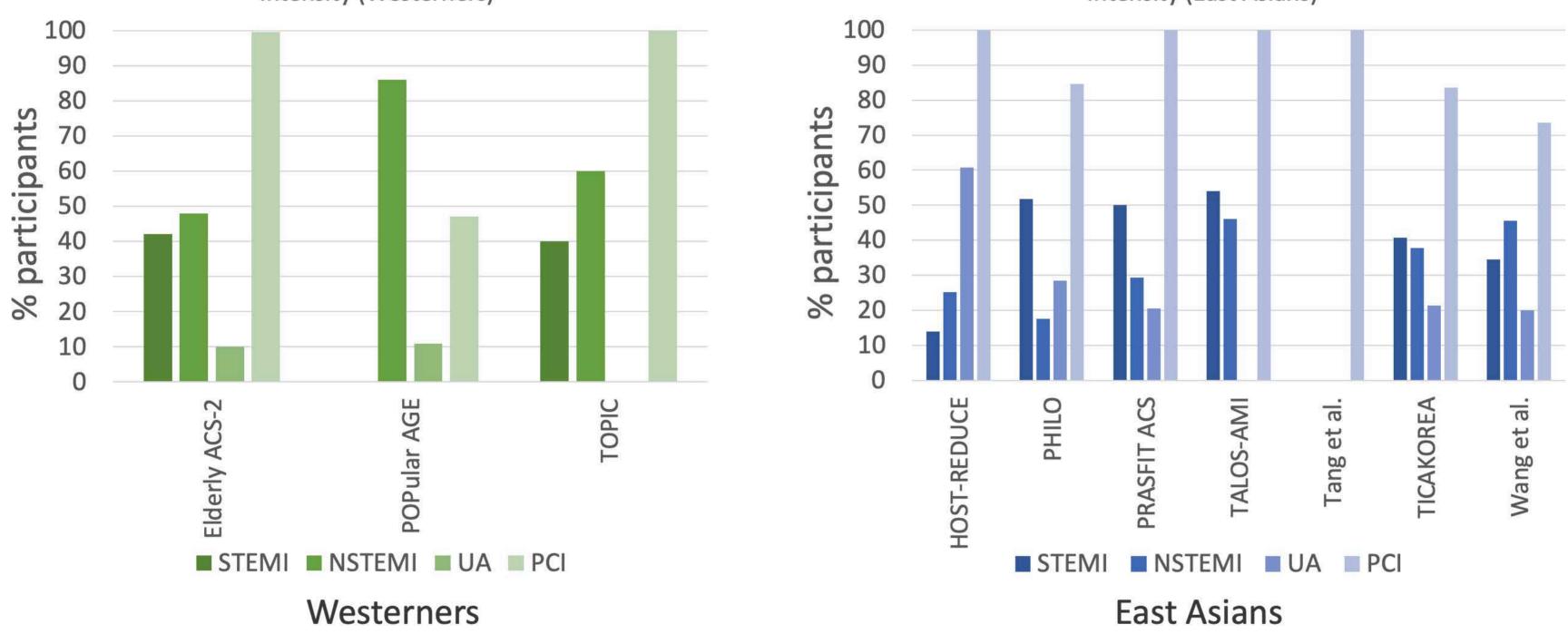
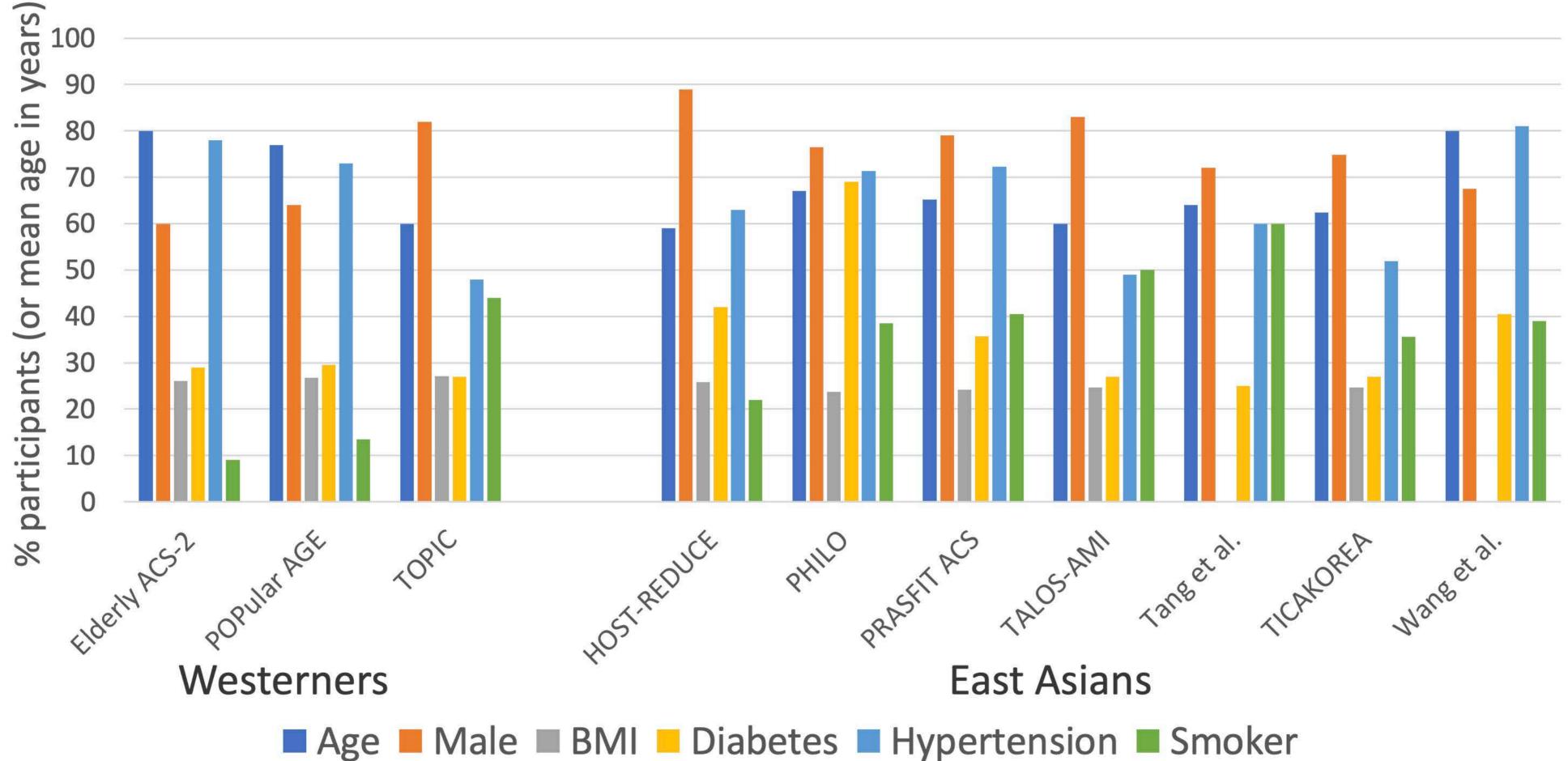


