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Abstract

We discover analytic equations that can infer the value of Ωm from the positions and velocity moduli of halo and
galaxy catalogs. The equations are derived by combining a tailored graph neural network (GNN) architecture with
symbolic regression. We first train the GNN on dark matter halos from Gadget N-body simulations to perform
field-level likelihood-free inference, and show that our model can infer Ωm with ∼6% accuracy from halo catalogs
of thousands of N-body simulations run with six different codes: Abacus, CUBEP3M, Gadget, Enzo, PKDGrav3,
and Ramses. By applying symbolic regression to the different parts comprising the GNN, we derive equations that
can predict Ωm from halo catalogs of simulations run with all of the above codes with accuracies similar to those of
the GNN. We show that, by tuning a single free parameter, our equations can also infer the value of Ωm from
galaxy catalogs of thousands of state-of-the-art hydrodynamic simulations of the CAMELS project, each with a
different astrophysics model, run with five distinct codes that employ different subgrid physics: IllustrisTNG,
SIMBA, Astrid, Magneticum, SWIFT-EAGLE. Furthermore, the equations also perform well when tested on
galaxy catalogs from simulations covering a vast region in parameter space that samples variations in 5
cosmological and 23 astrophysical parameters. We speculate that the equations may reflect the existence of a
fundamental physics relation between the phase-space distribution of generic tracers and Ωm, one that is not
affected by galaxy formation physics down to scales as small as 10 h−1 kpc.

Unified Astronomy Thesaurus concepts: Cosmology (343); Cosmological parameters (339); Hydrodynamical
simulations (767)

1. Introduction

ΛCDM is the current standard model in cosmology that
describes the evolution and expansion of the Universe, where
CDM denotes cold dark matter and Λ represents the
cosmological constant. This model explains how primordial
density perturbations in the early Universe were amplified by
gravity and eventually lead to the formation of the large-scale
structures that we observe today. To accomplish this, the model
relies on several cosmological parameters that characterize the
composition and other fundamental properties of our Universe.
One of them is Ωm, which quantifies the fractional energy

density of total matter, and obtaining an accurate constraint for
it is crucial for improving our understanding of the founda-
tional physics that governs the Universe.
Historically, the statistics used to analyze the density and

velocity fields of matter and galaxies have been useful probes
for Ωm (Peebles 1980; Davis et al. 1985; Angulo & Hahn 2022).
This includes the analysis of redshift-space distortions of
galaxy redshift surveys caused by virial and peculiar velocities
that deviate from cosmic expansion (Kaiser 1987). Such
distortions strongly affect the statistical properties of galaxy
clustering because they break the symmetry in the line-of-sight
direction. These anisotropies directly probe the growth factor,
which depends on Ωm as described in Sargent & Turner (1977),
Tonegawa et al. (2020). Another useful statistic is the pairwise
velocity metric defined for galaxies and galaxy clusters as the
peculiar velocity difference of pairs along their radial
separation vector. Its strong dependence on cosmology has
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allowed it to effectively provide constraints on various
cosmological parameters including Ωm (Cen et al. 1994; Ma
et al. 2015). These methods demonstrate that valuable
cosmological information is embedded on the small scales
(5 h−1 Mpc).

On large scales (10 h−1 Mpc), methods that analyze
cosmic flows (Dekel 1994) such as the skewness in the
divergence of galaxy velocity fields (Bernardeau et al. 1995)
have led to constraints on Ωm independent of the biasing
relation between the distribution of galaxies and the underlying
matter density field. A similar method is using the Zel’dovich
approximation to recover the initial density fluctuation field
from observed galaxy peculiar velocity and density fields. With
this, one can then compute the one-point probability distribu-
tion function (IPDF), which is sensitive to Ωm. Thus, one can
tune the value of Ωm assumed for the observed density fields to
fit the IPDF of the observed velocity field (Nusser &
Dekel 1992, 1993).

