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Abstract

Solar radio bursts are strongly affected by radio-wave scattering on density inhomogeneities, changing their
observed time characteristics, sizes, and positions. The same turbulence causes angular broadening and scintillation
of galactic and extragalactic compact radio sources observed through the solar atmosphere. Using large-scale
simulations of radio-wave transport, the characteristics of anisotropic density turbulence from 0.1 Re to 1 au are
explored. For the first time, a profile of heliospheric density fluctuations is deduced that accounts for the properties
of extrasolar radio sources, solar radio bursts, and in situ density fluctuation measurements in the solar wind at 1 au.
The radial profile of the spectrum-weighted mean wavenumber of density fluctuations (a quantity proportional to
the scattering rate of radio waves) is found to have a broad maximum at around (4–7) Re, where the slow solar
wind becomes supersonic. The level of density fluctuations at the inner scale (which is consistent with the proton
resonance scale) decreases with heliocentric distance as ( ) ( )n r r R2 10 1i

2 7 3.7 dá ñ ´ - - cm−6. Due to
scattering, the apparent positions of solar burst sources observed at frequencies between 0.1 and 300 MHz are
computed to be essentially cospatial and to have comparable sizes, for both fundamental and harmonic emission.
Anisotropic scattering is found to account for the shortest solar radio burst decay times observed, and the required
wavenumber anisotropy is q∥/q⊥= 0.25–0.4, depending on whether fundamental or harmonic emission is
involved. The deduced radio-wave scattering rate paves the way to quantify intrinsic solar radio burst
characteristics.

Unified Astronomy Thesaurus concepts: Radio bursts (1339); Interplanetary scintillation (828); Interplanetary
turbulence (830); Solar corona (1483); Solar wind (1534)

1. Introduction

Radio-wave scattering affects the temporal characteristics,
sizes, and positions of both solar radio bursts and extrasolar
sources observed through the turbulent solar atmosphere. Solar
radio bursts (such as Type I, Type II, Type III, etc.) are
produced predominantly via plasma mechanisms at frequencies
that are close to either the local plasma frequency or its double
(harmonic), and are thus particularly strongly affected by
scattering (e.g., Fokker 1965; Steinberg 1972; Riddle 1974;
Bastian 1994; Arzner & Magun 1999; Thejappa & MacDowall
2008; Kontar et al. 2017, 2019; Chrysaphi et al. 2018, 2020;
Krupar et al. 2018, 2020; McCauley et al. 2018; Gordovskyy
et al. 2019; Maguire et al. 2021; Mohan 2021; Murphy et al.
2021; Musset et al. 2021; Sharma & Oberoi 2021). Similarly,
extrasolar point sources observed through the solar atmosphere
and solar wind are noticeably broadened (e.g., Machin &
Smith 1952; Hewish 1958; Dennison & Blesing 1972;
Anantharamaiah et al. 1994; Sasikumar Raja et al. 2017) and
scintillate (Hewish et al. 1964; Cohen et al. 1967; Woo 1977;
Coles 1978; Armand et al. 1987; Manoharan 1993a; Breen
et al. 1999; Miyamoto et al. 2014; Sasikumar Raja et al. 2016;

Chhetri et al. 2018; Tyul’bashev et al. 2023). Overall, various
observations provide a qualitatively consistent picture of
turbulence in the heliosphere. These observations also strongly
suggest that the density fluctuations are anisotropic, with
parallel wavenumbers q∥ that are smaller than the perpendicular
wavenumbers q⊥ (e.g., Dennison & Blesing 1972; Coles &
Harmon 1989; Armstrong et al. 1990), with stronger anisotropy
suggested at smaller scales. Observations of solar radio bursts
at higher frequencies (∼30–50 MHz) originate closer to the
Sun and usually require an anisotropic q∥/q⊥; 0.15–0.3
(Kontar et al. 2019; Chen et al. 2020; Kuznetsov et al. 2020;
Clarkson et al. 2021), while simultaneous observations of solar
radio bursts in interplanetary space using multiple spacecraft
require a somewhat larger ratio q∥/q⊥; 0.3–0.4 (Musset et al.
2021). In situ observations of the wavenumber anisotropy of
density fluctuations are very few: Celnikier et al. (1987) report
an anisotropy factor between 1 and 2 with an uncertainty
comparable to the measured values, while Roberts et al. (2018)
report an anisotropy factor between 1 and 3.
The scattering regimes for solar radio bursts and extrasolar

point sources are very different. Extrasolar sources are typically
observed at frequencies ω that are much greater than the
plasma frequency of the solar medium in which their emitted
radiation propagates and scatters, i.e., ω/ωpe? 1, where pew =

e n m4 e
2p (s−1) is the local plasma frequency, n (cm−3) is the

local number density, and e and me are the electron charge (esu)
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and mass (g), respectively. The scattering mean free path λsc is
proportional to ( )pe

2 2 2w w- and is typically much larger than
the distance r traveled by the radio waves in the turbulent
medium. Consequently, such sources experience weak
scattering and their broadening is normally computed using a
thin-screen approximation to deduce a wave structure function
that measures the spatial correlation of the turbulence at
different scales (see, e.g., Lee & Jokipii 1975; Woo et al. 1977;
Coles & Harmon 1989). By contrast, solar radio burst emission
is at frequencies that are inherently close to the local plasma
frequency (or its second harmonic), so that ω/ωpe; 1−2. For
values of ω so close to ωpe, the mean free path λsc can be much
smaller than the distance a wave propagates between the
emission location and the observer, so that the emitted radio
waves are (at least close to their origin) subject to multiple
scatterings that randomize the wave propagation. Waves
emitted in solar radio bursts, at least close to the emitting
region, thus propagate diffusively (Bian et al. 2019; Kontar
et al. 2019; Chen et al. 2020), with the transport modeled using
a stochastic random-phase description (Chandrasekhar 1952;
Fokker 1965; Steinberg et al. 1971; Thejappa & MacDowall
2008; Krupar et al. 2018) with inclusion of anisotropic effects
(Arzner & Magun 1999; Kontar et al. 2019).

Regarding observations of density fluctuations, solar corona
sounding experiments normally work well for heliocentric
distances ∼ (2–100) Re (e.g., Coles & Harmon 1989), but
become progressively more difficult at smaller heliocentric
distances due to the strong radio emission of the quiet solar
corona between (1–2) Re. On the other hand, solar radio burst
emissions originating between (1–2) Re have brightness
temperatures far greater than the corona and are easily
observed. As such, solar radio bursts, such as Type III bursts,
are better suited to provide constraints on scattering and density
fluctuations close to the Sun, i.e., below 2 Re (Kontar et al.
2017; Chrysaphi et al. 2018; Chen et al. 2020; Mohan 2021;
Sharma & Oberoi 2021).

Since it is the same density turbulence that affects the
properties of (1) extrasolar sources, (2) solar sources, and (3)
density fluctuations measured in situ in the solar wind, a
common density turbulence model must self-consistently
explain all three sets of observations. Here, using the numerical
model of Kontar et al. (2019), we carry out a number of radio-
wave propagation simulations between 0.15 and 300 MHz and
we consider the results in light of the very substantial array of
extrasolar, solar, and in situ observations published in the
literature. We show that the level of radio-wave scattering
necessary to account for the properties of nonsolar sources
matches the level required to account for the source sizes and
apparent positions of solar radio bursts in the corona and in the
heliosphere. Further, the burst decay times and time durations
predicted by such a turbulence model are consistent both with
typical Type III burst durations below 1 MHz and with the
shortest radio bursts observed (such as spikes and Type IIIb
striae) above 1 MHz. Intriguingly, the Type III burst striae that
were observed by the Parker Solar Probe (PSP; Fox et al. 2016)
show a transition from a decay time that is proportional to 1/f
at lower frequencies to a downshifted 1/f behavior at higher
frequencies, consistent with the trend predicted by the
scattering model.

In Section 2 we discuss the model of radio-wave propagation
in a turbulent medium with an anisotropic turbulence
wavenumber spectrum S(q). In Section 3, we discuss the

angular broadening of extrasolar sources with ray paths that
pass close to the turbulent atmosphere of the Sun, and we
determine the density and turbulence profiles required to
account for various source size observations. In Section 4 we
discuss simulations of solar radio bursts that use the turbulence
profile (both strength and anisotropy) established by the data on
extrasolar source angular broadening, and we compare the
model predictions with observations of source decay times
(Section 4.1), sizes (Section 4.2), and apparent positions
(Section 4.3). In Section 5 we discuss the relation of the
turbulence wavenumber spectrum to in situ measurements of
the frequency spectrum of density fluctuations, leading to
further constraints on both the level of turbulence and its degree
of anisotropy. In Section 6 we use observations of the
turbulence level at the inner scale (the boundary between the
inertial and dissipative ranges of the turbulence spectrum) to
constrain the turbulence amplitude further, and we present
results on the inferred variation of the level of density
fluctuations with solar distance. Finally, in Section 7 we
summarize the results obtained and use them to present a self-
consistent model of the interplanetary turbulence profile
between the Sun and the Earth.

