
Astronomy
&Astrophysics

A&A, 677, A77 (2023)
https://doi.org/10.1051/0004-6361/202245340
© The Authors 2023

Enabling the discovery of fast transients

A kilonova science module for the Fink broker

B. Biswas1 , E. E. O. Ishida2 , J. Peloton3 , A. Möller4,5 , M. V. Pruzhinskaya2,6 ,
R. S. de Souza7 , and D. Muthukrishna8

1 Université Paris Cité, CNRS, AstroParticule et Cosmologie, 10 rue Alice Domon et Léonie Duquet, 75013 Paris, France
e-mail: biswas@apc.in2p3.fr

2 LPC, Université Clermont Auvergne, CNRS/IN2P3, 4 avenue Blaise Pascal, 63000 Clermont-Ferrand, France
e-mail: emille.ishida@clermont.in2p3.fr

3 Université Paris-Saclay, CNRS/IN2P3, IJCLab, 15 rue Georges Clemenceau, 91405 Orsay, France
4 Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Mail Number H29, PO Box 218,

31122 Hawthorn, VIC, Australia
5 ARC Centre of Excellence for Gravitational Wave Discovery (OzGrav), Mail number H74, PO Box 218, 31122 Hawthorn, Victoria,

Australia
6 Lomonosov Moscow State University, Sternberg Astronomical Institute, Universitetsky pr. 13, Moscow 119234, Russia
7 Centre for Astrophysics Research, University of Hertfordshire, College Lane, Hatfield, AL10 9AB, UK
8 Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, 70 Vassar St, Cambridge, MA 02139,

USA

Received 31 October 2022 / Accepted 21 June 2023

ABSTRACT

Context. Large-scale astronomical surveys such as the Zwicky Transient Facility (ZTF) opened a new window of opportunity in the
search for rare astrophysical phenomena. Community brokers, such as FINK, have the task of identifying interesting candidates and
redistributing them to the community. For the specific case of fast transients, this identification should be done early, based on a limited
number of observed photometric epochs, thus allowing it to trigger further observations.
Aims. We describe the fast transient classification algorithm in the centre of the kilonova (KN) science module currently implemented
in the FINK broker, and we report classification results based on simulated catalogues and real data from the ZTF alert stream.
Methods. We used noiseless, homogeneously sampled simulations to construct a basis of principal components. All light curves from
more realistic ZTF simulations were written as a linear combination of this basis. The corresponding coefficients were used as features
in training a random forest classifier. The same method was applied to two different datasets, illustrating possible representations of
ZTF light curves. The latter aimed to simulate the data situation found within the ZTF alert stream.
Results. Classification based on simulations mimicking ZTF alerts resulted in 69.30% precision and 69.74% recall when applied to
a simulated test sample, thus confirming the robustness of precision results when limited to 30 days of observations. Dwarf flares
and point Type Ia supernovae were the most frequent contaminants. The final trained model was integrated into the FINK broker and
has been distributing fast transients, tagged as KN_candidates, to the astronomical community, especially through the GRANDMA
collaboration.
Conclusions. We show that features specifically designed to grasp different light-curve behaviours provide enough information to
separate fast (KN-like) from slow (non-KN-like) evolving events. This module represents one crucial link in an intricate chain of
infrastructure elements for multi-messenger astronomy, which is currently being put in place by the FINK broker team in preparation
for the arrival of data from the Vera Rubin Observatory Legacy Survey of Space and Time.
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1. Introduction

The first detection of a gravitational wave (GW) event result-
ing from a binary neutron star merger (GW170817, Abbott
et al. 2017a) brought to life a new paradigm in observational
astronomy. The detection reported by the LIGO1 and Virgo2 col-
laborations was accompanied by confirmed signals in gamma,
X-ray, ultra-violet, optical, near-infrared, and radio wavelengths
(Abbott et al. 2017b), and inaugurated a new era of multi-
messenger astronomy. From the perspective of optical surveys,
the first detected kilonova (KN) came to join gamma-ray burst

1 https://www.ligo.caltech.edu/
2 https://www.virgo-gw.eu/

(GRB) afterglows (Troja et al. 2019) in the selected group of
rare, fast transients possessing a multi-messenger component.

