
Noname manuscript No.
(will be inserted by the editor)

An Efficient Memristive Alternating Crossbar Array and The
Design of Full Adder

Meiqi Jiang · Jingru Sun · Chunhua Wang · Ziyao Liao · Yichuang

Sun · Qinghui Hong · Jiliang Zhang

Received: date / Accepted: date

Abstract Memristor is one of the most promising emerg-

ing technologies to solve the von Neumann bottleneck

problem due to its non-volatile and binary character-

istics. This paper studies the design method of high-

efficiency logic circuit based on memristor. First, a Mul-

tiple Input Multiple Output (MIMO) logic circuit de-

M. Jiang
College of Computer Science and Electronic Engineering,
Hunan University, Changsha, 410082, People’s Republic of
China
E-mail: meiqij@hnu.edu.cn

J. Sun
College of Computer Science and Electronic Engineering,
Hunan University, Changsha, 410082, People’s Republic of
China
E-mail: jt sunjr@hnu.edu.cn

C. Wang
College of Computer Science and Electronic Engineering,
Hunan University, Changsha, 410082, People’s Republic of
China
E-mail: wch1227164@hnu.edu.cn

Z. Liao
College of Electronic Science and Technology, Shanghai Jiao
Tong University, Shanghai, 200030, People’s Republic of
China
E-mail: 1911538379@qq.com

Y. Sun
School of Engineering and Computer Science, University of
Hertfordshire, Hatfield, AL10 9AB, United Kingdom.
E-mail: y.sun@herts.ac.uk

Q. Hong
College of Computer Science and Electronic Engineering,
Hunan University, Changsha, 410082, People’s Republic of
China
E-mail: hongqinghui@hnu.edu.cn

J. Zhang
College of Semiconductors, Hunan University, Changsha,
410082, People’s Republic of China
E-mail: zhangjiliang@hnu.edu.cn

sign scheme based on IMPLY and AND logic is pro-

posed, which can derive multiple new efficient logic op-

eration methods and complete complex logic with fewer

steps and memristors. Second, in order to perform rapid

interactive operations between different rows, an alter-

nating crossbar array structure is designed which can

quickly complete cross-row logic operations. Finally, a

high-efficient Full Adder (FA) based on MIMO logic

and alternating crossbar array is proposed. To accom-

plish 32-bit add operation, the proposed FA needs 160

memristors and only 41 steps. Compared with the state

of art FA, our work has faster execution speed and fewer

memristors.

Keywords Memristor · IMPLY logic · Crossbar
array · Multi-input logic · Multi-output logic · Full
adder

1 Introduction

Memristor was first proposed by Leon Chua in 1971

[1, 2], and realized in physical form in 2008. The most

outstanding characteristic of the memristor is nanoscale

dimensions, nonvolatile, low power and multi-state pro-

gramming. Thus the early application research of the

memristor is nonvolatile memory [3–5]. With the devel-

opment of research, the application has been extended

to neuromorphic network [6, 7] and chaotic circuit de-

sign [8–12]. Especially in the design of logic circuits, the

memristor can realize the processing in memory (PIM)

architecture, and is considered to be one of the most

promising candidate technologies to break through the

von Neumann bottleneck [13–16].

According to the components, the logic circuits based

on memristors can be divided into two categories. One is

the hybrid CMOS-memristor-based logic, which mixes



2 Meiqi Jiang et al.

Fig. 1 I-V characteristic curve of ideal memristor model

the CMOS logic and memristive logic, such as the mem-

ristor ratioed logic (MRL) [17] and memristor-based

threshold logic gates(TLGs) [18]. The other one is memristor-

only logic, which includes stateful logic and sequen-

tial logic. The characteristic of sequential logic [19] is

that input and output can be represented by different

variables. While the logic input and output of state-

ful logic [20] are both represented by resistance, such

as Memristor Aided Logic (MAGIC) [21] and Mate-

rial Implication (IMPLY) [22,23], which are both built

based on crossbar arrays structure. IMPLY is simple

and reliable, and has the ability to implement complete

Boolean logic operations [24], and therefore is more

widely applied [25–27]. As shown in Fig. 1, it is the

I-V characteristic curve of the ideal memristor model.

VCLOSE and VOPEN represent the positive threshold

voltage and negative threshold voltage of the memris-

tor respectively. VSET is slightly larger than the pos-

itive threshold voltage, when acting alone, the resis-

tance state of the memristor will be switched to the

low-resistance-state (LRS) RON , representing a logic 1.

VCLEAR is slightly smaller than the negative thresh-

old voltage, when acting alone, the resistance state of

the memristor will be switched to the high-resistance-

state (HRS) ROFF , representing a logic 1. V ′
COND and

VCOND do not reach the threshold voltage, so the re-

sistance state of memristor will not be changed when

they act alone. The IMPLY logic circuit can be built by

using the resistance variation characteristics of memris-

tors. The circuit and truth table of an IMPLY logic is

shown in Fig. 2 and Table I. The resistance of the mem-

ristor represents the logical state, where low-resistance-

state (LRS) RON is considered as logic 1, and high-

resistance-state (HRS) ROFF is considered as logic 0.

However, there are two problems when IMPLY logic

is used for complex logic operations. First, the execu-

tion efficiency of IMPLY is low, and more operation

steps are required when performing complex logic oper-

ations. Second, the input of IMPLY will be overwritten.

As shown in Fig. 2, IMPLY logic has only two compu-

tational memristors, while logical operations generally

Fig. 2 IMPLY logic operation circuit

Table 1 Truth Table of IMPLY Logic Operation

P Q Result
(output to Q)

case 1 0 0 1
case 2 0 1 1
case 3 1 0 0
case 4 1 1 1

have two or more operands. Therefore, we have to in-

put the original data into memristor Q, whose logic

state will be overwritten by the operation result. If the

input value is required to be used again, it has to be

transferred to another place before the operation.

In order to solve the above problems, Shin et al. pro-

posed a high-fan-in NOR gate [28]. It can execute multi-

ple implications simultaneously in one step. Later, [29]

proposed a 3M1R NAND logic and AND logic. This

structure contains 2 input memristors and 1 output

memristor, and its input value will not be overwrit-

ten and the execution efficiency will be improved. [30]

proposed an ORNOR logic gate, which incluedes 3 in-

put memristors, and 1 as output at the same time. This

logic can complete NOR logic and OR logic in 1 step.

The computing system includes a number of fun-

damental blocks. The efficiency of these fundamental

blocks has an important impact on the execution effi-

ciency of the computer system. Among them, the FA is

one of the most frequently used blocks. Therefore, the

design of FA circuit based on memristor has become a

hot research topic.