2. Radio-wave Transport in an Anisotropic Turbulent
Medium

Density fluctuations in general are characterized by their
three-dimensional wavenumber spectrum S(q), such that the
density fluctuation variance 〈δn2〉 (cm−6), normalized by the
square of the local density, is

( )
( )

( )q
n

n
S

d q
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where q (cm−1) is the wavevector associated with a density
fluctuation, 〈L〉 denotes an ensemble average, and n(r) is the
background plasma density. A typical wavenumber spectrum
(e.g., Alexandrova et al. 2013; Tasnim et al. 2022) has three
main domains
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where the spectrum is normalized to the value S(qi) at the inner-
scale wavenumber q= qi, the boundary between the inertial
and dissipative ranges. We note that the density fluctuation
power spectrum shows evidence of flattening between the
inertial and dissipation scales (e.g., Celnikier et al. 1987; Coles
& Harmon 1989; Šafránková et al. 2015), which we do not
consider here for simplicity. Qualitatively, since the wave-
number volume element d3q= 4π q2 dq, the wavenumber
spectrum (for an illustrative isotropic density fluctuation
spectrum) has three major parts (left panel of Figure 1; see
also Figure 2 of Tasnim et al. 2022): q2 S(q) q− γ for large
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wavelengths (q< qo), with values of γ between 0 and 1 (e.g.,
Marsch & Tu 1990; Bird et al. 2002; DeForest et al. 2018), the
(Kolmogorov) inertial range q2 S(q)∼ q−5/3 between the outer
scale qo and the inner scale qi (e.g., Marsch & Tu 1990), and
the dissipation range q2 S(q)∼ q− δ at small wavelengths
(q> qi; e.g., Celnikier et al. 1983).

As we shall show below (Equation (7); see also Kontar et al.
2019), the diffusion coefficient for radio waves is proportional
to the spectrum-weighted mean wavenumber

( )
( ) ( )q q S q q dq

4

2
, 32

3
2 ò

p
p

=

which is the central quantity of interest in this work. This
integral is proportional to ( )q S q d qln ;4ò the corresponding
integrand is shown schematically in the right panel of Figure 1
and is seen to peak near qi, corresponding to the inner
scale. Quantitatively, the contribution to ( )q S q dq

0
3ò º

¥

[( ) ] q2 43 2p p from the long-wavelength outer range
(q< qo) is ( )S q q qi i o

11 3 5 3g- q dq
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0
1oò g- = [ ( )]1 2 g- ( )S q qi i
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( )q qo i
1 3, the contribution from the inertial range (qo< q< qi)

is ( ) ( ) ( [ ] )S q q q dq S q q q q3 1i i q

q
i i o i

11 3 2 3 4 1 3

o

iò = -- , and the

contribution from the dissipative range (q> qi) is
( ) [ ( )] ( )S q q q dq S q q1 2i i q i i

2 1 4

i
/ò d= -d d+ ¥ - . The inertial range

between q0 and qi is typically about three orders of magnitude
(e.g., Alexandrova et al. 2013), and a typical dissipation range
spectral index δ varies from 2.3 to 2.9 (e.g., Celnikier et al.
1987), so we adopt δ= 2.5. The contributions to q 2 from the
three ranges are therefore in the approximate ratio 0.1:3:2.
Ignoring the small contribution at large scales (q< qo), the
spectrum-weighted mean wavenumber q 2 is
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where the last equality uses δ= 2.5. Equation (4) and Figure 1
importantly highlight that q 2 is determined mostly by density
fluctuations close to the inner scale qi

1- .
Observations often suggest the presence of anisotropy

relative to the direction of the magnetic field, suggesting a

correspondingly anisotropic wavenumber spectrum. Following
previous studies (Dennison & Blesing 1972; Woo et al. 1977),
we therefore consider a wavenumber spectrum of the form

( ) ( ˜) ˜ ( )qS S q q q q
q

, where , 52 2
2

21 2



a
= = + +^ ^

which has axial symmetry around the ∥ direction, i.e., along the
(assumed radial) magnetic field B. The wavenumber diffusion
tensor describing the elastic scattering of radio waves with
wavenumber k in such an anisotropic medium can be written as
(e.g., Arzner & Magun 1999; Bian et al. 2019; Kontar et al. 2019)
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where ( )k c kpe
2 2 2w w= + is the angular frequency and k is

the wavevector of electromagnetic waves in a plasma with local
plasma frequency ωpe(r). For the spectrum given by
Equation (5), we can obtain (Equation (16) of Kontar et al.
2019) an explicit expression for the components of the
wavenumber diffusion tensor (cm−2 s−1)
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where ( )q q q q, ,,1 ,2  a= ^ ^ is the wavevector transformed into
a space such that ( )S q is isotropic, A is the matrix diagonal
(1, 1, α−1), and we have used d q d q3 3a= . The case α= 1
corresponds to isotropic turbulence, while the typically
observed case α< 1 has power predominantly oriented in the
perpendicular direction. In such a situation, the density
perturbations are elongated along the field lines, so that the
parallel length is larger than the perpendicular length:
q q1 1
 >-

^
- , i.e., the perpendicular wavenumber is larger than

Figure 1. Left: spectrum of density fluctuations showing the q2 S(q) ∼ q− γ spectrum at large scales qo
1> - , the (Kolmogorov) inertial range q2 S(q) ∼ q−5/3 between

the outer scale qo
1- and the inner scale qi

1- , and the dissipation range q2 S(q) ∼ q− δ (with δ > 2) at small scales qi
1< - . Right: the qln space integrand required to

compute the mean wavenumber ( ) ( )q q S q q dq q S q d qln2 2 4 ò òµ = , highlighting the peak near the inner scale qi
1- . All axes are on logarithmic scales.
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the parallel wavenumber, q∥< q⊥. Equation (7) explicitly
shows that the diffusion tensor is proportional to the
quantity q 2 .

3. Angular Broadening of Extrasolar Radio Sources

We consider the propagation of a radio wave from a distant
extrasolar source with a heliocentric angular separation of
;0.27 r/Re degrees, where r is the linear distance of closest
approach of the ray path to the center of the Sun, and 0°.27 is
the angular radius of the Sun (see Figure 2). We define the q∥
direction as that aligned with the (assumed radial) solar
magnetic field B, q

1̂
as the perpendicular direction that is

aligned with the wave propagation direction ẑ at the point of
closest approach, and q

2̂
as the perpendicular direction ŷ on

the plane of the sky that is perpendicular to B (Figure 2).
Evidently, radio waves propagating from such a source will be
affected by scattering in the turbulent solar atmosphere and, for
emission frequencies ω that are much larger than the plasma
frequencies ωpe along the ray path though the heliosphere, this
can be considered in the weak-scattering limit. In this limit,
Equation (6) shows that the angular broadening rates per unit
travel distance vgr dt= (c2 k/ω) dt; c dt, in the directions ∥
(i.e., radial) and ⊥2 (i.e., perpendicular to the radial direction
on the plane of the sky) can be written, using Equation (7) (see
also Kontar et al. 2019), as
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d
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where vgr= ∂ω/∂k= c2 k/ω is the group velocity of the radio
wave and we have used the approximate (high-frequency)
dispersion relation ω= ck. Since the radio waves propagate
along the z-direction, the broadening in the x- and y-directions
on the plane of the sky become integrals along the line of sight
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where χ(z) is the angle between the radial (∥) direction of the
magnetic field and the x-axis (see Figure 2). When the largest
contribution to xx

2qá ñ comes from plasma near z= 0 (aka, the thin-
screen approximation), xx yy

2 2 2q a qá ñ á ñ, so the source broadening
in the x-direction is reduced by a factor α relative to that in the y-
direction. Broadened sources are indeed observed to be elliptical
(e.g., Dennison & Blesing 1972; Anantharamaiah et al. 1994), and
this requires that the scattering occurs in both directions in the x–y
plane (rather than along x or y only), so that S(q) should be
evaluated with q 0

1
=^ , i.e., with q lying in the ⊥2− ∥ plane. We

Figure 2. Left: schematic showing the coordinate system used and its relation to the solar disk and the line of sight to an extrasolar point source with separation
distance r. The broadening of point sources is calculated as an integral along z in Appendix B. Right: observed FWHM major-axis source sizes of broadened point
sources (Hewish 1958; Slee 1959, 1966; Högbom 1960; Gorgolewski et al. 1962; Hewish & Wyndham 1963; Harries et al. 1970; Blesing & Dennison 1972;
Woo 1978; Bradford & Routledge 1980; Narayan et al. 1989; Anantharamaiah et al. 1994). The Hewish (1958) data show points where the detector baseline
orientation was specified, and we take the larger of the measurements as the assumed major-axis dimension. The solid black line shows the data fit

( )r R355 1 2.15
q = - - arcseconds, and extrapolated by the dashed line. The colored lines show the simulated data for various values of the anisotropy parameter α,

with the lower and upper bounds of each region respectively denoting values of q R2
 corresponding to 0.5× and 2× the nominal values from Equation (14).