The idea that the radioactive ejecta from a binary neutron
star (BNS) or neutron star-black hole (NSBH) merger provides
a source for powering thermal transient emission appeared
in the late 1990s (Li & Paczyński 1998). The first piece of
observational evidence of such a counterpart, lasting days to
weeks, was found during the follow-up observations of short
GRB130603B (Tanvir et al. 2013). Later, a KN signature was
also suspected in other short GRBs (Gompertz et al. 2018;
Troja et al. 2019). However, the real interest in KNe arose
with GW170817 and its electromagnetic counterparts: short
GRB170817A and KN AT2017gfo (Abbott et al. 2017a,b).
Detailed modelling of the photometric data of AT2017gfo
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showed that KNe are powered by the decay of a wide range of
r-process nuclei, and therefore this showed that BNS coales-
cence can be a dominant source of heavy element production
in the Universe (Villar et al. 2017; Kasen et al. 2017). These
observations also played a crucial role in locating GW170817,
and their association with the same astrophysical source has
provided the first piece of direct evidence that at least some short
GRBs are associated with BNS mergers. Further observations
by Advanced LIGO/Virgo led to the discovery of a few more
events, all without any KN signatures (The LIGO Scientific
Collaboration 2021). Whether NSBH and all BNS merges
should be accompanied by a KN is one of the exciting puzzles
that still needs to be solved.

In parallel, the combined detection of GW and KN sig-
nals also provides a new approach for Hubble constant mea-
surements (Schutz 1986). The analysis of GW170817 and the
redshift of its host galaxy led to a measurement of H0 =
74+16
−8 km s−1 Mpc−1 (Abbott et al. 2017c, see also Coughlin et al.

2020). Such measurements are important since they do not rely
on a cosmic distance ladder and they could help in resolving the
Hubble constant tension between Type Ia supernovae (SNe Ia)
and cosmic microwave background estimates (Freedman 2021;
Riess et al. 2022).

In light of their potential application to such a large range of
astrophysical topics, considerable resources have been employed
in trying to detect and characterise further KN events. Tra-
ditionally, this search is mainly carried out (and planned) in
the error boxes of short GRBs and GW alerts (Troja et al.
2018; Margutti et al. 2018; Kasliwal et al. 2020). However, this
approach is limited by the operation schedule of GW detectors,
the rapid coordination needed to deploy optical follow-up, tele-
scope availability, and weather constraints, among others. In this
context, considerable efforts are already devoted to optimising
the exploitation of wide-field optical survey data for the discov-
ery of KNe independently from a GW detection (Chase et al.
2022). These include analysing data from large facilities such as
the Dark Energy Camera (Garcia et al. 2020) and the Zwicky
Transient Facility (ZTF, Andreoni et al. 2021), as well as prepar-
ing for the arrival of data from the Rubin Observatory in the
upcoming years (Lochner et al. 2022; Hambleton et al. 2022).

Although photometric detection alone is not able to provide
enough information to confirm the classification of a given KN
candidate, their estimated rate is expected to be low enough to
allow further scrutiny of a significant fraction of high proba-
bility transients (Setzer et al. 2019). Thus, rapid and efficient
photometric classification is a crucial element to be developed
when trying to maximise the number of future confirmed KNe.
Nevertheless, the effectiveness of any classification strategy will
always be highly correlated with the survey cadence and dura-
tion of the target transient. Sources that remain visible for only
a few days, such as KNe, pose a greater challenge due to their
small number of observed photometric points and the necessity
to quickly trigger spectroscopic follow-up.

Despite these challenges, the potential for scientific discov-
ery is sufficient enough to motivate investigations focussed on
current photometric data. The ZTF survey, covering a large vol-
ume of the sky, is an excellent dataset for such searches. Using
proprietary data, Andreoni et al. (2021) developed the ZTF
REaltime Search and Triggering (ZTReST), a complete pipeline
devoted to identifying KN candidates and sending the most inter-
esting ones for target-of-opportunity observations. Although no
KNe were confirmed during the reported 13 months of opera-
tions, the system – based on filtering, template modelling, and
human-in-the-loop feedback – was able to identify eight fast

evolving transients, thus providing evidence of the feasibility
of photometric-based approaches. To optimise a search of GW
optical counterparts, Stachie et al. (2020) used ASTRORAPID
(Muthukrishna et al. 2019) – a classifier tool based on machine
learning. Putting all transients in four categories (‘KN’, ‘SN’,
‘Others’, and ‘Indistinguishable’), they showed that after a few
days of observations, it is possible to rule out the candidates
as SNe and other known transients. Recently, Chatterjee et al.
(2022) used sparse early-time photometry and contextual infor-
mation to train a temporal convolution neural network with the
goal of identifying KN candidates.