The parallel approach is a common structure in FA

design. As shown in Fig. 3, each bit represents a dif-

ferent row with its related working memristors, and

different rows can execute simultaneously, so this ap-

proach can effectively save operation steps. However,

the number of memristors is greatly increased in par-

allel structure. For example, the 32-bit FA proposed

by Kvatinsky [26] needs 178 operation steps and 288

memristors. 3M1R based 32-bit FA [29] needs 104 op-

eration steps and 288 memristors. ORNOR based 32-bit

FA [30] needs 79 operation steps and 198 memristors,

better than the above two.



An Efficient Memristive Alternating Crossbar Array and The Design of Full Adder 3

Fig. 3 The n-bit FA using parallel structure. Each row cal-
culates 1 bit. Ai and Bi are addend and summand. Mi,j is
the register during operations. Ci is a carry. And the stan-
dard sum can be stored anywhere except Ci, depending on
the specific algorithm of the designer

Fig. 4 The n-bit FA using serial structure. All calculations
are on the same row. Ai and Bi are addend and summand.
M1 and M2 are the registers during operations. C is a carry.
The out result is saved in Ai or Bi

Serial FA [31] is another common structure, as shown

in Fig. 4, all memristors are connected to the ground

via a resistor. Voltage Vi is applied to the corresponding

single memristor, and each time only one operation can

be executed. The advantage of this structure is small

area, but at the cost of increasing the total steps. For

example, a 32-bit serial FA requires only 67 memristors,
but 704 steps. Then a semiparallel structure FA is pro-

posed [27], which has the same number of memristors

as the serial method, but the steps of the 32-bit FA are

reduced to 544. Another improved FA is the semi-series

structure [32]. In this structure, each bit is calculated

serially, but the working memristor is arranged in a

separate third part, thereby achieving part parallelism,

for a 32-bit FA, which needs 70 memristors and 322

steps. Above all, compared with parallel approach, the

improved serial method will still require more steps.

To make calculations more efficient, based on Shin’s

work [28], we propose a Multiple Input Multiple Out-

put (MIMO) logic circuit design scheme. The MIMO

scheme contains Multi-input logic and Multi-output logic,

which exhibits high computational efficiency and pro-

vides data reusability. Then, to improve the efficiency

of memristors interaction between different rows in the

traditional crossbar array structure, we propose an al-

ternating crossbar array structure, which makes it pos-

sible to complete the carry operation in FA in one step.

Finally, a highly efficient FA based on MIMO logic cir-

cuit design scheme and alternating crossbar array struc-

ture is proposed. Compared with the existing FAs, the

proposed FA greatly reduces the operation steps in all

FAs and the number of memristors in parallel FAs. Be-

cause of fewer memristors and operation steps, it con-

sumes less power when calculating the addition opera-

tion of the same number of bits.

The main contributions of this work are as below:

1) The proposed MIMO logic circuit design scheme can

improve the efficiency of computation, avoid the over-

writing of inputs and extend the application of output.

2) The proposed alternating crossbar array structure

has higher computational efficiency than traditional cross-

bar array in cross-row logic operations.

3) The proposed FA is faster than all other designs, re-

quires less area than other parallel designs, and has the

reusability of data.

The rest of this paper is organized as follows: In Sec-

tion 2, we introduce the memristor model and two ba-

sic memristive logic. In Section 3, the proposed MIMO

logic circuit design scheme is described in detail. The

proposed alternating crossbar array structure and FA

are presented in Section 4. Section 5 shows the cor-

rectness of our design through PSpice simulation. In

Section 6, comparisons between different FAs are pre-

sented. The paper is summarized in Section 7.

2 Background

2.1 Memristor Model

This paper uses the memristor model as Drift Speed

Adaptive Memristor (DSAM) [33]. The DSAM model

is based on three main characteristics, namely, linear

I-V relationship, drift speed adaptive control, and a

voltage threshold, which can well describe the charac-

teristics of you and the ideal memristor. By adjusting

the fitting parameters, a variety of state variable curves

are provided, which makes it possible to describe differ-

ent memristors. Moreover, it can simultaneously satisfy

boundary validity, scalability, nonlinearity and solve the

problem of boundary lock. The DSAM model is very

sensitive and accurate to the conduction curve under

impulse excitation. This allows us to reach an ideal state

in logical operation. Our work is mainly to use the bi-

nary characteristics of memristor to carry out logical

operations, We adjusted the parameters of this model

and found that various logic operations can be realized

quickly and stably under the action of excitation volt-

age. And its I − V relationship is

v(t) = (ROFF − x∆R)× i(t), (1)



4 Meiqi Jiang et al.

where the state variable x represents the normalized

broadband of the conductive area, and its range is [0, 1].

In addition,∆R = (ROFF−RON ), and ROFF and RON

represent the high resistance state (HRS) and low re-

sistance state (LRS) of the memristor. And the corre-

sponding state variable is x = 1 and x = 0. Therefore,

the derivative of the state variable x can be expressed

as follows

dx

dt
=


kon ×∆R× i(t)× f(x), v(t) > von,

0, voff ≤ v(t) ≤ von,

koff ×∆R× i(t)× f(x), v(t) < voff ,

(2)

where

f(x) =

{
(a× (1− x))p, v(t) > 0,

(a× x)p, v(t) ≤ 0.
(3)

Among them, von and voff represent the positive

and negative threshold voltages, a and p are curve fit-

ting parameters, kon and koff are linear adjustable pa-

rameters.

Generally, LRS is considered as logic 1(close), and

HRS is considered as logic 0 (open). The I-V charac-

teristic curve of the ideal memristor model is shown in

Fig. 1, where VCLEAR < V ′
COND < VCOND < VSET .

When the applied voltage is greater than the positive

threshold voltage VCLOSE of memristor, the memristor

switches from state 0 to state 1; when the applied volt-

age is less than the negative threshold voltage VOPEN

of memristor, the memristor switches from state 1 to

state 0.

2.2 IMPLY Logic Operation

P IMPLY Q is a logic operation called material impli-

cation (IMPLY), which can be realized by memristive

IMPLY logic operation circuit. As shown in Fig. 2, P

and Q are two memristors, which are connected to the

resistor RG through the horizontal nanowire L. RG is

grounded. In order to understand the principle, we sim-

ply assume that the parameters of memristors need to

satisfy RON ≪ RG ≪ ROFF . By applying two fixed

voltages VSET and VCOND to memristor P and Q re-

spectively through three-state buffer, IMPLY operation

can be achieved, which is q = p + q. The logical value

of memristor Q is replaced by the operation result, and

the value of memristor P stays unchanged.

When the state of memristor P is HRS (p=0), the

voltage on RG is almost 0 due to ROFF ≫ RG. So

the voltage dropped on memristor Q is VQ ≈ VSET >

VCLOSE . Therefore, no matter what the state of mem-

ristor Q is, it will convert to LRS (q = 1). The above

analysis corresponds to case 1 and case 2 of the Table

I.