Different observations are scaled to a frequency of 1.5 GHz using a frequency dependence of f−2, as expected from Equation (9); see also Equation (B5) in
Appendix B.
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note that the observed form of source broadening is not
consistent with a simple 2D-plus-slab model, in which
S(q)= S⊥ δ(q∥)+ S∥ δ(q⊥) and the scattering tensor (Equation (6))
has a nonzero ⊥2− ∥ component; such a model would result
instead in “cross-like,” rather than the observed elliptical, apparent
source structures.

For a spherically symmetric corona, the apparent rms source
sizes in the perpendicular direction (along the y-axis in Figure
2), observed at frequency f= ω/2π (Hz), thus satisfy

( )

( ) ( ) ( )

r
d

c dt
dz
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q r n r dr
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where the constant of proportionality depends6 on the distance
of closest approach r of the ray to the Sun, and we have used
the relation ωpe∝ n1/2. At radial distance r, the mean
(spectrum-averaged) wavenumber, q 2 , at the position r is
given by substituting Equation (5) into Equation (1)
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where we have multiplied q 2 by the solar radius Re to
produce the dimensionless quantity q R2

 . The angular
broadening rates in both directions on the sky are thus, as
expected from Equation (7), proportional to the square root of
the key quantity q R2

 .
For a prescribed wave frequency f and distance of closest

approach r, Equation (12) shows that the source rms angular
size and shape depend only on the profiles of the plasma
density n (through the local plasma frequency ωpe) and the
spectrum-weighted mean wavenumber of density fluctuations
q R2

 , at distances larger than the closest ray-approach
distance. The turbulence profile in turn depends on the
spectrum ( )S q and its degree of anisotropy, characterized by
the parameter α (see Equation (5)). Further, Equation (12)
shows that the apparent angular extent of the source in the
radial direction is smaller than the apparent extent in the
perpendicular direction on the plane of the sky, by a factor α.
Hereafter we define the source “size” as the major axis, i.e., the
FWHM source extent in the ⊥2 direction, perpendicular to the
radial direction on the plane of sky.

If the density and turbulence profiles can be reasonably
represented by power-law forms (n(r)∼ r− η and

( )q r r2 ~ z- , respectively), then Equation (12) shows that
〈θ2〉1/2∼ r−[ η+( ζ−1)/2]. The data on the apparent sizes of
extrasolar sources are presented in Figure 2; they show that
〈θ2〉1/2∝ r−2.15 for r? Re. Thus, the radial density profile
n(r)∝ r−2.3 (valid at r? Re; see Appendix A), requires that
(ζ− 1)/2= 2.15− 2.3=−0.15; i.e., ζ= 0.7. We therefore

adopt the nominal turbulence profile

( )q R
R

r

R

r
2 10 1 , 142 3

2.7 0.7


  a= ´ -⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠

which is proportional to α (Equation (13)) and also includes an
additional factor ( )R r1 2.7

- so that q 2 decreases toward
the solar surface as required by solar burst observations (see the
next section). The later is required mostly by >20 MHz solar
radio burst observations discussed in the next section. The
scaling factor 2× 103 and the exponent 2.7 in the additional
term are chosen to match best the simulation results with the
observational data in Figure 2.

4. Solar Radio Bursts

Radio waves emitted by solar sources (e.g., Type III bursts)
suffer scattering in the same turbulent environment that leads to
the angular broadening of extrasolar sources. Because such
bursts are produced by plasma processes at or near the plasma
frequency ωpe or its double (see, e.g., Ginzburg &
Zhelezniakov 1958), the scattering process is much stronger
than for extrasolar sources with ω? ωpe and hence the weak-
scattering treatment of the previous section is not applicable.
Here, using a code developed by Kontar et al. (2019), we
numerically simulate the propagation of radio waves in the
presence of a prescribed density fluctuation profile q 2 as a
function of r and anisotropy parameter α, which we take7 to be
a constant in our model. We performed simulations with
q R2

 scaled from its nominal value in Equation (14) by a
factor in the range [1/4, 4], and using anisotropy parameters α
in the range [0.19, 0.42]. The results of these simulations lead
to predictions of solar radio source properties (source size,
apparent position, and time profile) as seen from 1 au, and are
compared with observations to ascertain the veracity of the
q R2

 profile and anisotropy parameter α used. For the
simulations, we assume an initially isotropic distribution of
photons emitted near the plasma frequency (fundamental), or
twice the plasma frequency (harmonic). Assuming a spherically
symmetric corona, we ran numerical simulations of the wave
propagation, taking into account anisotropic scattering, large-
scale refraction, and free–free absorption, using profiles for the
ambient density profile n(r) given in Appendix A. We
performed simulations for radio frequencies covering the range
from ∼0.15 MHz to ∼300 MHz, thus encompassing ground-
based and space-based (below the ionospheric cutoff)
observations. We simulated burst decay times (Section 4.1),
angular source sizes (Section 4.2), and source positions
(Section 4.3), which are then compared with pertinent
observations to determine the spectrum-weighted mean
wavenumber of density fluctuations q R2

 as a function of
r and anisotropy parameter α, which together best account for
the observations.

4.1. Decay Time

The top panels of Figure 3 show predicted 1/e decay times
for the range of simulations discussed above, both for sources
that emit at the fundamental (left panel) and for those that emit
at the second harmonic (right panel).

6 See Appendix B for a more formal expression for Equation (12).

7 In principle, α could be treated as a function of r in the simulations, but this
would make the parameter space too large to study effectively.
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The decay time of solar radio bursts has been observed both
from space and from the ground, resulting in an extended set of
decay-time observations. The bottom panels of Figure 3
compare observations of characteristic decay times (expanding
the collection of decay times presented by Kontar et al. 2019)
with those obtained from our simulations, assuming emission
either at the fundamental (left panel) or at the harmonic (right
panel). The vertical bars in Figure 3 show the spread of
measurements (where available) rather than measurement

uncertainties. The decay profile is normally well fit by an
exponential form, with a generally well-measured characteristic
decay time (e.g., Krupar et al. 2018, 2020) both below 1 MHz
and above 20 MHz, with a gap in near-Earth data between a
few megahertz (due to the limited time resolution of space-
based observations) and ∼10–20 MHz (due to the ionospheric
cutoff for ground-based observations). Although there is a
noticeable spread in the observations, the gray area,
representing factors of 0.5× to 2× the nominal q R2

 profile

Figure 3. Top panels: simulated solar radio burst 1/e decay times vs. frequency. The simulations were performed for turbulence profiles q R2
 given by

Equation (14) multiplied by factors of [1/4, 1/2, 1, 2, 4], and the values of the anisotropy parameter α = [0.19, 0.25, 0.33, 0.42], and for both fundamental (left
panels) and harmonic emission (right panels). Bottom panels: observations of source decay times. The solid black points show measurements of Type III decay times
(Alexander et al. 1969; Elgaroy & Lyngstad 1972; Alvarez & Haddock 1973a; Barrow & Achong 1975; Krupar et al. 2018; Reid & Kontar 2018), while open black
points show spike decay times (McKim Malville et al. 1967; Barrow et al. 1994; Shevchuk et al. 2016; Clarkson et al. 2023). The solid black lines represent power-law
fits to the spike data from Equation (3) of Clarkson et al. (2023) and to the Type III data from Equation (51) of Kontar et al. (2019). The light blue points show
Type IIIb striae median decay times observed by PSP between 0.95 and 2.15 MHz. The colored lines represent simulated decay times from anisotropic scattering
simulations at the fundamental (left panel) and harmonic (right panel). The lower and upper bound of each region denotes values corresponding to turbulence profiles
of q R0.5 2

 and q R2 2
 , respectively.
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of Equation (14), includes all data below 3 MHz and is found
close to the observed decay times of the high-frequency spikes
and Type IIIb fine structures. This is convincing evidence that
scattering effects account for the shortest observed decay times.
The decay time of an average Type III burst at >10MHz is
normally quite a bit larger, and is principally determined by the
beamwidth and/or emission processes (e.g., Zhang et al. 2019;
Chen et al. 2020). We note that the simulated decay time is
dependent on whether the emission is fundamental or harmonic
(Figure 3). If all observations are due to harmonic emission, the
simulations require α; 0.4, while the assumption of emission
at the fundamental hypothesis requires a smaller anisotropy
α; 0.25 to explain the decay-time observations.

