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algebras which appear include certain higher current algebras in the sense of Faonte, 
Hennion and Kapranov [18].
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the adelic complexes for schemes due to Parshin and Beilinson.
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1. Introduction

1.1. Higher current algebras and homotopy Manin triples

Manin triples are fundamental objects in integrable systems and quantum groups. Recall that a Manin triple 
(a, 〈− | −〉 , a+, a−) is a Lie algebra a with a symmetric nondegenerate invariant bilinear form, and two isotropic Lie subal-
gebras a± ⊂ a such that a =C a+ ⊕ a− as vector spaces [12]. One important class of examples arises when a is a current 
algebra: namely, one may take

a= g⊗C((z)), a+ = g⊗C[[z]], a− = g⊗ z−1C[z−1] (1)

and 〈x⊗ f (z) | y⊗ g(z)〉 = κ
(
x|y) resz f (z)g(z), with g any finite-dimensional simple Lie algebra over C and κ

(−|−) its 
standard bilinear form. (See, e.g., [9,3].)

Here the commutative algebras C[[z]], of formal Taylor series, and C((z)), of formal Laurent series, can be seen as 
algebras of functions

C[[z]] ∼= �(Disc1, Ô), C((z))∼= �(Disc×1 , Ô),

on, respectively, the formal disc Disc1, and the punctured formal disc Disc×1 := Disc1 \ {pt.}, in complex dimension one.
It is natural to try to extend this to higher dimensions, but an apparent obstacle arises: in dimension n ≥ 2, the structure 

sheaf Ô admits no more sections over the punctured disc Disc×n = Discn \ {pt.} than it does over the disc Discn itself: 
�(Disc×n , Ô) = �(Discn, Ô) ∼=C[[z1, . . . , zn]]. So the would-be higher current algebra g ⊗ �(Disc×n , Ô) seems to be “missing 
all the negative modes”. However, Faonte, Hennion and Kapranov [18] – and see also [33,34,25] – make the following 
observation: one may replace these algebras of functions by their derived analogs, R�(Disc2, Ô) and R�(Disc×2 , Ô). By 
definition R�(Disc×2 , Ô) is a cochain complex whose cohomology computes the sheaf cohomology of Ô, as we recall in 
§2.4 below. And it is well known that the structure sheaf Ô has higher cohomology when n ≥ 2. In this paper we focus 
exclusively on the case of dimension n = 2, where one has

H•(Disc×2 , Ô)∼=

⎧⎪⎨⎪⎩
C[[w, z]] • = 0

w−1z−1C[w−1, z−1] • = 1

0 otherwise.

One sees that natural candidates for the “missing” negative modes reemerge in the first cohomology. Moreover, as stressed 
in [18], the derived sections form more than just a cochain complex: R�(Disc×2 , Ô) is naturally a differential graded (dg) 
commutative algebra (unique up to zigzags of quasi-isomorphisms). Thus, one obtains the dg Lie algebra

g⊗ R�(Disc×2 , Ô),

which it is natural to call a higher current algebra.
The first goal of this paper is to give an analog of the Manin triple (1) above, in complex dimension two, following this 

philosophy. To do so, we first need to clarify what it should mean to give a Manin triple in the differential graded setting. 
We give our definition in Section 6: roughly speaking, it says that a homotopy Manin triple (in dg Lie algebras) is a triple of dg 
Lie algebras and maps of dg Lie algebras between them

a+
ι+−→ a

ι−←− a−,

such that there is a homotopy equivalence a 
 a+ ⊕ a− of dg vector spaces; together with an invariant pairing 〈− | −〉 on a
which is non-degenerate up to homotopy, and for which a± are isotropic, again up to homotopy.

Manin L∞-triples – or strongly homotopy Manin triples of L∞ algebras – have been defined previously in [37]. The 
definition we give here is compatible with that definition in a sense we discuss in Appendix C.

Then our first result, Theorem 14, gives an example of such a homotopy Manin triple. We call it a “local” homotopy 
Manin triple because it is associated to the formal punctured polydisc at a point in complex dimension two. Namely it has

a= g⊗ R�(PDisc×2 , Ô), a+ = g⊗ R�(PDisc2, Ô)∼= g⊗C[[w]] ⊗C[[z]] (2)

and a− a certain differential graded Lie algebra whose cohomology is a copy of

H1(a)∼= g⊗ w−1z−1C[w−1, z−1]
sitting in cohomological degree one.

(We shall explain the meaning of the polydisc, PDisc×2 , in a moment.)
Next, our main result is Theorem 24, which exhibits what we call a “global” homotopy Manin triple. It is an analog, in 

complex dimension two, of another important and familiar class of Manin triples, namely those of the form
2



L. Alfonsi and C.A.S. Young Journal of Geometry and Physics 191 (2023) 104903
a= g⊗
N⊕

i=1

C((x− ai)), a+ = g⊗
N⊕

i=1

C[[x− ai]]

and

a− = g⊗C(x)∞a1,...,aN
(3)

where C(x)∞a1,...,aN
denotes the commutative algebra of rational expressions in x vanishing at ∞ and singular at most at the 

finitely many distinct points a1, . . . , aN ∈C. One may think of these points

a1, . . . ,aN

as marked points or punctures in the complex plane. This family of Manin triples is – after introducing a central extension – 
closely related to rational Gaudin models [16] and rational conformal blocks on the Riemann sphere; see [14] and references 
therein.

The homotopy Manin triple (a, a+, a−) we introduce in Theorem 24 is also defined by a finite collection of distinct 
marked points,

(w1, z1), . . . , (w N , zN),

which now live in C2. For a and a+ it has direct sums of copies of the dg Lie algebras mentioned in (2) above, one for each 
marked point:

a∼=
N⊕

i=1

g⊗ R�(PDisc×2 (wi, zi), Ô), a+ ∼=
N⊕

i=1

g⊗ R�(PDisc2(wi, zi), Ô),

and it has

a− = gGlobal,

a certain dg Lie algebra which we shall describe in detail in Section 8 below.
We should stress that the existence of this homotopy Manin triple of Theorem 24 should not be seen as particularly 

surprising, conceptually. It is essentially implicit already in [18]: see Proposition 1.1.4 there and Proposition 8 below. Our 
main goal in the present paper is rather to give explicit models, in dg Lie algebras, for the various derived algebras above 
and the maps between them, and to give explicit descriptions of the various homotopies. Our hope is that these models 
will prove to be useful for doing concrete calculations.

Now we indicate how we construct these models and introduce the other main theme of the present paper, which is 
what we call the rectilinear setting.

1.2. The rectilinear setting

At this point we are about to do something which, to an algebraic geometer, will probably appear mildly barbarous.
Rather than starting with the usual affine space A2 = SpecC[w, z], in this paper we are going to start instead with the 

product in topological spaces of two copies of the affine line A1. We shall call the resulting space,

Rect2 :=A1 ×Top A1,

rectilinear space. It has the same set of closed points as A2, namely {(a, b) ∈C2}, but very many fewer generalized points: 
it has points corresponding to the rectilinear lines w = a and z= a, a ∈C, but it lacks points corresponding to all the other 
algebraic curves:

We get a ringed space (Rect2, O) where O is the sheaf of commutative algebras whose spaces of local sections are 
spanned by products f (w)g(z) of rational functions.
3
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Similarly, locally, in place of the formal 2-disc Disc2 = SpecC[[w, z]], we shall work with the product in topological 
spaces of two copies of the formal 1-disc,

PDisc2 := Disc1 ×Top Disc1,

which we shall call the formal rectilinear polydisc. Like Disc2, it has a single closed point, (0, 0), and generalized points 
corresponding to the lines w = 0 and z= 0, but it lacks points corresponding to all the other germs of algebraic curves:

This choice breaks symmetry, and results in a space with fewer good properties: A2 is an affine scheme; Rect2 is merely 
a ringed space. To motivate it, let us give some background on the problem in mathematical physics we are seeking to 
develop tools to address.

1.3. Motivation

We are ultimately interested in solving the spectral problem for integrable quantum field theories in 1 + 1 spacetime 
dimensions. The specific approach we have in mind originates in the paper [15], in which Feigin and Frenkel make the 
important observation that certain integrable quantum field theories can be seen as quantum Gaudin models of affine type. 
See also [17]. And indeed, Vicedo [54] showed that large classes of classical integrable field theories can be realized as 
classical Gaudin models of affine type. See also [10,39,40,1].

By “solving the spectral problem for an integrable quantum theory”, we mean roughly speaking defining a hierarchy of 
mutually commuting conserved quantities (“higher Hamiltonians”) and then characterizing their joint spectra on suitable 
classes of representations.

Quantum Gaudin models of finite type are among the best-understood quantum integrable systems. In particular, there is 
a complete description of their higher Hamiltonians, which generate what is known variously as a Bethe or Gaudin algebra 
[21,45,46,53], and of the spectra of these higher Hamiltonians, which is given in terms of certain local systems called opers 
[4,20,47]. This description can be interpreted as the geometric incarnation of the Langlands correspondence [22].

At least from one perspective, tools from chiral conformal field theory – namely, vertex algebras and rational conformal 
blocks – are key to establishing these results. These rational conformal blocks are defined on the spectral plane, i.e. the copy 
of the complex plane C with marked points which defines any rational Gaudin model; a Gaudin model of finite type is not 
in any sense a field theory itself.

Quantum Gaudin models of affine type are less systematically understood (though see [15,17,42,43,57,35,23]). One prob-
lem is that it is difficult to extend tools which work in finite type to affine types; see e.g. [58] for an attempt to do so for the 
Wakimoto construction/Feigin-Frenkel homomorphism. In any case, any attempt to generalise from a finite type algebra g to 
an affine type algebra ̂g is almost bound to be missing half of the story if both are merely regarded as Kac-Moody algebras, 
because it ignores the geometrical interpretation of ĝ as a centrally extended current algebra, associated to a punctured 
disc; which is to say, morally speaking, that it ignores the fact that the Gaudin model is describing a field theory. Indeed, 
vertex algebras, and the additional control they give over the representation theory of ̂g, should again enter the picture, but 
these vertex algebras should be associated to a copy of C which is quite distinct from the spectral plane. In the case of 
chiral conformal field theories at least, this new copy of C is morally the worldsheet of the field theory.

Thus, one expects to be in a situation in which there are two copies of the complex plane in play,

Cspectral plane ×Cworldsheet,

whose interpretations are conceptually quite distinct. Let w, z be the Cartesian coordinates. It is natural to think that one 
will ultimately want to attach representation-theoretic data to:

• rectilinear lines, e.g. fibres (w = a) over points in the spectral plane,
• points (a, b), and probably also
• rectilinear flags, e.g.

(a,b)⊂ (w = a)⊂C2. (4)

It is much less clear that one needs other curves such as (w = z) or (w = z2) in this context; at the very least, the 
rectilinear lines and flags certainly enjoy a preferred status. To say much the same thing another way: one expects to 
4
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encounter functions belonging to C(w) ⊗C(z), such as 1
w−a

1
z−b , but the function 1

w−z , for example, looks very strange in 
this context since the physical meanings of the coordinates w and z are so different.

It is these intuitions which lead us to consider the rectilinear space (Rect2, O) we sketched above.
With this digression on motivations complete, let us return to describing the contents of the present paper.

1.4. The rectilinear adelic complex

In view of the discussion above, one would like to have an explicit model for the derived spaces of sections R�(−, O) of 
the structure sheaf O on rectilinear space Rect2, and one would like this model to have the property of being well-adapted 
to eventually attaching data to rectilinear lines and flags, as well as closed points.

That leads us to construct a model of R�(−, O) in the spirit of the adelic complexes for schemes due to Parshin [52]
and Beilinson [5]. Their construction involves associating a commutative algebra to each flag of subschemes. The algebra 
associated to a given flag is defined by an elegant and rather intricate procedure of repeated localizations and completions.

In our case, what considering merely the topological product Rect2 =A1 ×Top A1 of affine lines buys us is that (a) we 
get a much smaller set of flags, consisting only of the rectilinear flags and (b) the algebras attached to flags are simpler to 
describe. The resulting rectilinear adelic complex is given in Section 4, where the main result is Theorem 6.

Subsequently, when we move to considering the homotopy Manin triples of Theorem 24, we need only a finite collection 
of flags, built from the finite set of those rectilinear lines which intersect our chosen collection of marked points (wi , zi)

N
i=1.

In each case, the rectilinear flags form a semisimplicial set, and this gives rise to a semicosimplicial commutative algebra. 
Then, by applying the Thom-Whitney functor whose definition we recall in Section 5, we get a dg commutative algebra.

1.5. Triangular decompositions of enveloping algebras

Our final collection of results concerns the universal enveloping algebras. Recall that, in the usual case of Lie algebras, a 
Manin triple (a, 〈− | −〉 , a+, a−) encodes in particular a decomposition of a as the direct sum in vector spaces of two Lie 
subalgebras, a ∼=C a− ⊕ a+ . That in turn gives rise to an isomorphism

U (a)∼= U (a−)⊗ U (a+)

between the enveloping algebras; it is an isomorphism of vector spaces and, moreover, of (U (a−), U (a+))-bimodules [11].
In our present setting, of homotopy Manin triples of dg Lie algebras, we get something similar, at least in the special 

case that the homotopy equivalence of dg vector spaces a 
 a− ⊕ a+ is actually a strong deformation retract (we recall the 
definitions in §3.9 and Section 9 below)

a− ⊕ a+
a

That turns out to be true of our local homotopy Manin triple from Section 7. The resulting triangular decomposition is given 
in Section 9, Corollary 29. On the other hand it is not true of the global homotopy Manin triple of Section 8. The remainder 
of Section 9 is dedicated to introducing a certain modification of the global homotopy Manin triple for which this extra 
condition does hold; see Theorem 33 and its Corollary 34.

(The need for strong deformation retracts here is related to the fact that we insist on staying with dg Lie algebras and 
their dg associative enveloping algebras, rather than going to the less concrete but perhaps conceptually more natural setting 
of L∞ algebras and their envelopes. This choice is motivated by nothing deeper than the authors’ impression that PBW-type 
statements become rather subtle for L∞ algebras; see [38] and references therein including [2,44].)

1.6. Outline

This paper is structured as follows.
After defining rectilinear space (Rect2, O) and the formal rectilinear polydisc (PDisc×2 , Ô) in Section 2, we introduce in 

Section 3 the semisimplicial set of rectilinear flags and associated semicosimplicial algebras. Then in Section 4 we introduce 
the rectilinear adelic complex.

The Thom-Whitney, or Thom-Sullivan, construction is recalled in Section 5.
Then in Section 6 we give our notion of what it means to have a homotopy Manin triple, before giving our two classes 

of examples in Section 7 and Section 8. These sections contain the main results of the paper, Theorem 14 and Theorem 24. 
Finally, results about the enveloping dg associative algebras are collected in Section 9.

Acknowledgements. The authors would like to thank Jon Pridham for useful discussions. CY is grateful to Leron Borsten and 
Hyungrok Kim for useful discussions and many helpful suggestions.

The authors gratefully acknowledge the financial support of the Leverhulme Trust, Research Project Grant number RPG-
2021-092.
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2. Rectilinear space and the formal rectilinear polydisc

We work over C. The tensor product ⊗ means ⊗C throughout.

2.1. The affine line A1 and the formal disc Disc1

Recall that one thinks of the polynomial algebra C[z] as the algebra of functions on the affine line A1 := SpecC[z], its 
prime spectrum. The prime ideals of C[z] are 0 and (z− a)C[z] for every a ∈C, so that as a set

A1 = {η} �C,

where η is the generic point. The nonempty open sets in the Zariski topology are the complements A1 \ {c1, . . . , ck} of finite 
collections of closed points ci ∈C, and the structure sheaf

O : Open(A1)op → CAlg; O(A1 \ {c1, . . . , ck})=C(z)c1,...,ck

assigns to such an open set the algebra C(z)c1,...,ck of rational expressions in z singular at most at the missing points. The 
stalk at a ∈C is Oa := lim−→U�a

O(U ) = S−1
a C[z], the localization of C[z] away from the ideal generated by (z−a) or in other 

words the algebra of rational expressions in z with no singularity at z = a. At the generic point η the stalk is Oη =C(z), 
the field of all rational expressions in z.

The completion of C[z] with respect to the maximal ideal (z− a)C[z] is the algebra C[[z− a]] of formal power series. 
One thinks of it as the algebra of functions on the formal disc at a, Disc1(a) := SpecC[[z−a]]. The prime ideals of C[[z−a]]
are 0 and the unique maximal ideal (z− a)C[[z− a]], so that as a set the formal disc at a has exactly two points,

Disc1(a)= {η,a},
namely the generic point which we again call η, and the closed point a. (When we wish to refer to an abstract copy of the 
formal disc, we shall sometimes write pt. for the closed point Disc1 = {η, pt.}.) The only nonempty open sets of Disc1(a)

are Disc1(a) itself and the punctured formal disc at a, Disc×1 (a) := Disc1 \ {a} = {η}. The structure sheaf, which shall denote 
by Ô, is given by

Ô(Disc1(a))=C[[z− a]], Ô(Disc×1 (a))=C((z− a)) (5)

where C((z−a)) is the algebra of formal Laurent series. Its stalks are Ôa =C[[z−a]] and Ôη =C((z−a)). Note that there 
are embeddings of algebras Oa ↪→ Ôa and Oη ↪→ Ôη given by expanding in formal (Laurent) series in the local coordinate 
z− a.