When memristor P is LRS (p=1), the voltage on RG

is approximately equal to VCOND due to RG ≫ RON .

So the voltage dropped on the memristor Q is VQ ≈
VSET − VCOND < VCLOSE . In this case, Q will remain

in its original state. The above analysis corresponds to

case 3 and case 4 of the Table I.

Above is a brief introduction to the principle, and

next we will strictly deduce the formula. According to

Kirchhoff’s Current Law, the voltage dropped in the

memristors P and Q are

VP =
(RQ +RG)VCOND −RGVSET

RQ +RG (1 +RQ/RP )
, (4)

VQ =
(RP +RG)VSET −RGVCOND

RP +RG (1 +RP /RQ)
. (5)

In order to ensure that the function of IMPLY logic

operation is correct, in case 1, VQ must be greater than

VCLOSE , and in case 3, VQ must not be greater than

VCLOSE . Then we get two inequalities, for case 1:

VQ =
(ROFF +RG)VSET −RGVCOND

ROFF +RG (1 +ROFF /ROFF )
> VCLOSE ,

(6)

and for case 3:

VQ =
(RON +RG)VSET −RGVCOND

RON +RG (1 +RON/ROFF )
< VCLOSE . (7)

In any case, the resistance state of the memristor

P remains unchanged. Replace RP and RQ in (4) with

the correspond state in case 1-4 respectively. Then we

can get four inequalities, for case 1:

VP =
(ROFF +RG)VCOND −RGVSET

ROFF +RG (1 +ROFF /ROFF )
< VCLOSE .

(8)

The inequalities of the other 3 cases can be obtained

according to the same principle.

By combining VCOND < VCLOSE < VSET with the

above inequalities, the expressions of the upper and

lower bounds of RG are obtained as

RG <
ROFF (VSET − VCLOSE)

2VCLOSE − (VSET − VCOND)
, (9)

RG≥ RON (VSET − VCLOSE)

VCLOSE(1+RON/ROFF)−(VSET −VCOND)
, (10)

where

VSET − VCOND < VCLOSE (1 +RON/ROFF ) . (11)



An Efficient Memristive Alternating Crossbar Array and The Design of Full Adder 5

Table 2 Truth Table of AND Logic Operation

P Q Result
(output to Q)

case 1 0 0 0
case 2 0 1 0
case 3 1 0 0
case 4 1 1 1

Therefore, if inequalities 8, 9 and 10 are satisfied,

IMPLY operation can be realized. We notice that IM-

PLY operation can also be achieved when RG does not

satisfy RON ≪ RG ≪ ROFF .

2.3 AND Logic Operation

The principle and circuit structure of AND operation

are similar to IMPLY operation. The truth table of

AND is shown in Table II. When applying two fixed

voltages V ′
COND and V CLEAR to the memristor P and

Q respectively, AND operation (q = p · q) can be achieved.

The logical value of memristor Q is replaced by the op-

erating result, and the state of memristor P remains

unchanged.

In order to make the function of AND logic opera-

tion correct, in case 2, VQ must be less than VOPEN ,

and in case 4, VQ must be not less than VOPEN . The

resistance state of memristor P remains unchanged in

any circumstances. Similar to IMPLY logic, the value

range of RG is

RG<
ROFF (VCLEAR − VOPEN )

VOPEN (1+ROFF/RON)−(VCLEAR−V ′
COND)

,

(12)

RG ≥ RON (VCLEAR − VOPEN )

2VOPEN − (VCLEAR − V ′
COND)

, (13)

where

VCLEAR − V ′
COND > 2VOPEN . (14)

3 MIMO Scheme Based on Memristive Logic

In this section, a systematic and more efficient MIMO

memristive logic scheme is proposed. The MIMO scheme

consists of two parts: multi-input logic and multi-output

logic. Each part contains two improvements to the basic

memristive logic. Applying them to the design of com-

plex logic will effectively improve the computational ef-

ficiency and save the original input.

(a) (b)

Fig. 5 (a) Circuit model of Multi-input logic operation. (b)
Circuit model of Multi-output logic operation.

3.1 Circuit Model of MIMO Logic

IMPLY and AND logic have the same circuit structure

but different excitation voltages. In Fig. 2, memristor

P and Q are regarded as input memristor and output

memristor respectively.

3.1.1 Multi-input Logic

Fig. 5(a) shows the circuit model of multi-input logic, in

which the input memristors can be extended to n. When

{V1, V2} = {VCOND, VSET }, corresponding to Multi-

input IMPLY logic, the logic operation can be expressed

as q = (p1 + p2 + . . .+ pn)+q. When {V1, V2}={V ′
COND, VCLEAR},

corresponding to Multi-input AND logic, the logic op-

eration can be expressed as q = (p1 + p2 + . . .+ pn) · q.
q is output, and is set to 0 or 1 according to the logical

operation.

Since Multi-input logic has more than one input

memristor, we can complete operations involving mul-

tiple data in one step. Using Multi-input logic to de-

sign complex logic can effectively reduce computation

time and the number of memristors. When we input the

original data only to memristors P1 ∼ Pn (memristor

Q does not store the input data), the data can avoid

being overwritten by operation result as what IMPLY

and AND logic do. So the Multi-input logic has data

reusability.

3.1.2 Multi-output Logic

Fig. 5(b) shows the circuit model of Multi-output logic,

in which the output memristors can be extended to n.

The initial logic values of Q1, Q2 up to Qn should be

ensured the same before calculation. The Multi-output

logic operation results are stored on nmemristors. When

{V1, V2} = {VCOND, VSET }, corresponding to Multi-

output IMPLY logic, the logic operation can be ex-

pressed as q1 = q2 = . . . = qn = p̄+q. When {V1, V2} =

{V ′
COND, VCLEAR}, corresponding to Multi-output AND

logic, the logic operation can be expressed as q1 = q2 =

. . . = qn = p · q.



6 Meiqi Jiang et al.

By using Multi-output logic, the operation results

can be stored in multiple memristors, which is conve-

nient for the output data to participate in different op-

erations and improves the execution efficiency. In addi-

tion, if the specific conditions of RG are satisfied, the

Multi-input and Multi-output logic operations can be

realized in the same structure at the same time.

3.2 Constraints of MIMO Logic

To execute MIMO logic correctly, circuit parameters

should satisfy the following constraints.

3.2.1 Multi-input Logic

The parallel resistance value of input memristors is de-

fined as Ri. When the resistance states of all input

memristors are HRS, the parallel resistance is defined

as logic 0, and the rest cases are all defined as logic 1.

