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Abstract— An interleaved shared-aperture dual-band dual-
polarized base station array antenna is proposed in this article.
The lower-band (LB) element is realized by using a multiple
folded-dipole antenna (MFDA) and four parasitic loops. To inter-
pret the working principle of the MFDA, a double folded-dipole
antenna (DFDA) is firstly analyzed by using the transmission
line (TL) model. Then, by combining two bended DFDAs and
introducing four parasitic loops, a low cross-band scattering
LB element with a high out-of-band rejection level of 16 dB
is obtained to cover 2.3–2.7 GHz. The higher-band (HB) element
with a wide impedance bandwidth of 42.5% (3.0–4.6 GHz), a high
roll-off rate (RoR) of 249.2 dB/GHz, and a high out-of-band
rejection level of 17 dB is obtained by introducing a meander
line loop (MLL), a rectangular loop (RL), and V-shaped strips
(VSS) near the dipole arms. By combining the proposed low-
scattering low-pass LB element and the high-RoR high-pass HB
element, a novel interleaved shared-aperture dual-band dual-
polarized array antenna with a small frequency ratio of 1.46 and
a high cross-band isolation level of 25 dB is realized. Due to
the low-scattering characteristic and filtering response of the LB
element, the radiation patterns of the wideband HB sub-arrays
are almost unaffected.

Index Terms— Base station array antenna, dual-band antenna,
dual-polarized antenna, filtering antenna.
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I. INTRODUCTION

SHARED-APERTURE dual/multiband dual-polarized
array antennas have become a trend in the base station

application to meet the growing need for fully integrated base
stations. Although the shared-aperture design can realize a
dual/multiband array antenna with compact size and low cost,
it also brings new design challenges, such as the high mutual
couplings between the closely placed antenna elements, and
the cross-band scattering between the lower band (LB) and
higher band (HB) elements.

To enhance the port isolations, many new methods are
investigated [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11],
[12], [13], [14], [15], [16], [17]. By introducing decoupling
branches [1], [2] and decoupling surface [2], the mutual
coupling in [1] and [2] is effectively reduced. In [3], [4],
and [5], baffles are used to improve the isolations between
the elements. To obtain high isolations and good radiation
performance, the structure, position, and height, of the baffle
are optimized. Using filtering antennas [6], [7], [8], [9], [10] is
also a popular method to obtain high isolations in the design
of dual-multiband array antenna. By properly designing the
structure of the radiator [11] or integrating a filter into the
transmission line (TL) [12], antenna elements with a high out-
of-band rejection level can be obtained. The LB element has
nearly no radiation in the operating band of the HB element
and vice versa. Thus, the port isolations in the array antenna
maintain a very low level. Although the methods mentioned
above can enhance the port isolations in the dual/multiband
array, the cross-band scattering is not fully addressed.

To reduce the cross-band scattering, a novel method is
presented in [18], [19], [20], [21], and [22]. By inserting a
frequency selective surface (FSS) layer between the LB and
HB elements, the cross-band scatterings in [18], [19], [20],
and [21] are effectively reduced. In these designs, the HB
elements are usually placed above the LB element. For the
HB elements, the FSS layer can be equivalent to a ground
plane. However, for the LB element, the FSS layer can be
seen as EM transparent structure. Thus, not only high port
isolation but also low cross-band scattering can be realized
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by using this method. However, the frequency ratios in these
designs are larger than 4.