Both the punctured affine line and the punctured formal disc are again affine schemes: A1 \ {a} = SpecC[(z− a)±1] and 
Disc×1 (a) = SpecC((z− a)).

2.2. Rectilinear space Rect2

Let us denote by

Rect2 :=A1 ×Top A1

the product in topological spaces of two copies of the affine line. Thus, Rect2 is the set-theoretic product A1×A1, endowed 
with the product of the Zariski topologies. Let w, z :C ×C→C be the Cartesian coordinates. As a set, Rect2 consists of

• All the points (a, b) ∈C2

• All the lines (w = a) for a ∈C
• All the lines (z= b) for b ∈C
• The generic point E.

Here, we are adopting the suggestive notations (w = a) and (z= b) for (a, η) and (η, b) respectively, and we write E for the 
generic point (η, η). The closure of the line (w = a) consists of the line and all its points: {(w = a)} = {(w = a)} � {(a, b) :
b ∈C}; the closure of the generic point E is all of Rect2: {E} = Rect2. Complements of closures of lines form a base of the 
open sets. Thus, every nonempty open subset is the complement of finitely many closed points and the closures of finitely 
many lines:

U = Rect2 \
m⋃
{(w = ai)} \

n⋃
{(z= b j)} \

p⋃
{(ck,dk)}. (6a)
i=1 j=1 k=1

6
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Let O : Openop
Rect2

→ CAlg be given by

O(U ) :=C(w)a1,...,am ⊗C(z)b1,...,bn . (6b)

This is a sheaf in commutative algebras. Its restriction maps are all injections.
In this way, we get a ringed space (Rect2, O) which we call rectilinear space. Its algebra of global sections is the polyno-

mial algebra O(Rect2) =C[w] ⊗C[z] =C[w, z]. The stalk at any closed point (a, b) ∈C2 ↪→ Rect2 is

O(a,b) = S−1
a C[w] ⊗ S−1

b C[z],
which is a local ring: its unique maximal ideal is (w − a)O(a,b) + (z− b)O(a,b) . However, the remaining stalks are not local 
rings: for example, the stalk of O at the generic point E ∈ Rect2 is

OE =C(w)⊗C(z).

2.3. The formal rectilinear polydisc PDisc2

Let us denote by

PDisc2(a,b)= Disc1(a)×Top Disc1(b)

the product in topological spaces of two copies of the formal disc. As a set PDisc2(a,b) consists of four points:

• The closed point (a, b) ∈C2

• The line (w = a)

• The line (z= b)

• The generic point E.

We call PDisc2(a,b) the formal rectilinear polydisc, and

PDisc×2 (a,b) := PDisc2(a,b) \ {(a,b)},
the punctured formal rectilinear polydisc, at (a, b). Let Ô be the sheaf in commutative algebras on PDisc2(a,b) given by

Ô(PDisc2(a,b))= Ô(PDisc×2 (a,b))=C[[w − a]] ⊗C[[z− b]] (7)

Ô(PDisc2(a,b) \ {(w = a)})=C((w − a))⊗C[[z− b]]
Ô(PDisc2(a,b) \ {(z= b)})=C[[w − a]] ⊗C((z− b))

Ô({E})=C((w − a))⊗C((z− b))

whose stalks are

ÔE =C((w − a))⊗C((z− b)) Ô(w=a) =C[[w − a]] ⊗C((z− b))

Ô(z=b) =C((w − a))⊗C[[z− b]] Ô(a,b) =C[[w − a]] ⊗C[[z− b]].
(It is the external tensor product of the structure sheaves on the two factors Disc1.)

When we identify PDisc2(a,b) as a subset of Rect2 in the obvious way, there are embeddings of algebras Ox ↪→ Ôx for 
every point x ∈ PDisc2(a,b), given by expanding in formal series in both the local coordinates, w − a and z− b.

2.4. Derived global sections and higher sheaf cohomology

There is a vital difference between the disc Disc1 and the polydisc PDisc2. If we remove the closed point from the Disc1, 
the algebra of global sections of the structure sheaf gets bigger, as we see in (5):

�(Disc1, Ô)=C[[z]]� C((z))= �(Disc×1 , Ô).

By contrast, if we remove the closed point from the polydisc in dimension two, we don’t get any more sections than we 
had before, as we see in (7):

�(PDisc2, Ô)=C[[w]] ⊗C[[z]] = �(PDisc×2 , Ô).

The same is true of Rect2 compared to the affine line A1. If we remove a single point c ∈C from the affine line, the 
algebra of global sections of the structure sheaf goes from the polynomial algebra C[z] to the algebra C(z)c =C[(z− c)±1]
7
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of Laurent polynomials. By contrast, note the lack of dependence on the (ck, dk) in (6): we may remove any finite number 
of closed points as we wish and no more global sections appear.

This is a classical phenomenon which occurs also for the structure sheaf on the usual affine plane A2 := SpecC[w, z]. It 
has an analog in the complex-analytic setting, known as Hartog’s theorem (see e.g. [36, Theorem 1.8] or [27]): in complex 
dimension at least two, every holomorphic function on a punctured polydisc can be analytically continued to a function on 
the unpunctured polydisc.

As stressed in [18,34], and in [25], one should think that the “missing” global sections over the punctured space have 
not vanished, but merely moved to higher cohomology. Recall that the derived space of global sections R�•(PDisc×2 , Ô) of 
the sheaf Ô on PDisc×2 is the cochain complex defined, up to zigzags of quasi-isomorphisms, by the requirement that its 
cohomology computes the sheaf cohomology of Ô,

H•(R�(PDisc×2 , Ô))∼= H•(PDisc×2 , Ô).

There is higher cohomology in the case of the punctured polydisc (cf. Corollary 17 below)

Hk(PDisc×2 , Ô)=

⎧⎪⎨⎪⎩
C[[w]] ⊗C[[z]] k= 0

w−1z−1C[w−1, z−1] k= 1

0 k /∈ {0,1}
One can think of w−1z−1C[w−1, z−1] here as the higher analog of the negative modes z−1C[z−1] ⊂C((z)) in the one-
dimensional case.

Our aim in the present paper is to construct explicit models of spaces of derived sections, in our rectilinear setting, with 
the following properties:

• we want models both for the local situation, i.e. for R�(PDisc×2 , Ô ), and for the global case R�(Rect2 \ {closed points},
O);

• we want these models to make explicit the global-to-local maps

R�(Rect2 \
⋃

i

{(ai,bi,O)})→ R�(PDisc×2 (ai,bi), Ô ),

that are the higher analogs of taking formal Laurent expansions;
• ultimately we want models in dg commutative algebras, rather than just dg vector spaces.

Our motivation is that we want explicit models, in dg Lie algebras, for the higher analogs of the usual current Lie algebras 
g ⊗C((t)) = g ⊗ �(Disc×1 , Ô ), and their global analogs, and the dg Lie algebra maps between them.

Models in dg commutative algebras for derived sections can be obtained in various ways; see [34, Appendix A]. The 
construction we use centres on the Thom-Sullivan-Whitney functor, whose definition we recall in Section 5.

The starting point is the familiar definition of sheaf cohomology. Recall that the sheaf cohomology of Ô on PDisc×2 is, by 
definition, the cohomology H•(PDisc×2 , Ô ) := H•(F) of any resolution

0→ Ô→F0 →F1 → . . .

of Ô by flasque sheaves. We shall construct such resolutions, of Ô and of O, in the spirit of the adelic complexes for 
schemes due to Parshin [52] and Beilinson [5], but adapted to our simpler rectilinear spaces, PDisc2 and Rect2 (which are 
not schemes).

Remark 1. For more on adelic complexes, see e.g. [31,50,49,51]. In the case of schemes, the algebras attached to flags 
of subschemes are defined by repeated localizations and completions – see [49], especially §3.2 and §3.3, and references 
therein. One of the ways in which our present rectilinear setting is simpler is that, because we just have a topological 
product of affine lines, the algebras we attach to flags below will be merely products of algebras appearing in that familiar 
case. Another is that we simply have a much smaller semisimplicial set of flags, because we need only the rectilinear flags. 
�

3. Semicosimplicial algebras associated to rectilinear flags

We must first introduce semisimplicial sets of rectilinear flags, and algebras associated to them: these will be the building 
blocks of our models for spaces of derived sections.
8
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3.1. Rectilinear flags

Given any subset U ⊆ Rect2 (open or not), let Flagn(U ) for n = 0, 1, 2 denote the set of n-step flags in U :

Flagn(U ) := {
(a0, . . . ,an) ∈ Un : {a0}� · · ·� {an}

}
.

(Thus, Flag1(Rect2) consists of points-in-lines and lines-in-the-surface, and Flag2(Rect2) consists of points-in-lines-in-the-
surface.)

Let

∂n
i : Flagn+1(U )→ Flagn(U );
(a0, . . . ,an+1) �→ (a0, . . . , âi, . . . ,an+1)

be the map given by removing one space from a flag, for i = 0, . . . , n + 1 and n = 0, 1, 2. These maps endow Flag•(U ) with 
the structure of a semisimplicial set, as we recall below. For intuition, one should visualise the example of the finite set 
of flags Flag•(PDisc2(a,b)) for the formal rectilinear polydisc PDisc2(a,b) ⊂ Rect2 at the closed point (a, b). It consists of 
exactly four vertices, five edges and two 2-simplices, while the set Flag•(PDisc×2 (a,b)) ⊂ Flag•(PDisc2(a,b)) of flags in the 
punctured formal rectilinear polydisc has exactly three vertices, two edges and no higher simplices:

(8)

3.2. Semisimplicial sets

Let � denote the category whose objects are the finite totally-ordered sets

[n] := {0 < 1 < · · ·< n}, n ∈Z≥0,

and whose morphisms are the strictly order-preserving maps θ : [n] → [N]. Such maps are injections and exist only for 
n ≤ N . They are generated by the coface maps

dn
i : [n]→ [n+ 1]; j �→

{
j j < i

j+ 1 j ≥ i

for i = 0, 1, . . . , n + 1 (together with the identity maps id[n]) for n = 0, 1, 2, . . . . One thinks of the category � as follows:

. . . [2] [1] [0].
A semisimplicial object Z in a category C is a functor Z : �op → C . In particular, a semisimplicial set S : �op → Set is a 
semisimplicial object S in the category of sets. For each n, S([n]) is called the set of n-simplices of S . The maps ∂n

i :=
S(dn

i ) : S([n + 1]) → S([n]) are the face maps of S .1

In our present case, we have the functor

Flag(Rect2) :�op → Set

given on objects by [n] �→ Flagn(Rect2) and on morphisms by dn
i �→ ∂n

i . One may think of the semisimplicial structure on 
Flag•(Rect2) as follows:

Flag2(Rect2) Flag1(Rect2) Flag0(Rect2).

1 Simplicial sets are defined in the same way but with “strictly order-preserving”, i.e. increasing, replaced by “weakly order-preserving”, i.e. non-decreasing, 
in the definition of �. Simplicial sets have extra structure (degenerate simplices and degeneracy maps) which we shall not need here.
9
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3.3. The comma category �↓ S

Given any semisimplicial set S : �op → Set, let �↓ S denote the category whose objects are the simplices of S , and 
in which there is a unique morphism f → F if f is a subsimplex of F , i.e. if f = φ(F ) for some morphism φ of 
S(�op), and no morphisms f → F otherwise. One can regard �↓ S as a partially ordered set. For example, the category 
�↓Flag•(PDisc2(a,b)) is the partially ordered set given by

(
(a,b)

)

(
(w = a)

)

(
(z= b)

)

(
E
)

(
(a,b),E )

(
(w = a),E

)

( ( z
=

b)
,

E)

( (a
,

b)
,
(w
=

a)
)

(
(a,b), (z= b)

)

(
(a,b), (w = a),E

)

(
(a,b), (z= b),E

)

(9)

There is another useful way of regarding the category �↓ S . Recall that the Yoneda embedding � Yoneda−−−−→ [�op, Set]
embeds � as a full subcategory of the category of semisimplicial sets, by sending [n] ∈ � to the standard n-simplex
�n := Hom�(−, [n]). We can then regard �↓ S as the comma category associated to the diagram of functors

1

� [�op,Set]
S

Yoneda

That is: we can think that an object of �↓ S is by definition a copy of the standard n-simplex �n for some n together with 
a map of semisimplicial sets �n → S; and a morphism from (�n → S) to (�N → S) in �↓ S is a morphism φ :�n →�N

of semisimplicial sets such that the diagram

�n �N

S

φ

commutes. An advantage of this perspective on �↓ S is that we get the functor

�↓ S
Forgetful−−−−−→�

Yoneda−−−−→ [�op,Set]

which forgets about the maps of the simplices into S . We can think of this functor as a diagram in the category [�op, Set]
of semisimplicial sets. (Its colimit is S itself.)
10
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For example the image of �↓Flag•(PDisc2(a,b)) in the category of semisimplicial sets is the diagram

�0

�0

�0

�0

�1

�1

�1�1

�1

�2

�2

(10)

Intuitively speaking, this tells us how to build Flag•(PDisc2(a,b)) by sewing together standard simplices.

3.4. Semicosimplicial algebras

A semicosimplicial object A in a category A is a functor A :� →A, i.e. an object of the functor category

[�,A].
The relevant categories A for us are commutative algebras, Lie algebras, and the differential graded analogs of these. When 
it is not necessary to be more precise, we shall refer to objects of A as algebras and to semicosimplicial objects in A as 
semicosimplicial algebras.

Thus, a semicosimplicial algebra A has, by definition, an algebra A([n]) ∈A of n-cosimplices, for each n ∈Z≥0, and coface 
morphisms dn

i : A([n]) → A([n + 1]), i = 0, 1, . . . , n + 1 between them:

. . . A([2]) A([1]) A([0]).
Actually, our semicosimplicial algebras will have a finer structure than this: they will arise from semisimplicial sets (of 

flags) by first attaching algebras to individual simplices (i.e. individual flags) of a given semisimplicial set. It is useful to keep 
track of this structure, and to that end we make the following definition.

3.5. S-algebras

Given a semisimplicial set S , define the category of S − objects in A or S-algebras to be the functor category

[�↓ S,A],
i.e. the category whose objects are functors �↓ S → A and whose morphisms are natural transformations between such 
functors. Given an S-object in A there is a natural way to recover a semicosimplicial object in A. Namely, given a functor 
A :�↓ S →A, we may define a functor �A :� →A as follows. We set

(�A) ([n]) :=
∏

f ∈S([n])
A f

and if φ : [n] → [N] in � then the morphism (�A) (φ) : (�A) ([n]) → (�A) ([N]) is given by its restrictions to the factors 
A f :

(�A) (φ)|A f =
∏

F∈S([N]) : S(φ)(F )= f

A( f → F )

(Recall that A( f → F ) : A f → A F . A given n-simplex f may belong to the boundary of infinitely many N-simplices of S , 
and for that reason we need the direct product 

∏
rather than the direct sum 

⊕
. On the other hand, any given N-simplex 

F has only finitely many boundary n-simplices, so there are only finitely many factors A f such that f → F is a morphism 
of �↓ S , and thus the restriction of (�A)(φ)

(
�A([n])) to the factor A F is a well-defined sum of finitely many terms.)

Lemma 2. This � defines the action on objects of a functor

�=�S : [�↓ S,A]→ [�,A]
from S-objects in A to semicosimplicial objects in A. �
11
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Remark 3. This functor � is left adjoint,

[�,A] [�↓ S,A]
u∗

�

�

,

to the pull-back u∗ : B �→ u∗(B) = B ◦ u of the forgetful functor u :�↓ S →�. �

3.6. Semisimplicial subsets and the restriction morphism

The other fact we need concerns semisimplicial subsets of S . Suppose R is a semisimplicial subset of S , by which we 
mean that for each n the set of n-simplices of R is a subset of the set of n-simplices of S , R([n]) ⊂ S([n]) and that the 
face maps respect these embeddings of sets. That is, the embedding maps i([n]) : R([n]) ↪→ S([n]) define a morphism of 
semisimplicial sets i : R → S , i.e. they are the components of a natural transformation i

�op Set

R

S

i

between the functors R and S . We get a functor �↓ i :�↓R →�↓ S between the corresponding comma categories. Given 
an S-object A in A we have then also its restriction A|R , an R-object in A. Namely, A|R is the composition

�↓R →�↓ S
A−→A.

This defines a functor [�↓ S, A] →[�↓R, A]; A �→ A|R . (That is, A|R := (�↓ i)∗A.) We can then form two semicosimplicial 
objects in A, namely �S A and �R A|R .