The resistance corresponding to the logic value is

Ri =

{
ROFF

n , logic 0,[
RON

n , ROFFRON

ROFF+RON (n−1)

]
, logic 1.

(15)

Similar to the calculation method of IMPLY logic,

the constraints of the Multi-input IMPLY logic can be

obtained as follows:

RG <
ROFF (VSET − VCLOSE)

(n+ 1)VCLOSE − n (VSET − VCOND)
, (16)

RG ≥
ROFFRON

ROFF+(n−1)RON
(VSET − VCLOSE)

ROFF+nRON

ROFF+(n−1)RON
VCLOSE−(VSET −VCOND)

,

(17)

where

VSET − VCOND <
ROFF + nRON

ROFF + (n− 1)RON
VCLOSE . (18)

The constraints of Multi-input AND logic can be ob-

tained by the same method.

3.2.2 Multi-output Logic

The parallel resistance value of output memristors is

defined as Ro. Because the logic value of all output

memristors should be kept the same before calculation,

there are only two cases of Ro value.

RO =

{
ROFF

n logic 0,
RON

n logic 1.
(19)

(a) (b)

Fig. 6 (a) Circuit implementation of ONO logic operation.
(b) Circuit implementation of OA logic operation.

Fig. 7 IMPLY operation of different rows in traditional
crossbar array structure.

Fig. 8 IMPLY operation of different rows in alternating
crossbar array structure.

Similar to the calculation method of IMPLY logic,

the constraints of the Multi-output IMPLY logic can be

obtained as follows:

RG <
ROFF (VSET − VCLOSE)

(n+ 1)VCLOSE − (VSET − VCOND)
, (20)

RG≥ RON (VSET − VCLOSE)

VCLOSE(1+nRON/ROFF)−(VSET −VCOND)
,

(21)

where

VSET − VCOND < VCLOSE (1 + nRON/ROFF ) . (22)

The constraints of the Multi-output AND logic can

be obtained by the same method.



An Efficient Memristive Alternating Crossbar Array and The Design of Full Adder 7

Table 3 Truth Table of ONO Logic Operations

P1 P2 Q Result
(output to Q)

case 1 0 0 q 1
case 2 0 1 q q
case 3 1 0 q q
case 4 1 1 q q

Table 4 Truth Table of OA Logic Operations

P1 P2 Q Result
(output to Q)

case 1 0 0 q 0
case 2 0 1 q q
case 3 1 0 q q
case 4 1 1 q q

3.3 ONO and OA Logic

For the convenience of later description, we redefine

the 2-input IMPLY and 2-input AND as OR-NOT-

OR (ONO) and OR-AND (OA) respectively. The ONO

logic can be expressed as q = p1 + p2+q. Its circuit im-

plementation is shown in Fig. 6(a), and the true value

table of ONO logic is shown in Table III. The OA logic

can be expressed as q = (p1 + p2) · q. Its circuit im-

plementation is shown in Fig. 6(b), and the true value

table of OA logic is shown in Table IV.

4 Alternating Crossbar Array FA

4.1 Alternating Crossbar Array

Fig. 7 shows the structure of a traditional crossbar ar-

ray. In this structure, when the logic operations involve

the memristors of different rows, they usually require

multiple steps to complete. For example, computing X1

IMPLY Y2 takes two steps. First, X1 is copied into Y1

by horizontal AND operation, and then Y1 IMPLY Y2

by vertical operation.

To achieve rapid data interaction between different

rows in a crossbar array structure, as shown in Fig.

8, an alternating crossbar array structure is proposed.

It differs from the traditional structure in two points.

First, the memristors in columns 1 and 2 are placed

alternately to avoid interference from the memristors of

adjacent rows. Second, a column of switches is added

to isolate the interference of the same row memristors.

By controlling switches Si and Ki, logical operations in

different rows and columns can be realized quickly.

For a better understanding, here is an example. In

Fig. 8, the IMPLY logical operation is performed on

X1 and Y2. X1 is in row 1, column 4, and Y2 is in

Table 5 Truth Table of OA

IN IN IN OUT OUT
Ci−1 Ai Bi Si Ci

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

row 2, column 2. The following operations need to be

performed simultaneously:

• By closing switches S1 and S2 and opening other

S-Series switches, rows 1 and 2 are selected.

• By closing switch K1 and opening other K-series

switches, the part behind K1 in row 1 is connected,

and the part behind K2 in row 2 is separated.

• VSET is applied to column 2 and VCOND is applied

to column 4, so that the memristors selected for the

IMPLY operation contain only X1 and Y2.

Therefore, the IMPLY operation between adjacent

rows in an alternating crossbar array can be completed

in one step, and there is no need to move the two op-

erators to the same row or the same column. When the

calculation involves the memristors of adjacent rows,

the alternating crossbar array is faster than the tra-

ditional crossbar array. The application of alternating

crossbar array makes it possible to complete the carry

operation in FA in one step, which effectively improves

computational efficiency.

4.2 Proposed FA

In this section, the algorithm and structure of FA are

proposed based on the MIMO logic and alternating

crossbar array mentioned above.

The basic ADD logic is described as follows, Ai is

the addend, Bi is the summand, Ci−1 is the carry-in

from the adjacent lower bit, Si is the sum of the current

bit, and Ci is the carry-out to the adjacent higher bit.

The truth table of one-bit FA is shown in Table V.

Sum (Si) and Carry-out (Ci) are calculated by

Si = (Ai ⊕Bi)⊕ Ci−1 (23)

Ci = Ai ·Bi + Ci−1 · (Ai +Bi) (24)

Ci =
(
Ai +Bi

)
·
(
Ai +Bi + Ci−1

)
, (25)

where

Ai ⊕Bi = (Ai +Bi ) ·
(
Ai +Bi

)
. (26)



8 Meiqi Jiang et al.

Fig. 9 The proposed FA circuit.

Fig. 10 The implementation of 1T1R crossbar array of the
proposed FA.

The proposed FA circuit is shown in Fig. 9. The

scale of the circuit can be expanded to n bits. Only two

bits of the FA are shown here for the convenience of

illustration.

In the i-th bit, memristors Ai and Bi store the input

logic values. Memristor Ci−1 stores the reversed carry-

out, which comes from the adjacent lower bit. Mem-

ristors M1 and M2 are used to store the intermediate

process. The control circuit, which is not discussed in

this paper, enables all inputs to occur simultaneously.

Memristor Ci is located in the (i+1)-th bit, which is

used to store the reversed carry-out of the i-th bit. In

our algorithm, the carry-out of each bit is the reversed

logical value, and the sum of current bit is stored in the

memristor M2.