In recent years, there have been significant advances in
building detailed numerical simulations that accurately describe
the distribution and dynamics of galaxies and dark matter.
These include both N-body and state-of-the-art hydrodynamic
simulations, and they have become powerful tools for
constraining cosmological parameters such as Ωm. However,
the optimal method that can extract the maximum amount of
information from this variety of data is still unknown for non-
Gaussian density fields. Fortunately, the advent of revolu-
tionary machine-learning techniques provides an alternative
way to extract information from large amounts of data. By
training neural networks to learn cosmology directly from
generic fields, one can achieve tight constraints on the values of
cosmological parameters without relying on summary statistics
(Ravanbakhsh et al. 2017; Schmelzle et al. 2017; Gupta et al.
2018; Fluri et al. 2019; Ntampaka et al. 2020; Ribli et al. 2019;
Villaescusa-Navarro et al. 2020, 2021a; Villanueva-Domingo
& Villaescusa-Navarro 2022).

In particular, graph neural networks (GNNs), which are
constructed to handle graph representations of irregular data
structures, are especially useful for this purpose because of
their unique ability to exploit relational knowledge between
nodes in the graphs down to arbitrarily small scales (Battaglia
et al. 2018; Hamilton 2020; Bronstein et al. 2021). Specifically,
in our previous paper (Shao et al. 2022a), we showed that
GNNs are able to infer Ωm with a 6% accuracy from halo
catalogs of N-body simulations containing information about
the spatial distribution and velocity modulus of the dark matter
halos. More importantly, this network was shown to be robust
across various N-body simulations that are run with different
numerical codes, as well as various hydrodynamic simulations
that each employ distinct subgrid physics models and
astrophysical processes. This suggests that the GNN is
employing a fundamental relation between the halo properties
and Ωm that is not affected by numerical errors from the N-
body simulations or baryonic effects. Moreover, in our
companion paper de Santi et al. (2023), we show that GNNs
are able to perform robust inference of Ωm from the 3D
positions and 1D velocities galaxies of five different hydro-
dynamic simulation codes while marginalizing over cosmolo-
gies, astrophysical effects, subgrid physics models, and subhalo
definitions. These results demonstrate the abundance of robust
information contained in the phase-space distribution of halos
and galaxies.

However, the learned relation is hard to understand because
the GNN encodes information in high-dimensional latent space
representations that are not associated with obvious physical
interpretations. On the other hand, one can use techniques in
symbolic regression to reveal the physics underlying neural
networks via mathematical formulae. Symbolic regression
algorithms can be trained to approximate any learned network
by fitting analytic expressions to the input and output of neural
network components. Such approximations may also general-
ize better to data that exists outside the range of the data
distribution used for training because they possess stronger
extrapolation properties than neural networks, whose complex
functional forms have the tendency to overfit and learn
uninformative priors used during training (Villaescusa-Navarro
et al. 2020). This method has been recently used to rediscover
physical laws in planetary motion, uncover new relations in
matter overdensity fields, and more (Cranmer et al. 2019;
Cranmer 2020; Wadekar et al. 2020; Villaescusa-Navarro et al.
2021b; Shao et al. 2022b; Bartlett et al. 2022; Delgado et al.
2022; Lemos et al. 2022; Wadekar et al. 2023).
Hence, in this paper, we attempt to understand the physical

relations employed by the GNNs presented in Shao et al.
(2022a), de Santi et al. (2023) by providing an explicit
mathematical formula that approximates the learned networks.
To achieve this, we follow a two-step method. First, we train a
GNN on halo positions and velocity moduli to show that a
model with reduced latent space dimensionality can recover the
accuracy and robustness of the model discussed in Shao et al.
(2022a). Its compressed architecture will aid the use of
symbolic regression and decrease the complexity of the
approximating expressions. In the second step, we train a
symbolic regressor to find mathematical equations that
approximate each component of the GNN model. We show
that the discovered analytic expressions are able to preserve the
accuracy and robustness of the relation found by the GNN by
testing them on halos from thousands of N-body and
hydrodynamic simulations of varying cosmological and
astrophysical parameters. More surprisingly, we also demon-
strate that the equations are able to predict the value of Ωm from
galaxy catalogs of five different hydrodynamic simulations.
This suggests that the equations may be independent of the
complex connection between the spatial and velocity distribu-
tions of halos and galaxies. Finally, we attempt to interpret the
physical meaning of the equations. Since the expressions reveal
that the network is exploiting rotationally symmetric informa-
tion encoded in the relative velocity modulus of the halo pairs
on small scales ∼1.35 h−1 Mpc, we draw connections to
traditional techniques that rely on phase-space distributions for
galaxies and halos to constrain Ωm.
This paper is structured as follows. We first describe the data

