
Concurrency Engineering

Chris Jesshope and Alex Shafarenko

Institute for Informatics, University of Amsterdam

and

Department of Computer Science, University of Hertfordshire

jesshope@science.uva.nl and a.shafarenko@herts.ac.uk

Abstract

This is a discussion paper on a very important

topic that is about to become mainstream. It deals

with the issues of software engineering in concurrent

systems. It introduces this topic and illustrates the

arguments for a change of perspective. It underlines

these arguments with two examples, an asynchronous

stream-based programming model and an

asynchronous thread-based virtual machine model.

Both support concurrency on very different

abstractions but both capture similar support for

concurrency engineering.

1. Introduction

The computer industry is currently in crisis.

Despite some decades of research into programming

concurrent systems, by which we mean systems that

are both parallel and asynchronous. This is a difficult

and error-prone activity. Evidence for this can be

found in Microsoft and Intel’s recent funding of a

parallel software lab at Berkeley [1]. That laboratory

seeks a model for programming the next-generation

of multi-core CPUs. Why this should so different

from programming the existing infrastructure of

supercomputers, grids etc. is far from clear. The

issues, problems and solutions are the same and it is

only parametric changes that make a difference, i.e.

the speed of communication and synchronisation

relative to that of computation.

There are differences but not technical ones;

whereas previously it was only in the domain of high

performance computing that these problems needed

to be recognised and solved, the recent and quite

predictable power wall that industry faces means we

can no longer rely on clock speed to improve a

computer’s performance. Future generations of

commodity processors will be sold on “number of

cores” rather than “GHz” but unless there is a

perceived benefit from this, there will be a significant

slowdown in computer replacement. The difference

then is that in high-performance computing, it is

permissible to hire PhDs to engineer solutions to

these problems, whereas for the run of the mill

applications this is out of the question. The potential

benefit of these new generations of CPUs must still

be accessible to a broad spectrum of programmers.

2. Concurrent Software Engineering

Software engineering [2] is the application of the

discipline of computer science and to a lesser extent,

project management and other techniques, in order to

develop software applications. The main purpose of

this discipline is to improve the reliability and

maintainability of software systems [3]. The

achievement of these goals will suffer a severe blow

in this shift to explicit concurrency in mainstream

computer systems, as has been noted by Lee [4],

based his group’s experience with a well-engineered

application when making this shift themselves. This

paper attempts to map the impact these forces have

on the software engineering discipline and to propose

both generic and very specific solutions to those

problems. We believe firmly that the process of

concurrent software engineering must be partitioned

into its constituent components, namely that:

Concurrent Software Engineering =

Concurrency Engineering + Algorithm Engineering.

However, we use of the term algorithm engineering

in a different context to that described in [5], where

the process is described as what is required to

transform a pencil-and-paper algorithm into a robust,

efficient, well tested, and usable implementation.

Their definition encompasses a number of low-level

issues, such as cache behaviour, and its main focus is

experimentation. Our use of this term is more

978-1-4244-2683-6/08/$25.00 ©2008 IEEE

Authorized licensed use limited to: UNIVERSITY OF HERTFORDSHIRE. Downloaded on December 9, 2008 at 04:44 from IEEE Xplore. Restrictions apply.

abstract as we approach the algorithm from the

perspective of capturing its specification, which may

include concurrent operations but independently of

any implementation issues, which make the

algorithm non-portable. We believe that low-level

solutions are required in order to eliminate, as far as

is possible, the experimentation from algorithm

engineering but this requires systems to be designed

from the ground upwards, namely from the

processor’s ISA, which must abstract and embed

explicit concurrency and manage this in a dynamic

manner [6]. We will return to this in due course (see

Section 5).

The key issue here however, is this separation of

concerns. This in turn reflects a separation of

expertise, where the engineers contracted to develop

an application are partitioned into those with an

application knowledge and/or expertise in algorithms

and those with expertise in concurrent systems. It is

also clear, that due to the complexity of both parts (in

the former from the sheer size of the components in

terms of lines of code and in the latter in terms of the

explosion of states that concurrency exposes) both

must retain or even strengthen the Software

Engineering principle of reuse. Currently this does

not seem to be a major issue in engineering

concurrent code. In this paper we give examples of

the embedding this principle into two related but

quite separate developments.