4.2. Angular Size

The top panels of Figure 4 show predicted apparent source
sizes for the range of simulations discussed above, both for
sources that emit at the fundamental (left panel) and for those
that emit at the second harmonic (right panel).

We have expanded the collection of Type III solar radio
burst angular extents initially presented by Kontar et al. (2019).
Source sizes at frequencies above 10MHz are evaluated using
ground-based interferometers, while those below 1 MHz are
determined using indirect techniques (e.g., spinning demodula-
tion and/or goniopolarimetric techniques; Alvarez 1976;
Bougeret et al. 2008; Cecconi 2014). Similarly to the decay-
time measurements of Figure 3, the bars in Figure 4 show the
spread of measurements (where available) rather than
measurement uncertainties. The bottom panels of Figure 4
show observed FWHM sizes (given as the FWHM semimajor
axis as observed at 1 au) compared with the predictions of the
simulations, assuming emission at the fundamental (left panel)
and at the harmonic (right panel). The simulated source sizes
are given in terms of their FWHM (for sources with emission
frequencies below 0.15 MHz, the source is so large that it
extends all the way to the observer at 1 au). One can see that
the majority of observations are within the range [1/2, 2] times
the nominal q R2

 profile of Equation (14).
Publications of observations of Type III burst decay times

and/or source sizes rarely identify whether the observations
correspond to emission at the fundamental or at the second
harmonic, and we therefore conservatively include the
possibility of either in our comparison of the observed decay
times and sizes with the simulation results. With that in mind, it
is interesting to note that both fundamental and harmonic
sources have similar sizes over a wide range of frequencies.
This is because the scattering surfaces that principally
determine the source size are located at levels where both the
plasma frequency and its double are less than the observed
frequency, so that whether the emission is fundamental or
harmonic is not a critical factor in determining the apparent
source size. This also explains why harmonic and fundamental
Type III burst source sizes measured at the same frequency are
nearly identical (Dulk & Suzuki 1980; Kontar et al. 2017; Chen
et al. 2023).

4.3. Apparent Position

Since the early observations of Type III bursts, it was noted
(e.g., Shain & Higgins 1959; Fainberg & Stone 1974) that the
source positions are not coincident with the positions in the
solar atmosphere and solar wind with densities corresponding

to emission at the plasma frequency (or its double);
equivalently, the observed burst frequencies required a higher
plasma density than that is normally observed by optical
telescopes (e.g., Fainberg & Stone 1974). However, as Figure 5
highlights, radio-wave scattering substantially shifts the burst
emission away from the Sun, so that the density inferred by
associating the burst emission with the plasma frequency (or its
double) could be 4–5 times higher than the density at the
apparent burst position (e.g., Chrysaphi et al. 2018). Figure 5
shows the variation of observed source positions versus
frequency, compared to the predictions of our simulations
under the assumptions that the emission is at the plasma
frequency (fundamental mode; left panel) or its second
harmonic (right panel). We see that the radio-wave scattering
reproduces the observed positions over a wide range of
distances from the low corona into the solar wind, as shown
by the gray band; only a relatively small spread (factor of four)
in the density fluctuation quantity q R2

 is required to
explain the available observations.
These simulations also highlight that, similar to the source

sizes (but unlike the burst decay times), the simulated apparent
source positions are relatively independent of the assumption of
whether fundamental or harmonic emission is involved. If there
were no scattering, at the same observation frequency, sources
corresponding to emission at the harmonic should be further
outward than sources corresponding to emission at the
fundamental. However, in the presence of strong scattering
(Figure 5), the apparent source positions are significantly
further away from the Sun than the locations expected for either
emission at the harmonic mode or at the fundamental. This
effect is noticeable for all except the highest emission
frequencies f > 100MHz, where the apparent source position
is close to the location expected from emission at the harmonic.
This shows clearly that measured source locations are
dominated by scattering effects and succinctly explains the
observations reported by Stewart (1972), showing that the
radial distances for the fundamental and harmonic components
at 80MHz are, on average, equal.

4.4. Remarks

The observations of Type III burst decay time, source size,
and position (Figures 3 through 5) show a noticeable data gap
at frequencies between ∼5MHz and ∼15 MHz. Observations
below the ionospheric cutoff are made from space, while
observations above 10–15 MHz are ground based. PSP (Fox
et al. 2016) has sufficiently high-frequency resolution to
resolve Type IIIb burst striae (Pulupa et al. 2020). Our analysis
of 10 Type IIIb bursts (58 striae from 2019 April 2 to 9)
provides interesting measurements (blue symbols in Figure 3),
suggesting that Type IIIb and Type III bursts have nearly
identical decay times below 1 MHz, but the fine structures in
Type IIIb bursts decay faster at higher frequencies. This
suggests that the Type III decay is purely due to scattering
below 1 MHz and that electron transport is of relevance at
higher frequencies. In other words, the scattering of Type III
radio bursts is so large below 1 MHz so that it dominates the
decay time.
The profiles of q R2

 (see Figure 6) necessary to
reproduce the observations of the source size, decay time,
and source position are consistent with an anisotropic scattering
model with α; 0.25 (assuming emission at the fundamental)
and α; 0.42 (assuming purely harmonic emission). We
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therefore conclude that turbulent density fluctuations, with a
magnitude profile consistent with Equation (14) and an
anisotropy parameter 0.2  α  0.4, are present in the solar
corona and heliosphere.

5. In Situ Observations of Density Fluctuations

Density fluctuations are often measured in the solar wind
(e.g., Celnikier et al. 1983; Marsch & Tu 1990) and can be
compared to our density turbulence model by converting the
wavenumber spectrum into the frequency power spectrum P( f )
(cm−6 Hz−1) measured by a spacecraft as the solar wind, with

velocity VSW, advects the turbulent fluctuations past the
measuring instrumentation. P( f ) is related to the wavenumber
spectrum S(q) of density fluctuations by (e.g., Fredricks &
Coroniti 1976)

( ) ( ) ·
( )

( )q
q V

P f n S f
d q

2 2
. 152 SW

3

3ò d
p p

= -⎛
⎝

⎞
⎠

In Appendix C, we evaluate P( f ) for several illustrative forms
(both isotropic and anisotropic) of S(q). Here we explore the
reverse problem of determining the value of q R2

 from
in situ observations of P( f ). We first transform the integration

Figure 4. Top panels: simulated FWHM source sizes of Type III bursts. The simulations were performed for turbulence profiles q R2
 given by Equation (14),

multiplied by factors of [1/4,/1/2, 1, 2, 4], for values of the anisotropy parameter α = [0.19, 0.25, 0.33, 0.42], and for both fundamental (left panels) and harmonic
emission (right panels). Bottom panels: average FWHM size observations (Bougeret et al. 1970; Abranin et al. 1976, 1978; Alvarez 1976; Chen & Shawhan 1978;
Dulk & Suzuki 1980; Steinberg et al. 1985; Saint-Hilaire et al. 2013; Krupar et al. 2014; Kontar et al. 2017) and spikes (Clarkson et al. 2023). Simulated sizes from
anisotropic scattering simulations at the fundamental (left) and harmonic (right) are overlaid with colored lines at various values of α, with turbulence levels ranging
from q R0.5 2

 (lower) to q R2 2
 (upper), where the nominal q R2

 profile is given by Equation (14). The gray region shows the spread for α = 0.25, which is
consistent with the observations.
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variable from q= (q⊥1, q⊥2, q∥) to ( )q q q q, ,1 2  a= ^ ^

and define ( )V V V V, ,SW SW 1 SW 2 SW a=
~

^ ^ , so that

· ·q V q VSW SW =
~

and d q d q3 3a= . Then, since ( )qS  is (by
construction8) isotropic
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where in the last equality we have used the substitu-
tion ( )q q f V22 2

SW
2  p= +^ .