The implementation of crossbar array of the pro-

posed FA is shown in Fig. 10. In a large-scale array,

we need to ensure that there are memristors placed al-

ternately on both sides of the array and at least four

columns of memristors in the middle. The structure in

the dotted box corresponds to Fig. 9. The memristors

of the first and last columns in the crossbar array are

alternating, corresponding to the alternating crossbar

array. Resistors RG and switches Si are also alternat-

ing in order to complete the carry operation correctly.

Some switches in Fig. 9 are not marked because they

are always open in the algorithm in this paper. We use

the 1T1R crossbar arrays [4] to solve the sneak current

issue. The detailed connections of word line W , bit line

B and control signal C are shown in Fig. 10.

The operations of each step and the state of the

memristors after the operations are recorded in Table

VI. According to Table VI, one-bit FA calculation needs

10 steps. The excitation voltage not mentioned in each

step in the table is 0. Steps 2, 5, 7 and 10 use Multi-

input logic, and steps 3 and 4 use Multi-output logic.

Note that in steps 1, 3, 4, 9 and 10, both V1 and V6 apply

the same voltage. Because in parallel operation mode,

both columns 1 and 6 can store carry-in and carry-out.

And in step 5, in the serial operation mode, the posi-

tion of the memristor storing the carry-in and carry-out

depends on the bit position i of the FA. Therefore, the

voltage values of V1 and V6 depend on whether i is odd

or even.

In order to show the working mode of this work in

the case of n-bit, 10 operating steps are divided into 4

phases:

Phase 1: steps 1 and 2. Close switches S2 ∼ Sn.

Open switches S1 and H0 ∼ Hn. Note that S1 needs to

be open because we need to keep the original carry-in

C0 unchanged in step 1. The n-bit FA can simultane-

ously calculate steps 1 and 2 in parallel. In this phase,

the n-bit FA needs only 2 steps in parallel calculation.

Phase 2: steps 3 and 4. Close switches H1 ∼ Hn.

Open switches S1 ∼ Sn. In this way, Ci can be con-

nected toWi without affecting other bits, so data trans-

mission can be realized between the i-th and (i+1)-th

bit positions. Similar to Phase 1, the n-bit addition can

be computed in parallel to complete Phase 2 in parallel

calculation with 2 steps.

Phase 3: step 5. Close switches Si and Hi. Open all

other switches. To calculate the carry-out of the i-th

bit position, we must first get the carry-in from the i-

th. Therefore, the n-bit FA can only complete Phase 3

by serial calculation. In this phase, 1 step is needed for

each bit but n steps for n-bit in serial calculation.

Phase 4: from step 6 to step 10. Close switches

S1 ∼ Sn. Open switchesH0 ∼ Hn. After completing Phase

3, each FA receives a carry-out from the adjacent lower

bit, and each FA can complete all the remaining steps

independently. So n-bit FA can complete Phase 4 in

parallel with 5 steps.

The operation diagram of the n-bit FA is shown in

Fig. 11. In Phases 1 and 2, all bits execute in parallel,

which takes 2 steps; In Phase 3, each bit is executed in

serial immediately after the previous bit, which takes

n steps; In Phase 4, all bits execute in parallel as in

Phases 1 and 2, which takes 5 steps.



An Efficient Memristive Alternating Crossbar Array and The Design of Full Adder 9

Table 6 The Implementation of i-th FA

Step Operation Voltage
The logical value after operation in:

M1 M2 Ci

1 CLEAR (M1, M2, Ci) V1 = V4 = V5 = V6 = VCLEAR 0 0 0

2 (Ai, Bi) ONO M1 V2 = V3 = VCOND; V4 = VSET Ai +Bi 0 0

3 Bi IMPLY (M2, Ci) V3 = VCOND; V1 = V5 = V6 = VSET Ai +Bi Bi Bi

4 Ai IMPLY (M2, Ci) V2 = VCOND; V1 = V5 = V6 = VSET Ai +Bi Ai +Bi Ai +Bi

5 (Ci−1, M1) OA Ci

{
V1 = V4 = V ′

COND; V6 = VCLEAR i ∈ odd

V4 = V6 = V ′
COND; V1 = VCLEAR i ∈ even

Ai +Bi Ai +Bi Ci (carry-out)

6 CLEAR M1 V4 = VCLEAR 0 Ai +Bi -

7 (Ai, Bi) OA M2 V2 = V3 = V ′
COND; V5 = VCLEAR 0 Ai ⊕Bi -

8 M2 IMPLY M1 V5 = VCOND; V4 = VSET Ai ⊕Bi Ai ⊕Bi -

9 Ci−1 IMPLY M2 V1 = V6 = VCOND; V5 = VSET Ai ⊕Bi Ci−1 +Ai ⊕Bi -

10 (Ci−1, M1) OA M2 V1 = V4 = V6 = V ′
COND; V5 = VCLEAR Ai ⊕Bi Si (sum) -

i represents the bit position of the FA.

Fig. 11 The operation diagram of the n-bit FA.

To sum up, for the n-bit FA, the proposed design

requires 2 + 2 + n + 5 = n + 9 steps. In this part,

we propose the design of FA and make a preliminary

analysis. As shown in Table VI, the Multi-input and

Multi-output logics are used multiple times in the FA. It

can reduce the calculation steps. The application of the

alternating crossbar array enables the carry operation

to be completed in one step, which greatly improves the

computational efficiency of the FA.

In addition to improving the computational efficiency,

our algorithm and structure also reduce the number

of memristors and make our design have higher inte-

gration. Furthermore, instead of performing IMPLY or

AND logic operations on the original input memristors,

we use Multi-input logic operations with data reusabil-

ity to retain the original input data. So the proposed FA

also has data reusability. Comparisons of speed, area,

power consumption, and data reusability are presented

in Section VI.

4.3 The Peripheral Circuit

Because of the need of the algorithm, V1 ∼ V6 need to

input different voltages in different operations. To real-

ize this operation, this paper has written a peripheral

circuit program circuit by Verilog HDL language, which

can output different pulse voltages at different times.

For example, we can get from Table VI that the volt-

age on the bit line V1 has five possibilities -1.2V, -0.8V,

0V, 0.8V, 1.2V at different times. Add five switched

voltages to V1, which are -1.2V, -0.8V, 0V, 0.8V, 1.2V

respectively. As long as the clock control switch of Ver-

ilog HDL is used, the input of different voltages can

be achieved. After many simulation tests, the step time

of 10 ns can realize the function of the corresponding

steps. Other switches in the circuit are also connected

to the peripheral circuits on both sides, and are simi-

larly controlled by Verilog HDL clock.

However, there is a small problem with this periph-

eral circuit. The periphery of adders with different bits

cannot be used universally. To solve this problem, we

propose two methods. One is that it can be set as a fixed

adder and the other is to design multiple peripheral

circuits, and choose different peripheral circuits when

making corresponding different bits calculations.