3. Related work

As we are looking for general solutions to a

problem that has been researched for decades, by

implication we cannot cover all related work and

restrict our references to those papers that have had a

major influence on the work described.

The idea of S-Net was proposed, and the initial

sketch of the language and its type system was made

by Shafarenko. The first comprehensive solution for

S-Net was by Grelck and Shafarenko (see [20],

where the language definition and some relevant

algorithms are presented). Further development of

the type system was done by Cai et al [21] and some

recent examples of the use of S-Net in applications

are found in [18].

Stream processing as a discipline goes back to

Kahn’s seminal work [11] and the languages Lucid

[12] and Esterel [13]. S-net network combinators

resemble some structures in [14], but in fact go back

much further to the pioneering work of Stefanescu

[16] and Broy [17].

SVP has its roots in the microthread machine

model originally proposed by Bolychevsky et al [26]

and extended by Jesshope in [6,7]. It is a general

model of concurrency with implementations at the

ISA [8] and language [9-10] levels.

Capturing concurrency in a computer’s ISA has

two influential precedents, the transputer concept

[23], which captured the CSP model of concurrency

and the pioneering work by Burton Smith on the

Delencor HEP [24], the Horizon, and eventually the

Tera architecture [25] (or Cray MTA). Both provided

instructions to create/terminate processes and to

communicate between these; in the transputer by

mapping channels at link-time and in the HEP by

synchronisation on shared memory locations. There

are also examples, too numerous to mention, where

these basic concepts have been extended and/or

restricted in support of specific application areas,

such as real-time applications or graphics processing.

4. S-Net

Encapsulation. Since the late 90s methodologies of

software design have danced around the concepts of

decomposition and encapsulation. Surprisingly, these

were seen as vehicles of software reuse only, but not

necessarily as central concepts of parallel computing.

A problem decomposition results in a representation

of an application as a set of black-box components,

whose functionality is defined in terms of the

interface description and some “glue” code that holds

the components together in a way that ensures the

expected system behavior is achieved. On the one

hand, the components “hiding behind” their

interfaces are highly reusable, since no code

modification is required inside them when an

alteration of system specifications occurs. Indeed, the

altered functionality is achieved by “deriving” new

components in an OOP fashion: orthogonal addition

and redefinition of functions (i.e. methods or

“ports”).

Object state breaks encapsulation. When a

component is a black box, this means that its

interface description is enough to fully understand its

behavior, with the exception of, perhaps, cost. That

behavior, for a simple method interface, which

includes the method name and some parameters, can

only be one of two kinds: the effect of the method

invocation on an object (i.e. an instance of the

component) with internal state, and the production of

a returnable result. It is the former that causes great

difficulties in encapsulation. The problem is that the

internal state is time sensitive, which means that it

requires some time reference for accessing it, even in

a distributed parallel system, which has no single

clock. It is also place sensitive. Even when an object

is quiescent, it cannot easily be moved from one

processing place to another, since its state has an

Authorized licensed use limited to: UNIVERSITY OF HERTFORDSHIRE. Downloaded on December 9, 2008 at 04:44 from IEEE Xplore. Restrictions apply.

implicit association with certain processes, which are

specifically placed. If there are several processes

using the same object, then even where it should be

placed and by what discipline its simultaneous use

may be governed are not clear. That information is

not part of the interface, it is at best implicit in the

object state, and at worst is only found in the client

code. So in a sense, encapsulation fails: the behavior

is no longer localized and abstracted between the

input and output interfaces.

Solution. It is our contention that state transitions in

the component world should be structured and

managed in the same way as control flow is

structured and managed in ordinary programming.

We argue that the best way to achieve this is to strip

user-defined components of all persistent state, so

that they become pure functions that map a tuple of

parameters onto a similar collection of results. As

soon as the latter is produced, the internal state

should effectively be destroyed
1
. Such components

are easy to reason about and debug, they are

inherently mobile, and usable as a black box in a

parallel computing environment - but there is also a

price to pay. The gluing environment would have to

provide sufficient scaffolding to support an evolving

state (or local states!) of the computation. In other

words, it will need to hold the effective state of one

or more component for them and present it back to

the components’ inputs in combination with any data

to be processed. This is similar to thread-safe code

where the intermediate state is held in the thread

memory, except in this case it is not the intermediate,

but, say, the end-of-iteration state that is being held

and managed outside the component.

