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Abstract

This paper argues that interactive theorem provers (ITPs) could play an impor-
tant role in fostering students’ appreciation and understanding of proof and of
mathematics in general. It shows that the ITP Lean has three features that
mitigate existing difficulties in teaching and learning mathematical proof. One is
that it requires students to identify a proof strategy at the start. The second is
that it gives students instant feedback while still allowing them to explore with
maximum autonomy. The third is that elementary formal logic finds a natural
place in the activity of creating proofs. The challenge in using Lean is that stu-
dents have to learn its command language, in addition to mathematics course
content and elementary logic.

Keywords: proof; logic; interactive theorem prover; Lean (theorem prover);
undergraduate mathematics

1. Introduction

Proof is a central concept in mathematics and also an important tool for
learning mathematics. Mathematicians and mathematic educators both have
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repeatedly emphasized the importance of teaching proof, yet research consis-
tently demonstrates that students continue to have difficulty with it, starting
in secondary school and continuing into post-secondary education. How best
to teach students to understand and construct proofs remains one of the most
important open questions in mathematics education.

1.1. Computer-assisted proofs

In the last few years there have been exciting developments in mathematical
practice in the area of proof and verification, occasioned by the growing
use of computers in mathematical research. A major outcome has been
the acceptance of what might be referred to as computer-assisted theorem
development, in which mathematicians make use of computer-based proof
assistants. In their early stages, proof assistants were limited in function
and used mainly to verify the correctness of existing proofs. The major spur
to their use, in fact, was that mathematicians have long been aware that
humans are not always successful at detecting errors in proofs [12, 29].

Today’s proof assistants can do more than verification. Their expanded capa-
bilities, notably the ability to work in interactive mode, allow mathematicians
to take the next step and use them to create a new proof from scratch. To
cite Avigad [3, page 684], “Interactive theorem proving involves the use of
computational proof assistants to construct formal proofs of mathematical
claims using the axioms and rules of a formal foundation that is implemented
by the system.”

The programme introduction to a 2017 workshop on computer-aided proof
stated that:

Proof technology can be used to perform large calculations reli-
ably, solve systems of constraints, discover and visualise exam-
ples and counterexamples, simplify expressions, explore hypothe-
ses, navigate large libraries of mathematical knowledge, capture
abstractions and patterns of reasoning, and interactively con-
struct proofs. The scale and sophistication of proof technology
is approaching a point where it can effectively aid human math-
ematical creativity at all levels of expertise. (Computer-aided
mathematical proof - Isaac Newton Institute, 2017; a six-week
workshop, Big Proof.!)

'https://sms.cam.ac.uk/collection/2520307
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In looking at the history of the use of computers in mathematics, Dick [9]
noted the various reactions that their use provoked:

Practitioners of this field sought to program computers to prove
mathematical theorems or to assist human users in doing so. Ev-
eryone working in the field agreed that computers had the po-
tential to make novel contributions to the production of mathe-
matical knowledge. They disagreed about almost everything else.
Automated theorem-proving practitioners subscribed to compli-
cated and conflicting visions of what ought to count and not
count as a mathematical proof.

1.2. What is mathematical proof?

It’s not surprising that people developing automatic theorem provers had
complicated and conflicting views about mathematical proof, because the
concept of proof was already complex and ambiguous before they started.?
In deciding what we mean by ‘proof’, the simplest option is to identify math-
ematical proof with the objects of the branch of formal logic called ‘proof
theory’. However, these proofs are mathematical objects and not bound by
material constraints. There could be a proof of a given theorem within some
formal system, and we might know it exists (perhaps by a completeness re-
sult about the system), but the proof might have more steps in it than there
are atoms in the solar system. If we are interested in proofs as the means for
establishing and communicating mathematical knowledge, then such proofs
are not relevant. Even when the formal proof of a theorem is short enough
to write out, mathematicians rarely bother to set down all the details.