Figure 3.

alone


Figure 4.

Intensity (Westerners)

Intensity (East Asians)

Figure 5.

А

	De-Esca	alation	Standard	DAPT		Odds Ratio		Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year	M-H, Random, 95% Cl
TRITON-TIMI 38	893	6795	784	6813	12.5%	1.16 [1.05, 1.29]	2007	
PLATO	1652	9291	1521	9333	12.7%	1.11 [1.03, 1.20]	2009	-
PRASFIT-ACS	99	678	87	685	9.3%	1.18 [0.86, 1.60]	2014	
PHILO	47	400	68	401	7.8%	0.65 [0.44, 0.97]	2015	
Wang et al	28	100	19	100	4.6%	1.66 [0.85, 3.22]	2016	
Tang et al	15	200	4	200	2.1%	3.97 [1.29, 12.19]	2016	
TOPIC	43	322	85	323	7.7%	0.43 [0.29, 0.65]	2017	
Elderly ACS 2	121	730	121	713	9.9%	0.97 [0.74, 1.28]	2018	
TICAKOREA	39	400	65	400	7.4%	0.56 [0.36, 0.85]	2019	
POPular AGE	85	500	97	502	9.1%	0.86 [0.62, 1.18]	2020	
HOST-REDUCE-POLYTECH-ACS	82	1170	116	1168	9.5%	0.68 [0.51, 0.92]	2021	
TALOS-AMI	36	1349	61	1348	7.5%	0.58 [0.38, 0.88]	2021	
Total (95% CI)		21935		21986	100.0%	0.87 [0.73, 1.04]		•
Total events	3140		3028					
Heterogeneity: $Tau^2 = 0.06$; Chi^2	= 63.94,	df = 11 (P < 0.000	01); $I^2 = 3$	83%			
Test for overall effect: $Z = 1.52$ (0.2	0.5 i ż ź 5 Favours De-Escalation Favours Standard DAPT