Apart from inserting the FSS layer, lifting the HB elements
[23] using electromagnetic (EM) transparent LB elements [24],
[25], [26], [27], [28], [29], [30], [31], [32] and introducing
partially reflecting surfaces [33] can also reduce the cross-
band scattering. By lifting the cavity-backed HB elements to
the same plane of the LB radiator [23], the blockage effect of
the LB element on the radiation patterns of HB elements can
be eliminated. The limitation of this method is that it is not
suitable for the dual-band array antenna design with a small
frequency ratio. In [24] and [25], two shared-aperture dual-
band array antennas are realized by introducing branches on
the radiator of the LB element. By changing the length of the
branches, the wave-transparent band can be easily adjusted.
However, the frequency ratios of these two dual-band array
antennas are larger than 2.7. By dividing the dipole arms
into short sections and introducing chokes below the gaps
between the short sections, a low-scattering LB element is
presented in [26]. Based on this LB element, a low cross-
band scattering dual-band array with a small frequency ratio
of 2.19 is achieved. Two low-scattering LB elements are
presented in [27] and [28] by introducing parasitic structures
near the radiators. The combination of the radiator and the
parasitic structure functions as a bandpass filtering circuit.
Thus, at their resonant frequencies, the HB EM wave can be
transmitted through the LB element without being affected.
In [30] and [31], by using the FSS element as a radiator,
two low-scattering LB elements are proposed. Based on these
wave-transparent LB elements, two low cross-band scattering
array antennas with reduced frequency ratios (1.58 and 1.42)
are realized. However, the wave-transparent band of these
structures is relatively narrow.

In this article, an interleaved shared-aperture dual-band
dual-polarized array antenna with a low-frequency ratio (1.46),
low cross-band scattering, wide wave-transparent band, and
high isolations is proposed for base station application by
combining the proposed LB and HB element. By utilizing
multiple folded-dipole antennas (MFDAs), an LB element
with a high out-of-band rejection level and low cross-band
scattering is realized. The working principle of the MFDA is
firstly explained in this article based on the proposed TL model
of the double folded-dipole antenna (DFDA). By introducing
a meander line loop (MLL), rectangular loop (RL), and
V-shaped strips (VSS), a novel filtering antenna with a high
Roll-off rate (RoR) is realized to cover the HB. The working
principle of the MLL is analyzed in detail in this article by
utilizing an equivalent circuit. To validate the performance of
the proposed designs, an interleaved shared-aperture dual-band
array antenna including one LB element and four HB elements
is designed. The measured and simulated results demonstrate
that the proposed designs maintain a good performance in
the proposed dual-band array. Besides, to suppress the mutual
coupling between the HB sub-arrays, eight shorted strips are
introduced next to the HB elements. After introducing the
shorted strips, the mutual couplings between the HB arrays can
be effectively reduced to below −22 dB. All the simulations

Fig. 1. Configuration of the proposed LB antenna. (a) Three-dimensional
view, (b) radiator, (c) side view, and (d) balun. Dimensions are L1 = 18.7,
L2 = 11.5, L3 = 18.1, W = 1.1, W1 = 2.7, G1 = 2.2, G2 = 1.5, and H =
26 (unit: millimeter).

in this article are completed by using the commercial EM
simulation software Ansys HFSS.

II. DESIGN OF ANTENNA ELEMENTS

In this section, LB and HB antenna elements are presented
for the design of the dual-band dual-polarized array antenna.
The LB MFDA has a wide bandwidth, two upper radiation
nulls, and innate EM transparent characteristics in HB. The
HB element features wide bandwidth and a high RoR of
242.9 dB/GHz with two radiation nulls in LB.

A. LB Element

The configurations of the proposed MFDA are shown in
Fig. 1. The MFDA contains two Rogers RO4003 substrates
with a thickness of 0.508 mm (εr = 3.55). As can be
observed, the MFDA is printed on the upper layer of substrate
1. To enhance the out-of-band rejection level, four parasitic
RLs are placed under the MFDA. The configurations and
dimensions of the baluns are given in Fig. 1(d). The radiator
and the ground plane are connected by the feeding baluns.
By using the above configuration, the proposed MFDA has
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Fig. 2. Evolution of the MFDA. (a) DFDA. (b) Bended DFDA. (c) MFDA.