Perhaps, therefore, the texts that mathematicians publish in journals ought
to be our paradigmatic proofs. After all, the standard for accepting a the-
orem is not that someone claims to have a proof, but rather that a proof
has been published after competent peer review. This proposal has its own
difficulties. Printed proofs are notoriously incomplete, and require expert
readers who are able to fill in the gaps and perform the inferences to get
from one stage to the next. Exactly how gappy can a text be before it
ceases to be a proof? This matter was the core of a famous dispute in the
early 1990s between Arthur Jaffe and Frank Quinn [18] on one hand and

2 For an overview of the relevant literature, see [6].
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William Thurston [27] on the other. Jaffe and Quinn accused Thurston of
publishing results without fully worked out proofs. Part of Thurston’s an-
swer was that mathematical understanding is in the community of working
mathematicians, and this is supported by conversations and informal notes
as well as proofs published in journals. Effectively, Thurston seemed to say
that a proof lies in the intersubjective common understanding of the relevant
mathematical community. Here too, there are problems. A proof is valid or
not independently of whether the mathematical community understands it
or whether it has the approval of journal referees.

So, there are at least three unsatisfactory answers to ‘what is a proof?’ — it
might be a mathematical object, a text, or a social object. Recent work in
the philosophy of mathematical practice seeks to put these simplistic options
in relation to each other (see [2, 4, 14, 19, 24, 25]). Tensions arise because the
first answer takes us too far from practice and the other answers take us too
far from logic. In short, we do not really know what a mathematical proof
is. For example, there is a range of respectable views on whether diagrams
have a proper role in mathematical proofs and if so what it might be (see
8, 13]). Perhaps it is, as Czocher and Weber [7] suggest, a cluster concept.

Part of what motivated Jaffe and Quinn, writing in 1993, was a worry that
advances in computing and communication technology would change math-
ematics for the worse, because the gatekeeping and curating functions of
journal editors would be undermined. Dick [9], writing a quarter century
later, perceived a change in the character of mathematical activity:

Automated theorem-proving practitioners took their visions of
mathematicians, minds, computers, and proof, and built them
right in to their theorem-proving programs. Their efforts did in-
deed precipitate transformations in the character of mathemati-
cal activity but in varied and often surprising ways. They crafted
new formal and material tools and practices for wielding them
that reshaped the work of proof. They also reimagined what
“reasoning” itself might be and what logics capture or prescribe
it.

Jaffe and Quinn were right to think that computers and the internet would
change mathematics. In fact, if Dick is right, they underestimated the
effect. However, they failed to anticipate the possibility that interactive
theorem provers might solve the very problems that worried them.
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They accused Thurston of not offering fully worked out proofs. Thurston
replied that he didn’t have time to work them out because he was so busy
writing lecture notes to help the mathematical community understand his
work, and this had to happen before he could publish because otherwise
there would be no independent referees competent to review anything he
might submit for publication. Much of the debate was about the poor incen-
tives on offer for checking the rigour of difficult proofs in new areas. Why
would someone capable of checking Thurston’s work bother to do so when
they could be making a career doing their own original research? How differ-
ently that dispute might have gone, if Thurston could have done what Peter
Scholze did, that is, ask the interactive theorem proving community to check
his work on a computer. In that case, the verification became an interesting
piece of research in its own right.

Dick [9] is surely correct that computer proof assistants will change what we
understand by ‘proof” and ‘mathematics’ in unpredictable ways. To see how
difficult it is to predict the effects of technological change, note that engineers
put SMS (Short Message Service) capability into mobile phones in order to
move small packets of data around. They never imagined that teenagers
would use it to write to each other, relentlessly.® Returning to mathematical
proof, here is one advocate of computer assisted proof, echoing Dick:

But as new methods arise and fashions change, our views of math-
ematics will change as well. And so our current preoccupation
with conceptual methods could well give way to a more expansive
view of mathematical understanding, one in which the computer
plays a more central role. This isn’t to say that we will then
abandon the conceptual viewpoint entirely [1, page 114] .

Avigad [1] characterizes ‘the conceptual approach’ thus:

a focus on axiomatically described structures; the use of cer-
tain tools, such as limit and quotient constructions, for building
new structures from old ones; and an emphasis on characteriz-
ing structures and their properties in relation to other structures,

3 The future as imagined in popular culture (Star Trek, Dr Who, etc.) in the late
twentieth century involved very little writing because it was supposed that computers
would be voice-activated. As it turned out, e-mail, social media, and messaging have
supplanted the telephone so completely that we may well be doing more writing than
ever.
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for example, by studying the morphisms between them and by
viewing the structures themselves as elements of even more ab-
stract structures. [1, page 106]