Lemma 4. There is a morphism of semicosimplicial objects in A,

π :�S A →�R A|R
given by

π |A f =
{

idA f f ∈ R

0 f /∈ R.
�

Remark 5. Note that while we also have the obvious embedding maps (�R A|R)([n]) ↪→�S A([n]), these do not in general 
define a morphism of semicosimplicial algebras �R A|R →�S A. Indeed, we get failures of naturality whenever f ∈ S([n])
and F ∈ S([N]) are such that f ∈ R([n]) and yet F /∈ R([N]). �

3.7. First example

We now turn to an example which will play a central role. Let CAlgemb denote the category whose objects are commu-
tative (C-)algebras and whose morphisms are embeddings of commutative algebras.

Let PDisc2 := PDisc2(0,0) be the formal rectilinear polydisc at the point (0, 0). To give a Flag•(PDisc2)-object in CAlgemb, 
i.e. a functor

�↓Flag•(PDisc2)→ CAlgemb,

is by definition to give a certain commuting diagram of commutative algebras and embeddings between them, cf. (9) and
(10). Let us define such an algebra, APDisc2 , as follows.
12
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APDisc2 :=

C[[w]] ⊗C[[z]]

C[[w]] ⊗C((z))

C((w))⊗C[[z]]

B

B

B

BC[[w]] ⊗C((z))

C((w))⊗C[[z]]

B

B

(11)

where B is the commutative algebra

B :=C((z))⊗C((w)).

That is, APDisc2 ( f ) := B for all simplices f with only the following exceptions:

APDisc2((0,0)) :=C[[w]] ⊗C[[z]]
APDisc2((w = 0)) := APDisc2((0,0), (w = 0)) :=C[[w]] ⊗C((z))

APDisc2((z= 0)) := APDisc2((0,0), (z= 0)) :=C((w))⊗C[[z]].
Let APDisc×2

denote the restriction, in the sense of Lemma 4, of the Flag•(PDisc2)-algebra APDisc2 to a Flag•(PDisc×2 )-algebra:

APDisc×2
:= APDisc2 |Flag•(PDisc×2 ).

3.8. The associated cochain complex of a cosimplicial algebra

Let CCh(A) denote the category of cochain complexes in A. There is a functor

C : [�,A]→ CCh(A); A �→ (C•(A),d)

which assigns to any semicosimplicial object A in A a cochain complex (C•(A), d) concentrated in nonnegative degrees, its 
associated complex. (See e.g. [55, §8.2.1 and §8.4.3].) For each n ≥ 0 the space Cn(A) is a copy of A([n]) put into cohomolog-
ical degree n,

Cn(A) := s−nA([n])
and the differential dC =∑

n dn
C , dn

C : Cn(A) → Cn+1(A), is given by the alternating sum of the coface maps,

dn
C = s−1 ◦ (A(dn

0)− A(dn
1)+ · · · + (−1)n+1 A(dn

n+1)
)
.

Here we use the standard notation

sn : CCh(A)→ CCh(A); snV := [n] ⊗ V

where [n] is the one-dimensional graded vector space concentrated in cohomological degree −n. In particular if V is con-
centrated in degree 0 then s−nV is concentrated in degree n.
13
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3.9. Homotopy equivalences and deformation retracts

Recall that a map f : V → W of cochain complexes V , W ∈ CCh(A) is a homotopy equivalence if it is invertible up to 
homotopies, in the sense that there exists a map of cochain complexes g :W → V in the opposite direction such that

g ◦ f 
 idV and f ◦ g 
 idW .

Here we used 
 to indicate that two cochain maps are homotopic, meaning that there exists a cochain homotopy between 
them. That is, in this case, there are maps in A

h : V n → V n−1 and k :W n →W n−1

for each n, such that

g ◦ f − idV = [h,dV ] := h ◦ dV + dV ◦ h

f ◦ g − idW = [k,dW ] := k ◦ dW + dW ◦ k.

This situation is often denoted

V Wh
f

g
k .

As a special case, if g ◦ f = idV holds exactly then V is a deformation retract of W :

V W
f

g
h

See for example [41, §1.5.5].
Every homotopy equivalence is a quasi-isomorphism of cochain complexes, i.e. it gives rise to an isomorphism in coho-

mology. For cochain complexes in vector spaces, i.e. for dg vector spaces, the converse is also true. To see this, it is enough 
to note H•(V ) is always a deformation retract of V . See e.g. [41, §9.4.3]. (Recall we work over C, here and throughout.)

4. The rectilinear adelic complex

We are now in a position to define the complex which will model the derived sections of the sheaf O on rectilinear 
space Rect2.

The main result of this section is Theorem 6. Let us remark that the subsequent sections of the paper are self-contained 
and can be read independently of this section.

Recall that Flag•(U ) is the semisimplicial set of flags in a subset U ⊂ Rect2 of rectilinear space, as in §3.1. There is 
manifestly an embedding of semisimplicial sets Flag•(U ) ↪→ Flag•(V ), cf. §3.6, whenever U ⊂ V , and these embeddings 
compose correctly, i.e. we get a functor

Flag•(−) : OpenRect2
→[�op,Set]emb

/ Flag•(Rect2); U �→ Flag•(U )

to the category of embedded semisimplicial subsets of Flag•(Rect2).2 We recognize the (inverse) limit

lim←−
U�(a,b)

Flag•(U )= Flag•(PDisc2(a,b))

as the semisimplicial set Flag•(PDisc2(a,b)) of flags in the formal rectilinear polydisc at the point (a, b) ∈C2.
Now let us define a Flag•(Rect2)-object A in commutative algebras, i.e. a functor

A :�↓Flag•(Rect2)→ CAlg

as follows: every flag, i.e. every simplex, is sent to C(w) ⊗C(z) with only the following exceptions:

A((a,b)) := S−1
a C[w] ⊗ S−1

b C[z] (12a)

2 Here, given any semisimplicial set S , we let [�op, Set]emb
/S denote the category of its embedded semisimplicial subsets, i.e. the category whose objects 

are tuples (R, R ↪→ S) consisting of a semisimplicial set R and an embedding of R into S , and whose morphisms (R, R ↪→ S) → (T , T ↪→ S) are morphisms 
R → T such that the diagram R T

S
commutes.
14
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A((a,b), (w = a)) := A((w = a)) := S−1
a C[w] ⊗C(z) (12b)

A((a,b), (z= b)) := A((z= b)) :=C(w)⊗ S−1
b C[z] (12c)

for all a, b ∈C. By restriction, we obtain also a Flag•(U )-object AU in commutative algebras for every subset (open or not) 
U ⊂ Rect2.

At this point, we would like to apply the functor � of §3.5 to obtain a semicosimplicial algebra �AU for each open U . 
There is however a crucial subtlety. To get the resolution we seek of the sheaf O, it is necessary to modify the definitions 
of the algebras of 1-simplices and 2-simplices:

�′AU ([0]) :=
∏

F∈Flag0(U )

A(F )

�′AU ([1]) :=
{

x= (xF ) ∈
∏

F∈Flag1(U )

A(F ) : (13)

for all but finitely many flags of the form F = ({pt.} ⊂ (line)),
xF actually belongs to A({pt.}), and

for all but finitely many flags of the form F = ((line) ⊂ E),
xF actually belongs to A((line))

}

�′AU ([2]) :=
{

x= (xF ) ∈
∏

F∈Flag2(U )

A(F ) :

for all but finitely many flags F = ({pt.} ⊂ (line) ⊂ E),
xF actually belongs to A({pt.}).

}
We obtain a sheaf in semicosimplicial algebras U �→�′AU . The restriction maps �′AV →�′AU for U ⊂ V just consist in 
throwing away some terms in the products and are manifestly surjective. Thus this sheaf is flasque. On taking the associated 
cochain complexes we obtain a flasque sheaf in cochain complexes in commutative algebras

U �→ C•(�′AU ).

Theorem 6. This sheaf U �→ C•(�′AU ) on Rect2 is a flasque resolution of O.
Thus, C•(�′A) is a model for the derived sections of O:

R�•(U ,O)
 C•(�′AU ),

for each open U ⊂ Rect2 .

Proof. The proof is given in Appendix A. �
The Thom-Whitney construction, Section 5, provides another model, Th•(�′A), which comes equipped with the structure 

of a dg commutative algebra.
For completeness, we note also the following. Let APDisc2 be the Flag(PDisc2)-algebra from §3.7. It restricts to a Flag(U )-

algebra AU for each open U ⊂ PDisc2 and this defines a sheaf U �→ �AU in semicosimplicial commutative algebras on 
PDisc2.

Theorem 7. This sheaf U �→ C•(�AU ) on PDisc2 is a flasque resolution of Ô.
Thus, C•(�A) is a model for the derived sections of Ô:

R�•(U , Ô)
 C•(�AU ),

for each open U ⊂ PDisc2 . �
4.1. Remark on completed local rings

In place of the definition (12) of A, we could make the following alternative choice:

Â((a,b)) :=C[[w − a]] ⊗C[[z− b]] (14a)

Â((a,b), (w = a)) :=C[[w − a]] ⊗C((z− b)) Â((w = a)) :=C[[w − a]] ⊗C(z)

Â((a,b), (z= b)) :=C((w − a))⊗C[[z− b]] Â((z= b)) :=C(w)⊗C[[z− b]]

15
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Â((a,b), (z= b),E) :=C((w − a))⊗C((z− b)) Â((z= b),E) :=C(w)⊗C((z− b))

Â((a,b), (w = a),E) :=C((w − a))⊗C((z− b)) Â((w = a),E) :=C((w − a))⊗C(z)

Â(E) :=C(w)⊗C(z) (14b)

(The proof of Theorem 6 in Appendix A goes through with an additional step: one checks that C�′AV 
 C�′ÂV for suitably 
small open sets V .)

This choice of A vs. Â has an analog in the familiar case of the affine line A1 , where, at the level of global sections, one 
has the usual short exact sequence,

0→C[x]→C(x)⊕
∏
a∈C

C[[x− a]]→
′∏

a∈C
C((x− a))→ 0,

but also the following one,

0→C[x]→C(x)⊕
∏
a∈C

S−1
a C[x]→

′∏
a∈C

C(x)→ 0.

(The elements of 
∏′

a∈CC(x) are called rational or non-complete adeles. See e.g. [24].)

4.2. Global sections as the homotopy kernel

In the familiar case of adeles for complex dimension one, we may also consider puncturing the affine line A1 at only a 
prescribed finite collection of closed points {a1, . . . , aN} of our choice, and we get the following short exact sequence

0→C[x]→C(x)a1,...,aN ⊕
N⊕

i=1

C[[x− ai]]→
N⊕

i=1

C((x− ai))→ 0 (15)

which, more conceptually, is

0→ �(A1,O)→ �(A1 \ {a1, . . . ,aN},O)⊕
N⊕

i=1

Ôai →
N⊕

i=1

�(Disc×1 (ai, Ô))→ 0.

One way to interpret this exact sequence is to say that the space of global sections �(A1, O) is the kernel of the map into 
the tuples of sections over the punctured discs:

�(A1,O)= ker

(
�(A1 \ {a1, . . . ,aN},O)⊕

N⊕
i=1

Ôai →
N⊕

i=1

�(Disc×1 (ai, Ô))

)
(and this is true whether we choose to complete the local rings Oa or not, cf. §4.1).

As explained in [18], this statement has a derived analog: the space of global sections becomes a certain homotopy kernel. 
In our case, the statement is Proposition 8 below. This is nothing but a restatement of [18, Proposition 1.1.4] in our rectilinear 
setting, and the argument below is merely an expanded version of the argument given there3

As we saw in Theorem 6, the cochain complex

C := C•(�′(A)) (16)

models the derived space of global sections of O on Rect2

R�•(Rect2,O)
 C•(�′(A)).

Now let

x= {(a1,b1), . . . , (aN ,bN)}
denote a finite collection of marked points in C ×C. Flags in the semisimplicial set of rectilinear flags Flag•(Rect2) either 
start at one of the marked points, or they do not; thus, by definition of the unnormalized cochains functor C• , we have

3 Though any errors which have appeared in it are of course due to the present authors.
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Cn =
′∏

f ∈Flagn(Rect2)

A( f )=
′∏

f ∈Flagn(Rect2\x)

A( f )⊕
′∏

f ∈Flagn(Rect2)
: f0⊂x

A( f ) (17)

Here, we recognise the first of the two summands on the right as the space Cn
1 of the complex

C•1 := C•(�′(ARect2\x))
 R�(Rect2 \ x,O) (18)

which we know models the derived space of sections of O on Rect2 \ x. We want to interpret the second summand on the 
right in (17). When n = 0, it is nothing but⊕

(a,b)∈x

A({(a,b)})=
⊕

(a,b)∈x

O(a,b) =: C0
2, (19)

which we may choose to think of as the degree zero space of a complex 0 → C0
2 → 0. For n ≥ 1, we need the following 

observation about the definition (12): for any flag4 f0 ⊂ f1 ⊂ . . . whose first space is a point, we have

A( f0 ⊂ f1 ⊂ . . . )= A( f1 ⊂ . . . ).

(The only cases to check are those in (12b) and (12c) and A((a, b) ⊂ E) = A(E).) If f0 = (a, b) is one of the marked points 
then the truncated flags f1 ⊂ . . . on the right here belong to our semisimplicial set of flags Flag•(PDisc×2 (a,b)) in the 
punctured polydisc at this marked point. Using this fact, we get that, for n ≥ 1,

Cn−1
3 :=

′∏
f ∈Flagn(Rect2)

: f0∈x

A( f )=
⊕

(a,b)∈x

Cn−1(�(A|Flag(PDisc×2 (a,b)))) (20)

(note the degree shift). We know the complexes appearing on the right here, namely

C•(�(A|Flag•(PDisc×2 (a,b))))
 R�•(PDisc×2 (a,b),O),

model the derived algebra of sections of O on the punctured formal rectilinear polydiscs at the marked points (a, b) ∈ x.
The 0-step flags in C2 form a semisimplicial subset of Flag•(Rect2), i.e. �↓C2 is a full subcategory of �↓Flag•(Rect2). (It 

just consists of isolated points.) We get the C2-object in commutative algebras A|C2 , which just sends, cf. (12),

A : {(a,b)} �→ S−1
a C[w] ⊗ S−1

b C[z] =O(a,b)

for each marked point (a, b) ∈ x.
Thus, as a graded vector space, we have that

C• = (
C1 ⊕ C2 ⊕ s−1C3

)•
, i.e. Cn = Cn

1 ⊕ Cn
2 ⊕ Cn−1

3 (21)

for each n, for these complexes C , C1, C2 and C3 we defined in (16), (18), (19) and (20). The differential of the complex C•
is given, in matrix form, by

dC =
(

dC1 + dC2 0
d −dC3

)
(22)

where d is a (degree zero) cochain map

d : C1 ⊕ C2 → C3

defined by our choices above. Conceptually, d|C2 is the sum of the maps

O(a,b) = �(PDisc2(a,b),O)→ R�(PDisc×2 (a,b),O)

while d|C1 is the diagonal map

R�(Rect2 \ x,O)→ R�(PDisc×2 (a,b),O).

But presented as in (21), (22), one recognises the complex (C•, dC ) as the mapping cocone Cocone(d) of the cochain map 
d. (See e.g. [48], or [55, Chapter 10], and note that Cocone(d) = s−1 Cone(d).) In turn the mapping cocone represents the 
homotopy kernel hoker(d) of the map d, so we arrive at the following statement.

4 Here and occasionally elsewhere, we use a suggestive but rather loose notation: the flag is strictly-speaking the tuple ( f0, f1, . . . ) with { f0} ⊂ { f1} ⊂ . . . .
17
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Proposition 8 (Following [18] Proposition 1.1.4). The space of global sections of O on rectilinear space Rect2 is the homotopy kernel of 
the map d:

�(Rect2,O)=

hoker

⎛⎝R�(Rect2 \ x,O)⊕
⊕

(a,b)∈x

O(a,b)
d−→

⊕
(a,b)∈x

R�(PDisc×2 (a,b),O)

⎞⎠ , �

5. The Thom-Whitney-Sullivan functor

Now we describe the tool we use to produce models of derived spaces of sections which come equipped with the 
structure of differential graded commutative or Lie algebras. In the literature it goes by the name of the Thom-Sullivan 
[30,6,34] or Thom-Whitney [19] construction.

5.1. Polynomial forms on the standard algebro-geometric simplex

There is a semisimplicial5 commutative differential graded algebra


 :�op → dgCAlg

defined as follows. For each n ≥ 0, 
([n]) is the commutative differential graded algebra


([n]) :=C[t0, . . . , tn;dt0, . . . dtn]
/〈 n∑

i=0

ti − 1,

n∑
i=0

dti〉

with ti in degree 0 and dti in degree 1, for each i, and equipped with the usual de Rham differential. One should think of 

([n]) as the complex of polynomial differential forms on the standard algebro-geometric n-simplex. For any map φ : [n] →
[N] of �,


(φ) :
([N])→
([n])
is the map of dg commutative algebras defined by ti �→∑

j∈φ−1(i) t j .