Fig. 3. Configuration and decomposition of DFDA.

the advantages of wide bandwidth, two upper radiation nulls,
and EM transparent characteristics in HB. To have a deeper
insight into the proposed antenna, the working principle of the
MFDA is interpreted in the following paragraphs.

For ±45◦ polarization feeding ports, the proposed MFDA
can be assumed as a combination of two bended DFDA as
illustrated in Fig. 2. Thus, to have a deeper insight into MFDA,
the working principle of DFDA is analyzed first. As shown in
Fig. 3, the currents on the DFDA can be decomposed into two
distinct modes: a TL mode and a dipole antenna (DA) mode.

For the TL Mode, the conductors are driven by two gener-
ators with equal magnitude (V /2) and 180◦ phase difference.
The current on the conductors is IT L . By dividing the TL mode
into two identical loaded TLs with length LT 2/2 at the central
plane, the impedance of each part can be derived from

ZT L2 = Zc
Z F D + j Zctan

�
k LT 2

2

�
Zc + j Z F Dtan

�
k LT 2

2

� (1)

where Zc is the characteristic impedance of two-wire TLs.
Z F D is the impedance of the folded-DA. k is the propagation
constant, and LT 2 is the length of the TL. Zc can be calculated
by substituting W , and g = G2 into the following equations
[34]:

Zc = 120π
K (x)

K (x �)
(2)

x2 + x �2 = 1 (3)

x = g

g + 2W
(4)

where K (x) is the complete elliptic function of the first kind.
The impedance of the folded-DA [35] is

Z F D = 4Z D A1 ZT L1

2Z D A1 + ZT L1
(5)

where ZT L1 is the impedances of its TL mode
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�
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By substituting l = LT 1 into (7), the impedance of equiva-
lent DA mode Z D A1 can be obtained [35]

Z D A = RD A + j X D A

sin2(kl)
(7)

where RD A1 and X D A1 can be expressed as
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where aE represents the equivalent radius of the dipole and,
it can be calculated by substituting g = G1 into (9)

aE = 2
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Therefore, the current IT L can be calculated by using

IT L = V/2

ZT L2
. (11)

For the DA mode, the conductors are driven by two identical
generators with equal magnitude (V /2). It can be equivalent
to a DA with an equivalent radius (aE) and equivalent length
L E . The equivalent length L E can be obtained by using the
method in [36]. The impedance of DA Mode Z D A2 can be
calculated by substituting W , l = L E , g = G2 into (7)–(10).
The current for the DA mode is given by

ID A = V/2

Z D A2
. (12)

Thus, the total current on the DFDA II N is given by

II N = IT L + ID A

2
= V (2Z D A2 + ZT L2)

4Z D A2 ZT L2
. (13)

The impedance of DFDA is given by

Z I N = 4Z D A2 ZT L2

2Z D A2 + ZT L2
. (14)

Based on the analysis above, the input impedance of the
DFDA is calculated by using MATLAB. As shown in Fig. 4,
the calculated results agree well with the simulated results.
Thus, the proposed TL and DA model can be used to accu-
rately analyze the impedance characteristic of DFDA.
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Fig. 4. Calculated and simulated input impedances of DFDA without
substrate.

Fig. 5. Simulated peak realized gains and input impedances of the DFDA
and MFDA.

Fig. 6. Simulated current distributions of the DFDA at (a) 3.2 GHz and
(b) 4.1 GHz.

As shown in Fig. 5, a radiative resonant mode and radiation
null appears at 3.2 and 4.1 GHz, respectively. To understand
their working principles, the simulated current distributions are
given in Fig. 6. It can be seen from Fig. 6(a) that the DA mode
plays a dominant role at 3.2 GHz in effective radiation. Owing
to the currents flowing in the same direction on both sides, the
symmetrical plane (A-B) can be equivalent to an open circuit,
and the currents flow in the same direction on both sides. The

Fig. 7. Simulated peak realized gains and input impedances of the MFDA
with and without substrate.