used for this project in Section 2. In Section 3, we describe the
architecture of our GNN models, the symbolic regression
algorithm, and the methods used to train, validate, and test both
models. In Section 4, we present the results of our models and
equations. We then provide a discussion of plausible physical
interpretations of the equations in Section 5. Finally, we
summarize the main findings in Section 6.

2. Data

We train our models using halo catalogs from high-
resolution cosmological simulations that contain two halo
properties. First, the halo positions, r, are defined for the halo
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center using Cartesian coordinates in comoving-space. Second,
the halo velocity modulus, V, is defined as the modulus of the
3D peculiar velocity vector computed with respect to the
velocity of the simulation box. In this work, we focus on halo
and galaxy catalogs at z= 0. We describe the methods to
generate the halo and galaxy catalogs we use to train, validate,
and test the model in Section 3.1.

2.1. Simulations

We follow the scheme used in Shao et al. (2022a) to test the
accuracy and robustness of our models. This strategy is composed
of two parts. First, we use cosmological N-body and hydro-
dynamic simulations that contain different Ωm values organized in
Latin hypercubes and varying initial random seed conditions to
quantify the percentage constraints and level of precision achieved
by the models. Specifically, Ωm varies in the range

W0.1 0.5 1m  ( )

for both the N-body and hydrodynamic simulations. Note that
these simulations also vary σ8 in the range 0.6� σ8� 1.0.
Furthermore, for the hydrodynamic simulations, we vary
several astrophysical parameters; most of them just alter four
astrophysical parameters controlling the efficiency of super-
nova and active galactic nucleus (AGN) feedback, but we also
made use of a new set that varies 23 astrophysical parameters
controlling most of the free parameters in the considered
hydrodynamic code. The hydrodynamic simulations have been
run with five different codes that not only solve the
hydrodynamic equations using different methods but made
use of different subgrid models. These simulations are part of
the CAMELS project, and we refer the reader to Villaescusa-
Navarro et al. (2021b, 2023) for further details.

Second, we use simulations that are generated with the same
cosmologies and initial seeds for a control setup in which we
can determine the robustness of the models when evaluated on
halos generated with different codes. For this, we run 6 N-body
simulations that have the same initial random seed and value of
Ωm= 0.3175 (all other cosmological parameters are shared
among codes), but each is run with a different code.
Additionally, we run 4 hydrodynamic simulations that have
the same value of Ωm= 0.3, initial random seed, and employ
their fiducial subgrid physics model using 4 distinct codes.

For these two above steps, we employ thousands of N-body
and hydrodynamic simulations that have volumes of (25 h−1

Mpc)3 and have been run with 11 different codes. We briefly
describe these codes below, but for more detailed information,
we refer the reader to Shao et al. (2022a) and the listed paper(s)
for each code. Note that, at the end of the descriptions for each
code, we include the number of simulations generated to
contain the same cosmology and initial random seed as the
other codes, and the number of simulations that contain varying
cosmologies, initial seeds, and/or astrophysical parameters
arranged in a Latin-hypercube (or Sobol sequence),
respectively.

2.1.1. N-body Codes

The different N-body codes follow the evolution of dark
matter particles (that represent the cold dark matter plus
baryonic fluid) under the effect of self-gravity in a given
expanding cosmological background using different numerical

techniques and approximations. The six codes we use to run the
N-body simulations are described briefly below.