In this work, we explore an alternative strategy. Using noise-
less simulated light curves, we developed a machine-learning-
based classifier capable of identifying fast transients within the
ZTF public alert stream, among which a few KN events are to be
expected. The algorithm described here is the core of the FINK
broker (Möller et al. 2021) KN classifier-based module and has
been reporting candidates since March 2021. These have been
publicly forwarded to the whole community, and especially to
the GRANDMA telescope network (Antier et al. 2019), which
coordinates follow-up observations (Antier et al. 2020; Aivazyan
et al. 2022).

FINK3 (Möller et al. 2021) is an open-source broker soft-
ware based on big data and distributive computing techniques.
It was specifically designed to face the computational challenges
posed by the upcoming Vera Rubin Observatory Legacy Survey
of Space and Time4 (LSST) and, as part of its preparatory stages,
has been processing ZTF alerts since November 2019. Along
with ALERCE (Förster et al. 2021), AMPEL (Nordin et al. 2019),
BABAMUL, ANTARES (Narayan et al. 2018), LASAIR (Smith
et al. 2019), and PITT-GOOGLE, it is part of the broker ecosystem
which will distribute LSST alerts to the community throughout
the next decade.

This work is organized as follows. In Sect. 2 we describe
the dataset used to generate the basis vectors and the datasets
used for training and testing our classifier. In Sect. 3 we dive
deeper into the method for fitting and the classification of light
curves, while Sect. 4 describes the results of our approach for
the classification of simulated KN events. Section 5 gives details
on the candidates found within the real ZTF alert stream. We
present our conclusions in Sect. 6. All codes used to produce the
results presented here are publicly available5.

2. Data

We used two distinct datasets: a set of ideal simulations (here-
after perfect_sims) used to construct a basis for feature extrac-
tion, and a set of ZTF-like simulations (hereafter ztf_sims)
used to demonstrate the performance of our method. The
perfect_sims consisted of light curves observed through the
LSST [g, r] broad-band filters with typical noise photon count
of 104, no galactic extinction, and without intrinsic magnitude
smearing (PERFECT light curves according to the SNANA simu-
lator6, Kessler et al. 2009), and considering a uniform cadence of
2 days. This set is composed of 1000 events generated from KN
template models (Kasen et al. 2017; Kessler et al. 2019) and 1000
events generated from non-KN templates. Among the latter,

3 https://fink-broker.org/
4 https://www.lsst.org/
5 https://github.com/b-biswas/kndetect
6 https://github.com/RickKessler/SNANA/blob/master/
doc/snana_manual.pdf
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we included 125 simulations for each class: SN Ia-91bg, SN II-
NMF, SN IIn, SN Ia, SN Iax, and SN Ibc-MOSFIT from Kessler
et al. (2019), as well as SN Ib and SN II from Vincenzi et al.
(2019). The non-KN subset contains the light-curve behaviours
expected from intermediate-term transients (SN-like) while
the KN subset provides the contrasting shape of short-term
transients. Although this module was constructed aiming at ZTF
real data, we used LSST filters due to their easy availability
within SNANA and the fact that they show similar enough trans-
missions to the ZTF filters, thus being able to retain the overall
shape of the light curves. Since at this stage we are not interested
in details of the light-curve shape, this was a good enough
approximation (all light curves generated with SNANA were
given in terms of its arbitrary flux unities, FLUXCAL). In Sect. 3
we show how this diversity was used to create a meaningful
parameter space that enables one to separate short (∼1 week)
and intermediate (a few month-long) transients in the ZTF
alert stream.