Language. To support the parallel component

technology being discussed, a coordination language

has been designed and implemented [20,18]. The

language is called S-Net, which stands for Streaming

Networks. Its purpose is to support writing

coordination code that instantiates components as

“boxes” and connects them with anonymous data

streams so that an application is represented as a

network between the standard input and output,

which are two external streams connecting the whole

application with its environment. We shall now

briefly outline the main concepts of S-Net.

The box concept. Any S-Net component can be

instantiated to a Single-Input, Single-Output (SISO)

box. The box has a limited life cycle: it accepts one

item from the input stream (these items are called

1
 N.b. we are not arguing for functional programming as

our components can be written in any imperative language.

“records”, see below), does some processing and

yields zero, one or more items to the output stream,

after which it destroys its internal state (i.e. re-

initialises) and waits for the next input item to arrive.

There is one standard component, called a

synchrocell, which has the ability to hold state, but

which cannot perform computations of any kind; thus

component encapsulation isn’t violated. Components

are written in a box language, using the S-Net

communication API (which consists of a single entry

point: snet_out, which allows a box to insert a new

item in its output stream). At present C is supported

as a box language and so is SaC [19]

The streaming data concept. All boxes accept

records as units of their input. A record in S-Net is a

set of fields and tags. Both fields and tags have

names and values. Field values are unavailable to S-

Net: they are only processed by the box language,

while tag values are standardized as integers and are

available to both the box language and S-Net itself.

Records are nonrecursive in the sense that it is not

possible to define an unlimited linked structure, such

as a list. Every user-defined component contains a

program unit (a function or similar) written in a box

language, and a type signature written in S-Net that

defines the type of records (in terms of their field/tag

name sets) that the box accepts and the types of any

output records that may be produced. Streams

between boxes are sequences of records. Even

though all boxes are SISO, the data relationships

between them are not one-to-one, since streams can

be split and merged using combinators.

Combinators. These are second-order functions that

connect one or two boxes into a SISO network. First

of all there are series and parallel combinators,

A..B and A||B, respectively. The series combinator

connects the output of box
2
 A to the input of box B,

with the input of A and the output of B becoming

those of the resulting network. The parallel

combinator splits the single input stream into two

streams according to the type match with the A and B

interfaces, and merges the resulting two streams

together. S-Net regards nondeterminism as an

exploitable characteristic and provides two versions

of the parallel combinator, a deterministic one A||B,

and a nondeterministic one: A|B. In the latter case the

order in which the output streams are merged is

arbitrary. This allows the recipient of the stream to

reduce the latency of any response, provided that the

algorithm allows it. Also we allow for

nondeterminism at the input even when the

2
 All combinators are applicable to arbitrary combinator

networks not just atomic boxes.

Authorized licensed use limited to: UNIVERSITY OF HERTFORDSHIRE. Downloaded on December 9, 2008 at 04:44 from IEEE Xplore. Restrictions apply.

combinator is deterministic and has to merge the

output streams in the input stream’s order. The

nondeterminism at the input occurs when a record

matches A and B equally well, e.g. a record with the

field-label set {x,y,z} when A expects {x,y} and B

{y,z}. This allows for arrangements where two

different routes are possible and the choice between

them is on the basis of nonfunctional parameters,

such as power or load. The type system of S-Net is

powerful: it is based on set-theoretical subtyping with

some extra controls in the form of binding tags, but

we have no space here to expose it even briefly;

suffice it to say that the exact destination (in the

deterministic case) or set of destinations (in the

nondeterministic case) is always statically

known with only one exception, see below.