current distribution of the DFDA in Fig. 6(b) demonstrates
that the TL mode is the dominant mode at 4.1 GHz. At this
frequency, the currents on the central part of the DFDA flow
in opposite directions. It can be seen as a section of TL.
The current distribution on the two folded dipoles shows that
they work under their first-order mode [37]. As mentioned in
[37], the input resistance of the first-order mode of the linear
folded dipole is very large and close to infinite. So, they can
be equivalent to open circuits. Therefore, no power will be
radiated into the free space at this frequency. This can also
be verified by the current distribution in Fig. 6(b). It can be
seen that there are four current nulls at the inputs of the folded
dipoles. All the power will be reflected back to the source at
this frequency. Thus, a radiation null appears at this frequency.
Then, by combining two bended DFDA, an MFDA is obtained.
It can be seen in Fig. 5 that the resonant frequencies of the
radiative mode and radiation null of the MFDA are almost the
same as the DFDA.

It is worth noting that the influences of the substrate on
the DFDA and MFDA are not included in the calculation and
simulation presented above. To facilitate fabrication, a Rogers
4003 substrate with a thickness of 0.508 mm is introduced
to support the MFDA. As given in Fig. 7, the resonant mode
and radiation null shift toward a lower frequency band after
introducing the substrate.

In the presented antenna, four parasitic RLs are placed
under the MFDA to further enhance the out-of-band rejection
level of the higher frequency band. As shown in Fig. 8,
the first radiation null shifts toward a lower frequency after
introducing the parasitic loops, and the input impedance of
the radiative resonant mode is reduced. Furthermore, a new
radiation null (second radiation null) is introduced at 4.5 GHz.
To interpret the working principle of the second radiation null,
the simulated current distribution of the antenna at 4.5 GHz is
given in Fig. 9. It can be observed that the current distributions
on the parasitic RLs are opposite to the current distributions on
the MFDA. Thus, the radiation power in the far-field zone is
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Fig. 8. Simulated peak realized gains and input impedances of the MFDA
with and without parasitic loops.

Fig. 9. Simulated current distributions of the antenna on (a) MFDA and
(b) parasitic RLs at 4.5 GHz.

Fig. 10. Configuration and simulated results of the proposed LB element.

canceled by each other. Due to all the power being reflected
back to the source, a new radiation null is obtained at this
frequency.

Then, by feeding the antenna using two orthogonal printed
baluns, a ±45◦ dual-polarization antenna with a compact size
and upper out-of-band rejection is achieved. The simulated
peak realized gain and reflection coefficient are shown in
Fig. 10. The proposed antenna can cover the frequency range
of 2.3–2.7 GHz. Besides, the out-of-band rejection level is
higher than 16 dB.

Fig. 11. Simulated transmission coefficient of the proposed radiator.

Fig. 12. (a) Configuration of the dual-band array and (b) simulated current
distribution on the radiator at 3.6 GHz when the HB sub-array is excited.

Apart from the advantages mentioned above, the proposed
antenna also has an EM transparent characteristic at a higher
frequency band. The simulated transmission coefficient of the
LB radiator is shown in Fig. 11. It can be observed that the
simulated transmission coefficient of the proposed radiator is
higher than −0.5 dB from 3.0 to 4.3 GHz. Due to the high
transmission coefficient level, the proposed LB antenna has
little influence on the radiation patterns of the HB antennas.

As shown in Fig. 12(a), the LB radiator has four open-
loop resonators (OLRs). Each OLR can be equivalent to an
LC parallel resonance circuit, working as a bandpass surface,
which is transparent to the wave radiated from the HB antenna.
As shown in Fig. 12(b), when a −45◦ polarized incident EM
wave irradiates the LB radiator, the OLR 2 and 4 are excited
and play an important role in transmitting the wave through
them. Due to the symmetry of the radiator, it will be the same
phenomenon that the OLR 1 and 3 will be excited when +45◦
polarized incident EM wave irradiates on the LB radiator. As a
result, the HB EM wave can be transmitted through the LB
radiator without being affected. Therefore, the LB antenna can
be seen as an EM transparent antenna for the HB antennas.
The resonant frequency of the OLRs (central frequency of the
EM transparent band) can be calculated by using

fOL R ≈ c

2L OL R
(15)

where c is the speed of the light in free space and L OL R is
the length of the OLR.