We can now construct the moments of the frequency
spectrum of the observed density fluctuations
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Two moments are of particular interest. First, for m= 0
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where we have used Equation (1). The factor of two arises
because only positive frequencies are considered (e.g., for an
isotropic distribution, ( ) ( )n P f df P f df2
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Second, for m= 1
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and comparing this to the expression in Equation (13) for
q R2

 , we immediately see that

( ) ( )q R
n V

R f P f df4
2

. 222
2

SW 0
  ò

p
= ~

¥

Now, ( )V V sin cosB BSW SW
2 2 2 1 2 q a q= + , where θB is the

angle between the solar wind velocity and the (axis of

Figure 5. Observed source position vs. frequency (Shain & Higgins 1959; Wild et al. 1959; Morimoto & Kai 1961; Gurnett et al. 1978; Bougeret et al. 1984a; Reiner
et al. 1998, 2009; Chrysaphi et al. 2018). The colored lines represent the observed positions from the simulations for the fundamental (left) and harmonic (right) at
various values of the anisotropy parameter α and the turbulence profile q R2

 , multiplied by 1/4 (lower bound) to 4 (upper bound). The gray region shows the
spread across values for an anisotropy parameter α = 0.25. The black dashed and dotted lines show the locations corresponding to the fundamental (plasma frequency)
and harmonic (double plasma frequency), respectively.

8 The analysis of Equations (16) through (22) thus applies for the isotropic
spectrum P( f ) of Appendix C.1 and even for the anisotropic spectrum of
Appendix C.2 (which can be scaled into an isotropic form), but not for the
spectrum of Appendix C.3, which cannot be transformed into an isotropic form.
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symmetry) magnetic field. Thus, if θB= 0
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The frequency-weighted integral over the measured fluctuation
power spectrum P( f ) at 1 au can be readily evaluated
numerically using the data from the spacecraft measurements
of Celnikier et al. (1983, 1987), Kellogg & Horbury (2005),
and Chen et al. (2012), allowing q R2

 to be determined at 1
au. The resulting values, for various values of α, have been
added to Figure 6, and are consistent with the general form of
q R2

 in Equation (14).

6. Amplitude of Density Fluctuations

Here we provide further observational constraints on the
profile of the spectrum-weighted mean wavenumber of density
fluctuations q R2

 , using both observations of the (dominant
—Section 2) inner scale at the boundary between the inertial
and dissipative ranges of the turbulence wavenumber spectrum
(Equation (2)), and published results related to scintillations of
extrasolar point radio sources.

6.1. The Inner Scale of the Turbulent Wavenumber Spectrum

As noted in Section 2, q R2
 is mostly determined by

density fluctuations near the inner scale qi
1- , where qi is the

boundary between the inertial and dissipative ranges of the
wavenumber spectrum S(q) (Equation (2)). Observations of the
inner turbulence scale thus allow us to infer the magnitude of

the spectrum-weighted mean wavenumber of density fluctua-
tions q R2

 .
Figure 7 summarizes the pertinent observations of this scale,

together with the behavior of several plasma parameters as a
function of distance from the Sun. These parameters include
the proton inertial length di= c/ωpi, the proton gyroradius
ρi= vTi/ωci, the resonance distance dr= (vTi+ vA)/ωci for
parallel-propagating Alfvén waves (Leamon et al. 1998;
Bruno & Trenchi 2014), the proton thermal velocity
v k T m2 B i pTi = , the proton plasma frequency

n e m4 ppi
2w p= , the proton gyrofrequency ωci= eB/mpc,

and the Alfvén speed v B nm4 pA p= . The density,
temperature, and magnetic field profiles used to construct these
parameter variations are given in Appendix A. Over most of the
range from the lower corona (0.1 Re) to 1 au and beyond, the
inner scale qi

1- is more consistent with the Alfvén wave
resonance distance rather than either the proton gyroradius or
the proton inertial length. Coles & Harmon (1989) suggest that
the inner scale between 2 and 60 Re is close to 3c/ωci and that
the data can be approximated by the relation q r R10i

1 5
=-

cm (see Figure 7). Near 1 au (r; 200 Re), the gyroradius ρi is
smaller than the resonant scattering length dr, so that finite
gyroradius effects dominate the scattering process. The
observations by Šafránková et al. (2015) suggest that the
location of the density break point between these two domains
is controlled by the gyrostructure frequency near 1 au.

6.2. Observations of Extrasolar Radio Point Sources

Reports of radio observations of extrasolar radio point
sources (Rickett 1977; Coles & Harmon 1989; Sakurai &
Spangler 1994) typically provide values of the quantity ( )C rn

2 ,
which is the normalization constant of the Kolmogorov density
power spectrum

( ) ( ) ( )r q C r q; , 25n
2 11 3F = -

Figure 6. Left: spectrum-averaged wavenumber q R2
 as a function of heliocentric distance r, as given by Equation (14), for fundamental emission with an

anisotropy factor α = 0.25 (solid), and for harmonic emission with α = 0.42 (dashed). The gray region denotes the range from [ ] q R1 2, 2 2
´ . The data from

Coles & Harmon (1989) are retrieved from the density spectrum in their Figure 4, with a density profile n(r) taken from Equation (A1). The light gray points are not
well constrained due to a lack of observations at the (dominant; see Section 2) inner-scale wavenumber qi. The in situ density fluctuation data at 1 au (Celnikier
et al. 1983, 1987; Kellogg & Horbury 2005; Chen et al. 2012) are retrieved using Equation (24), with the black points corresponding to α = 0.25 (fundamental) and
the red points corresponding to α = 0.42 (harmonic). The data for Celnikier et al. (1987) are taken from their Figure 7. We use the Kellogg & Horbury (2005) spectra
for densities (5–6) cm−3 and (10–15) cm−3. Right: as in the left panel but multiplied by n2, with n(r) given by Equation (A1). The dotted line shows the
relation ( ) ( )q R n r r R6.5 10 12 2 14 5.17

  = ´ - - .
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between the outer and inner scales qo< q< qi, so that9

δn2(r)= ∫Φ(r; q) d3q. Noting that qo= qi, one finds by
comparing Equations (1), (2), (13), and (25) that the scaling
quantity ( )C rn

2 (cm−20/3) is related to the q R2
 profile by

( ) ( ) ( )C r q R
q

R
n r

12
, 26n

i2 2
1 3

2





p
=

-

where n(r) is the plasma density. Including the dissipative
range above qi increases q R2

 by a factor of ∼5/3 due to its
power-law behavior in the dissipative range (see Equation (4)),
so that a more appropriate expression, applicable to the
wavenumber spectrum in Equation (2), is

( ) ( ) ( )C r q R
q

R
n r

20
. 27n

i2 2
1 3

2





p
=

-

This ( )C rn
2 profile is plotted in the left panel of Figure 8, with

the right panel showing the quantity ( ) ( )C r n rn
2 2 =

Figure 7. Left: measured turbulence inner scales qi
1- (Yakovlev et al. 1980; Scott et al. 1983; Coles & Harmon 1989; Manoharan 1993b; Anantharamaiah et al. 1994;

Yamauchi et al. 1996, 1998), and magnetic field fluctuations (Bruno & Trenchi 2014; Chiba et al. 2022; Lotz et al. 2023), together with theoretical profiles of key
plasma parameters: the proton inertial length di = c/ωpi, the proton gyroradius ρi = vTi/ωci, and the proton resonance distance dr = (vTi + vA)/ωci, calculated using
the plasma and magnetic field parameters in Appendix A. The dotted curve shows the relation ( )q r R2.5 10 1i

1 4 1.3
= ´ -- cm and the dashed line shows the

inner-scale model q r R10i
1 5

=- cm by Coles & Harmon (1989). Right: the same as the left panel, but for the inner-scale wavenumber qi.