В

	De-Esca	lation	Standard	DAPT		Odds Ratio		Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	Year	M-H, Random, 95% Cl
EXCELLENT	24	722	21	721	2.3%	1.15 [0.63, 2.08]	2011	
I-LOVE-IT 2	72	909	67	920	6.2%	1.10 [0.77, 1.55]	2016	
GLOBAL LEADERS	616	7980	653	7988	27.3%	0.94 [0.84, 1.05]	2018	
SMART-DATE	96	1357	99	1355	8.2%	0.97 [0.72, 1.29]	2018	
REDUCE	85	733	88	727	7.1%	0.95 [0.69, 1.31]	2019	
SMART-CHOICE	65	1495	81	1498	6.5%	0.80 [0.57, 1.11]	2019	
STOPDAPT-2	35	1500	55	1509	4.2%	0.63 [0.41, 0.97]	2019	
TWILIGHT	160	3555	199	3564	13.4%	0.80 [0.64, 0.99]	2019	
TICO	59	1527	89	1529	6.4%	0.65 [0.46, 0.91]	2020	
MASTER DAPT	165	2204	172	2230	12.6%	0.97 [0.78, 1.21]	2021	
STOPDAPT-2 ACS	65	2058	58	2057	5.8%	1.12 [0.78, 1.61]	2022	
Total (95% CI)		24040		24098	100.0%	0.90 [0.82, 0.99]		•
Total events Heterogeneity: Tau ² = Test for overall effect			,	(P = 0.2)	5); $I^2 = 20$	0%	⊢ 0.2	2 0.5 1 2 5 Favours De-Escalation Favours Standard DAPT

Figure 7.

A

	De-Esca	lation	Standard	DAPT		Odds Ratio		Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year	M-H, Random, 95% Cl
TRITON-TIMI 38	893	6795	784	6813	26.5%	1.16 [1.05, 1.29]	2007	
PLATO	1652	9291	1521	9333	27.4%	1.11 [1.03, 1.20]	2009	-
TOPIC	43	322	85	323	12.4%	0.43 [0.29, 0.65]	2017	
Elderly ACS 2	121	730	121	713	17.9%	0.97 [0.74, 1.28]	2018	
POPular AGE	85	500	97	502	15.8%	0.86 [0.62, 1.18]	2020	
Total (95% CI)		17638		17684	100.0%	0.94 [0.77, 1.13]		•
Total events	2794		2608					
Heterogeneity: Tau ² =	= 0.03; Chi	$^{2} = 24.7$	'0, df = 4 (P < 0.00	01); $I^2 = 8$	34%		
Test for overall effect	:: Z = 0.67	(P = 0.5	0)					0.2 0.5 1 2 5 Favours De-Escalation Favours Standard DAPT

В

	De-Esca	lation	Standard DAPT			Odds Ratio		Odds Ratio			
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year	M-H, Random, 95% Cl			
TRITON-TIMI 38	781	6795	643	6813	40.1%	1.25 [1.12, 1.39]	2007				
PLATO	1014	9291	864	9333	47.2%	1.20 [1.09, 1.32]	2009				
TOPIC	30	322	37	323	3.0%	0.79 [0.48, 1.32]	2017				
Elderly ACS 2	63	730	47	713	4.9%	1.34 [0.90, 1.98]	2018				
POPular AGE	53	500	57	502	4.8%	0.93 [0.62, 1.38]	2020				
Total (95% CI)		17638		17684	100.0%	1.20 [1.09, 1.31]		•			
Total events	1941		1648								
Heterogeneity: Tau ² = Test for overall effect	,		, .	= 0.30);		0.2	0.5 1 2 DAPT				

С

	De-Esca	ation	Standard	DAPT		Odds Ratio		Odds Ratio			
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	Year	M-H, Random, 95% Cl			
TRITON-TIMI 38	111	6716	146	6741	31.6%	0.76 [0.59, 0.97]	2007				
PLATO	638	9186	657	9235	44.7%	0.97 [0.87, 1.09]	2009				
TOPIC	1	322	4	323	1.1%	0.25 [0.03, 2.23]	2017	←			
Elderly ACS 2	12	730	13	713	7.2%	0.90 [0.41, 1.99]	2018				
POPular AGE	28	500	46	502	15.4%	0.59 [0.36, 0.96]	2020				
Total (95% CI)		17454		17514	100.0%	0.82 [0.65, 1.03]		-			
Total events	790		866								
Heterogeneity: Tau ² =	= 0.03; Chi	$^{2} = 7.87$	', df = 4 (P	= 0.10);	$I^2 = 49\%$			0.2 0.5 1 2 5			
Test for overall effect	:: Z = 1.73	(P = 0.0)	8)					Favours De-Escalation Favours Standard DAPT			