The ztf_sims dataset was constructed by merging two dif-
ferent simulations. The first set was presented in Muthukrishna
et al. (2019). It contains 38 000 non-KN and 4568 KN light
curves. They were also generated using SNANA, as well as
models and rates from the Photometric LSST Astronomical
Classification Challenge (PLAsTiCC, Kessler et al. 2019) and
observational characteristics, such as cadence and observation
conditions, from the Mid Scale Innovations Program (MSIP)
survey at the ZTF (Bellm 2014), using the two filters available
in the ZTF public survey [zg, zr]. For further details on the
simulation properties, readers can refer to Muthukrishna et al.
(2019). The redshifts in these models range up to ≈0.1 for
KN and ≈1.2 for non-KN models. The second set (hereafter
GRANDMA) holds a total of 1000 simulated KN light curves
described in Stachie et al. (2020), and it represents a more recent
cadence strategy of ZTF. Thus, the combined ztf_sims dataset
contains light curves representing two different cadences used
in the ZTF survey. This dataset represents the state of the art
in what concerns publicly available information for simulating
the complete sky as observed by ZTF. Results reported on this
simulated dataset (Sect. 4) will certainly get closer to the ones
obtained from live real data (Sect. 5) if new template models for
simulations are made available.

In summary, the ztf_sims dataset holds 5568 KN and
38 000 non-KN objects observed in two ZTF filters. We used
this to quantify the efficiency of our method when applied to the
ZTF alert stream. In Sect. 3 we describe how this dataset was
further divided to train and test the classifier.

3. Methodology

Our approach is divided into three steps: template generation
(Sect. 3.1), feature extraction, and classification (Sect. 3.2). We
used the perfect_sims set in order to construct three basis
functions over which all the ztf_sims will be projected. The
projection coefficients were then used as features and submitted
to a random forest classifier. We give details of each step in the
subsequent sub-sections.

3.1. Template generation

We represented each light curve in perfect_sims as a vector of
51 elements, v̄, with each element holding the flux measurement
in a given epoch, from -50 to +50 days in bins of 2 days. Maxi-
mum flux was randomly positioned among indexes [24, 25, 26],
consequently, the maximum measured flux is at 0 ± 2 days. We
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Fig. 1. Example of the light curve from perfect_sims in the r band
with maximum brightness anchored at index 24. The grey region marks
the possible anchor positions, equivalent to indexes 24, 25, and 26 in
the vector representation described in Sect. 3.1.
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Fig. 2. Principal components generated from the perfect_sims
dataset. The plot shows the first three PCs with the highest variance
as generated from PCA on (Dtemplate).

allowed for this slight shift during anchoring so as to take into
account the fact that the maximum observed flux may not be the
true maximum due to the telescope cadence. In cases where the
light curve does not hold enough epochs, we filled the empty
elements of v̄ with zeros. Figure 1 shows an example of an SN
Ia-91bg at redshift z ≈ 0.5 with the day of maximum anchored at
index 24. All light curves in the perfect_sims set were subject
to this centralisation procedure (each filter was treated indepen-
dently). We then constructed a data matrix stacking all vectors v̄
from both bands and classes (Dtemplate – 4000 rows, 51 columns).

The matrix was then submitted to principal component anal-
ysis (PCA) using the scikit-learn library (Pedregosa et al. 2011).
Figure 2 shows the first three components with the largest frac-
tion of total variance, obtained from Dtemplate. We searched for
the minimum number of PCs that encodes enough information
to allow for light-curve reconstruction while, at the same time,
restricting the number of degrees of freedom necessary for fea-
ture extraction. We chose to keep the first three PCs, as together
they hold 96% of the total data variance.

We aim to use the projections of each light curve in
these three chosen components as features for further machine-
learning analysis. While we used the same set of basis vectors for
both bands of ZTF data, we expect the projections to take into
account the variability between the bands. Thus, it was neces-
sary to allow for more frequent cadences to be coded within each
light-curve vector, v̄, without loss of information. We achieved
this by performing a quadratic spline fit in each component and
then representing it in bins of 0.25 days (6 hours), which results
in components of 401 dimensions. Figure 3 shows the three com-
ponents, normalised to amplitude one, as they appear in this final
base P = [p1, p2, p3]. In what follows, the same set of PCs was
used to extract features from both ZTF passbands.
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Fig. 3. Final interpolated versions of PCs in Fig. 2.