5 Simulation

To verify the correctness of MIMO logic and the calcu-

lation accuracy of FA, we simulated them with PSpice.

The DSAM memristor model is used in the design, and

the main parameters that constrain the implementation

of logic operations are listed in Table VII. According to

(9-14, 16-18, 20-22), the difference between ROFF and



10 Meiqi Jiang et al.

Table 7 Memristors and circuit parameters considered in the simulations

a p kon koff VCLOSE VOPEN RON ROFF VSET VCOND VCLEAR V ′
COND RG

2.1 1.8 8000 5000 1V −1V 1kΩ 100kΩ 1.2V 0.8V −1.2V −0.8V 500Ω

(a) (b)

Fig. 12 The change of each memristor resistance in ONO
logic (a) and OA logic (b).

RON has a great influence on IMPLY, Multi-input IM-

PLY, Multi-output IMPLY logic, while the difference

between VCLEAR and V ′
COND has a great influence on

AND, Multi-input AND, Multi-output AND. The pa-

rameters can be set according to actual needs. There are

many combinations of parameter selection, not only the

one shown in Table VII. As long as the range of RG is

reasonable, the logic operation can be realized.

Unlike ideal models, there is resistance drift in real

memristors. The resistance varies with the voltage and

does not exhibit a perfect threshold characteristic dur-

ing the transition from LRS to HRS and from HRS to

LRS. Compared to the ideal RG range, the non-ideal

characteristic results in a smaller RG range for IM-

PLY, ONO, Multi-output IMPLY logic operations and

a larger RG range for AND, OA, Multi-output AND

logic operations. Our simulation results show that the

two types of logical operations mentioned above func-

tion correctly when RG is in the ranges of [328, 2000]Ω

and [277, 1518]Ω, respectively.

Resistance drift is a serious problem in memristive

circuit which can affect the accuracy of the logic oper-

ation. In order to ensure that the subsequent operation

can be correctly calculated, in some cases, the resistance

value of the intermediate result memristor must be re-

freshed to make it return to RON or ROFF . The specific

implementation measures can be referred to [34].

Fig. 12 shows the simulation result of ONO logic

and OA logic. In Fig. 12, different rows represent the

different combinations of initial states of P1 and P2.

Columns 1 and 2 represent the changes of resistance

values of memristors P1 and P2. Columns 3 and 4 rep-

(a) (b)

Fig. 13 The change of each memristor resistance in two-
output IMPLY logic (a) and AND logic (b).

resent the change of resistance values of memristors Q

at different initial states (0 or 1). We can see that in-

put memristors P1 and P2 remain unchanged, but Q

changes depending on the inputs. Fig. 13 is the simula-

tion result of two-output IMPLY logic and AND logic.

Different rows represent the different combinations of

initial states of P , Q1 and Q2. The resistance value of

P remains unchanged, and the resistance values of Q1

and Q2 are always the same. All of the simulations gain

the correct results.

The result of one-bit FA is shown in Fig. 14, showing

both {Ai, Bi, Ci−1} = {0, 0, 0} and {Ai, Bi, Ci−1} =

{1, 0, 0} cases. Fig. 14 records the resistance changes of

all memristors in FA. Ci is not displayed after step 5

because it gets the carry-out and will participate in the

calculation of the next bit. We can see the result: for

Fig. 14(a), M2 is LRS, which means sum=1, and Ci

is LRS, which means carry-out=0; For Fig. 14(b), M2

is HRS, which means sum=0, and Ci is HRS, which

means carry-out=1. The state of the input memristors

does not change, which shows the data reusability.

Fig. 15 is the result of Verilog HDL simulation when

we design the peripheral circuit. Our design idea is that

each input can be connected to a different voltages

through a switch, and then the switch can be turned

on and off by a clock, so that different pulse inputs can

be realized. Because it is controlled by the clock, the

step time of each operation step is fixed in the design,

and the step time we set is 10 ns. Fig. 15 is a simulation

diagram of the input pulse of V1. From the operation

in Table VI, we can get that the input voltage of V1



An Efficient Memristive Alternating Crossbar Array and The Design of Full Adder 11

(a) (b)

Fig. 14 The change of each memristor resistance in the FA. (a): {Ai, Bi, Ci−1} = {0, 0, 0}; (b): {Ai, Bi, Ci−1} = {1, 0, 0}.

Table 8 Comparisons Between the Proposed FA and Other Works

Number of Memristors Number of Steps
Data Reusability

Input Output Total n=32 Imp. Total n=32 Imp.

Parallel [26] 2n+1 n+1 9n 288 44% 5n+18 178 76% NO
Serial [31] 2n+1 n+1 2n+3 67 -58% 22n 704 94% NO

Semiparallel [27] 2n+1 n+1 2n+3 67 -58% 17n 544 92% NO
Semiserial [32] 2n+1 n+1 2n+6 70 -56% 10n+2 322 87% NO
Parallel [29] 2n+1 n+1 9n 288 44% 3n+8 104 60% NO
Parallel [30] 2n+1 n+1 6(n+1) 198 19% 2n+15 79 48% NO
Our work 2n+1 n+1 5n 160 - n+9 41 - YES

may be -1.2V,-0.8V, 0V, 0.8V and 1.2V when different

operations are carried out. Assume that the switch K1

is connected with the voltage of -1.2V, and K2, K3, K4

and K5 are connected with the voltages of -0.8V, 0V,
0.8V and 1.2V, respectively. In the first step of the add

operation, it can be seen from Fig. 15 that the switch

K1 is open, and the input voltage at this time is the

pulse voltage of -1.2V, and so on.

6 Comparison

To have a better understanding of the advantages and

disadvantages of the proposed FA, we compared our

design with other existing works. In Table VIII, we list

some characteristics and indicators of different FA de-

signs. The percentage improvement (Imp.) is calculated

based on (Pother − Pour) /Pworse × 100%, where Pother

(Pour) represents the considered characteristic of the

other designs (our design) and Pworse is the worse value

of the two.

Fig. 15 The peripheral circuit control of V1.

6.1 Calculation speed

Speed plays an important role in determining the merit

of a design and its potential for widespread use and

implementation. The proposed MIMO logic based FA

design needs only 41 steps to implement a 32-bit ad-

dition.It is 76%, 94%, 92%, 87% faster than IMPLY



12 Meiqi Jiang et al.

based FA in [26] [31] [27] [32], respectively. It is 60%

faster than the 3M1R-based parallel FA in [29] and 48%

faster than the ORNOR-based parallel FA in [30].