Figure 8. Left: normalization coefficient ( )C rn
2 of the density spectrum given by Equation (27), with qi = ωci/(vTi + vA) (see Figure 7). As in Figure 6, the solid/

dashed lines are for anisotropy factors α = 0.25 (fundamental) and 0.42 (harmonic), respectively, and the gray region denotes the range from [ ] q R1 2, 2 2
´ . The

data from Coles & Harmon (1989) are calculated using the values of q R2
 , with qi inferred from the break at the larger wavenumber of their density spectrum. They

gray points show where the inner scale was not well defined in their data. The data from Marsch & Tu (1990) are found via a power-law fit of the form A q−5/3 to the
density spectra in their Figure 6, where the slope corresponds to a power-law index of −5/3, and ( ) ( )C r A n r 4n

2 2 p= , with n taken from Equation (A1). The dotted
line shows the relation ( ) ( )C r r R3.5 10 1n

2 3 4.7
= ´ - - . Right: as in the left panel, but divided by n2, with n given by Equation (A1).

9 Note the ( )2 3p difference between this normalization and that of
Equation (1).
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q R q R20i
2 1 3

  p- . We note that the right side of

Equation (27) depends weakly ( qi
1 3µ - ) on the inner-scale

wavenumber, so that even if the inner scale is uncertain to within
a factor of two, the value of Cn

2 changes by only 26%.
In addition to the model profile (27), Figure 8 shows values

of Cn
2 deduced from observations of scintillations of extrasolar

sources (Spangler et al. 2002). The Cn
2 values from Spangler

et al. (2002) appear to be significantly smaller than those in our
simulations and in the in situ observations at 0.4 and 0.8 au by
Marsch & Tu (1990). Since Type III solar radio bursts are
generated by electrons from active regions/flares and thus
propagate not far from the ecliptic (e.g., Musset et al. 2021),
our measurements are more consistent with the largerCn

2 values
from the slow dense solar wind (see similar discussion and
conclusion by Spangler et al. 2002). Sasikumar Raja et al.
(2016) suggest that solar cycle variations of Cn

2 might
contribute to variations between observations at different times.

The profiles of q R2
 (Equation (14)) and of the inner

scale ( )q ri
1- (from Figure 7) also allows us to estimate the

amplitude of the density fluctuations at the dominant inner
scale. Following, e.g., Chandran et al. (2009) and Sasikumar
Raja et al. (2016), we define the squared fractional density
perturbation amplitude at the inner-scale wavenumber qi by

( )
( )

( )
( )

( )
( )

( )

n

n
q

S q
q

q

n r
q

C r

n r
4

2
4 4 ,

28

i
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i
i

i
i

n
2

2
3

3
3

2
2 3

2

2

d
p

p
p p

á ñ
= =

F
= -

which also relates the various wavenumber spectrum normal-
izations n ni

2 2dá ñ (Equation (1)), S(qi) (Equation (2)), and Cn
2

(Equation (25)). One also finds by using Equation (4) that the
inner-scale fractional density fluctuation is given by

( )( ) ( ) ( )
( )n

n r

q R

q r R

q R

q r R3 5
, 29i

i i

2

2

2

1

2

2








 dá ñ
=

+
d-

which can be evaluated using the turbulence profile of
Equation (14) and the form of ( )q ri

1- from Figure 7. This,
plus the density profile from Equation (A1), gives the profile of
the inner-scale squared density fluctuation values ni

2dá ñ (cm−6).
This quantity, and its dimensionless fractional value n ni

2 2dá ñ ,
are shown as functions of r in Figure 9.

7. Discussion and Summary

We have constructed a density fluctuation model that allows
quantitative analysis of radio-wave propagation in a medium
that is characterized by an anisotropic density turbulence,
symmetric around the direction of magnetic field B. The
density turbulence is characterized by two parameters: the
spectrum-weighted mean wavenumber of density fluctuations
q 2 (Equation (13)) and the anisotropy measure α; q∥/q⊥
(Equation (5)). We allow q 2 to be a function of solar distance
r from the low corona (∼1.1 Re) to 215 Re (1 au), but the
anisotropy parameter α is, for simplicity, considered a constant.
The inferred profile of the dimensionless quantity q R2

 is
found to have a broad maximum with a value of about 100
located at around ∼(4–7) Re, where the slow solar wind
becomes supersonic (Sittler & Guhathakurta 1999). Intrigu-
ingly, this is also the range of solar distances where Type III
bursts are observed to have the highest radio spectral flux
density (note the broad peak near 1–2 MHz; Sasikumar Raja
et al. 2022). The density turbulence model allows quantitative
analysis of radio-wave scattering that in turn could be used to
decouple the intrinsic properties of solar radio bursts and the
effects of radio-wave propagation.
Analysis of the variation of the inner scale (i.e., the length

associated with the smallest eddies in the inertial range of the
turbulence spectrum) with solar distance presents a rather
coherent picture. Radio measurements of density inner scales
(e.g., Coles & Harmon 1989) are found to be in good
agreement with the inner scales deduced from magnetic
fluctuations (e.g., Lotz et al. 2023), supporting a close relation

Figure 9. Left: amplitude of the inner-scale density fluctuations ni
2dá ñ calculated from Equation (29). The gray regions are the same as in Figure 6. The dotted line

shows the relation ( )n r R2 10 1i
2 7 3.7

dá ñ = ´ - - . The inner scale for Coles & Harmon (1989) is taken from the start of the dissipation range visible in their model
spectra, and the gray points denote where the inner scale was not well observed in their data. The Marsch & Tu (1990) values are calculated using Equation (28); for
their results the inner scale is not observed and instead we use the resonant distance dr as the measure of the inner scale. As in Figure 6, the black and red data points
correspond to the assumption of fundamental and harmonic emission, respectively. Right: as in the left panel, but divided by n2, with n(r) given by Equation (A1).
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between magnetic fluctuations and density fluctuations. It has
been argued that kinetic Alfvén waves are a compressive
phenomenon that is responsible for density, magnetic field, and
parallel electric field fluctuations near the break between the
inertial and dissipation ranges (e.g., Chandran et al. 2009; Bian
et al. 2010). Over a wide range of distances, from the low solar
corona into the solar wind, the turbulence inner scale is
comparable (within a factor of two) with the scale of the
resonant condition for protons (vTi+ vA)/ωci, which is similar
to the scale of the break in the spectra of magnetic fluctuations
(Bruno & Trenchi 2014; Lotz et al. 2023). Analysis of the inner
scales (Coles & Harmon 1989) at (10–50) Re suggests that the
proton inertial length c/ωpi= vA/ωci is a good approximation,
while vTi/ωpi correlates with the break near 1 au (Šafránková
et al. 2015). Since (vTi+ vA)/ωci approaches vTi/ωpi at
r> 50 Re and (vTi+ vA)/ωci is dominated by vA/ωci at
r> 50 Re, the resonance condition for protons captures both
sets of observations.

Figure 6 shows the profiles q R2
 inferred from solar,

nonsolar, and in situ density fluctuation measurements; an
acceptable fit to the observations requires the anisotropy
parameter to have a value in the range α; 0.2−0.4.
Unfortunately, observations of Type III burst sizes and decay
times do not systematically identify whether the observed
emission is at the fundamental frequency or its (second)
harmonic, and while this ambiguity does affect the best-fit
value of the anisotropy parameter α, it has a much smaller
effect on the inferred values of q R2

 . Assuming that the
sources correspond to emission at the fundamental suggests
α; 0.25; however, if the emission is at the harmonic then the
anisotropy parameter is closer to 0.4. Assuming harmonic
emission also requires a factor-of-two-larger value of q R2

 ,
due to the α dependence in Equation (14); see the solid and
dashed lines in Figure 6. Since the scattering rate parallel to the
magnetic field is a factor α2= 1 times the perpendicular
scattering rate (Equation (9)), the radio waves escape
predominantly parallel to the magnetic field, so that the degree
of anisotropy chiefly affects the duration and the decay time of
the bursts, while the source size is mostly controlled by the
amplitude of the density fluctuations. The high accuracy of the
decay times of Type III bursts allows us to place rather
significant constraints on the anisotropy parameter; for
example, any value α> 0.5 is inconsistent with the
available data.