3.2. Feature extraction

For each filter in the measured light curve (l̄), the flux val-
ues were normalised by the maximum observed flux( fmax),
thus allowing the reconstruction to focus on the light-curve
shape instead of absolute brightness. This information was later
included by adding fmax as a feature to the classifier. Further, to
minimise noise effects, we only considered objects with fmax >
200. This fmax cutoff corresponds to a magnitude of ≈21.75,
which is close to the limiting magnitude of ZTF (Bellm et al.
2019, Fig. 6).

Each light curve from ztf_sims, in a given filter, was recon-
structed as a vector (hereafter predicted light curve, l̄p) of 401
elements, with each element corresponding to an epoch from -
50 to + 50 days in steps of 6 hours. We aligned fmax at the centre
of this vector:

l̄p =

k∑
i=1

ci ∗ pi, (1)

where ci is the coefficient of ith base element, pi, and k = 3 is
the number of elements inP. The best-fit values for ci parameters
were found by minimising the loss function:

loss =
N∑
i

(lp,i − li)2

σ2
i

+

 3∑
k=1

c2
k − c2

1H(c1)

 f 2
max

σ2
fmax

, (2)

where lp,i, li, and σi are the predicted flux, the measured flux,
and the flux error at the ith element of l̄, respectively, σ fmax is the
flux error associated with fmax, H(x) is the Heaviside function,
and N is the total number of photometric observations. The first
term in Eq. (2) accesses the goodness of fit of the final recon-
struction. The second term (regularisation term) was introduced
to guarantee a stable reconstruction. It ensures that c1 has pos-
itive values and only allows relatively smaller magnitudes for
c2 and c3, since they represent only a small percentage of the
total variance (5 and 4%, respectively). The scaling factor in
the regularisation term ensures that the two terms in Eq. (2) are
comparable and it prevents over-fitting in cases where the light
curve has a small number of points. We show two examples of
light-curve reconstruction in Fig. 4.

The best-fit parameters for ci (Eq. (2)) were computed using
the SciPy library (Virtanen et al. 2020) with the default opti-
misation method L-BFGS-B, described in Byrd et al. (1995)
and Zhu et al. (1997). For each object, we concatenated the
parameters corresponding to filters [g, r].

The final feature set per object and per filter was formed by
the three best-fit parameter values, ci, fmax, and a measurement
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(a) SN Ia event at z ≈ 0.13
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(b) KN event at z ≈ 0.02

Fig. 4. Light curves from the ztf_sims dataset. Points correspond
to measurements from SN Ia (top) and kilonova (KN, bottom) events,
observed in the two ZTF filters. Dark points mark the measurements
used for feature extraction, while transparent ones lie outside the
prediction region (±50 days since maximum). Full lines show the recon-
structed light curve and the dotted horizontal light blue line marks the
minimum flux threshold.

of the residual of the fit,

R =
√√

1
N

N∑
i

(lp,i − li)2

σ2
i

. (3)

By submitting all objects in ztf_sims to this feature extrac-
tion procedure, we obtained a features matrix, F , of 38221 rows
and ten columns (five for each ZTF filter). Figures 5 and 6
show the distribution of objects in light-curve-feature space. The
plots show that KN events occupy a more restricted region of
the parameter space when compared to non-KN sources. This
property, when combined with the remaining parameters (maxi-
mum flux and residual) allows the feature space to separate KN
from non-KN events in this simulated scenario. In particular, we
notice from Figs. 5 and 6 that KN events tend to have lower val-
ues of c1 and positive values of c2, while non-KN events have
a higher contribution from c1 and negative values for c2. This
behaviour is expected given the nature of generated PCs.

3.3. Classification

We randomly divided F into two subsets: train and test. The
training sample Ftrain contained 2794 KN and 16712 non-KN ele-
ments, while the test sample, Ftest, enclosed 1892 KN and 16823
non-KN events.

Given the low fraction of KN events and the binary nature
of our classification task, a simple random split of the available
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Fig. 5. Distribution of Ftest (Sect. 3.3) events in the features’ space. Orange contours denote non-KN and blue contours mark KN events. The panels
show distributions in different filters for c1, c2, and c3 (coefficients associated with the basis vectors p1, p2, and p3 respectively).