S-Net has two unary combinators for network

replication: the series A**p and the parallel A!!<t>

replicators. The former is equivalent to an infinite

chain A..A..A.. ... in which any record that matches

the pattern p is removed from the chain and sent to

the output. The latter is equivalent to an infinite

network A||A||A||... where each replica corresponds to

a certain value of the tag <t> expected in the input

record. This is the only situation in which the record

destination is value-dependent but the destination is

guaranteed to be one of the boxes with identical type

signatures, and so it is type-safe. In implementation,

these infinite data structures present no difficulty

whatsoever since for the !! combinator only a finite

variety of <t> values is expected at any given time

and since any replicas of A that do not contain active

synchrocells (see below) are garbage-collectable

owing to the absence of state information (such

replicas can be instantiated again if the same value of

<t> is encountered later). As for the ** combinator,

the network only unfolds as far as the point where no

records that match the A input type are produced

(which means that all records at this point, if any,

match the pattern p). This is similar to ordinary

while-loop termination, except the resources being

used are both space and time. Again those replicas

without active synchrocells anywhere on the chain

can be fused with their predecessors and successors

in implementation. Unique resources are not required

for boxes as all replicas are stateless and identical.

Finally, it should be noted that there are

nondeterministic versions of the replicators, * and !.

When data comes from two different sources and has

to be processed together, one needs some sort of

synchronization facility. In ordinary distributed

programming it is the computational code that is

burdened with synchronisation, due to the

multiplicity of communication channels and the

state-transition nature of communication. In S-Net,

user-coded boxes cannot be used as synchronizers

even in principle, since they are stateless.

Synchronisation is performed via a special box

supplied by S-Net itself and only configured by the

user: the synchrocell. The way it works is as follows:

a cell [| {x,y}, {z,w} |] is initially empty. The first

record that comes must match either {x,y} or {z,w}

and it is stored in the synchrocell memory, the

synchrocell now becomes active. Records of the

same type from this point on are passed through and

the first record of the other type causes the joining of

the two records into an output record {x,y.z.w} after

which the cell becomes dead. Dead synchrocells pass

all records through. The reader can satisfy herself

that, for example, [| {x,y}, {z,w} |]**{x,y,z,w} is an

asynchronous version of the zip function, familiar

from functional languages, and that

[|{x},{z,<t>}|]!<t> is analogous to the Explicit Token

Store known from dataflow research (here a

subtyping rule is used to get rid of the second copy of

<t>). There are many more useful patterns that can

be built using synchrocells.

Examples and design methodology. Readers are

referred to the S-Net site on the Web for details of

our S-Net implementation [22]. Due to the limited

space we can only state here that a compiler is

available, which translates an S-Net program into C

with calls to an extensive run-time library that uses p-

threads to achieve concurrent execution. Here is a

tiny example, which exhibits asynchronous, parallel,

streaming execution of an n!=1!2!...!n producing

network. The input stream supplies a sequence of n.

(N.b. boxes in this example may implement variable-

precision arithmetic and so may be non-trivial.)

net fac ({n} -> {n,m}) {
 net facit ({x,r} -> {r}) {
 box leq ((x) -> (x,p));
 box if ((p) -> (<T>) | (<F>));
 box dec ((xx) -> (xx));
 box mult ((x,r) -> (rr));
 }
 connect (leq..if..([{<T>}->{<stop>}]
 || [{<F>,x,r}->{x,r};{xx=x}]
 .. (dec|mult)
 .. [|{xx},{rr}|]*{xx,rr}
 .. [{xx,rr}->{x=xx,r=rr}]) ** {<stop>})
 ..[{<stop>,x}->{}];
 box one (() -> (one));
}
connect one .. [{n,one}->{n,x=n,r=one}]

 .. facit .. [{r}->{m=r}];

The main syntax construct of S-Net is

Authorized licensed use limited to: UNIVERSITY OF HERTFORDSHIRE. Downloaded on December 9, 2008 at 04:44 from IEEE Xplore. Restrictions apply.

net list-of-net-n-box-defs connect formula

The formula in each net clause is a combinator

expression defining the structure of the network. The

user-defined boxes leq, if, dec and mult are self-

explanatory thanks to their expressive type

signatures.

The parenthesis there [...] signify the filer construct

(not to be confused with a synchrocell [|...|]), which

is a housekeeping box offered as syntactic sugar by

S-Net, but one that can be written by the user for

each specific case. Its role is to rearrange a record

into one or more output records by renaming/copying

or dropping fields/tags as indicated by the expression

inside the brackets. This hopefully requires no

explanation. Finally, to understand the working of

this network one needs to be aware of flow

inheritance, a stream specific form of inheritance

whereby any unmatched fields/tags at the input are

appended to each produced output record.