Comparing the results of the numerical simulations with
observations of source sizes and time profiles, over the range of
frequencies ∼ 0.1–300 MHz, we find that the turbulence profile
q R2

 is, within a factor of two, well represented by the
empirical form Equation (14). The spatial variation of the
fractional density fluctuation amplitude at the inner scale
increases monotonically with heliocentric distance, with a
noticeable “knee” near the location corresponding to the
maximum in q R2

 . The amplitude of the Kolmogorov
(1941) density turbulence spectrum varies with distance r from
the Sun as ( ) ( )C r r R3.5 10 1n

2 3 4.7 ´ - - (cm−20/3). The
quantity Cn

2 matches well with in situ density fluctuation
measurements at 0.4 and 0.8 au for the slow solar wind and is
generally above the measurements of the fast solar wind
(Marsch & Tu 1990). However, only the largest values of Cn

2

inferred from the slow solar wind scintillation measurements of
Spangler et al. (2002) are in agreement with our model,
possibly because Type III bursts propagate mostly in the

ecliptic and the scintillation measurements are mostly taken
away from the ecliptic. The normalized quantity C nn

2 2

demonstrates two distinct domains: it is a constant (or close
to a constant) for distances > 10 Re, supporting the
conclusions of Spangler (2002), but exhibits a growth of three
orders of magnitude close to the Sun, reaching a maximum
value near (5–7) Re.
The variance of density fluctuations decreases with solar

distance approximately as ( ) ( )n r r R2 10 1i
2 7 3.7

dá ñ = ´ - -

cm−6. The exponent in this expression is close to four and
therefore is not inconsistent with the n ri

2 4dá ñ µ - expectation
(Zank et al. 2017; Tasnim et al. 2022) associated with nearly
incompressible magnetohydrodynamic turbulence. Comparison
of the model with observations does, however, suggest that a
photosphere-rooted scaling (with a dependence on the quantity
(r/Re− 1)) could be a better rough symmetry than a simple
heliocentric symmetry (i.e., ∝r−4), probably due to the
turbulence evolution along flux tubes rooted into the
photosphere.
The density fluctuations model presented in Equation (14)

provides a unifying picture for the interpretation of solar radio
bursts, extrasolar source broadening, and in situ measurements
of density fluctuations in the solar wind. As the model extends
to 1 au, we can predict (Appendix C.2; Equation (C11)) the
frequency spectrum and compare with those measured by
spacecraft in the slow solar wind. For a 1 au value θB; 45°, the
ratio of the spectral break frequency fi to its value fi for an

isotropic (α= 1) spectrum is ( )0.5 1 2a+ (see the remark
after Equation (C11)), which is weakly sensitive to α in the
range 0.25–0.4, so that the spectral break point is about the
same for all α values in this range. Figure 10 demonstrates
good agreement between the model and observations near the
break of the spectrum at f; fi. The discrepancy below the break
frequency is likely to be associated with flattening of the
density fluctuation spectra due to kinetic Alfvén waves
(Chandran et al. 2009) and has been observed close to the
Sun before (e.g., Coles & Harmon 1989). As discussed, this
flattening is not included into our model, but could be used for
further improvement of the model.
An important feature of the model is that it provides a

quantitative description for solar burst source sizes, apparent
positions, and decay times, with the results summarized
below.
Source sizes: Type III burst source sizes are predominantly

determined by radio-wave scattering over the entire range of
frequencies and follow a 1/f trend (both in the simulations and
observations) from 300 MHz down to 0.1 MHz. The source
sizes do not depend on burst intensity (Saint-Hilaire et al. 2013)
and the source sizes for fine structures in Type III bursts and
Type III spikes are rather similar (e.g., Kontar et al. 2017;
Clarkson et al. 2023). At frequencies below 0.1 MHz, the
source sizes exceed 120 degrees (see Figure 2), comparable to
half the sky, so that the source effectively surrounds the
observer.
Source positions: from Figure 5 we see that for high-

frequency sources between 100 and 300 MHz the apparent
source positions for both fundamental (ω= ωpe) and harmonic
(ω= 2 ωpe) emission are at a location corresponding to
emission at double the plasma frequency. However, for
emission frequencies from ∼100MHz down to ∼0.1 MHz,
the apparent source location is further away from the Sun than
the location corresponding to emission at the plasma
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frequency or even to the location corresponding to emission at
double the plasma frequency. This result elegantly resolves
the long-standing conundrum that source positions observed
at the fundamental and the harmonic are virtually cospatial
(Suzuki & Dulk 1985): the apparent source position is moved
away from the Sun by scattering effects, which are largely
independent of whether fundamental or harmonic emission is
involved. At low frequencies  0.2 MHz, this effect is even
more pronounced: the source positions are shifted by 0.5 au,
so that an observer at 1 au is actually embedded in the
apparent source.

Type III burst decay times: the decay time of Type III solar
radio bursts is well approximated by an inverse-frequency
(1/f ) dependence between 0.1 and 300 MHz. Our scattering
simulations reveal a rather intricate picture, in which
scattering serves to provide a fundamental “floor” on the
observed duration of radio bursts emitted via plasma emission.
Below 1 MHz, the average Type III burst decay time is
consistent with the scattering simulations, but at frequencies
above a few megahertz, the typical Type III burst decay time
is longer than the simulated value, suggesting that the decay
time for such bursts is determined by processes that operate on
timescales longer than scattering, such as electron propaga-
tion, electron injection, and/or intrinsic emission timescales.
The shortest features in the dynamic spectrum, such as
Type IIIb striae (e.g., Kontar et al. 2017; Sharykin et al. 2018),
drift pairs (Kuznetsov & Kontar 2019), spikes (Clarkson et al.
2021), and fine structures in Type II solar radio bursts
(Chrysaphi et al. 2018) are all consistent with the scattering
model. Statistical analysis of ∼1100 fine structures (Clarkson
et al. 2023) near 30 MHz, with 0.02 s resolution, indeed shows
that there are virtually no bursts shorter than 0.2 s and that the

typical burst decay time is about 0.3 s, consistent with the
simulations in Figure 3.
In summary, solar burst shortest time profiles, source sizes, and

positions are determined mainly by propagation effects (mostly
anisotropic scattering) and not by the intrinsic properties of the
radio emission source. A detailed knowledge of the scattering
process paves the way to disentangling scattering effects from
observations and so better constraining the intrinsic properties of
solar radio burst sources. Since individual source sizes and decay
times are typically measured more accurately than the spread in
measurements of multiple sources, it is therefore likely that the
spread in observational properties is due to varying levels of
turbulence and plasma density in different events. Varying the
magnitude of the q R2

 profile (Equation (14)) by a factor in the
range 0.5–2 covers the majority of the observations, while
extending this multiplicative factor by a further factor of two (to
a range between 0.25 and 4) covers virtually all observed data
points (except for some extreme outliers). We thus conclude that
the q R2

 profile of Equation (14) is variable within a factor of
about two. The broadening of extrasolar point sources by the
turbulent solar atmosphere and solar radio burst measurements are
complementary data sets. We note the considerable data gap
between ground-based and space-based solar burst observations in
the range 3–20 MHz (where extrasolar observations appear
essential), and encourage the development of observations to fill
this gap and hence further constrain the level of turbulence in the
inner heliosphere. The Sun Radio Interferometer Space Experiment
(SunRISE)10 is likely to provide much needed data.
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Appendix A
Plasma Density, Magnetic Field, and Temperature Profiles

The density profile n(r) (cm−3) used for the solar burst
scattering simulations by Kontar et al. (2019), Kuznetsov et al.
(2020), and Chen et al. (2020, 2023) is

( )
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n r
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This density profile (i) closely follows the Parker (1958)
density model, (ii) has an analytical form that can be easily
differentiated to find the derivatives that are useful in solving

Figure 10. Frequency spectrum of density fluctuations (fundamental is solid,
harmonic is dashed line) in accordance with the density fluctuation model,
using Equation (C11) with the values of n ni

2 2dá ñ at 1 au taken from Figure 9.
The gray area shows the [1/2, 2] multiplication-factor interval used in the
previous figures. The in situ fluctuation data at 1 au (Celnikier
et al. 1983, 1987; Kellogg & Horbury 2005; Chen et al. 2012, 2014) are
shown for comparison.

10 https://www.jpl.nasa.gov/missions/Sun-radio-interferometer-space-
experiment
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the ray-tracing equations, (iii) is consistent at low heights with
the higher densities observed in flaring active regions that
produce Type III bursts (e.g., Holman et al. 2011; Reid et al.
2014), and (iv) is suitable for Type III burst modeling in the
solar corona and heliosphere (Mann et al. 1999; Kontar 2001;
Reid & Kontar 2021). The left panel of Figure 11 shows the
model profile compared with different density models
frequently used in the literature.