5.2. The functor Th

Suppose g : � → dgLieAlg is a semicosimplicial differential graded Lie algebra. We can construct the bigraded vector 
space C•,• whose spaces are

C p,q =
{

a= (am)m≥0 ∈
∏
m≥0


([m])p ⊗ g([m])q :

(id⊗ g(φ))an = (
(φ)⊗ id)aN in 
([n])p ⊗ g([N])q

for all n≤ N and all maps φ : [n]→ [N] of �

}
. (23)

It is a bicomplex, with the de Rham differential dp : C p,q → C p+1,q and the internal differential of g, dq
g : C p,q → C p,q+1. The 

Thom-Whitney complex (Th•(g), dTh) is by definition the corresponding total complex

Thn(g)=
⊕

p+q=n

C p,q

with differential

dTh := d+ dg.

That is,

dTh(ω⊗ a)= dω⊗ a+ (−1)grωω⊗ dga.

5 It is actually simplicial, i.e. it has degeneracy as well as face maps, but we shall not need this.
18



L. Alfonsi and C.A.S. Young Journal of Geometry and Physics 191 (2023) 104903
As a cochain complex Th•(g) is quasi-isomorphic to the total complex Tot•(g), Totn(g) =⊕
p+q=n Cp(gq), of the unnor-

malized cochain complex, cf. §3.8, of the dg Lie algebra g [56] [29, §4]. A quasi-isomorphism 
∫ : Th(g) → Tot(g) is defined 

by integrating over the simplices; see [30, §5.2.6]. In fact an explicit deformation retracts

Th(g) Tot(g)

∫
E

,

is known [13]; see [19, §6] and references therein.
The great advantage of the Thom-Whitney complex is that it comes with the structure of a differential graded Lie algebra. 

The graded Lie bracket is given by

[ω⊗ a, τ ⊗ b] := (−1)gr a grτω ∧ τ ⊗ [a,b]
for all a, b ∈ g([n]) and ω, τ ∈ 
([n]), for each n. One obtains a functor, the Thom-Whitney functor, from semicosimplicial 
differential graded Lie algebras to differential graded Lie algebras,

Th : [�,dgLieAlg]→ dgLieAlg.

Entirely analogously, one has a functor

Th : [�,dgCAlg]→ dgCAlg

(which we also denote Th) from semicosimplicial dg commutative algebras to dg commutative algebras.
Any Lie algebra can be regarded as a differential graded Lie algebra concentrated in degree zero, and any commutative 

algebra can be regarded as a differential graded commutative algebra concentrated in degree zero. So the functors above 
restrict to functors

Th : [�,LieAlg]→ dgLieAlg, and Th : [�,CAlg]→ dgCAlg

which will actually be all that we need here.

5.3. Thom-Whitney complex of an S-algebra

Suppose S is a semisimplicial set and

g :�↓ S → dgLieAlg

an S-object in differential graded Lie algebras, in the sense of §3.5. On composing the functor � : [�↓ S, dgLieAlg] →
[�, dgLieAlg] with the Thom-Whitney functor, we get a functor

Th◦� : [�↓ S,dgLieAlg]→ dgLieAlg.

There is an intuitively clear geometrical interpretation of the differential graded Lie algebra Th(g). Recall that an S-algebra 
assigns an algebra to each simplex of the semisimplicial set S , and specifies maps between them. We can realize S geomet-
rically and consider polynomial differential forms on S , with the form on each simplex valued in the corresponding algebra. 
It is natural to consider forms compatible with the maps between these algebras in the obvious sense. And indeed we see 
C p,q of (23) becomes

C p,q =
{

a= (ax)x∈�n S([n]) ∈
∏

x∈�n S([n])

([dim x])p ⊗ g(x)q :

(id⊗ g(φ))ax = (
(φ)⊗ id)aX in 
([dim x])p ⊗ g(X)q

for all maps φ : x→ X of �↓ S

}
. (24)

That is, an element of C p,q consists of an g(x)-valued polynomial differential form ax on each simplex of x of S , such that 
whenever x is a simplex of S on the boundary of another simplex X in S , then the pullback to x of the form aX agrees with 
the image, under the map g(x) → g(X), of the form ax .

If R is a semisimplicial subset of S then we have the morphism of semicosimplicial algebras π : �A → �(A|R) of 
Lemma 4 and hence, by functoriality of Th, a map

Th(π) : Th(A)→ Th(A|R) (25)

This is just the map which pulls back a differential form on S to one on R .
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5.4. Example: the dg Lie algebra gPDisc×2

It is helpful to see an example of the functor Th◦� in action.
Let g be a finite-dimensional simple Lie algebra. Recall from (8) the semisimplicial set Flag•(PDisc×2 ), and from (11) our 

definition of the Flag•(PDisc×2 )-algebra APDisc×2
:

C[[w]] ⊗C((z)) C((w))⊗C[[z]]BB B

where

B =C((w))⊗C((z)).

We shall write

gPDisc×2
:= Th(g⊗ APDisc×2

)

for the resulting differential graded Lie algebra of Thom-Whitney forms. Explicitly, gPDisc×2
consists of pairs of differential 

forms:

gPDisc×2
=
{(

φ(s)= f (s)+ F (s)ds, ψ(s)= g(s)+ G(s)ds
) :

f (s), F (s), g(s), G(s) ∈ g⊗C((w))⊗C((z)) for all s,

f (1)= g(1),

f (0) ∈ g⊗C[[w]] ⊗C((z)), g(0) ∈ g⊗C((w))⊗C[[z]]
}
. (26)

We should think of these forms as painted onto the edges of the semisimplicial set Flag•(PDisc×2 ), cf. §5.5:

φ(s)= f (s)+ F (s)ds ψ(s)= g(s)+ G(s)ds

(z= 0)(w = 0) E

5.5. Conventions for coordinates on simplices

For us, every 2-simplex corresponds to a flag of the form point pt.⊂ (line) ⊂ E. (Compare (8).) On each individual such 
simplex, we choose coordinates (s, t) as follows.

Thus, on each simplex:

• ds is a nonzero constant one-form that vanishes on the edge pt.⊂ (line)
• dt is a nonzero constant one-form that vanishes on the edge (line) ⊂ E
• these one-forms agree, ds = dt , on the edge pt.⊂ E.
20



L. Alfonsi and C.A.S. Young Journal of Geometry and Physics 191 (2023) 104903
6. Homotopy Manin triples

As we discussed in the introduction, our main goal in the present work is to give higher generalizations of certain Manin 
triples which are important in the theory of integrable systems.

To that end we must first clarify what such a generalization of a Manin triple should mean. We begin by expressing the 
usual definition of a Manin triple of Lie algebras in a form amenable to generalization. Recall that we work over C, here 
and throughout. A Manin triple (a, a±, ι±, 〈− | −〉) is the data of

(1) Lie algebras a, a+ , a− ,

(2) Lie algebra maps a+
ι+−→ a 

ι−←− a− , and
(3) a map of vector spaces 〈− | −〉 : a ⊗ a →C,

subject to the following conditions:

(i) the map of vector spaces (ι+, ι−) : a+ ⊕ a− → a is an isomorphism.
(ii) the map 〈− | −〉 : a ⊗ a →C is

- symmetric: 〈x | y〉 = 〈y | x〉 for all x, y ∈ a.
- invariant: 〈[x, y] | z〉 + 〈y | [x, z]〉 = 0 for all x, y, z ∈ a.

(iii) the map 〈− | −〉 : a ⊗ a →C is non-degenerate: If 〈x | −〉 = 0 as maps a →C then x = 0.
(iv) both a+ and a− are isotropic, i.e. the maps

〈ι±(−) | ι±(−)〉 : a± ⊗ a± →C

are zero.

Having expressed the definition this way, it seems natural to make the following generalization to dg Lie algebras:

Definition 9. A homotopy Manin triple (of dg Lie algebras) (a, a±, ι±, 〈− | −〉 , n) is the data of

(1) dg Lie algebras a, a+ and a−
(2) dg Lie algebra maps a+

ι+−→ a 
ι−←− a− , and

(3) a (degree zero) map of dg vector spaces 〈− | −〉 : a ⊗ a → s−nC

subject to the following conditions:

(i) the map of dg vector spaces (ι+, ι−) : a+ ⊕ a− → a is a homotopy equivalence
(ii) the map 〈− | −〉 : a ⊗ a → s−nC is

- (graded) symmetric: 〈x | y〉 = (−1)gr x gr y 〈y | x〉 for all x ∈ agr x, y ∈ agr y .
- invariant:

〈[x, y] | z〉 + (−1)gr x gr y 〈y | [x, z]〉 = 0

〈dax | y〉 + (−1)gr x 〈x | da y〉 = 0

for all x ∈ agr x , y ∈ agr y and z ∈ agr z .
(iii) the map 〈− | −〉 : a ⊗ a → s−nC is non-degenerate up to homotopy: If 〈x | −〉 
 0 then x 
 0 (i.e. x is exact).
(iv) both a+ and a− are isotropic, i.e. the maps

〈ι±(−) | ι±(−)〉 : a± ⊗ a± → s−nC

are homotopic to zero.

Let us make several remarks about this definition.

Remark 10. Recall that in the category of dg vector spaces, every quasi-isomorphism is a homotopy equivalence (cf. §3.9). 
Consequently, conditions (i) (iii) and (iv) respectively could be replaced with the following equivalent demands:

(i’) the map (ι+, ι−) induces an isomorphism of graded vector spaces

H(a+)⊕ H(a−)∼=grVect H(a)
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(iii’) the map of graded vector spaces

H(a)⊗ H(a)→ s−nC

induced by 〈− | −〉 is non-degenerate (on the nose).
(iv’) both H(a+) and H(a−) are isotropic (on the nose) as subspaces of H(a). �

Remark 11. For a suitable notion of the dual a∗ of a, condition (iii) is equivalent to

(iii”) The map a → s−na∗ induced by 〈− | −〉 is a homotopy equivalence.

(For us a is often a cochain complex in topological vector spaces, and the appropriate dual cochain complex has spaces 
Homcts(an, C) consisting of the continuous linear maps to C with its discrete topology. For example, in the case of C[[t]]
with its t-adic topology, one has Homcts(C[[t]], C) ∼= t−1C[t−1], as one wants.) �

Remark 12. Let dgLieAlg◦ denote the full subcategory of dgLieAlg whose objects are those dg Lie algebras that are both 
fibrant and cofibrant in some model structure (for example, in the standard projective model structure on dgLieAlg induced 
from the standard projective model structure on dgVect [28]). Recall that in dgLieAlg◦ every quasi-isomorphism is a homo-
topy equivalence, i.e. is invertible up to homotopies. One sees that if a, a± and b, b± are objects in dgLieAlg◦ and a 
 b and 
a± 
 b± , then a Manin triple structure for a, a± induces a unique Manin triple structure for b, b± . �

Remark 13. Kravchenko gives a definition of a Manin L∞-triple, or strongly homotopy Manin triple, in [37]. We discuss the 
relationship between that definition and Definition 9 in Appendix C. �

7. Local homotopy Manin triple

With the above definition of a homotopy Manin triple in place, we are ready in this section to give our first main 
example of such a structure. Namely, we define a homotopy Manin triple associated to the punctured formal rectilinear 
polydisc PDisc×2 . See Theorem 14 below. It can be seen as a higher analog of the Manin triple (1) from the introduction.

Recall first the dg Lie algebra gPDisc×2
we defined in §5.4. It plays the role of the Lie algebra g ⊗C((z)) = g ⊗�(Disc×1 , Ô)

in the Manin triple in (1). Now we define the two dg Lie algebras which will be analogs of g ⊗C[[z]] and g ⊗ z−1C[z−1].

7.1. The dg Lie algebras g+ and g−

Let

g+ := g⊗C[[w]] ⊗C[[z]],
regarded as a dg Lie algebra concentrated in degree zero. Let

g− := Th(g⊗ A−−
PDisc×2

),

where we introduce another Flag•(PDisc×2 )-algebra A−−
PDisc×2

, given by

0 0w−1z−1C[w−1, z−1]w−1z−1C[w−1, z−1] w−1z−1C[w−1, z−1]
Explicitly then, g− consists of pairs of differential forms:

g− =
{(

φ(s)= f (s)+ F (s)ds, ψ(s)= g(s)+ G(s)ds
) :

f (s), F (s), g(s), G(s) ∈ g⊗ w−1z−1C[w−1, z−1] for all s,

f (1)= g(1), f (0)= 0, g(0)= 0
}
,

cf. (26). We have the maps of dg Lie algebras

g+
i+−→ gPDisc×2

i−←− g−

where i+ : g+ → gPDisc×2
sends f ∈ g+ to the constant function f ∈ gPDisc×2

, and i− : g− → gPDisc×2
is the map of dg Lie 

algebras coming from the canonical embeddings, using Lemma 2 and functoriality of Th.
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7.2. The bilinear form

Now we define on gPDisc×2
a symmetric invariant form

〈− | −〉 : gPDisc×2
⊗ gPDisc×2

→ s−1C.

(Recall s−1C is a copy of C put into cohomological degree 1.) We pick an orientation of Flag(PDisc×2 ): let

�= (
(w = 0),E)

)− (
(z= 0),E

)
be the 1-chain whose boundary is ∂� = (w = 0) − (z= 0). Observe that, in the notation of §5.4, we have∫

�

(ds,−ds)=
∫
�1

ds+
∫
�1

ds= 2.

For a, b ∈ g and ω, λ ∈ Th(APDisc×2
), we set

〈a⊗ω | b⊗ λ〉 := s−1 1

2
κ
(
a|b) ∫

�

resw resz ω ∧ λ

where κ
(−|−) denotes the standard invariant symmetric bilinear form on the simple Lie algebra g, and where

rest :C((t))→C;
∑

k

fktk �→ f−1

is the residue map. Then we extend 〈− | −〉 by linearity to all of gPDisc×2
⊗ gPDisc×2

.

7.3. Manin triple

The main result of this section is then the following.

Theorem 14. These data

(gPDisc×2
,g+,g−, i+, i−, 〈− | −〉)

constitute a homotopy Manin triple in dg Lie algebras, in the sense of Definition 9.

Proof. Condition (i) is Proposition 15 below. For condition (ii), graded symmetry is clear, and invariance is Proposition 19. 
For the nondegeneracy and isotropy conditions (iii) and (iv), it is convenient to establish the equivalent statements about 
cohomologies from Remark 10. We do so in Proposition 20. �

We start with the following, which is fundamental for us.

Proposition 15. At the level of dg vector spaces, g− ⊕ g+ is a deformation retract of gPDisc×2
:

g− ⊕ g+ gPDisc×2
I

P
h

Proof. The maps i+ and i− of dg Lie algebras define the map of dg vector spaces

I = i+ ⊕ i− : g− ⊕ g+ → gPDisc×2
.

(Note that it is not a map of dg Lie algebras: the images of g+ and g− in gPDisc×2
are not mutually commuting.)

We must define a map

P : gPDisc×2
→ g− ⊕ g+

and a homotopy h : gPDisc×2
→ gPDisc×2

.
Let

ω(s)= (φ(s),ψ(s))= ( f (s)+ F (s)ds, g(s)+ G(s)ds)
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be the element of gPDisc×2
we introduced above, cf. (26). To define the map P and the homotopy h, we first note that we get 

a unique decomposition

ω=ω++ +ω+− +ω−+ +ω−− (27)

coming from the direct sum decomposition of vector spaces

C((w))⊗C((z))

∼=C C[[w]] ⊗C[[z]] ⊕ C[[w]] ⊗ z−1C[z−1] ⊕ w−1C[w−1] ⊗C[[z]] ⊕ w−1z−1C[w−1, z−1].
We observe that ω−− may be interpreted as an element of g− , and define

P (ω) := (
ω−− , ω++|s=1

)
. (28)

We should then also set h(ω−−) = 0, for indeed ω−− = I ◦ P (ω−−) holds exactly.
Next we define

h(ω−+)(s)=
⎛⎝ s∫

0

F−+(s′)ds′ ,
1∫

0

F−+(s′)ds′ +
s∫

1

G−+(s′)ds′
⎞⎠

which we may sketch as

(z= 0)(w = 0) E

The choice of base point for these integrals is fixed by the following consideration. The coefficient function F−+(s) of the 
one-form F−+(s)ds obeys no conditions at s = 0 in general, and yet we need the function h(F−+(s)ds) to vanish there, 
since w−1C[w−1] ⊗C[[z]] ∩C[[w]] ⊗C((z)) = 0.

We then indeed have that

[d,h]( f −+(s), g−+(s))= h ◦ d( f −+(s), g−+(s))= (
f −+(s), g−+(s)− g−+(1)+ f −+(1)

)
= ( f −+(s), g−+(s))

and

[d,h](F−+(s)ds, G−+(s)ds)= d ◦ h(F−+(s)ds, G−+(s)ds)= (F−+(s)ds, G−+(s)ds).