Concluding this section, we would like to comment

on the design methodology using this language. S-

Net promotes top-down design, which is known to be

very effective but which in practice is hard to support

by conventional programming languages. The way to

do it in S-Net is as follows. First the whole

application is given a name and a type signature,

which details what data collections are being

processed and what type of potential output they

cause. Next the monolithic application is broken

down into a small network of networks by

identifying closed functionalities and the combinators

needed to stream the data as appropriate. Those

functionalities are then reified as further nets, type

signatures are determined and then refinement

continues until the items connected by the network

are truly atomic and could be defined directly in the

box language using nothing more than data-

parallelism without loss of exploitable concurrency.

At each stage, data streams can be reasoned about

and animated and also at the final stage boxes, being

stateless, fully-encapsulated entities, can be unit-

tested, too.

5. The SVP model

Summary of the SVP Model. SVP stands for SANE

Virtual Processor, where a SANE is a Self-Adaptive

Network Entity. SVP also manages asynchronous

concurrency but at the level of machine instructions.

It is based on threads that are created dynamically

with a context of scalar, synchronising variables,

which is garbage collected on thread termination.

Data-structuring is managed by thread replication

within indexed families, which may be unbounded.

Input and output to these families of threads is via

asynchronous shared memory.

SVP instructions capture data-, instruction- and

task-level concurrency. Collectively they form an

operating system kernel implemented in the

processor’s ISA that manages work creation,

termination, pre-emption and all mapping and

scheduling of threads. SVP is designed so that

programs are free of deadlock under composition,

deterministic where required and to enable the

migration of data and/or code in a distributed

computing environment to better manage an

implementation’s efficiency through self-adaptive

control.

SVP is defined by five actions that dynamically

create and asynchronously control the concurrent

execution of families of threads. Those actions are

{create, sync, kill, squeeze, and break}. Together,

create and sync define a concurrent section between a

creating thread and one or more identical created

threads (the family) each of which is aware of its

unique index value. Kill and squeeze terminate

named families and break terminates a thread’s own

family. Squeeze differs from kill and break in that a

squeezed family can be re-executed to completion

from a breakpoint. Reflection on termination is

provided by a return code received by the sync,

which signals when all threads and their writes to

asynchronous memory have completed. The return

code also indicates how the family was terminated,

i.e. whether normally or via one of the terminating

actions. A return value may also be received on sync,

which is either a thread index, determining the

breakpoint in the family from a squeeze action or a

value set by a thread when it succeeds in executing a

break.

There are two further abstractions that complete

the definition of the model. The first is that threads

are blocking, i.e. they capture not only function but

also synchronisation, which in turn supports data-

driven instruction scheduling. Threads execute their

operations strictly in-order and block if they do not

have the data required to complete an operation.

Instructions may always write data and hence a

thread’s context of synchronising variables are i-

stores supporting dataflow synchronisation. Threads

suspend on these i-stores awaiting a write from

another thread or a hardware process (such as a read

from asynchronous memory) and are scheduled only

when that data has been written.

Communication between threads in the model is

deliberately restricted in order to expose locality

without reference to resource mapping. The parent

may write to its first child thread and each created

thread may write to its successor in the family

created. This restriction means that a compiler can

Authorized licensed use limited to: UNIVERSITY OF HERTFORDSHIRE. Downloaded on December 9, 2008 at 04:44 from IEEE Xplore. Restrictions apply.

perform static optimisations to achieve concurrency

and locality. It has the additional advantage of

offering concurrent composition in the model without

inducing deadlock.

The second abstraction concerns the dynamic

management of resources in SVP and is the concept

of a place, an implementation-dependent definition

of a processing resource. It is through this parameter

to the create action that families of threads are bound

to processors. The use of place must also be

accompanied by a place-server in an implementation

to define an available place on request.

Support for Software Enginering. The SVP model

is uniform and hierarchical, and captures concurrency

from fine-grain instruction or data concurrency up to

the highest levels of task concurrency in a system.

However, the introduction of places partitions the

model in a way that correspond to the partition

described in Section 2, namely between algorithm

and concurrency engineering.