	De-Esca	lation	Standard	DAPT		Odds Ratio		Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year	M-H, Random, 95% Cl
PRASFIT-ACS	99	678	87	685	17.4%	1.18 [0.86, 1.60]	2014	- -
PHILO	47	400	68	401	15.9%	0.65 [0.44, 0.97]	2015	
Tang et al	15	200	4	200	6.4%	3.97 [1.29, 12.19]	2016	│ — — →
Wang et al	28	100	19	100	11.5%	1.66 [0.85, 3.22]	2016	
TICAKOREA	39	400	65	400	15.5%	0.56 [0.36, 0.85]	2019	
TALOS-AMI	36	1349	61	1348	15.6%	0.58 [0.38, 0.88]	2021	
HOST-REDUCE-POLYTECH-ACS	82	1170	116	1168	17.7%	0.68 [0.51, 0.92]	2021	
Total (95% CI)		4297		4302	100.0%	0.87 [0.62, 1.23]		
Total events	346		420					
Heterogeneity: Tau ² = 0.15; Chi ²	= 25.61, c	lf = 6 (P	= 0.0003)	$I^2 = 779$	6		0.2	
Test for overall effect: $Z = 0.79$ (P = 0.43)						0.2	Favours De-Escalation Favours Standard DAPT

	De-Esca	lation	Standard	DAPT		Odds Ratio		Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year	M–H, Random, 95% Cl
PRASFIT-ACS	84	678	74	685	19.9%	1.17 [0.84, 1.63]	2014	
PHILO	25	400	36	401	15.9%	0.68 [0.40, 1.15]	2015	
Tang et al	13	200	4	200	7.2%	3.41 [1.09, 10.63]	2016	│ ———→
Wang et al	22	100	11	100	11.4%	2.28 [1.04, 5.00]	2016	
TICAKOREA	23	400	36	400	15.6%	0.62 [0.36, 1.06]	2019	
TALOS-AMI	27	1349	38	1348	16.5%	0.70 [0.43, 1.16]	2021	_
HOST-REDUCE-POLYTECH-ACS	16	1170	21	1168	13.5%	0.76 [0.39, 1.46]	2021	
Total (95% CI)		4297		4302	100.0%	0.98 [0.68, 1.41]		
Total events	210		220					
Heterogeneity: Tau ² = 0.15; Chi ²	= 16.97, c	lf = 6 (P	= 0.009);	$^{2} = 65\%$			0.2	2 0.5 1 2 5
Test for overall effect: $Z = 0.11$ (P = 0.91)						0.7	Favours De-Escalation Favours Standard DAPT

С

	De-Esca	lation	Standard	DAPT		Odds Ratio		Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl Y	ear	M-H, Random, 95% CI
PRASFIT-ACS	15	678	13	685	14.8%	1.17 [0.55, 2.48] 20	014	
PHILO	22	400	32	401	26.4%	0.67 [0.38, 1.18] 20	015	
Tang et al	2	200	0	200	0.9%	5.05 [0.24, 105.86] 20	016 -	
Wang et al	6	100	8	100	6.9%	0.73 [0.25, 2.20] 20	016 -	
TICAKOREA	16	400	29	400	21.2%	0.53 [0.28, 1.00] 20	019	
TALOS-AMI	15	1349	28	1348	20.8%	0.53 [0.28, 1.00] 20	021	
HOST-REDUCE-POLYTECH-ACS	9	1170	8	1168	9.1%	1.12 [0.43, 2.92] 20	021	
Total (95% CI)		4297		4302	100.0%	0.71 [0.53, 0.95]		
Total events	85		118					-
Heterogeneity: Tau ² = 0.00; Chi ²	= 5.85, df	= 6 (P =	= 0.44); l ² =	= 0%			0.2	
Test for overall effect: $Z = 2.34$ (P = 0.02)						0.2	Favours De-Escalation Favours Standard DAPT

Figure 9.