In this section, the DFDA is firstly analyzed by using TL
and DA modes. The calculated input impedance of the DFDA
agrees well with the simulated one. Based on the analysis, the
working mode of the DFDA can be divided into DA and TL
modes. Under the TL mode, the DFDA will transmit the EM
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wave into free space. Under the TL mode, all the power will
be reflected back to the source. Therefore, by combining two
bended DFDA and introducing four parasitic loops, an LB
antenna with compact size and good performance can be
obtained. Moreover, the proposed antenna has little influence
on the radiation patterns of the HB array owing to the EM
transparent characteristic. These are very important advantages
in the design of dual-band dual-polarized base station array
antenna.

B. HB Element

Having an HB element with a good out-of-band suppression
level in a lower frequency band is critical in the design of
a dual-band base station array antenna with low couplings.
In this section, an HB element with a high suppression level
and sharp cut-off in the lower frequency band is achieved by
using MLL, RL, and VSS.

The configurations and dimensions of the proposed HB
antenna are given in Fig. 13. It can be seen that all conductors
of the proposed HB element are printed on three Rogers
RO4003 substrates with a thickness of 0.508, 0.305, and
0.508 mm, respectively. The VSS and MLL are printed on
the upper and lower layers of substrate 1. The RL is printed
on the lower layer of Substrate 2. The dipole arms of this
antenna are vertically printed and connected to the baluns.

The simulated peak realized gain and reflection coefficient
are shown in Fig. 14. It can be seen that the proposed HB
element has a wide impedance bandwidth of 42.5% (3.0–
4.62 GHz), a stable peak realized gain of 8.9 dBi, and a good
out-of-band rejection level of 17 dB. Besides, the proposed
antenna obtains a high RoR of 242.9 dB/GHz ( f20 dB is
2.87 GHz, f3 dB is 2.94 GHz), which is crucial in the design
of a multiband array antenna with a low-frequency ratio. The
RoR is calculated by using [38]

RoR = 20 − 3

| f20 dB − f3 dB| (16)

where f3 dB and f20 dB are the frequencies where the average
peak realized gain drops by 3 and 20 dB, respectively.

To better demonstrate the working principle of the proposed
HB element, three reference antennas are given in Fig. 15.
Antenna 1 is a vertically printed crossed DA. By introducing
an RL under the arms of Antenna 1, first radiation null and
a new resonant mode can be obtained to suppress the out-
of-band radiation and expand the impedance bandwidth [39].
To further enhance the RoR, an MLL is placed above the
arms of the crossed dipoles in Antenna 2. After introducing
the MLL, a new radiation null appears at the in-band of the
antenna. Finally, four VSS are introduced above the MLL to
shift the second radiation null toward the lower frequency
band.

Fig. 16 shows the simulated results of the reference antennas
and proposed HB element. It can be observed that the out-of-
band rejection of the Antenna 1 can be effectively developed
by introducing the RL. Besides, the bandwidth is increased
due to the new resonant mode. Then, by introducing an MLL
above the dipole arms, the second radiation null is realized at
3.5 GHz.

Fig. 13. Configuration of the proposed HB antenna. (a) Three-dimensional
view, (b) top view, (c) side view, and (d) balun and dipole arms. Dimensions
are L1 = 24.2, L2 = 8.9, L3 = 22.8, L4 = 1.6, L5 = 1.8, W1 = 1.4, W2 =
1.5, W3 = 0.4, G1 = 0.8, H1 = 14.2, and H2 = 3.5 (unit: millimeter).