He associates it with Noether, van der Waerden, Bourbaki and Grothendieck.
As he says, this is the dominant outlook among professional mathematicians
now. Perhaps Avigad is correct that computer assistants will enable other
views of mathematics to flourish. On the other hand, the conceptual ap-
proach has been one of the main drivers towards ever longer and more dif-
ficult proofs. The problem of finding competent reviewers for such proofs
has worsened in the three decades since Thurston [27] pointed it out. It’s
possible that automation may save the conceptual approach from stagnation
by solving its most pressing limiting problem.*

2. Approaches to the teaching of proof

For future research mathematicians and future mathematics teachers, a good
command of proof and proving is essential. But mathematics educators have
long ascribed considerable importance to teaching proof to a broader audi-
ence as well, as an integral part of basic mathematical literacy. The USA’s
National Council of Teachers of Mathematics (NCTM), for example, has rec-
ommended that secondary-school instructional programs should enable every
student to:

» Recognize reasoning and proof as fundamental aspects of mathematics

Make and investigate mathematical conjectures

Develop and evaluate mathematical arguments and proofs

« Select and use various types of reasoning and methods of proof [21]

4 If popular music is any guide, the future of mathematics, shaped by technology,
will be surprising and diverse. Autotune has gone from being a cheat to an aesthetic
choice, hit recordings are made by artists who cannot play an instrument but know how
to use digital technology to shape sound, and yet the biggest selling album at the time of
writing (Adele’s 80) is a collection of ballads recorded without autotune, accompanied by
an acoustic piano played by a human pianist.
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NCTM did not refer explicitly to deductive reasoning in its recommendations,
perhaps assuming that it is generally understood to be part of “reasoning and
proof” Indeed, secondary school curricula do as a rule include instruction
on how to make deductive inferences from premises accepted as true (often
in the context of geometry or simple proofs by induction).

It is widely recognized, nevertheless, that many students entering university
have difficulty constructing valid proofs. This is hardly surprising, given that
the concept of mathematical proof is ambiguous between the logical, textual,
and psycho-social aspects discussed above. Creating a new proof requires a
subtle, iterated movement between an intuitive sense of what the theorem is
about and the formal definitions and rules of inference that code those mean-
ings rigorously. The art of shifting between more and less formal versions of
the same mathematical thought is not easy for instructors to demonstrate,
and is certainly not taught simply by presenting students with formal defi-
nitions and telling them that these are what university-level mathematics is
about (see [22]).

2.1. The variety of current approaches

Mathematics educators have valued and embraced a great variety of class-
room approaches to proof and proving, if for a moment we take these terms
in the broadest sense of finding a convincing path from one or more mathe-
matical statements to another. Several reports and two recent international
studies on proof and proving, the nineteenth International Commission on
Mathematical Instruction (ICMI) study [10, 22] and European Society for
Research in Mathematics Education (ERME) study [20], provide ample evi-
dence for the many different types of proof and ways of proving, again in the
broadest sense, that have been found useful in mathematics education. These
two comprehensive studies in particular also summarize the issues associated
with the effective teaching of proof from the historical, epistemological, and
pedagogical perspectives.

In addition to portraying the many forms of proof in use, they discuss the
variety of proving activities, the role of logic in teaching proof, and the exper-
imental approaches to proving (with particular mention of dynamic geometry
software). Indeed, the ICMI study devoted an entire chapter to a description
and analysis of many different approaches to proving, in the broad sense, that
have been seen to help foster mathematical understanding (see [10]).
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The ICMI and ERME studies employ, for greater clarity, the useful distinc-
tion between proof and argumentation, in which proof is associated with
mathematical rigour (admittedly to varying degrees), while argumentation
encompasses the many teaching approaches in which the student learns to
construct a link that is convincing without necessarily being unassailable
from a strict logical point of view. In a teaching situation, as in mathemat-
ical practice, these two modes are not mutually exclusive, of course, in the
sense that an argument can often lead to a proof or make an existing proof
more convincing.

In their chapter, Dreyfus, Nardi, and Leikin [10] discuss the entire gamut of
reasoning modes and point out in particular the following:

« different representations, including visual, verbal and dynamic, that
may be used in the course of proof production;

o different ways of arguing mathematically, such as inductive example-
based arguments, example-based generic arguments and general argu-
ments, as well as individually versus socially produced arguments;

o different degrees of rigour and of detail in proving — including different
degrees of pointing out assumptions, whether in terms of first principles
or previously proven statements — and where and how these are used;

o multiple proofs; that is, different proofs for the same mathematical
statement, which may be used in parallel or sequentially, by a single
person or a group. (page 191)