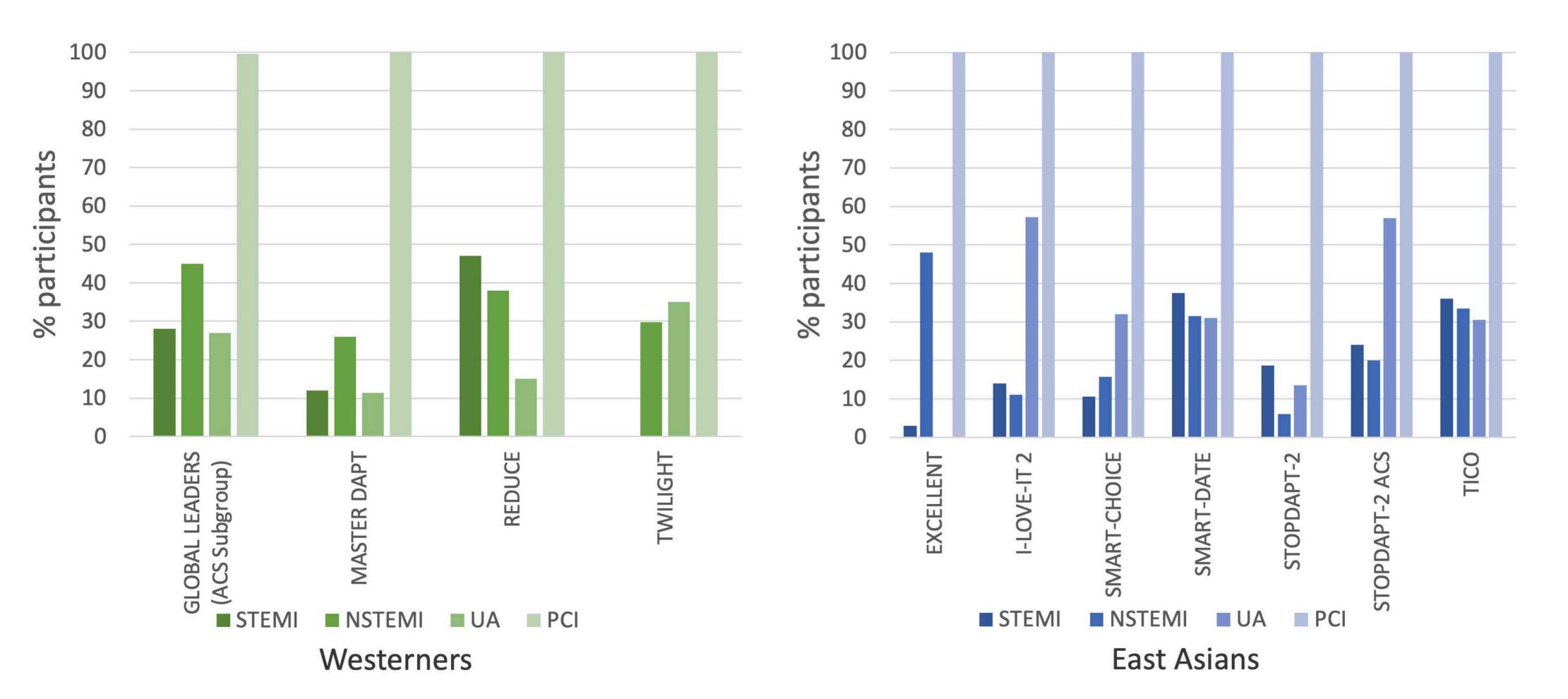


Figure 9.