The first usage level is static. Here, code is

resource naive and captures an algorithm and its

concurrency. This may be compiled to an

implementation, e.g. a microgrid of microthreaded

processors [6], without knowledge of the number of

processors to be used in executing it. This usage is

deterministic and binary programs can be combined

concurrently without inducing deadlock and

distributed arbitrarily to clusters of processors at run

time. The model’s locality allows an efficient

mapping of the computation onto any hardware even

though the program’s resources will be assigned

dynamically to this compiled code.

The second usage level is completely dynamic and

is defined only when a place is specified in SVP’s

create action. It is at this level that concurrency

engineering is achieved and it requires the binding of

a unit of work (a family of threads and any

subordinate families) to a place that will execute the

work. If a thread in family A creates a subordinate

family, B say, at the default place, then family B will

share the same processing resources used by A. If,

however, the thread provides a named place in the

create action, the execution of that work is delegated

to the new resources defined by the implementation’s

definition of that place. Now family A and B will be

distributed relative to each other and communication

will be required. The implementation of the named

place will provide the necessary address and protocol

for creating the family remotely and also any

authentication required for creating a family there.

Thus the place provides both abstract networking and

security issues. An implementation of create for a

given place will also understand issues such as

memory model (shared or distributed).

Place servers in SVP. The use of a place when

creating a family of threads is the key abstraction that

allows dynamic binding of resources to code. SVP

implementations require a mechanism to capture this

cycle of defining a place and using it in the create

action. This concept of a place server is familiar to

most people who have used dynamic memory but in

this case there is a distribution in both time and

space.

Figure 1. Cycle of serving and using a place

Every SANE processor, See Figure 1, provides an

interface and protocols to define SVP actions and an

interface and protocols to serve places. The latter is

called the Systems Environment Place (SEP), which

supports a standard API, e.g. SEP_request, and

SEP_release to allocate and release processors.

These API threads are created at the SEP using the

SVP create protocol. Place provides control of non-

functional properties in SVP but also introduces the

non-determinism required to implement the place

server itself and more generally, non-deterministic

choice. The place server shares resources between

concurrent activities. This is implemented by

defining some places as being exclusive, i.e. they will

serialise the execution of families of threads at such

places. The SEP is obviously an example of an

exclusive place.

6. S-Net on SVP
Streaming networks are generally implemented

using static dataflow principles, i.e. boxes are

assigned to resources and computation is triggered by

input to those boxes. The two models described

above, namely programming and machine models (S-

net and SVP) uniquely lend themselves to

implementations of streaming based on dynamic

dataflow principles. This idea comes from perceiving

Authorized licensed use limited to: UNIVERSITY OF HERTFORDSHIRE. Downloaded on December 9, 2008 at 04:44 from IEEE Xplore. Restrictions apply.

an S-Net from the perspective of a record being

communicated between the standard input and output

and processing this flow as a sequence of

continuations (threads) in SVP. In a way, it is similar

to the Lagrangian view of the fluid motion in

physics, which describes what happens to a small

volume of fluid as it travels rather than attempting to

describe the evolution of the velocity field – that

latter view is called Eulerian. The current

implementation of S-Net on pthreads in that sense is

Eulerian, as we define the behaviour of all boxes

simultaneously and assume the existence of channels

between them. This provides a rather static view on

resources and does not map onto SVP that captures

and abstracts resources dynamically at the level of

the machine model.

Thus, in the Lagrangian view, an S-Net network is

represented as a bulletin board on which extended

data records may be posted, and an abstract

(constant) graph which is available globally. There is

no unfolding of the graph, and there are no processes

associated with boxes, channels, or any other

elements of the network. The only active agent in this

view is the Graph Walker (GW) whose job is defined

along the following lines:

1. collect a record posted on the bulletin board;

2. read from the record the target graph location;

3. determine what processing is required, invoke

the appropriate family of threads that

implements this and bind this to the most

appropriate resources at this time;

4. this will in turn result in zero or more additional

records being posted to the bulletin board.

At any given time during program execution,

there can be any number of GWs operating in

parallel. The Lagrange implementation does not have

processes and need not implement FIFO queues to

represent channels, hence the correct sequencing of

records is also the GWs’ responsibility. A number of

techniques are being investigated to abstract a

record’s position in the input stream. These include

adding a serial number to records as a tag and

maintaining a cons list of records and their thread

applications. All methods require some overhead in

maintaining order, but the potential benefit of

exploiting S-Net and SVP’s rejection of encapsulated

state brings major advantages in the exploitation of

concurrency and adaptivity in its scheduling. This

overhead is small compared to the execution time of

a box, which is assumed to be a reasonably

substantial component.