Here, we see some of the same ambiguities in the concept of proof already
noted above. In their chapter on argumentation® and proof in the 2018
ERME report, the authors [20] acknowledge that both these modes of rea-
soning have been subject to heated debate, reflecting the wide variety of

5 Many mathematics educators have found it very useful to keep Toulmin’s model
in mind when assessing various modes of argumentation [28]. Toulmin claimed that all
plausible arguments necessarily follow the same pattern. He has offered a very general
model that has three main elements: 1) A claim (C), the statement to be proved (or
otherwise justified); 2) the data (D) used to justify the claim; 3) the warrant (W) the
inference rule that connects the data to the claim. His model also allows for qualifying its
elements as to their strength, and makes explicit the role of rebuttal.
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viewpoints held by the conference participants and mathematics educators
in general. Though the heuristic methods characteristic of argumentation,
such as visual demonstrations, have often proved useful in the classroom,
many educators have not accepted them as valid methods for teaching proof
or as replacements for it. The primary controversy is over the epistemological
gap between heuristics and proof, with proof being seen as the only route to
sure knowledge. Many educators do not want to forgo teaching proof, which
they see as an essential characteristic of mathematics. But then, anyone who
insists that all students should gain a practical grasp of the concept of proof
is under pressure to explain how it is to be taught.

Another controversial issue discussed at these two conferences, without reach-
ing consensus, is the explicit teaching of rules of logic in argumentation and
proof. We list the main points that emerged, because they are particularly
relevant to the use of I'TPs, the focus of this paper:

identification, in the relationship between logic and language, of aspects
that are likely to be an obstacle for developing proof and proving skills,
and of aspects that are likely to favour it;

« the value of teaching logic for fostering proof and proving competencies;

« the usefulness for teachers of logical analysis in mathematical discourse,
and how to do it; and

o the relationships between logic and formalization [20, page 81].

The ICMI study included an entire chapter on the role of logic in teach-
ing proof [11]. In this context the word “logic” refers only to the basic
operators of propositional logic (“and”, “or”, “not”, “if-then”) and of predi-
cate logic (“for all”, “there exists”). One question discussed was the extent
to which such basic principles of logic should be taught in the context of
teaching proof, as being reflective of mathematical practice. The other ques-
tion was whether explicit instruction in logic would foster students’ compe-
tence in proving. The authors of the chapter concluded by stating that the
principles of logic are an essential aspect of proving, and by recommend-
ing that instructors make explicit to students the logical aspects of a proof
for didactic reasons as well. On the other hand, even the most elementary
formal logic is additional curriculum content if it is to be taught explicitly.
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Teachers are unlikely to welcome it unless students can find it in the practical
activity of creating and assessing their own proofs. If it is not a spontaneous
part of the activity of proving, the danger is that teaching formal logic in the
context of mathematical proof will leave students trying to learn two topics
at once (logic and whatever the proof is about) [15, 23] .

In the next section of this paper, we argue that it is desirable to adopt inter-
active theorem provers as an additional instructional tool in undergraduate
mathematics teaching (see [17]). We show that such proof technology, once
difficult to exploit because it required specialized computer skills, has become
realistically accessible to new learners. In particular, we focus on undergrad-
uate mathematics and consider ways in which a specific interactive theorem
prover, Lean, can help students in their reasoning, connect formal logic with
proof-making in other areas of mathematics and enhance their ability to con-
struct a valid proof. In addition, we look at the challenges that the use of
Lean ITP might present to the teaching of proof and assess the prerequisites
to success.

2.2. An additional approach: the use of the ITP “Lean”

Lean can guide students in constructing a proof in several ways.

First of all, it forces students to come up with an overall strategy for the
proof. Students would need such a proof plan with or without Lean, of
course, but Lean confronts them with that fact at the earliest stage.

Secondly, Lean immediately examines each step that students type in and
tells them whether it is valid (syntactically correct) or not. It is able to do
this because students are required to frame their arguments as a sequence
of simple steps expressed in the Lean language. The process is similar to
that of computer coding, a task many students are familiar with. One of the
problems that educators are trying to solve with technology is to give instant
feedback without compromising student autonomy.® Lean allows students to

6 It’s easy to create exercises that students can do in their own time and get instant
feedback: multiple-choice quizzes do that and they are easy to set up online now. However,
such quizzes are teacher-led. The teacher chooses the questions and frames the answers,
which deprives the students of almost all their autonomy. It would be better for students
to get instant feedback on work that they have chosen and directed. For example, in
modern languages, gamified learning apps such as Duolingo provide instant feedback, but
only on sentences that it supplies, whereas a word processor can tell you instantly whether
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work with high levels of autonomy; they could in principle decide what to
prove and in any case decide on strategy and choice of steps, yet Lean will
tell them straight away whether their latest step is correct. Thus, students
have instant running feedback with high levels of autonomy.