6.2 Number of memristors

The number of memristors reflects integration and cost

to some extent. Even if the peripheral circuit accounts

for a large proportion of the area, the reduction of the

number of memristors will lead to higher integration

and less cost as the number of bits of FA increases. Our

design, for 32-bit addition, requires 160 memristors,

44% less than the IMPLY based [26] and 3M1R-based

[29] parallel design, and 19% less than the ORNOR-

based design [30]. The number of memristors in [31],

[27] and [32] are nearly 58% less than our design. This

is because their designs are serial, semiparallel or semis-

erial, which are characterized by high integration at the

expense of computation speed.

6.3 Data Reusability

Non von Neumann structure is dedicated to processing

in memory, which effectively reduces the transmission of

data. However, the use of IMPLY logic in [26], [31], [27]

and [32] results in the replacement of the original input

data. 3M1R and ORNOR logic have data reusability,

but designs [29] and [30] do not avoid replacing the orig-

inal data in the calculation process. The loss of original

data means that the data cannot be used again after

the calculation. A solution is to retransmit data to an-

other unit [35], but it will increase the time required for

data transfer and reduce the efficiency of the operation.

In our design, by using the MIMO logic, the mem-

ristors Ai, Bi and Ci−1 do not change state during cal-

culation after input. The input datas can be kept in

its original state and be used again. The reusability

of input data can reduce the data transmission time,

improve efficiency effectively, and promote the combi-

nation of storage and computation.

6.4 Power Consumption

Power consumption is a very important index to mea-

sure the quality of adders. Although this work increases

the number of switches, it greatly reduces the num-

ber of memristors and the operation steps of the al-

gorithm. Therefore, compared with other adders, the

power consumption of the adder proposed in this pa-

per is relatively small. We select two very representa-

tive adders [30] and [32], and when we select the same

mos transistor as the switch and perform the addition

operation with the same number of bits, our power con-

sumption is 22 % less than that in reference [30] and

39% less than that in reference [32].

7 Conclusion

This paper proposes a MIMO design scheme based on

memristive logic and an alternating cross-array struc-

ture. The MIMO scheme consists of two parts, Multi-

input and Multi-output logic, which have high com-

putational efficiency and provide data reusability, and

have a good prospect in the design of complex logic.

Alternating cross-array structures can perform rapid in-

teractive operations between adjacent rows, which avoid

the burden of operators being in the same row or col-

umn.

Then, a fast FA design was proposed based on MIMO

logic and alternating crossbar array structure. The pro-

posed FA is superior to the existing parallel design in

both area and speed. Although serial, semiparallel, and

semiserial designs are smaller in area than ours, our cal-

culation speed is much faster than theirs. In addition,

the proposed FA has another advantage, data reusabil-

ity, which is not available in any of the other designs.

Data reusability, which may reduce data loss and data

transmission time, is important in the structure of pro-

cessing in memory. In addition, the alternating cross-

array structure can be used for any other complex op-

erations to reduce data movement steps. Although the

adder designed in this work increases the number of

switches, it greatly reduces the number of memristors

and the steps to realize the algorithm operation. Com-

pared with other works, our proposed adder has rela-

tively less power consumption.

Finally, in order to realize the arithmetic operation

of the adder, we design a peripheral circuit to control

the voltage of the switch and memristor through Ver-

ilog HDL. We design the corresponding step time, and

control the pulse voltage through the clock when the

memristor can reach a stable value. At different times,

the voltage that meets the conditions is output, and the

arithmetic operation of the adder is realized.

Funding

This work was supported by the National Natural Sci-

ence Foundation of China(62171182), the Natural Sci-

ence Foundation of Hunan Province (2021JJ3014) and

the Natural Science Foundation Project of Chongqing,

Chongqing Science and Technology Commission (CSTB

2022NSCQ-M SX0770).



An Efficient Memristive Alternating Crossbar Array and The Design of Full Adder 13

Data Availability Statement

Data sharing is not applicable to this article, as no

datasets were generated or analysed during the current

study.

Declaration

Conflict of interest

The authors declare that the research was conducted

in the absence of any commercial or financial relation-

ships that could be construed as a potential conflict of

interest.

References

1. L. O. Chua, “Memristor-the missing circuit element,”
IEEE Transactions on Circuit Theory, vol. 18, no. 5, pp.
507–519, 1971.

2. L. O. Chua and S. M. Kang, “Memristive devices and sys-
tems,” Proc IEEE, vol. 64, no. 2, pp. 209–223, 1976.

3. Y. Ho, G. M. Huang, and P. Li, “Dynamical properties and
design analysis for nonvolatile memristor memories,” IEEE
Transactions on Circuits and Systems I: Regular Papers,
vol. 58, no. 4, pp. 724–736, 2011.

4. M. Zangeneh and A. Joshi, “Design and optimization of
nonvolatile multibit 1T1R resistive RAM,” IEEE Transac-
tions on Very Large Scale Integration (VLSI) Systems, vol.
22, no. 8, pp. 1815–1828, 2014.

5. X. Wang, S. Li, H. Liu, and Z. Zeng, “A compact scheme
of reading and writing for memristor-based multi-valued
memory,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, pp. 1–1, 2017.

6. Chao Zhou, Chunhua Wang, Yichuang Sun, Wei Yao,
Hairong Lin. ”Cluster output synchronizationfor memris-
tive neural networks,” Information Sciences, vol. 589, PP.
459-477, 2022.

7. Zhou, Chao and Wang, Chunhua and Yao, Wei and Lin,
Hairong. ”Observer-based synchronization of memristive
neural networks under DoSattacks and actuator saturation
and its application to image encryption,” Applicated Math-
ematics and Computation, vol. 425, PP. 127080, 2022.

8. Lin, Hairong and Wang, Chunhua and Cui, Li and Sun,
Yichuang and Xu, Cong and Yu, Fei, “Brain-like initial-
boosted hyperchaos and application in biomedical image
encryption,” in IEEE Transactions on Industrial Informat-
ics, DOI: 10.1109/TII.2022.3155599, 2022.

9. Lin, Hairong and Wang, Chunhua and Xu, Cong and
Zhang, Xin and Iu, Herbert HC, “A memristive synapse
control method to generate diversified multi-structure
chaotic attractors,” in IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, DOI:
10.1109/TCAD.2022.3186516, 2022.

10. Lin, Hairong and Wang, Chunhua and Sun, Jingru
and Zhang, Xin and Sun, Yichuang and Iu, Herbert HC,
“Memristor-coupled asymmetric neural networks: Bionic
modeling, chaotic dynamics analysis and encryption appli-
cation,” in Chaos, Solitons & Fractals, vol. 166, pp. 112905,
2023.

11. Q. Zhao, C. Wang, and X. Zhang, “A universal emula-
tor for memristor, memcapacitor, and meminductor and its
chaotic circuit,” Chaos, vol. 29, no. 1, 2019.