Fig. 14. Configuration and simulated results of the HB element.

To interpret the working principle of the second radiation
null, the equivalent circuit of MLL is given in Fig. 17. For
the −45◦ polarization, the MLL can be divided into two
identical parts (Parts 1 and 2). Each part has two meander
line (ML) elements. One is horizontally printed; another is
vertically printed. For horizontal electric field (Eh), ML1 can
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Fig. 15. Evolution of the HB element. (a) Crossed dipoles. (b) With
rectangular loop. (c) With meander line loop. (d) Proposed antenna.

Fig. 16. Simulated (a) normalized peak realized gain, and (b) reflection
coefficients of the proposed HB element and reference antennas.

be equivalent to a shunt inductance over an equivalent TL,
and ML2 can be equivalent to a shunt capacitance. For vertical
electric field (Ev), ML1 will act like a shunt capacitance and
ML2 will act like a shunt inductance [40]. Therefore, for the
electric field with a −45◦ angle, Part 1 can be equivalent
to a series L-C resonator. The MLL acts like a band-stop
filter. The resonant frequency of the MLL can be calculated
by employing

fnull = 1

2π
√

L1C1
. (17)

To shift the second radiation null out of the operating
band of the HB element, four parasitic VSSs are introduced
above the MLL. It can be observed from Fig. 16 that the
second radiation null is moved from 3.5 to 2.9 GHz without

Fig. 17. Equivalent circuits of the MLL. (a) Decomposition. (b) Equivalent
circuits of the MLL.

increasing the aperture of the antenna after introducing the
VSSs. Besides, the RoR increases from 45.9 to 242.9 dB/GHz.

Overall, in this section, a novel HB element with high RoR
is proposed by combining the RL, MLL, and VSS. Firstly,
an RL is placed under the arms of the crossed dipoles to obtain
the first radiation null and excite a new resonant mode. Then,
to enhance the RoR and out-of-band rejection level, an MLL
is printed above the dipole arms. The working principle of the
MLL is then analyzed. By introducing four VSSs, the second
radiation null can be shifted toward the lower frequency band.
As a result, an HB element with wide impedance bandwidth
and a high RoR is achieved in this work.

III. DUAL-BAND DUAL-POLARIZED ARRAY

Based on the LB and HB elements designed above, a dual-
band dual-polarized array antenna is realized in this section.
As shown in Fig. 18, the size of the ground plane is 164 ×
142 mm. The LB element is placed in the center of the ground
plane and above the HB elements. The four HB elements
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Fig. 18. Configuration of the dual-band dual-polarized array antenna.

Fig. 19. Simulated isolations of the HB sub-arrays with and without shorted
strips.

Fig. 20. Configuration and simulated results of the reference LB element.

are divided into two columns. Elements in each column are
fed by two Wilkinson power dividers. The distances between
the elements along the x-axis and y-axis are 46 and 62 mm,
respectively.

It should be noted that eight shorted strips are introduced
to reduce the coupling between the input ports of the HB
elements. Fig. 19 shows the simulated reflection coefficients
of the proposed HB array with and without shorted strips.
As can be seen, the isolation between ports H1 and H2

increased from 15 to 19 dB after introducing the shorted strips.
It demonstrates that the shorted strips play an important role
in reducing the mutual couplings between the HB sub-arrays.

Fig. 21. Simulated E-Field distributions of the HB sub-array (port H1
excited) at 3.6 GHz under different configurations. (a) HB sub-array alone,
(b) HB sub-array + reference LB element, and (c) HB sub-array + MFDA.

Fig. 22. Simulated peak realized gains of the HB sub-array (port H1 excited)
under different configurations.