Thirdly, Lean tells students whether the steps they enter do or do not move
them toward their final goal (the proposition to be proved), and why. To
enable this impressive capability, the students will have earlier entered Lean
meta-commands known as “tactics” that give Lean information on the path
they propose to follow in building their arguments. As the Lean manual puts
it, these tactics “.. naturally support an incremental style of writing proofs,
in which users decompose a proof and work on goals one step at a time.”

Lastly, the iterative proof construction enabled by Lean gives students greater
comfort and confidence in the very process of proving. Far from operating
as a forbidding black box, Lean reveals itself to students as a transparent
assistant that responds to human input with immediate and explanatory
feedback.

The following examples give a flavour of what it is like to use Lean.

2.3. Proofs using Lean

The Lean interface has a Tactic state that changes interactively as one pro-
ceeds with a proof.” In other words, the Tactic state communicates with
students about the goals of proof to indicate where the students are at and
where they are going in the proving process. Tactics are commands that Lean
understands at any stage of a proof and that instruct Lean how to build a
proof. A tactic operates on a proof-goal by either proving it or creating
new sub-goals. Lean performs tactics that the user enters, and subsequently
modifies the goals. A Tuactic state will track the open sub-goals and will stop
changing sub-goals only if Lean considers a proof as complete by showing
“goal accomplished” with a party popper emoji. Using a sequence of tactics
enables proving in a way that is quite similar to conventional paper-and-
pencil reasoning, while automating parts of a proof. As Buzzard [5] put
it, Lean’s tactic state can often be easily understood without any specialist

you’ve made any gross grammatical errors regardless of what you choose to write about.
Lean offers gamification and instant feedback.
7 Lean has also ways of writing proofs in “term-style,” which we will not discuss.
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knowledge of I'TPs, because the notation used is close to standard mathe-
matical notation.

The changes in the Tactic state result from the tactics used in Lean proofs.
For example, the tactic “rw” (“rw” is an abbreviation of “rewrite”) tells Lean
to do a replacement. Therefore, given a hypothesis “h” that is a proof of “A
= B”, the tactic “rw h”, tells Lean to replace all As with Bs.

The following are two examples of proofs that feature some representative
Lean tactics, such as “intro h” which introduces a hypothesis or a variable
and “cases” which decomposes a conjunction or disjunction.

Example 1: Proof using the commutativity law of multiplication

@W Interface \
Lemma/Theorem e » PP - 1
() ey ) (2 e re) (@)mcicnoc) (4)  fortean langiaee )

2

3 example@abc:m:(a*b)*c=b*(axc}:=)‘—®
4 begin
5 {rw mul_comm a b, )‘—(:)
6

7

8

mul_comm a b refers to the proof of the communicative law for multiplication a *x b = b * a
Using the 'rw' tactic to rewrite mul_comm a b, we tell Lean to replace a * b with b * a in the goal

9 Now the goal (a x b) * ¢ = b x (a % ¢) changes to
10 ~b=*ax*xc=>bx* (ax*c)as we see in the Tactic State:
11
12 ¥ Tactic state l
13
1goal
14 g
15 abc:R
16 ~b*a%xc=bx*(ax*c)
17| (rw mul_assoc b a ¢, )+—(3)

18 -
19 mul_assoc b a ¢ refers to the proof of the associative law for multiplication (b * a) * ¢ = b * (a * c)
‘rw mul_assoc b a c' solves the goal - b * a * c = b * (a * ¢), and hence, completes the proof.

L

22 ¥ Tactic state

23 . '3
24 goals accomplished £
kzs end /

Figure 1: A Lean proof of (a x b) x ¢ =b X (a X ¢).

In Figure 1, to prove (a X b) x ¢ = b x (a x ¢) where a, b, and ¢ are real
numbers, the “rw” tactic itself suffices to solve the goal. The proof begins
with rw mul_comm a b, where the left-hand side of the commutativity law
for multiplication a X b = b X a is replaced with the right-hand side b x a.
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Subsequently, the goal in the Tactic state changes from (axb) xc = bx (axc)
to (bxa)xc = bx(axc). Now using the “rw” tactic again with the associative
law for multiplication with b, a, and ¢ - rw mul_assoc b a c, it closes the
goal.