12. M. Chen, M. Sun, H. Bao, Y. Hu, and B. Bao,
“Flux–charge analysis of two-memristor-based chua’s cir-
cuit: Dimensionality decreasing model for detecting ex-
treme multistability,” IEEE Transactions on Industrial
Electronics, vol. 67, no. 3, pp. 2197–2206, 2020.

13. A. Haj-Ali, R. Ben-Hur, N. Wald, R. Ronen, and S.
Kvatinsky, “Not in name alone: A memristive memory pro-
cessing unit for real in-memory processing,” IEEE Micro,
vol. 38, no. 5, pp. 13–21, 2018.

14. S. Kvatinsky, “Real processing-in-memory with mem-
ristive memory processing unit (mmpu),” in 2019 IEEE
30th International Conference on Application-specific Sys-
tems, Architectures and Processors (ASAP), vol. 2160-
052X, 2019, pp. 142–148.

15. R. Yang, H. M. Huang, Q. H. Hong, X. B. Yin, Z. H.
Tan, T. Shi, Y. X. Zhou, X. S. Miao, X. P. Wang, and S.
B. a. Mi, “Synaptic suppression triplet-stdp learning rule
realized in second-order memristors,” Advanced Functional
Materials, p. 1704455, 2017.

16. K. A. Ali, M. Rizk, A. Baghdadi, J. Diguet, J. Jomaah, N.
Onizawa, and T. Hanyu, “Memristive computational mem-
ory using memristor overwrite logic (mol),” IEEE Transac-
tions on Very Large Scale Integration (VLSI) Systems, pp.
1–13, 2020.

17. S. Kvatinsky, N. Wald, G. Satat, A. Kolodny, U. C.
Weiser, and E. G. Friedman, “Mrl — memristor ratioed
logic,” in 2012 13th International Workshop on Cellular
Nanoscale Networks and their Applications, 2012, pp. 1–6.

18. G. Papandroulidakis, A. Serb, A. Khiat, G. V. Mer-
rett and T. Prodromakis, “Practical Implementation of
Memristor-Based Threshold Logic Gates,” in IEEE Trans-
actions on Circuits and Systems I: Regular Papers, vol. 66,
no. 8, pp. 3041-3051, Aug. 2019.

19. E. Gale, B. de Lacy Costello, and A. Adamatzky,
“Boolean Logic Gates from a Single Memristor via Low-
Level Sequential Logic,” in Unconventional Computation
and Natural Computation, USA, NY, New York:Springer,
pp. 79-89, 2013.

20. N. Xu, L. Fang, K. M. Kim, and C. S. Hwang, “Time-
efficient stateful dual-bit-memristor logic,” in physica status
solidi (RRL) - Rapid Research Letters, 2019.

21. S. Kvatinsky, D. Belousov, S. Liman, G. Satat, and U. C.
Weiser, “Magic—memristor-aided logic,” Circuits & Sys-
tems II Express Briefs IEEE Transactions on, vol. 61, no.
11, pp. 895–899, 2014.

22. J. Borghetti, G. S. Snider, P. J. Kuekes, J. J. Yang, D. R.
Stewart, and R. S. Williams, “‘memristive’ switches enable
‘stateful’ logic operations via material implication,” Nature,
vol. 464, no. 7290, pp. 873–876, 2010.

23. Y. Yang, J. Mathew, S. Pontarelli, M. Ottavi, and D.
K. Pradhan, “Complementary resistive switch-based arith-
metic logic implementations using material implication,”
IEEE Transactions on Nanotechnology, vol. 15, no. 1, pp.
94–108, 2016.

24. K. M. Kim, N. Xu, X. Shao, K. J. Yoon, H. Kim, R.
Williams, and C. S. Hwang, “Single-cell stateful logic using
a dual-bit memristor,” physica status solidi (RRL) - Rapid
Research Letters, 2018.

25. L. Guckert and E. E. Swartzlander, “Optimized
memristor-based multipliers,” IEEE Transactions on Cir-
cuits and Systems I: Regular Papers, vol. 64, no. 2, pp.
373–385, 2017.



14 Meiqi Jiang et al.

26. S. Kvatinsky, G. Satat, N. Wald, E. G. Friedman, A.
Kolodny, and U. C. Weiser, “Memristor-based material im-
plication (imply) logic: Design principles and methodolo-
gies,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 22, no. 10, pp. 2054–2066, 2014.

27. S. G. Rohani, N. Taherinejad, and D. Radakovits, “A
semiparallel full-adder in imply logic,” IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 28,
no. 1, pp. 297–301, 2020.

28. S. Shin, K. Kim, and S. Kang, “Reconfigurable state-
ful nor gate for large-scale logic-array integrations,” IEEE
Transactions on Circuits and Systems II: Express Briefs,
vol. 58, no. 7, pp. 442–446, 2011.

29. P. Huang, J. Kang, Y. Zhao, S. Chen, R. Han, Z. Zhou,
Z. Chen, W. Ma, M. Li, and L. Liu, “Reconfigurable Non-
volatile Logic Operations in Resistance Switching Crossbar
Array for Large-Scale Circuits” Advanced Materials, 2019.

30. A. Siemon, R. Drabinski, M.J. Schultis, X. Hu, and J.S.
Friedman, “Stateful Three-Input Logic with Memristive
Switches[J],” Scientific Reports, vol. 9, no. 1, 2019.

31. S. G. Rohani and N. TaheriNejad, “An improved algo-
rithm for imply logic based memristive full-adder,” in 2017
IEEE 30th Canadian Conference on Electrical and Com-
puter Engineering (CCECE), pp. 1–4.

32. D. Radakovits, N. Taherinejad, M. Cai, T. Delaroche, and
S. Mirabbasi, “A Memristive Multiplier Using Semi-Serial
IMPLY-Based Adder,” IEEE Transactions on Circuits and
Systems I: Regular Papers, no. 99, pp. 1-12, 2020.

33. H. Fu, Q. Hong, C. Wang, J. Sun and Y. Li, “Solving Non-
Homogeneous Linear Ordinary Differential Equations Using
Memristor-Capacitor Circuit,” IEEE Transactions on Cir-
cuits and Systems I: Regular Papers, vol. 68, no. 11, pp.
4495-4507, Nov. 2021.

34. I. E. Ebong and P. Mazumder, “Self-controlled writing
and erasing in a memristor crossbar memory,” IEEE Trans-
actions on Nanotechnology, vol. 10, no. 6, pp. 1454–1463,
2011.

35. N. Talati, A. H. Ali, R. Ben Hur, N. Wald, R. Ronen,
P. Gaillardon, and S. Kvatinsky, “Practical challenges in
delivering the promises of real processing-in-memory ma-
chines,” in 2018 Design, Automation Test in Europe Con-
ference Exhibition (DATE), pp. 1628–1633, 2018.