That is, [d, h]ω−+ =ω−+ .
For the same reasons, for the component ω+− we are forced to integrate from the other end. We set

h(ω+−)(s)=
⎛⎝ 1∫

0

G+−(s′)ds′ +
s∫

1

F+−(s′)ds′ ,
s∫

0

G+−(s′)ds′ ,

⎞⎠
which we may sketch as

(z= 0)(w = 0) E

and then we have [d, h]ω+− =ω+− .
For the component ω++ the new feature is that f ++(s) can have a non-zero constant term. We set

h(ω++)(s)=
⎛⎝ s∫

1

F++(s′)ds′ ,
s∫

1

G++(s′)ds′
⎞⎠

which we may sketch as

(z= 0)(w = 0) E

We then have
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[d,h]( f ++(s), g++(s))= h ◦ d( f ++(s), g++(s))

= ( f ++(s)− f ++(1), g++(s)− g++(1))

= ( f ++(s), g++(s))− ( f ++(1), g++(1))

= (id− I ◦ P )( f ++(s), g++(s))

and

[d,h](F++(s)ds, G++(s)ds)= d ◦ h(F++(s)ds, G++(s)ds)= (F++(s)ds, G++(s)ds).

This completes the proof that [d, h] = id− I ◦ P . It is clear on inspection that the relation id= P ◦ I holds exactly. �
The next statement shows that the cohomology of g− is a copy of g ⊗w−1z−1C[w−1, z−1] in cohomological degree one.

Proposition 16. There is a deformation retract dg vector spaces

s−1g⊗ w−1z−1C[w−1, z−1] g−
i

p
h

Proof. We let

i(s−1a) := 1

2
a(ds,−ds),

p
(
( f (s)+ F (s)ds, g(s)+ G(s)ds)

) := s−1

1∫
0

(F (s′)− G(s′))ds′

and finally

h
(
( f (s)+ F (s)ds, g(s)+ G(s)ds)

)
:=

⎛⎝ s∫
0

F (s′)ds′ + 1

2
s

1∫
0

(F (s′)− G(s′)ds′),
s∫

0

G(s′)ds′ − 1

2
s

1∫
0

(F (s′)− G(s′)ds′)

⎞⎠ .

Then p(i( s−1a)) = s−1
∫ 1

0 ads′ = s−1a 
∫ 1

0 ds′ = s−1a, so p ◦ i = id, and

(h ◦ d)
(
( f (s)+ F (s)ds, g(s)+ G(s)ds)

)
= h

(
( f ′(s)ds, g′(s)ds)

)
= (

f (s)+ 1

2
s( f (1)− f (0)− g(1)+ g(0)),

g(s)− 1

2
s( f (1)− f (0)− g(1)+ g(0))

)= ( f (s), g(s)),

since f (1) = g(1) and f (0) = 0 = g(0), while

(d ◦ h)
(
( f (s)+ F (s)ds, g(s)+ G(s)ds)

)
= d

⎛⎝ s∫
0

F (s′)ds′ + 1

2
s

1∫
0

(F (s′)− G(s′)ds′),
s∫

0

G(s′)ds′ − 1

2
s

1∫
0

(F (s′)− G(s′)ds′
⎞⎠ .

= (
F (s)ds, G(s)ds)+ 1

2

1∫
0

(F (s′)− G(s′)ds′)(ds,−ds)

and here we recognize the last term as i(p(
(
( f (s) + F (s)ds, g(s) + G(s)ds)

)
)), so that

id− i ◦ p = [d,h]
as required. �

On combining this with Proposition 15, we get the following corollary.
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Corollary 17. At the level of graded vector spaces

Hk(gPDisc×2
)=

⎧⎪⎨⎪⎩
g⊗C[[w]] ⊗C[[z]] k= 0

g⊗ w−1z−1C[w−1, z−1] k= 1

0 k /∈ {0,1}

Remark 18. Since H•(gPDisc×2
) is a retract in of gPDisc×2

in dgVect, it is possible to endow it with the structure of an L∞
algebra via the homotopy transfer theorem, cf. Appendix C. �

Proposition 19. The symmetric bilinear form 〈− | −〉 is gPDisc×2
-invariant, i.e.

〈[x, y] | z〉 + (−1)gr x gr y 〈y | [x, z]〉 = 0

〈dx | y〉 + (−1)gr x 〈x | dy〉 = 0

for all x, y, z ∈ gPDisc×2
.

Proof. The first part is clear, given the g-invariance of κ
(−|−). For the second part, we recall that d(a ⊗ω) = a ⊗dω in our 

setting, and we have

〈a⊗ dω | b⊗ λ〉 + (−1)gr a⊗ω 〈a⊗ω | b⊗ dλ〉
= s−1 1

2
κ
(
a|b) ∫

�

resw resz d (ω ∧ λ)

= s−1 1

2
κ
(
a|b) resw resz ((ω ∧ λ) |w=0 − (ω ∧ λ) |z=0) .

Obviously both the pullbacks here (ω∧λ)|w=0 and (ω∧λ)|z=0 receive contributions only from the degree zero components 
of ω and λ. Both vanish after taking the residues resw resz , because ω and λ obey the boundary conditions in (26). �
Proposition 20. The pairing 〈− | −〉 induces a non-degenerate pairing

H(gPDisc×2
)⊗ H(gPDisc×2

)→ s−1C,

with respect to which both H(g+) and H(g−) are isotropic.

Proof. Recall that H0(gPDisc×2
) = g+ := g ⊗C[[w, z]] and the map i+ : g+ → gPDisc×2

of Proposition 15 maps elements of g+
to constant g+-valued 0-forms on Flag PDisc×2 . Similarly, the map

H1(gPDisc×2
)∼= s−1g⊗ w−1z−1C[w−1, z−1] i−→ g−

i−−→ gPDisc×2

from Proposition 16 and Proposition 15 maps elements of H1(gPDisc×2
) to multiples of the 1-form (ds, −ds). The pairing 

〈− | −〉 restricts to a manifestly non-degenerate pairing between them:

H0(gPDisc×2
)⊗ H1(gPDisc×2

)→ s−1C

(x, y) �→ 〈i+(x) | i−(i(y))〉
while H0(gPDisc×2

) and H1(gPDisc×2
) are isotropic. (This establishes the result, because H(g+) = H0(gPDisc×2

) and H(g−) =
H1(gPDisc×2

).) �
This completes the proof of Theorem 14.

7.4. The unpunctured polydisc

Now we turn to the dg Lie algebra for the unpunctured formal rectilinear polydisc:

gPDisc2 := Th(g⊗ APDisc2).

The next statement implies in particular that gPDisc2 and g+ := g ⊗C[[w]] ⊗C[[z]] are quasi-isomorphic. The proof is an 
instructive warm-up for the global cases in the next section.
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Proposition 21. There is a deformation retract of dg vector spaces

g+ gPDisc2

I

P
h

in which both I and P are maps of dg Lie algebras.
Moreover, we may choose the map P to be given by pull-back of the non-singular part to the 0-simplex E:

P (ω) :=ω++|E
Proof. It is helpful to sketch the idea first:

An element of gPDisc2 is given by a pair of forms, one on each of the two 2-simplices of PDisc2,

ω= (�,�)

valued in g ⊗C((w)) ⊗C((z)). We give the definition of h on the first of the two simplices as they are ordered here; the 
situation on the second is similar. In the coordinates s, t from §5.5, we have

�(s, t)= f (s, t)+ f s(s, t)ds+ ft(s, t)dt + f st(s, t)ds ∧ dt (29)

for some coefficient functions, and we define

h(�) := a(�)+ b(�)

with

a(�)(s, t) :=
⎛⎝ t∫

s

ft(s, t′)dt′
⎞⎠−

⎛⎝ t∫
s

f st(s, t′)dt′
⎞⎠ds (30)

and

b(�)(s, t) :=
⎛⎝ s∫

0

(
f s(s′, s′)+ ft(s′, s′)

)
ds′

⎞⎠
Observe that the definition of h is compatible with the boundary conditions. In particular, on the “far edge” t = 1, i.e. 
(z = 0) ⊂ E, the boundary condition is empty since the space attached to this edge, g ⊗C((w)) ⊗C((z)), is the same as 
that attached to the 2-simplex it borders.

We then compute, first,

(d ◦ a(�))(s, t)=
⎛⎝ t∫

s

ft,1(s, t′)dt′
⎞⎠ds+ ft(s, t)dt − ft(s, s)ds+ f st(s, t)ds ∧ dt

and

(a ◦ d(�))(s, t)= a
(

f,1(s, t)ds+ f,2(s, t)dt + (
ft,1(s, t)− f s,2(s, t)

)
ds ∧ dt

)
=
⎛⎝ t∫

s

f,2(s, t′)dt′
⎞⎠−

⎛⎝ t∫
s

( ft,1(s, t′)− f s,2(s, t′))dt′
⎞⎠ds

= f (s, t)− f (s, s)−
⎛⎝ t∫

s

ft,1(s, t′)dt′
⎞⎠ds+ f s(s, t)ds− f s(s, s)ds,
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and so find that

([d,a](�))(s, t)=�(s, t)− f (s, s)− ft(s, s)ds− f s(s, s)ds.

(Here we recognize f (s, s) + ( f s(s, s)+ ft(s, s))ds as the pullback of the form � to the 1-simplex pt.⊂ E on which s = t .)
Next we compute

(d ◦ b(�))(s, t)= f s(s, s)ds+ ft(s, s)ds

and

(b ◦ d(�))(s, t)= b
(

f,1(s, t)ds+ f,2(s, t)dt + (
ft,1(s, t)− f s,2(s, t)

)
ds ∧ dt

)
=

s∫
0

(
f,1(s′, s′)+ f,2(s′, s′)

)
ds′ =

s∫
0

∂s′ f (s′, s′)ds′

= f (s, s)− f (0,0)

which means we have

([d,b](�))(s, t)= f (s, s)+ f s(s, s)ds+ ft(s, s)ds− f (0,0)

Thus, in total, we see that

([d,h](�))(s, t)=�(s, t)− f (0,0).

Then we define P : gPDisc2 → g+ to be the map ω �→ f (0, 0) = ω|{(0,0)} , picking out the pullback of ω to the vertex 
{(0, 0)}, and I : g+ → gPDisc2 to be the embedding of an element of g+ as a constant function. This ensures that P ◦ I = id
and that the equality above becomes

[d,h] = id− I ◦ P ,

which completes the proof that g+ is a retract of gPDisc2 .
It remains to establish the “moreover” part of the proposition. Above, we chose to set P (ω) =ω|{(0,0)} . In what follows, it 

will be helpful to note the following alternative choice for the maps I, P , h. We keep the definition of I . We let P : gPDisc2 →
g+ be the map ω �→ f (s = 1, t = 1)++ = ω++|E, picking out the pullback of the regular part of ω at the vertex E. And we 
let h be given by

hnew(�)= hold(�)+
0∫

1

(
f s(s′, s′)++ + ft(s′, s′)++

)
ds′

Then (d ◦ h(�))(s, t) is unaltered (we have added a constant), while (h ◦ d(�))(s, t) receives the extra term

0∫
1

∂s′ f (s′, s′)++ds′ = f (0,0)++ − f (1,1)++ = f (0,0)− f (1,1)++

so that

([d,h](�))(s, t)=�(s, t)− f (s= 1, t = 1)++

as we now need with our new definition of P . �
7.5. Pictorial notation for homotopies and retracts

The proofs above are prototypes of the sort of computation we shall need in many places below. The general strategy 
remains the same: given a polynomial form ω on some semisimplicial set, we shall pick a decomposition, much as we did 
in (27), chosen to ensure that each summand has empty boundary conditions on at least some boundaries. Then, summand 
by summand, we shall retract away from those boundaries, in a sense we now discuss.

Recall our conventions for coordinates from §5.5.
Let V� denote the complex consisting of C-valued polynomial differential forms on a 2-simplex subject to the boundary 

condition that they must vanish on pullback to some given choice of (none, one, two, or all three) of the edges s = 0 and 
s = t and t = 1.
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Let V s=t denote the complex of C-valued polynomial differential forms on the boundary 1-simplex at s = t , and with the 
boundary condition inherited from V� (e.g. unconstrained, required to vanish at one or both boundary vertices, or required 
to vanish identically).

In the proof of Proposition 21 we actually established part (i) of the following lemma. The other parts are very similar.

Lemma 22 (Retracting from a triangle to an edge).

(i) If the boundary condition on the edge t = 1 is empty, then there is a deformation retract

V s=t V�
is

p
a

where p : V� → V s=t is the restriction map pulling back the form to this boundary, where is : V s=t ↪→ V� is given by

is : f (s)+ f s(s)ds �→ f (s)+ f s(s)ds (31)

and where the homotopy a : V� → V� is given in (30).
(ii) if the boundary condition on the edge s = 0 is empty, then there is a deformation retract

V s=t V�
it

p
ã

where p is as in part (i), where it : V s=t ↪→ V� is given by

it : f (t)+ ft(t)dt �→ f (t)+ ft(t)dt (32)

and where the homotopy ̃a : V� → V� is given by, cf. (29),

ã(�)(s, t) :=
⎛⎝ s∫

t

f s(s′, t)ds′
⎞⎠+

⎛⎝ s∫
t

f st(s′, t)ds′
⎞⎠dt

(iii) if the boundary condition on the edge s = t is empty, then there are deformation retracts

Vt=1 V�
is

p
c and V s=0 V�

it

p
c̃

where p are the relevant restriction maps, is and it are as in (31) and (32) respectively, and where the homotopies are given by

c(�)(s, t) :=
⎛⎝ t∫

1

ft(s, t′)dt′
⎞⎠−

⎛⎝ t∫
1

f st(s, t′)dt′
⎞⎠ds.

c̃(�)(s, t) :=
⎛⎝ s∫

0

f s(s′, t)ds′
⎞⎠+

⎛⎝ s∫
0

f st(s′, t)ds′
⎞⎠dt. �

This deformation retracts, and in particular their homotopies, can be conveniently encoded pictorially. Cases (i) and (ii) 
are

while the cases in (iii) are
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In the proof of Proposition 21 we also established the following.

Lemma 23 (Retracting from an edge to a point). If the boundary condition at the vertex s = t = 1 is empty, then there is a deformation 
retract

V s=t=0 V s=t
i

p
b

(where V s=t=0 is either 0 or C, depending on the boundary conditions). �

Deformation retracts compose, so we obtain deformation retracts corresponding to sequences of such moves. The proof 
of Proposition 21 contains one example of such a sequence: first two triangles retract to their common edge; then that edge 
retracts to a point. In what follows we need a variety of similar but more intricate cases. For example consider the picture

Provided the boundary condition on the edges (w1, 0) ⊂ (z = 0) ⊃ (w2, 0) is empty, this picture defines a deformation 
retract from the complex of C-valued polynomial differential forms on this semisimplicial set to the complex of C-valued 
polynomial differential forms on the boundary (w = w1) ⊂ E ⊃ (w = w2).

In what follows, we shall use this pictorial notation freely. A representative example of the explicit calculations such 
pictures represent is given, in full detail, in Appendix B.

8. Global homotopy Manin triple

In this section we give the second of our two main examples of homotopy Manin triples: see Theorem 24. We shall use 
throughout the pictorial notation for homotopies introduced in §7.5 above.

The Manin triples of this section are defined by a collection of marked points in rectilinear space, as we now describe.

8.1. Marked points

We continue to let w, z :C ×C→C be the Cartesian coordinates. Pick N ≥ 1. Let z = z1, . . . , zN be pairwise distinct 
points in C. Let w = w1, . . . , w N be pairwise distinct points in C. Let Rect2(N) denote the subset of Rect2 consisting of

• The closed points (wi, z j) for all i �= j, i, j ∈ {1, . . . , N}
• The lines (w = wi) for i ∈ {1, . . . , N}
• The lines (z= zi) for i ∈ {1, . . . , N}
• The generic point E.
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We may sketch these data as follows:

z= z1

z= zN

z= z2

w = w1 w = w2 w = w N
. . .

...

This gives rise to the semisimplicial subset Flag•(Rect2(N)) of Flag•(Rect2). In contrast to the latter, it has finite sets of 
n-simplices, for each n.

8.2. Sketches of Flag•(Rect2(N))

It is helpful to be able to visualise at least parts of the semisimplicial set Flag•(Rect2(N)). For example we may restrict 
our attention to the following lines and points, and draw the corresponding simplices of Flag•(Rect2(N)):

At least in the case of three marked points, it is actually possible draw the whole semisimplicial set Flag•(Rect2(3)):

8.3. Global dg Lie algebra gGlobal

Let ARect2(N) be the Flag•(Rect2(N))-object in commutative algebras given as follows. Let us write C(w)∞w for the C-
algebra
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C(w)∞w :=
{

rational expressions in w vanishing at ∞ and with poles at most at the points 
w = {w1, . . . , w N}

}
.