As shown in Figure 1, it is worth noting that one can insert non-Lean lan-
guage between the tactics to communicate with the reader about the proof.
If one types “/-”, Lean responds “-/” to it and recognizes that one wishes
to add some text that Lean can ignore. This space is particularly useful to
instructors who want to add explanations or share notes with students.

Before diving into another example of a Lean proof, we shall first take a
close look at two commonly used tactics: intro(s) and cases. The intro tactic
introduces a hypothesis or a variable that is a member of a set. A plural form
of intro, intros, introduces a set of variables or hypotheses. For example, If
P and Q) are sets, intros p q means “let p be an arbitrary element of P and
let q be an arbitrary element of Q.” If P and Q are propositions, then intro
p says “assume P is true” and turns a goal P — Q into a hypothesis p : P
and goal Q.

The cases tactic decomposes a conjunction P A () or disjunction P V @) by
changing one main goal to two goals. For example, to prove P Q, one needs
to give either a proof of P or a proof of Q, soif h: P Q then cases h with
p q will change one goal into two, one with p : P and the other with q : Q.

Example 2 Proof of =——P — P

Figure 2 shows a Lean proof of =——P — P. The proof in Lean starts with the
intro tactic, introducing hypothesis h : =P to indicate that ——P is assumed
for conditional reasoning. Since ——P is assumed, the proof proceeds with
the goal “P is true” Taking into account classical.em P (“em” stands for
excluded middle) that for any proposition P, P —P is true, using the cases
tactic classical.em P efficiently splits the disjunction into two cases: h_1 :
P and h_1: —P. Now we use the assumption tactic to tell Lean to search
hypotheses that will close the current goals. Lean finds h_ 1 : P successfully
and closes the first case P. For the remaining case, it is worth noting that
h: —Pand h 1: —P coexist. Now we use the contradiction tactic to tell
Lean to search contradictory hypotheses to close the second goal.
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/| ¥\ Interface M
1 example (P : Prop) : = =P = P := ¥ Tactic state
2 begin g 1goal
3 (intro h, )

4 7= P : Prop
ht P
5 The "intro" tactic introduces and names a hypothesis involved in the local context1 P
6 h : --P. This changes the goal target from -—-P - P to P. H
7 =/ ¥ Tactic state
2 (cases classical.em P, ) U, 2 goals
10 classical.em refers to V (p : Prop), p v -~p: for any proposition p, case or.inl
11 p v -p is true. "classical.em P" says that P v =P is true for P. : Pr:p
12 With "classical.em P", the "cases" tactic splits the main goal into h 1 : p
13 two goals by producing one goal for each case of P v -P, namely, P
14 L P (h.1: P) and =P (h_1 : - P). S~
15 <. B
16 (assumption,) P Prop
h : =P
17 7= hol:-p
18 The "assumption™ tactic looks for a hypothesis that is equivalent to the current goal. :P
A ) . . . \ /
19 Lean finds one: h_1 : P, which closes the first goal. Now move onto the second goal.
20 =/ ( ¥ Tactic state
21 (Ccontradiction, ) { goals ac plished & ) L 1 goal
22 (7=
23 The “contradiction" tactic attemps to find two contradictory hypotheses. case or.inr
24 Lean finds two: h : =-P and h_1 : -P. This closes the second goal. P i Prop
25 -/ h : —P
26 end h_1 : =P
\_ - _J )

Figure 2: One way to prove =—P — P in Lean.

Clearly, students could easily do these two proofs without the help of an
interactive theorem prover. However, we have shown these proofs to indicate
that Lean can provide proofs in collaboration with a student, to illustrate
how it is done, and how it allows keeping track of what is fixed and what is
moving. As in the second proof, principles of basic formal logic appear as
tactics such as assumption or contradiction. Rather than watching a teacher
pointing to a proof on a blackboard and saying “by the way, this is an example
of conditional reasoning,” the students find logic plumbed in to their proving
activity. In fact, Lean allows students to apply basic formal logic to a proof
at hand in a creative manner. Surprisingly enough, it is often the case that
multiple solutions to the same theorem can be produced in Lean.