Fig. 6. Distribution of Ftest (Sect. 3.3) events in the features space. Orange contours denote non-KN and blue contours mark KN events. The panels
show distributions in different filters for c1, c2, and c3 (coefficient associated with basis vectors p1, p2, and p3, respectively).

simulated data into training and test samples would require some
fine-tuning of the probability threshold used to define KN can-
didates. Moreover, this would also result in a large size for the
final training model, which is not ideal for operations within
the broker. Aimed at circumventing both issues, we followed
the active learning strategy (Settles 2012) based on the uncer-
tainty sampling strategy described in Leoni et al. (2022) to build
an informative and balanced training sample. Only Ftrain was
used in the active learning loops. The initial training sample,
Fini_train, contained ten objects (five KNe and five non-KNe) and
the system ran through 1490 iterations, thus resulting in a final
training sample, Ffinal_train ∈ Ftrain, of 1500 objects equally bal-
anced between the two classes. Allowing a further increase in
the number of objects in training did not improve the classifica-
tion results. Once this optimal training sample was built, we used
it to train a random forest classifier containing 30 decision trees
and a maximum depth of 42, using the scikit-learn imple-
mentation (Pedregosa et al. 2011). Classification results reported
below used a probability threshold of 0.5 and were obtained by
applying the resulting model to the completely independent Ftest
sample.

We evaluated the performance of the classifier in terms of

Precision =
TP

TP + FP
and (4)

Recall =
TP

TP + FN
, (5)

where TP, FP, and FN stand for true positive, false positive, and
false negative, respectively. In the context of this work, the KN
class is considered positive, and the non-KN class is considered
negative. Thus a FP would be a non-KN classified as KN, and so
forth. Precision is also known as purity, while recall is associated
with the efficiency of a given classifier.

4. Results

Using the procedure described in Sect. 3, we report results from
two distinct scenarios: long (LSST-like duration, Sect. 4.1) and
medium (ZTF-like duration, Sect. 4.2) light-curve baselines.
Both scenarios include non-detection points (PHOTFLAG= 0 in
SNANA). The long light-curve scenario is an important test to
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Fig. 7. Confusion matrix from the long light-curve baseline scenario.

understand how our classifier works when complete information
is available. For example, this scenario is less likely to contain
objects whose signal is within the boundaries of the light curve.
However, it does not tell us how it is supposed to perform when
applied to the ZTF alert stream. To mimic the data situation faced
by FINK when processing ZTF alerts, we generated medium
light curves lasting for a maximum of 30 days (randomly select-
ing a 30-day interval for each of the long light-curve baseline
objects) and submitted them to the same feature extraction and
classifier procedure. We also provide a brief report on the experi-
ence of advertising KN candidates produced by this module via
the FINK broker (Sect. 5).

4.1. Long light-curve baseline

The random forest classifier trained in Ffinal_train was applied to
Ftest, resulting in a precision of 73.87% and a recall of 82.19%
for the long baseline dataset (Fig. 7). Figure 8 shows a complete
picture of the classification results according to the different
classes within Ftest. We clearly see that a significant part of
the contamination comes from dwarf flares, which are also very
sharply peaked. Although there is significant misclassification
of dwarf flare events, we still notice that the classifier is able
to correctly identify ≈44% of such events by exploiting the
correlations among the features. The figure also shows that a
significantly lower fraction of the KN GRANDMA objects are avail-
able for the classification case. This is a consequence of the lack
of forced photometry in these simulations. Since we require a
minimum of two points per filter, one of them with FLUXCAL
above 200, the lack of baseline points marking a non-detection
significantly decreases our ability to extract features from these
events.