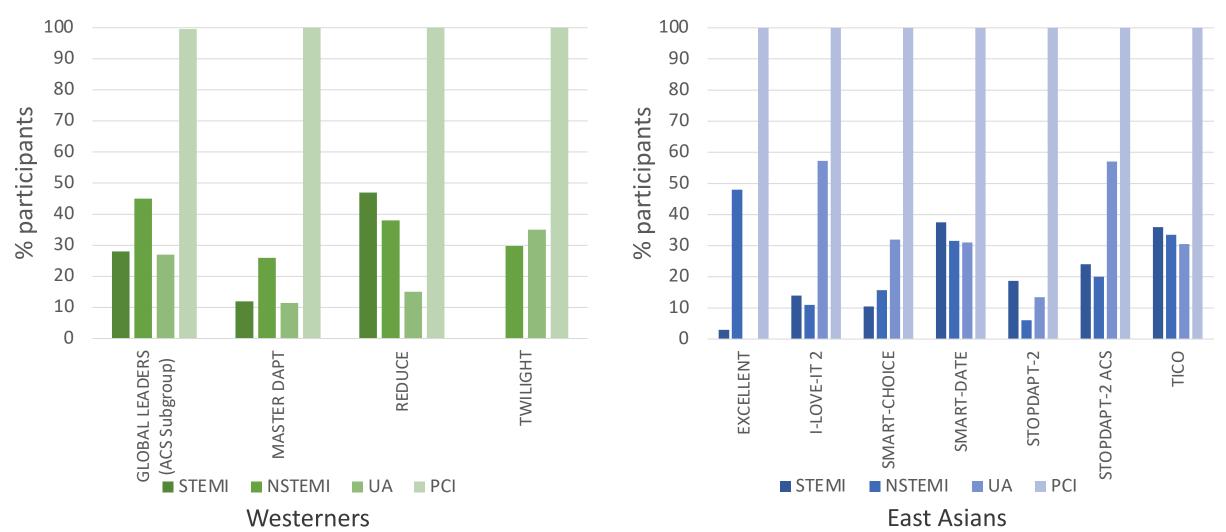
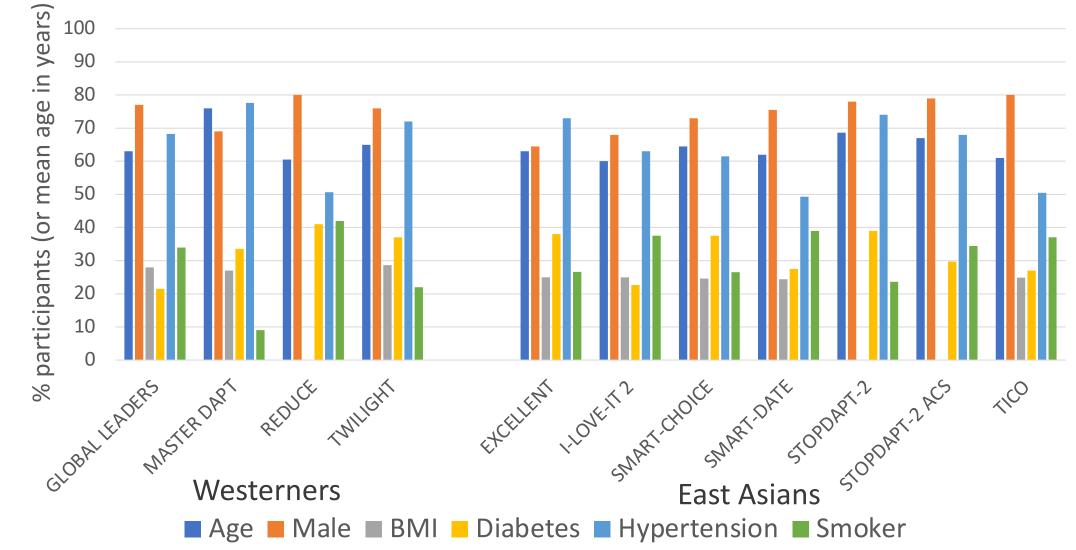



Figure 10.

Α

	De-Esca	lation	Standard	DAPT		Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year	M–H, Random, 95% Cl
GLOBAL LEADERS	616	7980	653	7988	59.6%	0.94 [0.85, 1.05]	2018	
TWILIGHT	160	3555	199	3564	16.2%	0.81 [0.66, 0.99]	2019	_
REDUCE	85	733	88	727	8.5%	0.96 [0.72, 1.27]	2019	
MASTER DAPT	165	2204	172	2230	15.8%	0.97 [0.79, 1.19]	2021	
Total (95% CI)		14472		14509	100.0%	0.93 [0.85, 1.00]		•
Total events	1026		1112					
Heterogeneity: Tau ² :	= 0.00; Chi	$^{2} = 2.19$), df = 3 (P	0.2	2 0.5 1 2			
Test for overall effect	: Z = 1.86	(P = 0.0)	6)	0.2	Favours De-Escalation Favours Standard DAPT			

В

	De-Esca	lation	Standard	DAPT		Risk Ratio		Risk Ratio			
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	Year	M-H, Random, 95% Cl			
GLOBAL LEADERS	362	7980	416	7988	58.8%	0.87 [0.76, 1.00]	2018				
TWILIGHT	126	3555	130	3564	19.2%	0.97 [0.76, 1.24]	2019	_			
REDUCE	45	733	41	727	6.6%	1.09 [0.72, 1.64]	2019				
MASTER DAPT	103	2295	102	2284	15.5%	1.00 [0.77, 1.31]	2021				
Total (95% CI)		14563		14563	100.0%	0.92 [0.83, 1.03]		•			
Total events	636		689								
Heterogeneity: Tau ² =	= 0.00; Chi	$^{2} = 1.87$, df = 3 (P	= 0.60);	$I^2 = 0\%$						
Test for overall effect	z = 1.49	(P = 0.1)	4)					0.2 0.5 1 2 5 Favours De-Escalation Favours Standard DAPT			