1. Abacus. This code computes the long-range gravitational
potential by decomposing the near-field and far-field
forces in which the near-field forces are reduced to a r−2

summation (or an appropriately softened form), and the
far-field forces are reduced to a discrete convolution over
multipoles (Garrison et al. 2021). We run 51 simulations
with Abacus: 1 simulation with a shared cosmology and
initial random seed among codes and 50 simulations in a
Latin-hypercube with varying values of Ωm and σ8.

2. CUBEP3M. This code employs a particle-particle parti-
cle-mesh (P3M) scheme, described in Harnois-Déraps
et al. (2013), where long-range gravitational forces are
computed via a two-level particle mesh calculation. We
ran 51 CUBEP3M simulations: 1 simulation with shared
cosmology and initial random seed among codes and 50
simulations in a Latin-hypercube. For the simulation
sharing the cosmology and initial random seed, we used
the exact same initial particles as in the other codes,
whereas the CUBEP3M initial conditions, generated
using the Zeldovich approximation, were used for the
50 simulations in the Latin-hypercube.

3. Enzo. This is an adaptive mesh refinement code, as
described in Bryan et al. (2014), that solves the Poisson
equation via a fast Fourier technique (Hockney &
Eastwood 1988) on the root grid and a multigrid solver
on the individual submesh. We only have one Enzo
simulation, which shares the same cosmology and initial
random seed with the other codes.

4. Gadget. This code utilizes a TreePM algorithm to
compute short-range forces and Fourier techniques to
calculate long-distance forces, as described in Springel
(2005). We use the halo catalogs from these simulations
to train the models. We run 1001 of the Gadget
simulations: 1 simulation with shared cosmology and
initial random seed among codes and 1000 simulations
that have different values of Ωm, σ8, and initial random
seed. We use the halo catalogs from these simulations to
train the models.

5. PKDGrav3. This code computes forces using fast
multipole method (Greengard & Rokhlin 1987) as
described in Potter et al. (2017). We run 1001 N-body
simulations with this code: 1 simulation with shared
cosmology and initial random seed among codes and
1000 simulations with different values of Ωm, σ8, and
initial random seed that are organized in a Latin-
hypercube.

6. Ramses. This code uses the adaptive particle mesh
technique described in Teyssier (2002). It solves
Poisson’s equation level by level using Dirichlet
boundary conditions and a Multigrid relaxation solver.
We have run 1001 Ramses simulations: 1 simulation with
shared cosmology and initial random seed among codes,
and 1000 simulations with different values of Ωm, σ8, and
initial random seed that are organized in a Latin-
hypercube.

2.1.2. Hydrodynamic Codes

The hydrodynamic simulations have been run using codes
that solve the hydrodynamic equations with different numerical
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methods and employ distinct models to describe astrophysical
processes such as star formation and feedback from supernova
and AGN. The hydrodynamic simulations have been run with
the codes Massively Parallel (MP)-Gadget, Arepo, Open-
Gadget, Gizmo, and SWIFT-EAGLE. In these simulations,
which are part of the CAMELS project (Villaescusa-Navarro
et al. 2021b), we vary the values of Ωm, σ8, the initial random
seed, and several astrophysical parameters that we describe
below. Instead of referring to these simulations by the name of
the code used to run them, we will call them by name of the
flagship simulations associated with them and their subgrid
model; i.e., ASTRID, IllustrisTNG, Magneticum, SIMBA, and
SWIFT-EAGLE respectively. We note that the SB28 simula-
tions have been run with the Arepo code and employ the
IllustrisTNG subgrid model, but since they vary 28 parameters,
we use a special name for them. Below, we briefly describe the
simulations from the different codes:

1. ASTRID. These simulations employ the MP-Gadget code
to solve the gravity (with TreePM), hydrodynamics (with
the pressure-entropy formulation of smoothed particle
hydrodynamics, hereafter SPH), and astrophysical pro-
cesses (Bird et al. 2022; Ni et al. 2022). We have run
1001 simulations with this code, which are 1 simulation
with shared cosmology and initial random seed among
codes, and 1000 simulations with different values of Ωm,
σ8, four astrophysical parameters that control the
efficiency of supernova and AGN feedback, and initial
random seed that are organized in a Latin-hypercube.