4.2. Medium light-curve baseline

In order to mimic the data situation encountered by FINK while
processing ZTF alerts, we generated a more challenging dataset
using only some of the light-curve information. For each light
curve from ztf_sims represented as the data vector l̄ (Sect. 3),
we randomly selected a time bin with flux >= 200, tnow, and
discarded all elements of l̄ corresponding to epochs outside the
interval [tnow − 30, tnow]. The resulting l̄ then underwent the same
procedure described in Sect. 3.3. Figure 9 shows an example
of a KN light curve at redshift z = 0.04 and its reconstruction
using only a 30-day interval. A total of 26672 (2380 KN and
24292 non-KN) light curves survived this pre-processing (1448
KN, 12099 non-KN in Ftrain and 932 KN, and 12193 non-KN in
Ftest). As expected, the fraction of KN to non-KN in this scenario
is significantly lower than in the long light-curve case. This is a
direct consequence of the shorter signal region from KN events,
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Fig. 8. Classification results for the long light-curve baseline scenario.
The classifier was trained following a binary configuration of the train-
ing set (KN vs non-KN). We show the results separated by class in order
to allow for a better understanding of the contaminants. The plot shows
the SNANA code and class names as a function of the number of ele-
ments in the test sample. Each bar corresponds to the total number of
objects of each class in the test sample. Orange bars denote non-KN and
blue bars correspond to KN models. The number to the right of each bar
reports the percentage of events correctly classified for each class.
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Fig. 9. Example of a light-curve fit using only 30 days of measurements
(medium baseline) for a KN of class 151 (KN Kasen 2017) at a red-
shift z = 0.02. The horizontal-dashed light blue line shows the minimum
flux threshold, while the vertical-dashed orange line represents the last
epoch of data considered for the fit. Dark points show photometric mea-
surements used for feature extraction and the fainter points represent
the remaining points in the light curve. The full lines denote the recon-
structed light curves.

which results in most of the random choices of tnow resulting in
medium light curves with fmax < 200.

The training sample described above was submitted to the
same active learning procedure described in Sect. 4.1. The final
training sample containing 1500 objects was given as input to a
random forest classifier containing 30 decision trees. The result-
ing confusion matrix as shown in Fig. 10 corresponds to a
precision of 69.30 and a recall of 69.74%, obtained from the
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Fig. 10. Confusion matrix obtained from the medium light-curve base-
line classification experiment.
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Fig. 11. Classification results for the medium light-curve baseline sce-
nario. The description of each element is equivalent to those described
in Fig. 8.

medium baseline dataset (30 day light curves). As expected,
the lower information content present in the medium light-curve
baseline resulted in a significant decrease in performance, mean-
ing that a larger number of KNe were missed. Nevertheless, the
decrease in precision was much smaller, indicating that even in
the medium light-curve scenario the purity of the sample clas-
sified as KN remained under control. Figure 11 shows a more
detailed version of the classification as a function of classes.
The main contaminants (non-KN events classified as KN) con-
tinue to be fast-rising transients, such as dwarf flares and point
Ia SNe, indicating that the model is still able to identify sharp
light curves in this data situation. This is also a consequence
of the short duration of KN-like events combined with the
ZTF cadence, which generates a sample of KN light curves
with a fairly low number of informative light-curve points for
training. Although there are still differences between the cata-
logue level simulations that compose ztf_sims and the alert
photometry experience by FINK, this result indicates that our
parameter space and associated classifier are identifying the

correct region of the parameter space populated by short-lived,
sharp light-curve transients.

5. Deployment in Fink

Based on the method described above, we deployed a science
module in FINKbroker7. FINK has been processing the ZTF pub-
lic alert stream since 2019, and it already had a set of science
modules focussing on Solar System objects, SNe, or microlens-
ing events, for example. This new module fills the gap for fast
transients, opening a new window on the stream, especially for
multi-messenger analyses.

We used the medium light-curve baseline described in
Sect. 4.2, with the additional step where ZTF magnitudes were
converted into FLUXCAL units8 before feature extraction. This
module was deployed in March 2021, but for completeness, we
report here the results obtained from processing data streamed9

between November 2019 and December 2021 (524 observing
nights). Similarly to other science modules, we set a number
of conditions that must be satisfied before alerts are submitted
to classification. For this particular module, it is required that:
at least two epochs be observed per filter; at most 20 days be
between the first alert emitted and the last; at most 20 mea-
surements be between the first alert emitted and the last; and
no galactic counterpart be from the SIMBAD database (Wenger
et al. 2000).

Moreover, in order to tag an alert as a KN candidate, our
additional set of three criteria is that: the KN score be larger
than 0.5 from the module described in this work; the score be
higher than 0.5 from the RealBogus algorithm (Mahabal et al.
2019; Duev et al. 2019); and the star-galaxy classification score
from SExtractor be above 0.4 (Bertin & Arnouts 1996).
Over the 524 ZTF observing nights considered in this work,
1996 alerts were classified as KNe (1251 unique objects), which
corresponds to about four alerts per night.