The S-Net * and ! combinators cause replication

of a part of the network in the Eulerian view; the

Lagrangian view, being devoid of material boxes and

channels, uses additional indices that, together with

the graph location, specify which replica is being

used. To summarise, records emitted for execution

from boxes are extended with their location in the

stream and one or more indices that fix the replica

numbers of the environments inside which the target

location is found.

We do not have sufficient space in this paper to

discuss this implementation in detail. However, in

SVP the Graph Walker is a family comprising one

thread that is created with parameters including the

node number in the static S-Net graph structure, the

type of the record, used for selecting the box the

record is routed to and any sequencing information

required for merging and synchronising records.

Such a family is created whenever a record is

emitted by box code, which can be written in or

compiled into SVP. The GW uses this information

together with information about resources available,

constraints on execution etc. to place an instance of

the target box for that record. The latter is derived

from the record’s position in the network and its

record type. If necessary a box can be replaced in a

network by a serial combination of its cost function

and its execution, in order to manage situations

where cost is a dynamic function of input parameters.

Execution of the box can either be immediate, if

resources allow, or the GW may schedule the

execution. For example, the GW may evaluate its

data structures to see if it can aggregate the execution

of this record with other similar records in order to

amortise the configuration costs in an FPGA for the

execution of this function.

Implementing the only state-full elements of S-

Nets, i.e. the synchro-cells, may at first appear to be

problematic in SVP but like resource management,

the synchro-cells are each implemented using an

exclusive place, so that concurrent updates to the

cell’s state are sequentialised. A simple partitioning

and distribution of synchro-cells is the mechanism

that enables control of contention at exclusive places

if this is an issue.

7. Conclusions
This paper has explored some of the issues that

will face the computer industry over the next few

decades, as Moore’s law provides more and more

cores on silicon devices and as processing resources

become more diverse (e.g. FPGA accelerators). It

explores the issues in concurrent software

engineering that allow software for this time frame to

be made more reliable and to allow its reuse. The

paper outlines from a high-level, both a programming

model and a machine model that allow the separation

of concerns in this endeavour, namely being able to

separate the tasks of algorithm engineering and

concurrency engineering, where it should be noted

Authorized licensed use limited to: UNIVERSITY OF HERTFORDSHIRE. Downloaded on December 9, 2008 at 04:44 from IEEE Xplore. Restrictions apply.

that the former is nor devoid of concurrency yet must

be removed from low-level issues such as mapping to

resources, scheduling, communication and above all,

synchronisation.

8. Acknowledgements
The SVP model and S-net language have both

been developed within the European FP-6 Integrated

Project ÆTHER (Self-adaptive Embedded

Technologies for Pervasive Computing

Architectures).

9. References
[1] R. Merritt (2008) Wintel will fund parallel software lab

at Berkeley, http://www.eetimes.com/news/design/

showArticle.jhtml?articleID=206503988

[2] IEEE Standard Glossary of Software Engineering

Terminology, IEEE std 610.12-1990, 1990, Chapter 1:

Introduction to the guide Guide to the Software

Engineering Body of Knowledge (February 6, 2004),

retrieved on 2008-02-21.

[3] M. Pecht (1995) Product Reliability, Maintainability,

and Supportability Handbook, CRC Press. ISBN 0-8493-

9457-0.

[4] E lee (2006) The problem with threads, IEEE

Computer, 36(5), pp. 33-42.

[5] D. A. Bader, B. M. E. Moret and P. Sanders (2002)

Algorithm Engineering for Parallel Computation, Fleischer

et al. (Eds.): Experimental Algorithmics, LNCS 2547, pp.

1–23.

[6] C. R. Jesshope (2008) Operating systems in silicon and

the dynamic management of resources in many-core chips,

to be published: Parallel Processing Letters
3
.

[7] C R Jesshope (2008) A model for the design and

programming of multi-cores, In Advances in Parallel

Computing, 16, High performance Computing and Grids in

Action (Ed. L. Grandinetti), IOS Press, ISBN 978-1-58603-

839-7, pp37-55.