We assign, to every simplex of Flag•(Rect2(N)), the commutative algebra

C(w)∞w ⊗C(z)∞z
with only the following exceptions:

ARect2(N)({(wi, z j)}) :=C(w)∞w\{wi} ⊗C(z)∞z\{z j}
ARect2(N)({(wi, z j)} ⊂ {z= z j}) := ARect2(N)({z= z j}) :=C(w)∞w ⊗C(z)∞z\{z j}
ARect2(N)({(wi, z j)} ⊂ {w = wi}) := ARect2(N)({w = wi}) :=C(w)∞w\{wi} ⊗C(z)∞z

for all i, j such that the given flag belongs to Flag•(Rect2(N)).
We continue to let g be a finite-dimensional simple Lie algebra. Let gGlobal denote the dg Lie algebra

gGlobal := Th(g⊗ ARect2(N)).

Note that the exceptions above are precisely the simplices on the boundary of Flag•(Rect2(N)). Thus, concretely, gGlobal is the 
dg algebra of polynomial differential forms on Flag•(Rect2(N)), valued in g ⊗C(w)∞w ⊗C(z)∞z , subject to these boundary 
conditions.

8.4. Local dg Lie algebras

Let us introduce the dg Lie algebras

gPDiscs :=
N⊕

i=1

g+(wi, zi)=
N⊕

i=1

g⊗C[[w − wi]] ⊗C[[z− zi]], gPDiscs× :=
N⊕

i=1

gPDisc×2 (wi ,zi)

and define two maps of dg Lie algebras,

IGlobal : gGlobal → gPDiscs× , IDiscs : gPDiscs → gPDiscs× .

Summand by summand, the map IDiscs is defined in the same way as the embedding g+ → gPDisc×2
from §7.1. The map 

IGlobal is given by taking formal Laurent series around (w, z) = (wi, zi) and restricting to the relevant semisimplicial subset, 
for each i. More precisely, to define IGlobal, observe that Flag•(PDisc×2 (wi, zi)) is a semisimplicial subset of Flag•(Rect2(N)), 
for each i = 1, . . . , N . We get the restriction of ARect2(N) to a Flag•(PDisc×2 (wi, zi))-algebra ARect2(N)|Flag•(PDisc×2 (wi ,zi))

, and 
there is an evident map of Flag•(PDisc×2 (wi, zi))-algebras

ARect2(N)|Flag•(PDisc×2 (wi ,zi))
→ APDisc×2 (wi ,zi)

given by taking formal Laurent expansions. Hence, by Lemma 2 and Lemma 4 we get the map of semicosimplicial algebras

�ARect2(N) →�ARect2(N)|Flag•(PDisc×2 (wi ,zi))
→�APDisc×2 (wi ,zi)

and therefore, by the functoriality of Th, a map of dg Lie algebras

I i
Global : gGlobal → gPDisc×2 (wi ,zi)

(33)

for each marked point (wi, zi). The resulting diagonal map is IGlobal:

IGlobal :=
N⊕

i=1

I i
Global.

8.5. The pairing

For each marked point (wi, zi), we have an invariant bilinear form 〈− | −〉i on gPDisc×2 (wi ,zi)
defined as in §7.2 and 

Proposition 20. Let us use the same notation 〈− | −〉 for the resulting diagonal pairing

〈A | B〉 :=
N∑

i=1

〈Ai | Bi〉i

between two elements A = (Ai) and B = (Bi) of gPDiscs× =
⊕N

i=1 g × .
PDisc2 (wi ,zi)
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8.6. Manin triple

The main result of this section is the following.

Theorem 24. The data

(gPDiscs× ,gPDiscs,gGlobal, IDiscs, IGlobal, 〈− | −〉)
constitute a homotopy Manin triple in dg Lie algebras, in the sense of Definition 9.

Proof. Most of the rest of this section is devoted to establishing condition (i), the homotopy equivalence of gGlobal⊕gPDiscs 

gPDiscs× , which is Theorem 25 below. For condition (ii) and (iii) there is essentially nothing new to check, given Proposi-
tion 19 and Proposition 20. For the isotropy condition (iv), we once more choose to establish the equivalent statements 
about cohomologies from Remark 10. We do so in §8.7. �

We have the map from the direct sum of gGlobal and gPDiscs as dg vector spaces:

I = (IGlobal, IDiscs) : gGlobal ⊕ gPDiscs → gPDiscs× .

Let us stress that this is not a map of dg Lie algebras from the direct sum of gGlobal and gPDiscs as dg Lie algebras, for the 
same reason that the analogous map in the usual one-dimensional case is not a map of Lie algebras: the images of gGlobal
and gPDiscs in gPDiscs× are not mutually commuting.

The following statement justifies our definition of gGlobal: it establishes that, up to homotopies, gGlobal provides a dg 
vector space complement to gPDiscs in gPDiscs× .

Theorem 25. This map I is a homotopy equivalence of dg vector spaces. That is, there is a homotopy equivalence of dg vector spaces:

gGlobal ⊕ gPDiscs gPDiscs×
hGlobal+hoffdiag. I

P
hDiscs×

Proof. We shall construct a map of cochain complexes

P = PGlobal ⊕ PDiscs : gPDiscs× → gGlobal ⊕ gPDiscs

inverse to I up to homotopies. We shall first define PGlobal and then check that PGlobal ◦ IGlobal is homotopic to the identity 
on gGlobal. Then we shall define PDiscs and check the remaining homotopy relations.

Our first step is to define the map PGlobal. Morally, the idea here in our case in dimension two is the same as in the case 
of dimension one from, e.g., [16]: we want to use the “singular parts” of an element of gPDiscs× to construct an element of 
gGlobal.

An element ω ∈ gPDiscs× is a tuple ω= (ωi)
N
i=1, ωi ∈ gPDisc×2 (wi ,zi)

, and we shall define PGlobal(ω) summand by summand,

PGlobal(ω) :=
N∑

i=1

P i
Global(ωi), P i

Global : gPDisc×2 (wi ,zi)
→ gGlobal.

Given ωi ∈ gPDisc×2 (wi ,zi)
we have, just as in (27), the decomposition

ωi =ω++i +ω−+i +ω+−i +ω−−i (34)

coming from the decomposition of the vector space C((w −wi)) ⊗C((z− zi)) into the polar and regular parts with respect 
to each of the local coordinates, w − wi and z − zi . In particular, the −− part can be interpreted as a rational function 
vanishing at infinity, via the embedding of commutative algebras

(w − wi)
−1(z− zi)

−1C[(w − wi)
−1, (z− zi)

−1] ↪→C(w)∞w ⊗C(z)∞z .

Now, we have

ω−−i (s)= (φ−−i (s),ψ−−i (s))

as in (26), and we define P i (ωi) to be the element given as follows,
Global
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(35)

for each k, � �= i. If k = � then the lower right square is absent.
Observe that this obeys the continuity conditions on internal edges: in particular, along the edges of the form (

(wk, z�), E
)

it is continuous because φ−−(1) = f −−(1) = g−−(1) = ψ−−(1). Note also why PGlobal(ωi) obeys the boundary 
conditions: since ω−−i has poles only at w = wi and z = zi , the boundary conditions are non-trivial only on the edges of 
the form 

(
(wk, zi), (z = zi)

)
and 

(
(wi, z�), (w = wi)

)
, and here they are obeyed because φ−−(0) = 0 and ψ−−(0) = 0, by 

the boundary conditions on ω−−i itself.
Let us stress that while IGlobal : gGlobal → gPDiscs× is a map of dg Lie algebras, PGlobal : gPDiscs× → gGlobal is a map of dg 

vector spaces only.

Lemma 26. There exists a homotopy hGlobal : gGlobal → gGlobal such that

idgGlobal − PGlobal ◦ IGlobal = d ◦ hGlobal + hGlobal ◦ d

holds as an equality of cochain maps gGlobal → gGlobal .

Proof. We have the decomposition of vector spaces

C(w)∞w ⊗C(z)∞z ∼=C

⊕
i, j

(w − wi)
−1(z− z j)

−1C[(w − wi)
−1, (z− z j)

−1]

coming from taking partial fractions in each global coordinate, z and w . In this way an element μ ∈ gGlobal has partial 
fraction decomposition

μ=
N∑

i, j=1

μi j (36)

where μi j is a polynomial differential form on ARect2(N) with coefficents in (w − wi)
−1(z− z j)

−1C[(w − wi)
−1, (z− z j)

−1]. 
We shall define hGlobal(μ) summand by summand,

hGlobal(μ) :=
N∑

i, j=1

hij
Global(μi j) (37)

The argument is similar to that in the proof of Proposition 21, and we shall use the pictorial notation from §7.5.
First consider a summand μk� with k �= �. By definition of PGlobal, PGlobal ◦ IGlobal(μk�) = 0 vanishes, so we must arrange 

our homotopy to contract id(μk�) =μk� to zero (just as, in Proposition 15, we had to contract ω±∓ to zero). The boundary 
conditions mean that μk� must vanish when pulled back to any of the edges drawn as thick dashed lines in the sketch at 
the left below, and we define hk� to be the map drawn on the right:
Global
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Here we have sketched part of the semisimplicial set Flag•(Rect2(N)) corresponding to some i, j with i �= j and i, j /∈ {k, �}. 
Special cases occur when k = j or i = � or both, and when i = j, but these special cases just correspond to omitting one or 
more of the squares, and in a way which, one sees, does not obstruct us in retracting back to the point (wk, z�) as above. 
One may then verify by direct calculations that

[d,hGlobal](μk�)=μk� −μk,�|(wk,z�) =μk� − 0=μk�

as we wanted. The details of this calculation are given in Appendix B.
It remains to consider the diagonal summands μii . The new feature is that the semisimplicial set of edges of 

Flag•(Rect2(N)) on which μii vanishes is no longer contractible to a single vertex:

(if k = � here then the lower right square is absent). We set

Again, one may verify by direct calculation that

[d,hGlobal](μii)=μii − PGlobal(IGlobal(μii))

with PGlobal as we defined it in (35) above. �
We continue with the proof of Theorem 25. The next step is to construct a map of dg vector spaces

PDiscs : gPDiscs× → gPDiscs

such that

idgPDiscs× − IGlobal ◦ PGlobal 
 IDiscs ◦ PDiscs, (38)

i.e. such that for any ω ∈ gPDiscs× , the difference

ω̃ :=ω− IGlobal ◦ PGlobal(ω) (39)

is equal to IDiscs ◦ PDiscs(ω) up to homotopy.
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We define PDiscs by

PDiscs(ω)i := (ωi − IGlobal(PGlobal(ω))i)
++ |s=1 =

(
ω̃++i |s=1

)
(40)

– cf. (28) and (34). By construction, we have ω̃−−i = 0. It remains to find a homotopy hDiscs× : gPDiscs× → gPDiscs× contracting 
ω̃+−i , ω̃−+i , and the non-constant terms in ω̃++i . This can be done much as in the proof of Proposition 15. We may write ω̃
as

ω̃= (
ω̃i
)

1≤i≤N =
(
φ̃i(s)= f̃ i(s)+ F̃ i(s)ds, ψ̃i(s)= g̃i(s)+ G̃ i(s)ds

)
1≤i≤N

and set

hDiscs×(ω++i )(s)=
⎛⎝ s∫

1

F̃++i (s′)ds′ ,
s∫

1

G̃++i (s′)ds′
⎞⎠ , (41)

where we stress that we are defining hDiscs× (ω) and it is the components of ω̃ that appear on the right. Using the fact that 
IGlobal ◦ PGlobal is a cochain map, and so commutes with d, we then have

[d,hDiscs×]( f ++i (s), g++i (s))= (hDiscs× ◦ d)( f ++i (s), g++i (s))

= (
f̃ ++i (s)− f̃ ++i (1), g̃++i (s)− g̃++i (1)

)
= ( f̃ ++i (s), g̃++i (s))− (1,1) f̃ ++i (1)

and

[d,hDiscs×](F++i (s)ds, G++i (s)ds)= (d ◦ hDiscs×)(F++i (s)ds, G++i (s)ds)

= ( F̃++i (s)ds, G̃++i (s)ds).

That is,

[d,hDiscs×](ω++i )= ω̃++i − ω̃++i |s=1 = (id− IGlobal ◦ PGlobal − IDiscs ◦ PDiscs)(ω
++
i )

as we want.
The argument for ω+−i and ω−+i is similar, again following the prototype in the proof of Proposition 15. (In fact, observe 

that ω+−i = ω̃+−i and ω−+i = ω̃−+i .)
This establishes that (38) holds, as we wanted. That is, I ◦ P is homotopic to the identity map idgPDiscs× .
To complete the proof of Theorem 25 it remains to check that P ◦ I is homotopic to the identity map idgGlobal⊕gPDiscs . We 

already defined the required homotopy for the global part PGlobal ◦ IGlobal, in Lemma 26. The restriction of P ◦ I to gPDiscs is 
the identity map on the nose, i.e. we have

P ◦ I|gPDiscs = PDiscs ◦ IDiscs = idgPDiscs ,

and it is manifest that PGlobal ◦ IDiscs = 0 vanishes. However, the map P ◦ I does have a nonzero off-diagonal component

PDiscs ◦ IGlobal : gGlobal → gPDiscs

which we must show is homotopic to zero.

Lemma 27. For each i = 1, . . . , N, we have

PDiscs(IGlobal(μ))i = ιw−wi ,z−zi

N∑
k,�=1

k �=��=i �=k

μk�|E,

where μ =∑N
i, j=1 μi j is the partial fraction decomposition of an element μ ∈ gGlobal as in (36).

Proof. First, note that the operation of restricting (i.e. pulling back) a polynomial differential form on the semisimplicial set 
Flag(Rect2(N)) to the vertex E factors through the operation of first restricting it to Flag(PDisc×2 (wi, zi)) for any one of the 
punctured formal rectilinear polydiscs PDisc×2 (wi, zi).

We have IGlobal(μ)−−i = μii . Therefore the restriction of the polynomial differential form PGlobal(IGlobal(μ)) ∈ gGlobal to 
the vertex E of Flag(Rect2(N)) is given by 

∑N
j=1 μ j j |E, according to our definition (35) of PGlobal. Thus the restriction of 
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IGlobal(PGlobal(IGlobal(μ)))i to the vertex E of Flag(PDisc×2 (wi, zi)) is given by the Laurent expansion ιw−wi ,z−zi

∑N
j=1 μ j j |E. 

By definition (40) of PDiscs, we find, for each i = 1, . . . , N , that

PDiscs(IGlobal(μ))i = (IGlobal(μ)i − IGlobal(PGlobal(IGlobal(μ)))i)
++ |E

= ιw−wi ,z−zi

⎛⎜⎜⎝ N∑
k,�=1
k,��=i

μk�|E −
N∑

j=1
j �=i

μ j j|E

⎞⎟⎟⎠= ιw−wi,z−zi

N∑
k,�=1

k �=��=i �=k

μk�|E

as required. �
We may then define

hoffdiag. : gGlobal → gPDiscs

to be the map given in terms of the partial fraction decomposition (36) of μ ∈ gGlobal by

hoffdiag.(μ)i := ιw−wi ,z−zi

N∑
k,�=1

k �=��=i �=k

hk�
Global(μk�)|E

= ιw−wi ,z−zi

N∑
k,�=1

k �=��=i �=k

E∫
(wk,z�)

μk�|((wk,z�),E
) (42)

(the integral is over the edge of Flag(Rect2(N)) joining (wk, z�) to E). Then indeed d(hoffdiag.(μ))i = 0 and

hoffdiag.(d(μ))i = PDiscs(IGlobal(μ))i − 0= PDiscs(IGlobal(μ))i .

Thus we have shown that PDiscs ◦ IGlobal 
 0, as we wanted.
This completes the proof of Theorem 25. �

8.7. The cohomology and the pairing

As in the proof of Proposition 20, the pairing 〈− | −〉 restricts to a non-degenerate pairing

H0(gPDiscs×)⊗ H1(gPDiscs×)→ s−1C

between H0(gPDiscs× ) = gPDiscs and H1(gPDiscs×), and these subspaces are again both manifestly isotropic. Therefore it is 
enough to establish the following.

Proposition 28. There is a deformation retract of dg vector spaces

H1(gPDiscs×) gGlobal
ι

π
h

(We stress that neither π nor ι here are maps of dg Lie algebras.)

Proof. Let gi− := Th(g ⊗ A−−
PDisc×2 (wi ,zi)

) denote the copy of the dg Lie algebra g− , cf. §7.1, associated to the punctured formal 
disc at the marked point (wi, zi). As in Proposition 16 we have the deformation retract of dg vector spaces

H1(gPDisc×2 (wi ,zi)
) gi−

for each i. Deformation retracts compose. So to prove the result it is enough to show that there is a deformation retract of 
dg vector spaces

⊕N
i=1 g

i− gGlobal

f

g
hGlobal

And indeed, we have a dg Lie algebra map I i
g− : gi− → gPDisc×2 (wi ,zi)

defined as in §7.1, and the dg vector space map P i
Global :

g × → gGlobal from (35). We let
PDisc2 (wi ,zi)
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f :=
N⊕

i=1

f i, f i := P i
Global ◦ I i

g− : gi− → gGlobal.