To verify the performance of the proposed antenna, a ref-
erence dual-band array antenna is designed by using the most
common crossed dipole elements. The configurations of these
two dual-band array antennas are the same except for the
LB elements. The configuration and simulated results of the
reference LB element are shown in Fig. 20. The E-field
distributions of the HB sub-array are given in Fig. 21. It can
be observed that the HB sub-array is severely blocked by the
reference LB antenna when using the ordinary dual-polarized
crossed DA. The E-field of the HB sub-array is disturbed and
reflected. As a result, the radiation performance of the HB
sub-array will be seriously distorted. The simulated peak real-
ized gains of the HB sub-array under different configurations
are shown in Fig. 22. It can be seen the peak realized gain
of the HB sub-array drops 3.6 dB at 3 GHz after introducing
the reference LB element, which is unacceptable in dual-band
base station application. However, by comparing the E-field
distributions in Fig. 21(a) and (c), it is not difficult to find that
the proposed LB element has little influence on the radiation
performance of the HB sub-array and it can be seen as an EM
transparent antenna at this frequency. Besides, as depicted in
Fig. 22, the peak realized gain of the HB sub-array keeps
almost unchanged after introducing the proposed LB element.
The max gain difference is only 0.2 dB.

The comparison between the radiation patterns of the
HB sub-array (without LB element, with reference LB ele-
ment, and with proposed LB element) is given in Fig. 23.
As depicted, the reference LB element has a great influence
on the radiation patterns of the HB sub-array. When using the
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Fig. 23. Simulated normalized radiation patterns of the HB sub-array (port H1
excited) in the horizontal plane under different configurations at (a) 3.0 GHz,
(b) 3.6 GHz, (c) 4.0 GHz, and (d) 4.3 GHz.

Fig. 24. Simulated cross-band coupling of the proposed array antenna and
the reference array antenna.

ordinary LB element, both co-polarized and cross-polarized
radiation patterns of the HB sub-array deteriorate. However,
by replacing it with the proposed LB element, the radiation
patterns of the HB sub-array remain almost unchanged. This
is highly desirable for present base station applications.

Besides, due to the good filtering performance of the
proposed LB element, the cross-band coupling of the proposed
dual-band array antenna is much lower than the reference one,
as depicted in Fig. 24. The simulated isolations between the
HB sub-array and the reference LB element are higher than
10 dB from 3 to 4.3 GHz. However, in the proposed dual-band
array antenna, the isolations between the HB sub-array and the
proposed LB element are higher than 24 dB within the same
frequency band, which shows a significant improvement in the
array design.

In this section, based on the proposed LB and HB ele-
ments, a novel dual-band dual-polarized base station array

Fig. 25. Fabricated prototype of the dual-band array antenna.

Fig. 26. Measured and simulated reflection coefficients of the dual-band
array antenna.

antenna is achieved. To validate the advantages of the proposed
antenna, a reference dual-band array antenna is designed.
It is worth noting that the only difference between these two
dual-band array antennas is the structure of the LB element.
Simulated results demonstrate the proposed LB element has
little influence on the radiation performance of the HB array.
Furthermore, the proposed dual-band array antenna shows a
significant improvement in cross-band isolation.

IV. RESULTS AND DISCUSSION

For verification, a prototype of the proposed dual-band dual-
polarized array antenna is fabricated as shown in Fig. 25. The
measured S-parameters are obtained by using the R&S1ZVL
vector network analyzer. The far-field results are obtained in
the anechoic chamber at the University of Kent. Fig. 26 shows
the measured and simulated reflection coefficients of the LB
element and HB array in the dual-band array. According
to the measured results, the proposed LB element has an
impedance bandwidth of 18.8% (2.26–2.73 GHz) with a reflec-
tion coefficient <−14 dB. For the HB sub-array, the measured
and simulated results are in reasonable agreement with each
other. The measured results indicate that the proposed HB

1Registered trademark.
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Fig. 27. Measured and simulated mutual couplings of the dual-band array
antenna.

Fig. 28. Measured and simulated realized gain of the dual-band array antenna.

sub-array realizes a wide bandwidth of 36% (2.98–4.3 GHz)
for reflection coefficients lower than −14 dB.