 [8] C R Jesshope (2006) !TC – an intermediate language

for programming chip multiprocessors, Proc. Pacific

Computer Systems Architecture Conference 2006 -

ACSAC06, ISBN 3-540-4005, LNCS 4186, pp147-160.

[9] T. Bernard, K. Bousias, L. Guang, C. R. Jesshope, M.

Lankamp, M. W. van Tol and L. Zhang (2008) A general

model of concurrency and its implementation as many-core

dynamic RISC processors, to be published: Proc. SAMOS

08.

 [10] M. W. van Tol, C. R. Jesshope, M. Lankamp and S.

Polstra (2008) An implementation of the SANE Virtual

Processor using POSIX threads, submitted to: Journal of

Systems Architecture.

[11] Kahn, G.: The semantics of a simple language for

parallel programming. In Rosenfeld, L., ed.: Information

Processing 74, Proc. IFIP Congress 74. August 5-10,

Stockholm, Sweden,

3 All papers to be published can be downloaded from:

http://www.science.uva.nl/~jesshope/Papers/

North-Holland (1974) 471–475

[12] Ashcroft, E.A., Wadge, W.W.: Lucid, a nonprocedural

language with iteration. Communi-

cations of the ACM 20 (1977) 519–526

[13] Berry, G., Gonthier., G.: The esterel synchronous

programming language: Design, semantics,

implementation. Science of Computer Programming 19

(1992) 87–152

[14] Michael I. Gordon et al: A stream compiler for

communication-exposed architectures. In: Proceedings of

the Tenth International Conference on Architectural

Support for Programming Languages and Operating

Systems, San Jose, CA. October 2002. (2002)

[15] Stephens, R.: A survey of stream processing. Acta

Informatica 34 (1997) 491–541

[16] Stefanescu, G.: An algebraic theory of flowchart

schemes. In Franchi-Zannettacci, P., ed.: Proceedings 11th

Colloquium on Trees in Algebra and Programming, Nice,

France, 1986.

Volume LNCS 214., Springer-Verlag (1986) 60–73

[17] Broy, M., Stefanescu, G.: The algebra of stream

processing functions. Theoretical Computer Science (2001)

99–129

[18] Grelck, C., Scholz, S.B., Shafarenko, A.: Coordinating

Data Parallel SAC Programs with

S-Net. In: Proceedings of the 21st IEEE International

Parallel and Distributed Processing Symposium

(IPDPS’07), Long Beach, California, USA, IEEE

Computer Society Press, Los Alamitos, California, USA

(2007)

[19] Scholz, S.B.: Single Assignment C — e!cient

support for high-level array operations in a functional

setting. Journal of Functional Programming 13 (2003)

1005–1059

[20] C. Grelck, A. Shafarenko: Report on S-Net: A Typed

Stream Processing Language Part I: Foundations, Record

Types and Networks. Technical Report University of

Hertfordshire Department of Computer Science Compiler

Technology and Computer Architecture Group Hatfield,

England, United Kingdom, 2006

[21] H. Cai, S. Eisenbach, C. Grelck , A. Shafarenko,:

Extending the S-Net Type System. To be published

[22] snet-home.org

[23] D May and R Shepherd (1984) The transputer

implementation of occam, Proc. Intl Conf on Fifth-

Generation Computer Systems, Tokyo, pp533-541.

[24] J W Moore (1983) The HEP Parallel Processor, Los

Alamos Science, Fall 1983, pp 72-75.

http://library.lanl.gov/cgi-bin/getfile?09-04.pdf

[25] R Alverson, et al. (1990) The Tera Computer System,

Proc. of the 4th International Conference on

Supercomputing, Amsterdam, The Netherlands, 11-15

June, pp. 1-6. ACM Press, New York, NY, USA.

[26] A Bolychevsky, C R Jesshope and V B Muchnick

(1996) Dynamic scheduling in RISC architectures, IEE

Trans. E, Computers and Digital Techniques, 143, pp 309-

317.

Authorized licensed use limited to: UNIVERSITY OF HERTFORDSHIRE. Downloaded on December 9, 2008 at 04:44 from IEEE Xplore. Restrictions apply.