The magnetic field B(r) (G) model, shown in the right panel
of Figure 11, is given by

( )
( )( ) ( )B r

R

r
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1
1.18 , A2

r

R

r

R

1.5

10

2




=
-

+
+

-

⎛
⎝

⎞
⎠

where the first term is introduced to accommodate the
results of Dulk & McLean (1978), applicable for near-solar
distances r  10 Re, into the form of the interplanetary
magnetic field for r? 10 Re (see the discussion by Patzold
et al. 1987).
The ion temperature Ti (K) is given by

( ) ( )T r
r

R
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1 K, A3i
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⎛
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where the interplanetary dependency r−0.74 (with Ti= 2.5×
105 K at 1 au = 215 Re) is taken from Hellinger et al. (2011)
and has been adjusted to accommodate the range r  10 Re in
accordance with the results of Dulk & McLean (1978).

Figure 11. Left panel: coronal density model (black solid line) given by Equation (A1). Other coronal density models (Allen 1947; Newkirk 1961; Alvarez &
Haddock 1973b; Saito et al. 1977; Bougeret et al. 1984b; Bird et al. 1994; Leblanc et al. 1998; Mancuso & Spangler 2000) are also shown, within the ranges of their
respective validity. The models from Bird et al. (1994) and Mancuso & Spangler (2000) are as used in Spangler (2002). Right panel: magnetic field model (black solid
line) given by Equation (A2), together with observations (Burlaga & Ness 1968; Villante & Mariani 1975; Behannon 1976; Dulk & McLean 1978; Rosenberg
et al. 1978; Patzold et al. 1987; Sakurai & Spangler 1994; Lin et al. 2000; Spangler 2005, 2020; Ramesh et al. 2010; Gopalswamy et al. 2012; Kolotkov et al. 2018).
The red line shows the model of Dulk & McLean (1978).
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Appendix B
Angular Broadening of Extrasolar Point Sources

The overall angular broadening of a point source at infinity
can be calculated by integrating the angular broadening rate
along the path (z-direction) traversed by the radio waves. For
the most significant broadening, i.e., that along the ⊥2 direction
perpendicular to the (radial) magnetic field in the plane of the
sky, the rate of diffusive broadening is given by Equation (9),
repeated here
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If r is the distance of closest approach to the Sun of a ray from a
distance point source (Figure 2), then the apparent source,
observed at 1 au, will be broadened by an amount
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Equation (B2) provides the formal expression corresponding to
the approximate proportionalities in Equation (12). Using the
form of q R2

 from our nominal model in Equation (14) and
the density model from Equation (A1), we obtain
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At large closest-approach distances r? Re, the density profile
(Equation (A1)) is well approximated by the last term in the
square brackets, i.e., by the simple power law n(r)∝ r−2.3, and
the term ( )R r1 cos 12.7  c- . In this situation, the FWHM

size assumes the relatively simple form

( )
( ) ( )

( )

B B

e

m

r

R f

FWHM 2.35 2 10 1.4 10

1; 2.15, 0.5 ; 2.15, 0.5

16

1
,

B4
e

3 6

1 2

2 2.15

2


a
y

p

= ´ ´ ´ ´

´
+

´ ´

^

-

⎜ ⎟⎜ ⎟

⎡
⎣

⎤
⎦

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

where B(ψ; u, v) are the (incomplete if ψ< 1) beta functions

corresponding to the integrals d2 cos
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Scaling to the nominal frequency f= 1.5 GHz (Figure 2), this
evaluates to
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Equation (B5) provides a simple, but accurate, analytical
approximation for FWHM⊥, valid for r? Re.

Appendix C
Forms of the In Situ Density Fluctuation Frequency

Spectra

The in situ frequency power spectrum P( f ) of density
fluctuations measured by a spacecraft is related to the
wavenumber spectrum S(q) at a single location in the solar
wind frame through Equation (15), repeated here
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In this appendix we explore the forms of P( f ) for different
forms of the wavenumber spectrum S(q).

C.1. Isotropic Wavenumber Spectrum

Our first example is the simplest case of an isotropic
spectrum: S(q)= S(q). For such a case, Equation (15) may be
written
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Here, we evaluate this for a specific form of S(q), viz the
broken power law around qi (see Equation (2)), with an outer
scale q qo i

1 1- - , so that the contribution to q R2
 from the
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large scales qo
1> - is negligible
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Evaluation of the fluctuation frequency spectrum P( f ) requires
consideration of two domains

(i) f fi
q V

2
i SW =
p
.

Here the resonant q∥= 2πf/VSW< qi, so that for values of
q q qi

2 2 2
< -^ the lower (inertial) branch of the wavenumber

spectrum applies, while for values of q q qi
2 2 2

> -^ the upper
(dissipative) branch of the wavenumber spectrum is relevant.
The integral is thus composed of two parts
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where in the last equality we have used Equation (28).
(ii) f fi

q V

2
i SW> =
p
.

Here the resonant q∥= 2πf/VSW> qi, so that for all values of
q⊥ only the upper branch of the wavenumber spectrum is
relevant. Thus
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Combining Equations (C3) and (C4)

( )

( )

P f
n

f

f

f
f f

f

f
f f

2

3

5
1

5

3
;

1
; .

C5

i

i

i
i

i
i

2

5 3


d d

d

=
á ñ

´

- -

>
d

-

-

⎜ ⎟

⎜ ⎟

⎧

⎨

⎪
⎪

⎩
⎪
⎪

⎡

⎣
⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤

⎦
⎥

⎛
⎝

⎞
⎠

As a check on this result, we can evaluate (using algebra) the
quantity
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so that, using the general result in Equation (22), with α= 1 for
an isotropic spectrum, the value of q R2

 is
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in agreement with Equation (29).

Figure 12. Forms of the parallel and perpendicular wavenumber spectra corresponding to the two cases described in Appendices C.2 (Equation (C9); left) and C.3
(Equation (C13); right). In the former case, the spectral break points are different for the parallel and perpendicular directions, while in the latter case the spectral break
points for both directions are the same. In both plots, both axes are on logarithmic scales.
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The local power-law index of the frequency power spectrum
is the negative of its logarithmic derivative, viz
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At low frequencies f= fi, the frequency spectrum has a power-
law index δloc= 5/3; as f increases, the spectrum gradually
steepens to δloc= δ as f approaches fi, and continues with that
value thereafter. Thus a double power-law spectrum in
wavenumber does not correspond to a double power-law
spectrum in frequency, neither does a double power law in
frequency correspond to a double power law in wavenumber
space. Interestingly, the variation in the spectrum of magnetic
fluctuations reported by Sioulas et al. (2023; their Figure 2)
near the break frequency fi, is broadly consistent with
Equation (C8).

C.2. Anisotropic Density Turbulence Spectrum with Aniso-
tropic Spectral Break Points

For anisotropic turbulence with a spectral break point that is
also anisotropic (see the left panel of Figure 12)
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The basic result (Equation (15)) can be transformed from the
wavevector q to the variable q (see Equation (16)), giving
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where ( )V V V,SW a=
~

^ . Since ( )qS  is isotropic, a similar
analysis to that of Appendix C.1 yields the spectrum
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where f q V 2i i SW
  p= , with ( )V V sin cosB BSW SW

2 2 2 1 2q a q= +
~

and θB being the angle between the solar wind velocity VSW

and the magnetic field B. The form of the local power-law
spectral index δloc is similar to Equation (C8), but with fi
replaced by fi. In the case where the solar wind velocity VSW

is parallel to the magnetic field B,V VSW SW a= , f fi i
 a= , and

so
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C.3. Anisotropic Spectrum with an Isotropic Break Point

It has been argued by Armstrong et al. (1990) that a
wavenumber spectrum that breaks at a prescribed value of

q q q2 2
= + ^ in all directions (despite the anisotropy in the

wavenumber distribution) is a better fit to the observations.
This corresponds to the following density turbulence spectrum
(see right panel of Figure 12)
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Note that the argument of S reflects the anisotropy in S(q) and
so is different than the isotropic case of Appendix C.1
(Equation (C2)). However, the spectral break point is the same
as in Appendix C.1, and so differs from Appendix C.2, where
the spectral break point occurs at different values of q for
different directions (Equation (C9)).
As before, the resonance occurs when q∥= 2πf/VSW, and so

we have, similar to Equation (C1), but with an additional factor
of α appearing in the argument of S
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The derivation of P( f ) proceeds similarly to Appendix C.1, but
recognizes the appearance of the factor α in the second term in
the argument of S
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The results from Equations (C15) and (C16) match at f= fi and
also reduce to the isotropic result (Equation (C5)) when α= 1.
However, the results in Equations (16) through (22) relating
q R2

 and ( )f P f df
0ò
¥

do not hold in the general case

α≠ 1, because the wavenumber spectrum ( )S q in
Equation (C13) is not, and cannot be reduced to, an
isotropic form.
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