Immediately after the alert classification, the KN candi-
dates are publicly available to the community via the FINK
Livestream service10. Figure 12 shows an example candidate
identified within the ZTF alert stream. The candidate rate of a
few alerts per night is low enough to enable human inspection
before any follow-up decision is made. This was particularly
important for the 2021 observing campaign coordinated by the
GRANDMA telescope network (Aivazyan et al. 2022), as the
users of the generated sub-stream can veto events, or on the
contrary increase the priority of a certain event prior to any
follow-up decisions being made.

During the observing campaign, six KN candidates reported
by FINK were followed up on by GRANDMA, including instru-
ments from both professional and amateur astronomers, but no
confirmed KNe were discovered. At the time of emission, there
was little external information about a new KN candidate, but

7 This module is available at https://github.com/
astrolabsoftware/fink-science
8 https://github.com/astrolabsoftware/fink-utils/blob/
main/fink_utils/photometry/conversion.py
9 For a complete list of the information contained in each
alert, see https://zwickytransientfacility.github.io/
ztf-avro-alert/schema.html
10 Users can easily subscribe to FINK output streams via a
dedicated client https://github.com/astrolabsoftware/
fink-client. The stream reporting KN candidates is named
fink_kn_candidates_ztf. Candidates are also available from
the Science Portal at https://fink-portal.org
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Fig. 12. Plot for object ZTF21abgcgyq that was classified as a KN can-
didate by the module (https://fink-portal.org/ZTF21abgcgyq,
alert ID 1626368700115015001).

some of them later benefited from spectroscopic follow-up that
helped disentangle the nature of the event. One of the KN can-
didates11 (ZTF21ablssud) was identified as being a cataclysmic
variable (see Fig. 9 of Aivazyan et al. 2022). We gathered
available spectroscopic information from the Transient Name
Server12 (TNS) database, and crossmatched it with the KN can-
didates. Among the 1,251 objects classified as KNe, 956 (76%)
had no counterparts in TNS (that is no follow-up was reported),
205 (16%) were classified as SN Ia, 39 (3%) as SN II, 17 (1%)
as cataclysmic variables, one as a tidal disruptive event, and the
rest as other various SN types. We note that some of the objects
first classified as KNe by FINK were classified later as SNe (Ia
and other types) as more alerts were emitted. Readers can refer
to Aivazyan et al. (2022) for a discussion about the classification
evolution of KN candidates.

6. Conclusions

The potential of multi-messenger astronomy will require coor-
dination among many different elements to ensure we will
optimally exploit the scientific potential of the incoming dataset.
In this context, it is paramount to develop machine-learning
methods with physically informed features in order to decrease
the volume of data that requires human screening. In this stage,
simulations can play an important role in guiding initial searches
for rare events, whose amount of observed data is still very
limited.

In this work, we present one possible combination of these
two important factors by developing a feature extraction method
based on perfect simulated light curves. It can be used to select
fast transients, including KNe, among others. This is the core
of the KN module currently running within the FINK broker
and it has already produced interesting candidates, which have
been scrutinised by the astronomical community of both profes-
sional and amateur astronomers. Additionally, the way the model
has been trained provides the possibility to incorporate feedback
from the community to retrain the model. For example, we could
re-run the active learning loop to train the model with correct
labels from real spectroscopic observations.

Despite the promising results presented in this work, we
emphasise that this light-curve-based classifier is just one stage
of a complex system that will certainly lead us to more fast tran-
sient detections. In the future, we should also add the crossmatch
to this system with alert streams from other wavelengths, which

11 https://fink-portal.org/ZTF21ablssud
12 https://www.wis-tns.org/

will highly increase our chances of detecting rare fast transients,
such as KNe. Given its expected increase in sensitivity and data
volume, it is reasonable to expect that the likelihood of finding
such transients within LSST will be much higher than the cur-
rent odds with ZTF. Moreover, LSST will have six broad-band
filters which will cover a larger fraction of the wavelength spec-
trum than the current two filters available in ZTF, and thus we
will have to adapt the model to this new situation by generating
templates for each band separately, for example. Efforts such as
the one described in this paper will be paramount to guide our
future classifiers and enable discoveries.
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