In the other direction, let

g =
N⊕

i=1

gi, gi :μ �→ I i
Global(μii)

where I i
Global was defined in (33) and μii is as in (36). On inspection, one sees that gi ◦ f i = id

gi− for each i (and that 
gi ◦ f j = 0 for i �= j). The homotopy hGlobal here is the same as in Lemma 26. As there, it contracts all the off-diagonal pole 
terms μi j in the partial fraction decomposition of μ,

[d,hGlobal](μi j)=μi j, i �= j

and retracts each diagonal term μii to the semisimplicial subset Flag(PDisc×2 (wi, zi). By direct calculation one checks that

[d,hGlobal](μii)=μii − f i(gi(μii)). �
9. Triangular decompositions of enveloping algebras

The main results of this section are Corollary 29 and Corollary 34.

9.1. Local case

In this section we establish the following corollary of Proposition 15.

Corollary 29. There is a deformation retract of (U (g−), U (g+))-bimodules

U (g−)⊗ U (g+) U (gPDisc×2
)

U (I)

U (P )
h̃

Proof. Consider the deformation retract

g− ⊕ g+ gPDisc×2
I

P
h

of Proposition 15. The cochain map I ◦ P : gPDisc×2
→ gPDisc×2

is a projector (because (I ◦ P ) ◦ (I ◦ P ) = I ◦ (P ◦ I) ◦ I =
I ◦ idg−⊕g+ ◦ P = I ◦ P ). Its image is a dg subspace which we can and shall regard as an embedded copy of the dg vector 
space g− ⊕ g+ . We get also the projector idg

PDisc×2
− I ◦ P onto a dg subspace

g⊥ := (idg
PDisc×2

− I ◦ P )(gPDisc×2
),

and we obtain the direct sum decomposition of cochain complexes,

gPDisc×2
= g− ⊕ g⊥ ⊕ g+ (43)

To be concrete, recall the decomposition (27) of an element ω ∈ gPDisc×2
. The decomposition above is

ω= (
ω−−,ω+− +ω−+ +ω++ −ω++|s=1,ω

++|s=1
)

We are therefore in the setting of the following lemma, which is essentially the dg analog of Proposition 2.2.7 and (a 
special case of) Proposition 2.2.9 of [11].

Lemma 30. Suppose a− ↪→ a and a+ ↪→ a are embeddings of dg Lie algebras, and a⊥ ↪→ a an embedding of dg vector spaces, such 
that

a∼= a− ⊕ a⊥ ⊕ a+

as dg vector spaces. Then

U (a)∼= U (a−)⊗ Sym(a⊥)⊗ U (a+)

as dg vector spaces and, moreover, as (U (a−), U (a+))-bimodules. �
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In view of this lemma, we have the isomorphism of (U (g−), U (g+))-bimodules

U (gPDisc×2
)∼= U (g−)⊗ Sym(g⊥)⊗ U (g+).

To prove Corollary 29 it remains to show that our homotopy h from Proposition 15 gives rise to a retract of (U (g−), U (g+))-
bimodules

U (g−)⊗ U (g+) U (g−)⊗ Sym(g⊥)⊗ U (g+)
U (I)

U (P )
h̃

To do that, we adapt an argument taken from the proof of [26, Proposition 2.5.5]. The natural embedding and projection 
maps of dg vector spaces

C ∼= Sym0(g⊥) Sym(g⊥)

give rise to maps U (I) and U (P ) of free (U (g−), U (g+)-bimodules

U (g−)⊗ U (g+) U (g−)⊗ Sym(g⊥)⊗ U (g+).
U (I)

U (P )

Now, our homotopy h : gPDisc×2
→ gPDisc×2

from Proposition 15 by construction preserves the decomposition (43), and is zero 
on the summands g+ and g− . So it defines a map g⊥ → g⊥ which, abusively, we continue to call h. (In the language of [26], 
our homotopy obeys the side conditions and our retract is thus a strong deformation retract or contraction.) As maps g⊥ → g⊥ , 
we have

[d,h] = id.

Recall that any map of dg vector spaces V → V extends uniquely to a derivation of the free dg commutative algebra 
Sym(V ). In particular, we may extend h and id to derivations of Sym(g⊥). But the extension of id to a derivation is just the 
map which multiplies each element of the dg subspace Symn(g⊥) by a factor of n, for each n ≥ 0. So we obtain that

[d,h]|Symn(g⊥) = n idSymn(g⊥)

for each n ≥ 0. We may therefore define the required homotopy

h̃ : U (g−)⊗ Sym(g⊥)⊗ U (g+)→ U (g−)⊗ Sym(g⊥)⊗ U (g+)

to be

h̃ := id⊗
⎛⎝∑

n≥1

1

n
h|Symn g⊥

⎞⎠⊗ id

for then [d, ̃h] is indeed the identity on each subspace U (g−) ⊗ Symn(g⊥) ⊗ U (g+) with n ≥ 1, and is by definition zero on 
U (g−) ⊗ Sym0(g⊥) ⊗ U (g+). Thus finally we get that

[d, h̃] = id− U (I) ◦ U (P ),

as required. It is evident that ̃h is a map of (U (g−), U (g+))-bimodules. This completes the proof of Corollary 29. �
Next, we would like to do something similar in the global case, while staying in the world of dg algebras. For that 

purpose, we would really wish to have a deformation retract, rather than merely a homotopy equivalence as we have in 
Theorem 25.

We shall obtain a result in this direction in Theorem 33 below. There are two steps:
First, we shall introduce, on both sides of the map I , additional summands associated to all unpunctured discs 

PDisc2(wi, z j) at the “off-diagonal” points (wi, z j), i �= j. Indeed, arguing as for Theorem 25 it is not hard to see that 
there is also a homotopy equivalence

gGlobal ⊕
N⊕

i, j=1

g+(wi, z j)

N⊕
i=1

gPDisc×2 (wi ,zi)
⊕
⊕
i �= j

gPDisc2(wi ,z j)hGlobal

I

J
h
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(Note that by paying the price of introducing these extra points, we get rid of the off-diagonal terms in the homotopy on 
the left.)

Second, we introduce new models for all the summands on the right (at both the punctured and unpunctured discs). 
These models are chosen to be sufficiently large that we can reconstruct an element of gGlobal on the nose, rather than 
merely up to homotopy, from its image under I .

We turn to these enlarged models now.

9.2. Big models for the local algebras

Now we model the disc algebras as Flag•(Rect2(N))-objects.
Pick any (i, j) ∈ {1, . . . , N}2. We set Aij

Rect2(N) to be the Flag•(Rect2(N))-object in commutative algebras given as follows. 
We assign, to every flag/simplex of Flag•(Rect2(N)), the commutative algebra

C((w − wi))⊗C((z− z j)),

with only the following exceptions:

Aij
Rect2(N)({pt.} ⊂ {w = wi}) := Aij

Rect2(N)({w = wi}) :=C[[w − wi]] ⊗C((z− z j))

Aij
Rect2(N)({pt.} ⊂ {z= z j}) := Aij

Rect2(N)({z= z j}) :=C((w − wi))⊗C[[z− z j]]
and (when i �= j)

Aij
Rect2(N)({(wi, z j)}) :=C[[w − wi]] ⊗C[[z− z j]].

Let gi j
Global denote the dg Lie algebra

g
i j
Global := Th(g⊗ Aij

Rect2(N)) (44)

Thus, gi j
Global is the dg algebra of polynomial differential forms on Flag•(Rect2(N)), valued in g ⊗C((w − wi)) ⊗C((z− z j)), 

and subject to boundary conditions above – which now, in contrast to gGlobal in §8.3), are only on the boundary simplices 
corresponding to the flags intersecting the point (wi, z j).

The next lemma says that gi j
Global provides another model for gPDisc2(wi ,z j) (for i �= j) and that gii

Global provides another 
model for gPDisc×2 (wi ,zi)

.

Lemma 31. There are deformation retracts of dg vector spaces,

gPDisc×2 (wi ,zi)
gii

Global

gii

f ii

hii

and

gPDisc2(wi ,z j) g
i j
Global

gi j

f i j

hi j

for i �= j, where the maps gij, f i j, gii, f ii are maps of dg Lie algebras.

Proof. We consider first gii
Global. Since Flag•(PDisc×2 (wi, zi)) is a semisimplicial subset of Flag•(Rect2(N)), we get the re-

striction of ARect2(N) to a Flag•(PDisc×2 (wi, zi))-algebra, and we recognise the latter as a copy of APDisc×2 (wi ,zi)
. Hence, by 

Lemma 2 and Lemma 4 we get the map of semicosimplicial algebras �ARect2(N) → �APDisc×2 (wi ,zi)
and therefore, by the 

functoriality of Th, a map of dg Lie algebras

f ii : gii
Global → gPDisc×2 (wi ,zi)

.

Now we define the map gii . Consider an element

ω(s)= (φ(s),ψ(s)) ∈ gPDisc×2 (wi ,zi)

cf. (26). Let gii(ω) ∈ gii be the polynomial differential form on Flag•(Rect2(N)) given as follows:
Global
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(If k = � then the lower right square is absent.)
First, observe that this does define a map of dg Lie algebras gPDisc×2 (wi ,zi)

→ gii
Global. And it is evident that

f ii ◦ gii(ω)=ω.

It remains to show that, for all μ ∈ gii
Global,

gii ◦ f ii(μ)=μ+ [hii,d](μ)

for some suitable homotopy hii : gii
Global → gii

Global. And indeed, by direct calculation, one checks that a suitable homotopy is 
given as follows, in the pictorial notation we introduced in §7.5:

(Here we have highlighted the edges on which the boundary conditions are non-trivial.)
Now we turn to gi j

Global for i �= j. This case is very similar to the previous case of gii
Global, with the following modification 

to the definition of the map gij :

(where, again, squares can be absent in special cases). �
Deformation retracts compose, so in view of Proposition 21, we get the following corollary. Let

g
i j
+ := g⊗C[[w − wi]] ⊗C[[z− z j]]. (45)
41



L. Alfonsi and C.A.S. Young Journal of Geometry and Physics 191 (2023) 104903
Corollary 32. Pick any i �= j. There is a deformation retract

g
i j
+ g

i j
Global

I

P
hi j

in which both I and P are maps of dg Lie algebras.
Moreover, we may choose the map P to be given by pull-back of the non-singular part to the 0-simplex E:

P (ω) :=ω++|E �
9.3. Global deformation retract

Let

g̃PDiscs :=
N⊕

i, j=1

g
i j
+ and g̃PDiscs× :=

N⊕
i, j=1

g
i j
Global

cf. (45) and (44). We have the dg Lie algebra maps

IDiscs : g̃PDiscs → g̃PDiscs× and IGlobal : gGlobal → g̃PDiscs× .

Theorem 33. There is a deformation retract of dg vector spaces

gGlobal ⊕ g̃PDiscs g̃PDiscs×
I=(IGlobal,IDiscs)

P=PGlobal⊕PDiscs

h

Proof. We first define the map PGlobal. An element of ω ∈ g̃PDiscs× is a tuple

ω= (ωi j)
N
i, j=1, ωi j ∈ g

i j
Global.

Given ωi j ∈ g
i j
Global we have, just in (27), the decomposition

ωi j =ω++i j +ω−+i j +ω+−i j +ω−−i j

coming from the direct sum decomposition of the vector space C((w − wi)) ⊗C((z− z j)) into the parts polar/regular parts 
with respect to each of the local coordinates, w − wi and z− z j . In particular, the −− part can be interpreted as a rational 
function vanishing at infinity, via the embedding of commutative algebras

(w − wi)
−1(z− z j)

−1C[(w − wi)
−1, (z− z j)

−1] ↪→C(w)∞w ⊗C(z)∞z .

Making implicit use of these embeddings, we set

PGlobal(ω) :=
N∑

i, j=1

ω−−i j .

It is then manifest that

PGlobal ◦ IGlobal = idgGlobal .

(Indeed, we have the decomposition of vector spaces

C(w)∞w ⊗C(z)∞z ∼=C

⊕
i, j

(w − wi)
−1(z− z j)

−1C[(w − wi)
−1, (z− z j)

−1]

coming from taking partial fractions in each global coordinate, z and w . In this way an element μ ∈ gGlobal has partial 
fraction decomposition μ =∑N

i, j=1 μi j where μi j is a polynomial differential form on ARect2(N) with coefficents in (w −
wi)

−1(z− z j)
−1C[(w −wi)

−1, (z− z j)
−1]. We see that IGlobal(μ)−−i j =μi j for each i, j, and so we have (PGlobal◦ IGlobal)(μ) =∑N

i, j=1 IGlobal(μ)−−i j =∑N
i, j=1 μi j =μ.)

Observe that

PGlobal ◦ IDiscs = 0.
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Next we define the map PDiscs : g̃PDiscs× → g̃PDiscs of dg vector spaces. Let us define

ω̃ :=ω− IGlobal ◦ PGlobal(ω)

much as we did in (39), and then set

PDiscs(ω)i j := ω̃++i j |E
for each i, j. Our goal is now to show that id

g̃PDiscs×
− I ◦ P is homotopic to zero. For any ω ∈ g̃PDiscs× , we have

(id
g̃PDiscs×

− I ◦ P )(ω)i j =ωi j − (IGlobal ◦ PGlobal(ω))i j − (IDiscs ◦ PDiscs(ω))i j

= ω̃i j − ω̃++i j |E
It follows from our definitions that ω̃−−i j = 0. Thus we have again to find a homotopy contracting ω̃±∓i j and the non-constant 
terms in ω̃++i j . We define the homotopy h : g̃PDiscs× → g̃PDiscs× as follows. Consider first h(ω)++i j . It needs obey no nontrivial 
boundary conditions, and we define it to be given by the integrals of (ω̃)++i j encoded in the following picture:

(We stress the integrals here and below are over ω̃ not ω. The situation is analogous to that in (41).)
Again, in this picture, the squares at the top left, top right, lower left, and lower right are absent in the special cases 

i = j, k = j, i = � and k = � respectively.
Now we consider h(ω)±∓i j . Here we must distinguish the cases i �= j and i = j.

First suppose i �= j. Consider h(ω)−+i j . It must vanish on the edges 
(
pt., (w = wi)

)
, since (w − wi)

−1C[(w − wi)
−1] ∩

C[[w − wi]] = 0. Similarly, h(ω)+−i j must vanish on the edges 
(
pt., (z= z j)

)
. In either case we may define the action of the 

homotopy in the same way:

Next suppose i = j. Then the top left square in the pictures above is absent, but on the other hand we are guaranteed 
that the lower left and upper right squares are present, i.e. i �= � and k �= j. We retract back to a boundary where the form 
vanishes as follows:

Finally, we set of course h(ω)−− = 0.
i j
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With these definitions, we obtain

ω− I ◦ P (ω)= [d,h](ω)

for each i, j, as required. This completes the construction of the homotopy h : g̃PDiscs× → g̃PDiscs× , and hence the proof of 
Theorem 33. �
Corollary 34. There is a deformation retract of (U (gGlobal), U (g̃PDiscs))-bimodules

U (gGlobal)⊗ U (g̃PDiscs) U (g̃PDiscs×)
U (I)

U (P )
h̃

Proof. This follows from Theorem 33 in the same way that Corollary 29 followed from Proposition 15. �
Data availability

No data was used for the research described in the article.

Appendix A. Proof of Theorem 6

We must show C•(�′A) is a flasque resolution of O. As we noted before the statement of Theorem 6, C•(�′A) is certainly 
flasque. What remains is to check that the stalks of C•(�′A) resolve the stalks of O.

Let us consider the stalks at a point p ∈ Rect2. It is enough to show that, given any open U � p, there exists an open V
with p ∈ V ⊂ U such that �(V , C•(�′A) = C•(�′AV ) is a resolution of O(V ).