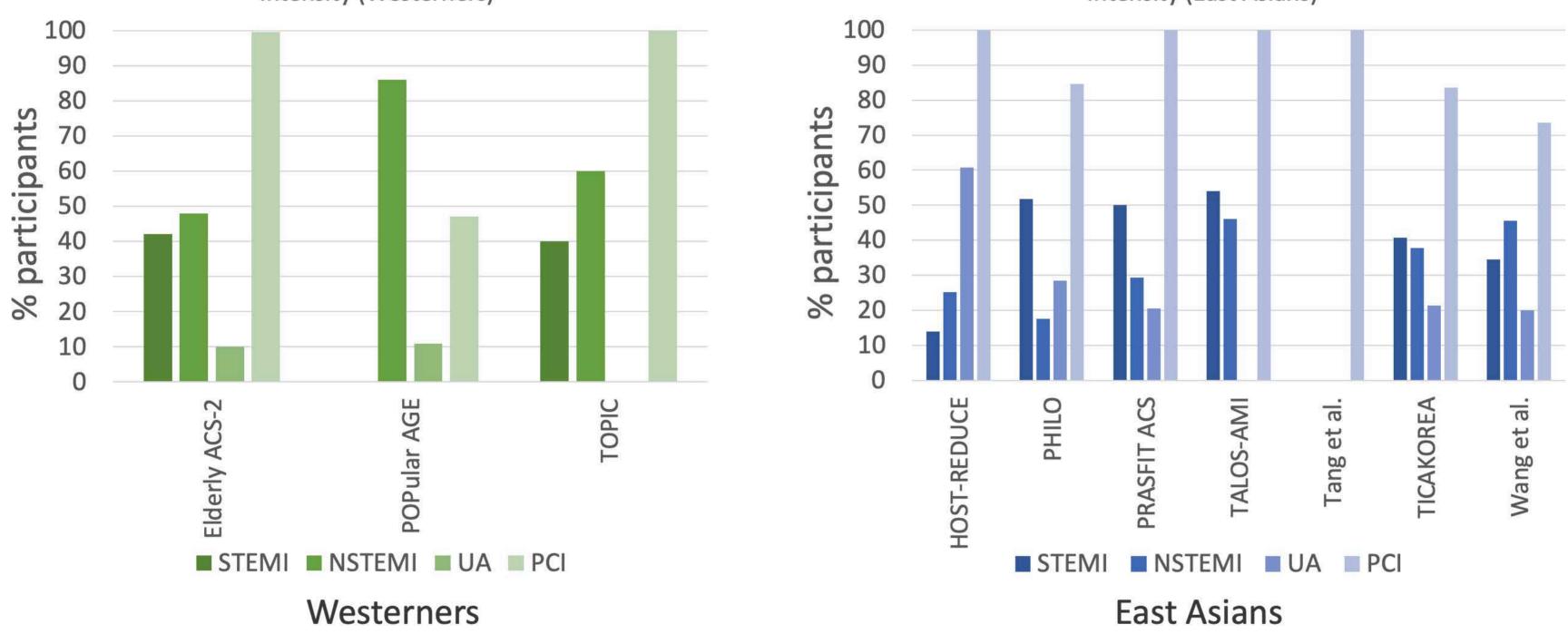
С

	De-Esca	lation	Standard	DAPT		Risk Ratio		Risk Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	Year	M-H, Random, 95% Cl		
GLOBAL LEADERS	163	7980	169	7988	33.7%	0.97 [0.78, 1.19]	2018			
TWILIGHT	34	3555	69	3564	23.2%	0.49 [0.33, 0.74]	2019			
REDUCE	24	733	29	727	17.8%	0.82 [0.48, 1.40]	2019	_		
MASTER DAPT	53	2295	59	2284	25.3%	0.89 [0.62, 1.29]	2021			
Total (95% CI)		14563		14563	100.0%	0.79 [0.58, 1.06]				
Total events	274		326							
Heterogeneity: Tau ² =	= 0.06; Chi	$^{2} = 8.26$	df = 3 (P)	= 0.04);	$I^2 = 64\%$		H			
Test for overall effect	: Z = 1.56	(P = 0.1)	2)					0.2 0.5 1 2 5 Favours De-Escalation Favours Standard DAPT		

Meta-analysis of studies comparing standard duration with reduced duration of DAPT in East Asian populations. Panel (A) shows net adverse cardiovascular events (NACE), panel (B) shows major adverse cardiovascular events (MACE) and panel (C) shows major bleeding.