Figure 3 shows a different Lean proof of the double negation, in which the
“by__contra” tactic makes the method of proof by contradiction explicit, and
brings this version of Lean proof closer to a paper-and-pencil proof. Whether
this proof is introduced by an instructor or, better yet, produced by a student,
a discussion about different Lean proofs and distinctions between Lean proofs
and standard written proofs would arise organically.
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p N
VN Interface v Tactic state
example (P : Prop) : = =P =+ P := /—\1 goal
be?.;:ro hnnp, r :: Prop 2]
( ) nnp: —

/= introduce the proof of --P, denoted as hnnp. -/

by_contra h L/
(by_ D, L. ~

/- 'by_contra h' creates the negation of what is to /1 goal

be proved, namely h: -P, and tells Lean to prove P: Prop
false by finding a contradiction. -/ hnnp: -—P
(apply hnnp, ) h: -P
/- —--P is equivalent to -P - false. The apply tactic L\" false /
transforms the current goal to sufficient conditions. (‘IQT
"apply hnnp' (hnnp: --P) matches the goal ~ false P: Prop
and leaves the hypothesis -P as a new goal. As a hnnp: --P
result, the goal changes from + false to + -P. -/ h: -P

(exact h, ) L{}. -pP

/- use the proof of -P (h) to prove -P. -/ -
goals accomplished ;\\;)

\end

Figure 3: Another approach to the proof of =——P — P in Lean.

As far as we know, Lean has been used to advantage in a few undergraduate
classes in the US and in Europe. Nevertheless, we concede that it is not
easy to learn to use Lean proficiently. Currently the learning curve is some-
what steep.

There is not enough evidence yet to know whether the benefits of using Lean
in the classroom outweigh the challenges. Hanna and Yan [16] asked nine
professors who had chosen to use Lean in their teaching for their insights and
suggestions. All responded that Lean was helpful in their teaching, made the
course material less dry, and benefited all the students. All of them plan
to continue using Lean despite its challenges, such as having to learn the
necessarily rigid Lean syntax. The only systematic evaluation of which we
are aware is the study carried out by Thoma and Iannone [26] at a single
university; the authors offered this tentative evaluation of the benefits of
Lean for the undergraduate curriculum:

..it may help students with developing proving habits which are
conducive to successful proofs, it may introduce a programming
aspect to modules often taught very traditionally and it may help
bridging the gap between the way in which mathematics is taught
and the way in which modern mathematics evolves by allowing
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students to become familiar with some of the tools used in this
discipline.

We hope that before long, Lean will be made more user friendly.

3. Conclusion

In this paper we have argued that the concept of mathematical proof is
ambiguous and contested. Therefore, it is not entirely clear what it means
to say that mathematics students should learn to construct their own proofs.
For example, it is not obvious what level of formality is appropriate at a
given educational level. This is in part because the teaching of proof has
multiple educational goals: to support learning of mathematical content, to
teach the specific nature of mathematical reasoning, and to help students
become better at reasoning on any subject, mathematical or not.

Nevertheless, a proof, however formal or informal, has a logical structure.
Learning to discern and exploit the logical structures of proofs supports all
the educational goals associated with learning to construct proofs. This
suggests that training in elementary formal logic might help students learn to
construct proofs, but such training introduces its own costs and challenges.
Students’ previous experience has been with informal proof construction,
using argumentation and heuristics. Instructors will need to learn how to
help students see the connection between this previous experience and the
new more formal way of proving using Lean. In particular, instructors will
need to bring students to understand that the use of symbols and tactics is
not a thoughtless mechanical procedure and that thinking with symbols is
no less reflective than thinking with argumentation and heuristics.

The Lean system has three features that mitigate existing difficulties in teach-
ing and learning mathematical proof. One is that it requires students to iden-
tify a proof strategy at the start. The second is that it gives students instant
feedback while still allowing them to explore with maximum autonomy. The
third is that students formulate their instructions to Lean using the notation
of elementary formal logic, so that their knowledge of logic finds a natu-
ral place in the activity of creating proofs. The cost is that students have
to learn the system’s command language, in addition to their mathematics
course content and elementary logic.
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We can reasonably expect two things. One is that the Lean interface will
improve and become more intuitive for anyone familiar with ordinary mathe-
matical notations and terminology. The other is that automated and interac-
tive proof assistants will become more widely used in mathematical research
and teaching, and will transform practice. What and how deep those changes
will be can only be guessed at. In the meantime, there is scope for a study
on the ways in which Lean can be made more helpful in teaching.
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