2. IllustrisTNG. These simulations have been run with the
Arepo code (Springel 2010; Weinberger et al. 2020),
making use of a TreePM plus moving-mesh finite volume
method (Weinberger et al. 2017; Pillepich et al. 2018a).
We have run 1029 simulations with this code, which is 1
simulation with shared cosmology and initial random
seed among codes, and 1000 simulations with different
values of Ωm, σ8, four astrophysical parameters that
control the efficiency of supernova and AGN feedback,
and initial random seed that are organized in a Latin-
hypercube. We also run 27 simulations using this code
that only differs in the value of their initial random seed
to study the effect of cosmic variance, which we refer to
as the cataclysmic variable (CV) set. Finally, we have 1
simulation of this code containing a periodic comoving
volume of -h205 Mpc1 3( ) . This simulation is part of the
IllustrisTNG-300 set (Naiman et al. 2018; Pillepich et al.
2018b; Marinacci et al. 2018; Nelson et al. 2018; Springel
et al. 2018; Nelson et al. 2019), and we use it to quantify
how our analytic expressions behave in the presence of
supersample covariance effects.

3. Magneticum. This simulation is run with the code
OpenGadget3 and implements the SPH-scheme following
Beck et al. (2016). For more details, see Dolag et al.
(2004), Jubelgas et al. (2004), Hirschmann et al. (2014),
and Groth et al. (2023). We have run 51 Magneticum
simulations, which are 1 simulation with shared cosmol-
ogy and initial random seed among codes, and 50
simulations with different values of Ωm, σ8, four
astrophysical parameters that control the efficiency of
supernova and AGN feedback, and initial random seed
that are organized in a Latin-hypercube.

4. SIMBA. These simulations have been run with the
GIZMO code (Hopkins 2015) with a TreePM plus

Meshes finite mass method; see Davé et al. (2019). We
have run 1001 SIMBA simulations consisting of 1
simulation with shared cosmology and initial random
seed among codes, and 1000 simulations with different
values of Ωm, σ8, four astrophysical parameters that
control the efficiency of supernova and AGN feedback,
and an initial random seed that are organized in a Latin-
hypercube.

5. SB28. These simulations have been run with Arepo and
employ the IllustrisTNG model. They contain 1,024
simulations, and we place them in a different category as
they vary the value of 5 cosmological parameters (Ωm,
Ωb, h, ns, σ8), and 23 astrophysical parameters controlling
most of the code free parameters. The values of the 28
parameters are organized in a Sobol sequence
Sobol (1967).

6. SWIFT-EAGLE. These simulations have been run with
the SWIFT-EAGLE code (Schaller et al. 2016, 2018) and
employ a subgrid physics model that aims at mimicking
the original Gadget-EAGLE model (Crain et al. 2015;
Schaye et al. 2015), with some parameter and imple-
mentation differences (Borrow et al. 2022). The full
model will be described in J. Borrow et al. (2023, in
preparation). The suite contains 64 simulations varying
the eight subgrid parameters that control stellar and AGN
feedback on a Latin-hypercube (parameter ranges are
given in square brackets):
(a) fE,min, the minimal stellar feedback fraction,

[0.18, 0.6];
(b) fE,max, the maximal stellar feedback fraction, [5, 10];
(c) NH,0, pivot point in density that the feedback energy

fraction plane rotates around, [10−0.6, 10−0.15];
(d) σn and σZ, energy fraction sigmoid width, controlling

the density and metallicity dependence, [0.1, 0.65];
(e) εf, coupling coefficient of radiative efficiency of AGN

feedback, [10−2, 10−1];
(f) Δ TAGN, AGN heating temperature, [108.3, 109.0];
(g) α, black hole accretion suppression and/or enhance-

ment factor, [0.2, 1.1].