А

	De-Esca	ation	Standard	DAPT		Odds Ratio		Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	Year	M-H, Random, 95% CI
EXCELLENT	24	722	21	721	7.4%	1.15 [0.63, 2.08]	2011	· · · · · ·
I-LOVE-IT 2	72	909	67	920	15.5%	1.10 [0.77, 1.55]	2016	
SMART-DATE	96	1357	99	1355	18.5%	0.97 [0.72, 1.29]	2018	_
STOPDAPT-2	35	1500	55	1509	11.8%	0.63 [0.41, 0.97]	2019	
SMART-CHOICE	65	1495	81	1498	16.1%	0.80 [0.57, 1.11]	2019	
TICO	59	1527	89	1529	15.9%	0.65 [0.46, 0.91]	2020	
STOPDAPT-2 ACS	65	2058	58	2057	14.8%	1.12 [0.78, 1.61]	2022	
Total (95% CI)		9568		9589	100.0%	0.88 [0.74, 1.06]		•
Total events	416		470					
Heterogeneity: Tau ² =	= 0.02; Chi	$^{2} = 10.2$	0, df = 6 (I	P = 0.12); $ ^2 = 41\%$	%	<u> </u>	
Test for overall effect	:: Z = 1.35	(P = 0.1)	8)				0.2	0.5 İ Ż Ś Favours De-Escalation Favours Standard DAPT


В

	De-Esca	lation	tion Standard DAPT			Odds Ratio		Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	Year	M–H, Random, 95% Cl
EXCELLENT	34	722	30	721	11.2%	1.14 [0.69, 1.88]	2011	
I-LOVE-IT 2	68	909	58	920	19.3%	1.20 [0.84, 1.73]	2016	
SMART-DATE	50	1357	44	1355	15.7%	1.14 [0.75, 1.72]	2018	
STOPDAPT-2	38	1500	32	1509	12.3%	1.20 [0.75, 1.93]	2019	
SMART-CHOICE	33	1495	32	1498	11.7%	1.03 [0.63, 1.69]	2019	
TICO	35	1527	51	1529	14.3%	0.68 [0.44, 1.05]	2020	
STOPDAPT-2 ACS	56	2058	38	2057	15.5%	1.49 [0.98, 2.25]	2022	
Total (95% CI)		9568		9589	100.0%	1.11 [0.93, 1.33]		•
Total events	314		285					
Heterogeneity: Tau ² =	= 0.01; Chi	$^{2} = 7.13$	B, df = 6 (P)	= 0.31);	$I^2 = 16\%$		0.2	0.5 1 2 5
Test for overall effect	t: $Z = 1.12$	(P = 0.2)	6)				0.2	Favours De-Escalation Favours Standard DAPT

С

	De-Esca	lation	ation Standard DAPT			Odds Ratio		Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year	M-H, Random, 95% Cl
EXCELLENT	2	722	4	721	5.2%	0.50 [0.09, 2.73]	2011	· · ·
I-LOVE-IT 2	13	909	7	920	12.8%	1.89 [0.75, 4.76]	2016	
SMART-DATE	6	1357	10	1355	11.3%	0.60 [0.22, 1.65]	2018	
STOPDAPT-2	8	1500	27	1509	15.2%	0.29 [0.13, 0.65]	2019	← ■
SMART-CHOICE	12	1495	14	1498	15.6%	0.86 [0.40, 1.86]	2019	
TICO	25	1527	45	1529	22.8%	0.55 [0.33, 0.90]	2020	_
STOPDAPT-2 ACS	11	2058	26	2057	17.1%	0.42 [0.21, 0.85]	2022	
Total (95% CI)		9568		9589	100.0%	0.60 [0.40, 0.91]		
Total events	77		133					
Heterogeneity: Tau ² =	= 0.14; Chi	$^{2} = 10.9$	9, df = 6 (I	P = 0.09); I ² = 459	%		0.2 0.5 1 2 5
Test for overall effect	:: Z = 2.37	(P = 0.0)	2)					Favours De-Escalation Favours Standard DAPT

Figure 4.

Intensity (Westerners)

Intensity (East Asians)