We may suppose V is of the form

V = Rect2 \
m⋃

i=1

{(w = ai)} \
m⋃

j=1

{(z= b j)}

i.e. that it has no isolated missing points, only missing lines.
(Indeed, every open neighbourhood of p is of the form U = Rect2 \⋃m

i=1 {(w = a′i)} \
⋃n

j=1 {(z= b′j)} \
⋃p

k=1{(c′k, d
′
k)}, 

as in (6). Suppose p is a closed point (a, b) ∈ C ×C. Then given such a U we may take V = Rect2 \⋃n
i=1 {(w = a′i)} \⋃m

j=1 {(z= b′j)} \
⋃p

k=1
c′k �=a

{(w = c′k)} \
⋃p

k=1
d′k �=b

{(z= d′k)}, which is an open subset of U , containing the point (a, b), and of the 

form we wanted. If instead p is a line (w = a) or (z= b), or the generic point E, the argument is similar.)
Let us regard the space

O(V )=C(w)a1,...,am ⊗C(z)b1,...,bn

of sections of O over V as a complex concentrated in degree zero:

0→O(V )→ 0

It is enough to show that C•(�′AV ) is homotopy equivalent to this complex.
To do that, we shall use the fact that the associated complex C•(�′AV ) and the Thom-Whitney complex Th•(�′AV ) are 

homotopy equivalent, as we recalled in §5.2. We shall show that O(V ) is a deformation retract of Th•(�′AV ):

(
0→O(V )→ 0

)
Th•(�′AV )

i

p
h (46)

The argument below is similar to that in the proofs of Theorem 25 and Theorem 33. The only new ingredient conceptually 
is that the semisimplicial set Flag•(V ) now consists of uncountably many copies of Flag•(PDisc2), one for each closed point 
(c, d) ∈ V , appropriately sewn together along edges of the form (line) ⊂ E. The restricted products �′ are needed to keep 
the sums finite in the definition of the homotopy h.

A cochain ω ∈ Th•(�′AV ) is a polynomial differential form on Flag•(V ), valued in C(w) ⊗ C(z) and subject to cer-
tain boundary conditions: namely for each (c, d) ∈ V , AV restricts on the embedded copy of Flag•(PDisc2(c,d)) to the 
Flag•(PDisc2(c,d))-algebra
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S−1
c C[w] ⊗ S−1

d C[z]

S−1
c C[w] ⊗C(z)

C(w)⊗ S−1
d C[z]

C(w)⊗C(z)

C
(w

)⊗
C
(z)

C(w)⊗C(z)

C(w)⊗C(z)S−1
c C[w] ⊗C(z)

C(w)⊗ S−1
d C[z]

C(w)⊗C(z)

C(w)⊗C(z)

(47)

Every element of C(w) ⊗C(z) has a partial fraction decomposition, in w and then z, which is a sum of finitely many 
terms. Thus we have the direct sum decomposition of vector spaces

C(w)⊗C(z)∼=C O(V )⊕
⊕

c /∈{a1,...,am}
(w − c)−1C[(w − c)−1] ⊗C(z)

⊕
⊕

d/∈{b1,...,bn}
C(w)a1,...,am ⊗ (z− d)−1C[(z− d)−1]

In this way, our polynomial differential form ω decomposes uniquely as a sum

ω=ωO(V ) +
∑

c /∈{a1,...,am}
ωc +

∑
d/∈{b1,...,bn}

ω′d.

Here, it must be the case that after pulling ω back to any individual simplex S of Flag•(V ) only finitely many summands 
are nonzero, so that ω|S correctly takes values in C(w) ⊗C(z). Which summands contribute, though, can depend on which 
of the uncountably many simplices one considers, so it need not be true that only finitely many summands are nonzero.

We define the homotopy h to act diagonally with respect to this decomposition,

h(ω) := hO(V )(ωO (V ))+
∑

c /∈{a1,...,am}
hc(ωc)+

∑
d/∈{b1,...,bn}

h′d(ω
′
d),

as follows. The summand ωc must vanish when pulled back to the boundaries (pt., (w = c)), and, in the same notation we 
used in the main text above, we define hc(ωc) to be a retract back to this boundary:

for every d, f /∈ {b1, . . . , bn} and e /∈ {a1, . . . , am, c}. What has to be checked is that for any simplex S , the resulting sum ∑
c /∈{a1,...,am} hc(ωc)|S has only finitely many non-zero terms. This is what the conditions in the definition (13) of �′ ensure. 

For example, consider a flag ((w = e), E). By our definition h(ω)|((w=e),E) receives contributions from all flags ((w = c), E) in 
this sum. But for all but finitely many such flags, the pull-back ω|((w=c),E) actually takes values not just in A((w = c), E) =
C(w) ⊗C(z) but in A((w = c)) = S−1

c C[w] ⊗C(z), which means that the pullback of the summand ωc to this flag actually 
vanishes. Similarly, consider a flag ((e, d), (w = e), E). By definition h(ω)|(e,d),(w=e),E receives a contribution from all flags 
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((c, d), (w = c), E) and ((c, d), (z= d), E) for c /∈ {b1, . . . , bm, e}, but at most finitely many of these contributions are actually 
nonzero.

We define h′d(ω
′
d) similarly to be given by retracting to the boundary of Flag•(V ) defined by (z= d).

We define hO(V ) to be the retraction to the vertex E: for every c, d /∈ {a1, . . . , am} and e, f /∈ {b1, . . . , bn},

In this case there are no potentially infinite sums: for example, hO(V )(ωO(V ))|((c,d),(w=c),E) receives contributions only from 
ωO(V )|((c,d),(w=c),E) and ωO(V )|((c,d),E) .

We let i be the map embedding an element of O(V ) as a constant 0-form on Flag(V ). (Observe that it obeys all the 
boundary conditions). We let p be the map which picks out the component in O(V ) of the pull-back of a form to the vertex 
E:

p(ω) :=ωO(V )|E
With these definitions, one checks that (46) is a deformation retract of dg vector spaces, as we wanted to show. This 

completes the proof of Theorem 6.

Appendix B. An example computation in detail

Suppose that � is a C-valued polynomial differential form on the semisimplicial set shown on the left below. Assume 
that the boundary conditions on � are that it must vanish on the dotted edges shown. We define h(�) to be given as 
shown on the right.

We now describe in detail what we mean by this pictorial definition of h(�), and show that it implies that

[d,h](�)=�.

Let us label individual 2-simplices by letters A, B, C, D

and write �A for the form � on the simplex labelled A, etc, and likewise h(�)A etc for h(�). On each individual 2-simplex 
we use the coordinates from §5.5; as in the main text, the vertex E is the one in the centre, and the vertices corresponding 
to closed points are the outer corners. We have

�A(s, t)= f A(s, t)+ f A
s (s, t)ds+ f A

t (s, t)dt + f A
st (s, t)ds ∧ dt

for some coefficient functions f A, f A
s , f A

t , f A
st , and similarly on the other 2-simplices.
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Consider first the simplex labelled D . We define

h(�)D := a(�D)+ b(�D)

with a and b as in the proof of Proposition 21. Exactly as in that proof, one then has

[d,h(�)]D(s, t)=�D(s, t)− f D(0,0),

and in our present case f D(0, 0) = 0 by the boundary conditions.
Now consider the simplex labelled A. We define

h(�)A := ã(�A)+ b̃(�A)+
1∫

0

(
f D

s (s′, s′)+ f D
t (s′, s′)

)
ds′ (48)

with

ã(�)(s, t) :=
⎛⎝ s∫

t

f s(s′, t)ds′
⎞⎠+

⎛⎝ s∫
t

f st(s′, t)ds′
⎞⎠dt

and

b̃(�)(s, t) :=
⎛⎝ t∫

1

(
f s(s′, s′)+ ft(s′, s′)

)
ds′

⎞⎠
The computation is then similar to that in the proof of Proposition 21. Indeed, we have

(d ◦ ã(�))(s, t)= f s(s, t)ds− f s(t, t)dt +
⎛⎝ s∫

t

f s,2(s′, t)ds′
⎞⎠dt + f st(s, t)ds ∧ dt

and

(̃a ◦ d(�))(s, t)= ã
(

f,1(s, t)ds+ f,2(s, t)dt + (
ft,1(s, t)− f s,2(s, t)

)
ds ∧ dt

)
=
⎛⎝ s∫

t

f,1(s′, t)ds′
⎞⎠+

⎛⎝ s∫
t

( ft,1(s′, t)− f s,2(s′, t))ds′
⎞⎠dt

= f (s, t)− f (t, t)+ ft(s, t)dt − ft(t, t)dt −
⎛⎝ s∫

t

f s,2(s′, t)ds′
⎞⎠dt,

and therefore

([d, ã](�))(s, t)=�(s, t)− f (t, t)− f s(t, t)dt − ft(t, t)dt. (49)

At the same time, we have

(d ◦ b̃(�))(s, t)= f s(t, t)dt + ft(t, t)dt

and

(̃b ◦ d(�))(s, t)= b̃
(

f,1(s, t)ds+ f,2(s, t)dt + (
ft,1(s, t)− f s,2(s, t)

)
ds ∧ dt

)
=

t∫
0

(
f,1(s′, s′)+ f,2(s′, s′)

)
ds′ =

t∫
1

∂s′ f (s′, s′)ds′

= f (t, t)− f (1,1). (50)

The final term in our definition (48) above gives an additional contribution of f D(1, 1) − f D(0, 0) to [d, h](�)A . In total, we 
see that

([d,h](�))A(s, t)=�A(s, t)− f A(1,1)+ f D(1,1)− f D(0,0).
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But f A(1, 1) = f D(1, 1) by continuity of the form � at the central vertex, and, once more, f D(0, 0) = 0 by the boundary 
conditions.

Now consider the simplex labelled C . We define

h(�)C (s, t) := c(�C )(s, t)+ h(�)D(s,1)

= c(�C )(s, t)+ a(�D)(s,1)+ b(�D)(s,1) (51)

where a, b remain as in the proof of Proposition 21, and where we introduce

c(�)(s, t) :=
⎛⎝ t∫

1

ft(s, t′)dt′
⎞⎠−

⎛⎝ t∫
1

f st(s, t′)dt′
⎞⎠ds.

Then we see that

(d ◦ c(�))(s, t)=
⎛⎝ t∫

1

ft,1(s, t′)dt′
⎞⎠ds+ ft(s, t)dt + f st(s, t)ds ∧ dt

and

(c ◦ d(�))(s, t)= c
(

f,1(s, t)ds+ f,2(s, t)dt + (
ft,1(s, t)− f s,2(s, t)

)
ds ∧ dt

)
=
⎛⎝ t∫

1

f,2(s, t′)dt′
⎞⎠−

⎛⎝ t∫
1

( ft,1(s, t′)− f s,2(s, t′))dt′
⎞⎠ds

= f (s, t)− f (s,1)−
⎛⎝ t∫

1

ft,1(s, t′)dt′
⎞⎠ds+ f s(s, t)ds− f s(s,1)ds,

and therefore

([d, c](�))(s, t)=�(s, t)− f (s,1)− f s(s,1)ds.

From our previous calculations (in the proof of Proposition 21) we know that

([d,a+ b](�))(s,1)= f (s,1)+ f s(s,1)ds− f (0,0).

Continuity of the form � on the edge between the 2-simplices C and D is the statement that

f (s,1)C + f s(s,1)C ds= f (s,1)D + f s(s,1)D ds.

Thus our definition (51) of h(�)C implies that

[d,h](�)C (s, t)=�(s, t)C − f D(0,0)=�(s, t)C . (52)

Finally, we turn to the vertex labelled B . We define

h(�)B(s, t) := ã(�B)(s, t)+ h(�)C (t, t)

= ã(�B)(s, t)+ c(�C )(t, t)+ a(�D)(t,1)+ b(�D)(t,1)

for the same functions ̃a, c, a, b as above. According to (49), we have

[d, ã](�B)(s, t)=�B(s, t)−�B(t, t),

and here

�B(t, t)= f B(t, t)+ f B
s (t, t)dt + f B

t (t, t)dt

= f C (t, t)+ f C
s (t, t)dt + f C

t (t, t)dt =�C (t, t)

by the continuity condition on the edge between the 2-simplices B and C . We have also, from (52), that

[d,h](�C )(t, t)=�C (t, t).
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We conclude that

[d,h](�)B(s, t)=�B(s, t).

This establishes that [d, h](�) =� on each of the labelled simplices. The same is true on the remaining 4 simplices, by 
symmetry.

Appendix C. Homotopy Manin triples in L∞ algebras

In the main text of this paper we choose to work with dg Lie algebras. Our definition of homotopy Manin triples in 
Section 6 extends straightforwardly to the larger category of L∞ algebras. In this appendix we give this generalization, and 
relate it to notion of Manin L∞ triples due to Kravchenko [37].

Indeed, Definition 9 goes over to L∞ algebras unmodified except that one should generalize the invariance condition, as 
follows.

Definition 35. A homotopy Manin triple (of L∞ algebras) (a, a±, ι±, 〈− | −〉 , n) is the data of

(1) L∞ algebras a, a+ and a−
(2) L∞ algebra maps a+

ι+−→ a 
ι−←− a− , and

(3) a (degree zero) map of dg vector spaces 〈− | −〉 : a ⊗ a → s−nC

subject to the following conditions:

(i) the map of dg vector spaces (ι+, ι−) : a+ ⊕ a− → a is a homotopy equivalence
(ii) the map 〈− | −〉 : a ⊗ a → s−nC is

- (graded) symmetric: 〈x | y〉 = (−1)gr x gr y 〈y | x〉 for all x ∈ agr x, y ∈ agr y .
- cyclic: for each of the brackets �k(−, . . . , −) : a⊗k → s2−ka,〈

�k(x1, . . . , xk−1, xk) | x0
〉+ (−1)gr x0 gr xk

〈
�k(x1, . . . , xk−1, x0) | xk

〉= 0.

(iii) the map 〈− | −〉 : a ⊗ a → s−nC is non-degenerate up to homotopy: If 〈x | −〉 
 0 then x 
 0 (i.e. x is exact).
(iv) both a+ and a− are isotropic, i.e. the maps

〈ι±(−) | ι±(−)〉 : a± ⊗ a± → s−nC

are homotopic to zero.

Kravchenko gives a definition of a Manin L∞ triple, or strongly homotopy Manin triple, in [37]. Here we relax the 
definition given there slightly, in two ways: we do not insist the L∞ algebras be finite dimensional, and we allow the 
bilinear form to be degree-shifted.

Definition 36. A Manin L∞ − triple (g, g±, 〈− | −〉 , n) is a triple of L∞ algebras (g, g+, g−) equipped with a nondegenerate 
bilinear form 〈− | −〉 : g ⊗ g → s−nC, such that

(i) g+ , g− are L∞ subalgebras of g such that g = g+ ⊕ g− as (dg) vector spaces
(ii) g+ and g− are isotropic with respect to 〈− | −〉

(iii) the bilinear form is cyclic; that is, for each of the brackets �k(−, . . . , −) : g⊗k → s2−kg of g,〈
�k(x1, . . . , xk−1, xk) | x0

〉+ (−1)gr x0 gr xk
〈
�k(x1, . . . , xk−1, x0) | xk

〉= 0.

It is immediate that

Proposition 37. Every Manin L∞ triple in the sense Definition 36 is a homotopy Manin triple of L∞ algebras in the sense of Defini-
tion 35. �

To make a statement in the reverse direction, we need the notion of homotopy transfer of algebraic structures. Recall 
– from e.g. [19, §3,§6] and references therein, and cf. [41, §9.4.3–9.4.5] – that one has a homotopy transfer theorem for 
L∞ algebras: if a is an L∞ algebra then any homotopy equivalence of dg vector spaces a 
 b induces the structure of an 
L∞ algebra on the dg vector space b, in such a way that a 
 b becomes a quasi-isomorphism of L∞ algebras. In particular 
the cohomology H(a) is a deformation retract of a in dg vector spaces, so it gets an L∞ algebra structure. This structure is 
compatible with the usual graded Lie algebra structure on H(a) – in particular, it has vanishing differential – but typically 
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has non-vanishing higher brackets. In this way, every L∞ algebra a is quasi-isomorphic to a minimal model, H(a). Since 
minimal models have vanishing differential, two minimal models are quasi-isomorphic precisely if they are isomorphic.

Under certain conditions on the retract of a onto H(a), it is also possible to transfer the cyclic structure: see [7, Appendix 
B] and cf. [8].

Proposition 38. Let (a, a±, ι±, 〈− | −〉 , n) be a homotopy Manin triple of L∞ algebras in the sense of Definition 35. Assume the retract 
of a onto H(a) allows the cyclic structure to be transferred from a to H(a). Then (H(a), H(a+), H(a−)) gets the structure of a Manin 
L∞-triple (with shift n) in the sense of Definition 36.

Proof. As we noted in Remark 10, we certainly have that

(i’) the map (ι+, ι−) induces an isomorphism of graded vector spaces

H(a+)⊕ H(a−)∼=grVect H(a)

(iii’) the map of graded vector spaces

H(a)⊗ H(a)→ s−nC

induced by 〈− | −〉 is non-degenerate.
(iv’) both H(a+) and H(a−) are isotropic as subspaces of H(a).

By the homotopy transfer theorem H(a±) and H(a) are minimal L∞ algebras. Moreover the maps H(ι±) : H(a±) → H(a)

are maps of L∞ algebras. (Indeed, by the decomposition theorem for L∞ algebras – see e.g. [32], especially equation (2.55) 
– one has quasi-isomorphisms of L∞ algebras I± : H(a±) → a± and P : a → H(a); and H(ι±) = P ◦ ι± ◦ I± is then the 
composition of these L∞ algebra maps.)

By assumption, the bilinear form on the cohomology H(a) induced by the bilinear form 〈− | −〉 on a remains cyclic for 
the L∞ structure on H(a). �
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