Fig. 27 exhibits the measured and simulated in-band and
cross-band mutual couplings of the proposed dual-band array
antenna. It can be observed from the measured results that the
in-band isolations between port H1 and port H2 are higher than
22 dB. The isolations between other ports of the HB sub-arrays
are higher than 25 dB. Due to the good filtering performance
of the proposed LB and HB element, the cross-band mutual
couplings between the input ports of the LB element and HB
sub-arrays are all higher than 25 dB.

The measured and simulated broadside realized gains of the
proposed dual-band array antenna are shown in Fig. 28. For the
LB element, an average measured realized gain of 8.9 dBi is
achieved within the operating band. It is slightly lower than the
simulated value of 9.2 dBi because of the loss of the cables and
test environment. For the HB sub-array, the measured realized
gains distribute between 9.4 and 10.5 dBi while the simulated
one is all within the range of 10–10.7 dBi. The ripples in the
operating band, as well as the slight gain variation between
the measured and simulated curves, can be attributed to the
loss of the test equipment and fabrication error.

The measured and simulated normalized radiation patterns
of the LB element and HB sub-array in the horizontal

Fig. 29. Measured and simulated normalized radiation patterns of the LB
element in the horizontal plane at (a) 2.3 GHz and (b) 2.7 GHz.

Fig. 30. Measured and simulated normalized radiation patterns of the HB
sub-array in the horizontal plane at (a) 3.0 GHz, (b) 3.6 GHz, (c) 4.0 GHz,
and (d) 4.3 GHz.

plane at different frequencies are shown in Figs. 29 and 30,
respectively. As can be observed, the measured results are
in good agreement with the simulated results. The measured
cross-polarization levels of the LB element and HB array
are 20 and 21 dB lower than their co-polarization levels in
broadside.

The comparisons between the proposed antenna and
recently published dual-band dual-polarized array antennas
are shown in Table I. By introducing the FSS structure
[20], [21] and etching the HB elements in the dipole arms
of the LB element [23], three dual-band arrays with high
cross-band isolations are developed. However, the frequency
ratios of these antennas are larger than 4.3. In [24] and [25],
two interleaved shared-aperture dual-band array antennas are
realized by introducing branches on the radiator of the LB
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TABLE I

COMPARISON OF THE PREVIOUSLY PRESENTED DUAL-BAND DUAL-POLARIZED ARRAY ANTENNAS

element. However, the frequency ratios of these two dual-band
array antennas are nearly twice of the proposed antenna. Four
dual-band array antennas with frequency ratios smaller than
2 are developed in [27], [29], [30], and [31]. Although the
LB element in [27], [29], and [30] obtain a wider impedance
bandwidth than the proposed one, their wave-transparent bands
are much narrower than our work. Besides, the proposed
dual-band array antenna realizes a smaller frequency ratio,
a higher gain, and higher isolation than the designs in [27]
and [30]. LB element in [31] achieves a high realized gain of
9.1 dBi, however, the impedance bandwidths of both LB and
HB in this design are narrower than in our work.

V. CONCLUSION

Two new methods are proposed in this article to design
the LB and HB elements in the dual-band dual-polarized
array antenna. Based on the proposed method, a novel low-
scattering low-pass LB element and a novel high-RoR high-
pass HB element are able to realize. By combining these
two high-performance elements and introducing eight shorted
strips, a novel shared-aperture dual-band dual-polarized array
antenna with wide impedance bandwidths, high in-band and
cross-band isolation, and low cross-band scattering can be
realized. The measured results show that the proposed array
antenna works at 2.26–2.73 and 2.98–4.3 GHz with reflection
coefficients lower than −14 dB. The in-band and cross-band
isolations of the proposed array antenna are higher than 22
and 25 dB, respectively. Such a high-performance dual-band
dual-polarized array antenna is a good candidate for present
base station applications.
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