3. Methods

In Shao et al. (2022a), we found that GNNs are not only able
to infer Ωm with a 5.6% precision but are also robust across
different N-body and hydrodynamic codes, suggesting that the
learned relation might be physically fundamental. In this work,
we build upon this previous study to understand the found
relation and search for an analytic formula that can approx-
imate the mapping from the halo positions and velocities, r and
V, to the cosmological parameter, Ωm. To accomplish this, we
make use of both GNNs and symbolic regression algorithms.
We refer the reader to Cranmer et al. (2019, 2019) for similar
methodologies devised to extract symbolic relations from
trained neural networks.
We begin by training a GNN with the goal of obtaining a

low-dimensional latent space network to learn a relation
between the input halo properties and Ωm that can approximate
the previously found model. We can do this by fixing certain
hyperparameters of the GNN so that it has a reduced
architecture depth and width. This step is key to aiding the
search for analytic expressions when we use symbolic
regression to approximate the GNN, as we later explain. We
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then evaluate this GNN model on halo catalogs from the N-
body and hydrodynamic codes described in the previous
section to ensure that the sparse architecture is able to achieve
comparable precision and accuracy to the model obtained in
Shao et al. (2022a). Finally, we use symbolic regression to fit
mathematical formulae to each component of the architecture in
the trained GNN model to obtain approximate analytic
equations. To improve their interpretability, we also make
modifications motivated by physical principles, such as
preserving the symmetries present in the data and model and
simplifying the found expressions. We refer the reader to
Figure 1, which depicts this methodology schematically.

In the following sections, we describe in detail the
ingredients we use to perform this procedure: (1) the method
for constructing the halo (training, validating, and testing) and
galaxy catalogs (testing), (2) the graph data used to train the
GNN, (3) the GNN architecture and training procedure, (4) the
data and procedure used to train the symbolic regressor, and
finally, (5) the metrics used to evaluate the accuracy and
precision of the models.

3.1. Halo and Galaxy Catalogs

Here, we describe the procedures for constructing the halo
and galaxy catalogs that we use to train, validate, and test the
GNN and symbolic expressions.

1. Halo catalogs for training and validating. For training
and validation, we use halo catalogs from the Gadget
simulations. For each simulation, we generate 10 halo
catalogs by taking all halos with masses larger than MX,
where MX is a randomly chosen number between 100mp

and 500mp. Here, mp is the mass of a single dark matter
particle. As explained in Shao et al. (2022a), using
different dark matter particle thresholds is key to
achieving a model that is robust to different simulations.
These halo catalogs are generated by running ROCKSTAR
(Behroozi et al. 2013) on snapshots from the numerical
simulations described above.

2. Halo catalogs for testing. We use all N-body simulations
described in the previous section and two hydrodynamic
simulations: IllustrisTNG and SIMBA. For each simula-
tion, we generate 5 halo catalogs for the five different
dark matter particle thresholds: {100, 200, 300, 400,
500}. Note that, for hydrodynamic simulations, the mass
of a dark matter halo contains contributions from various
mass sources. Hence, instead of considering only the
amount of dark matter mass to make our mass cuts, we
define mp as the effective particle mass: r= Wm Vp N c

1
m

c
,

where V is the volume of the simulation, ρc is the
Universe’s critical density today, and Nc= 2563 is the
effective number of particles. These halo catalogs are
generated by running ROCKSTAR (Behroozi et al. 2013)
on snapshots from the numerical simulations described
above. However, for one test where we gauge the
robustness of the train models to different halo defini-
tions, we run SUBFIND (Dolag et al. 2009) to generate
halo catalogs from the Gadget N-body and Illustris-TNG
simulations.

3. Galaxy catalogs for testing. We use galaxy catalogs from
all the hydrodynamic simulations described in the
previous section. We define a galaxy as a subhalo (can
be either a central or satellite) that contains a stellar mass

of at least N×m* where Nä 3, 4, 5, 6, and
m* = 1.3× 107 h−1 Me. For each simulation, we con-
struct four catalogs, each using a different N. We limit the
range of the stellar mass thresholds to be no larger than
6×m* because we find that using larger cuts results in
catalogs with galaxy number densities that are smaller
than the number densities (from the halo catalogs) used to
train the network and equations. We find that using
catalogs with number densities that are outside the
training range can lead to inaccurate predictions. These
galaxy catalogs are generated by running ROCKSTAR
(Behroozi et al. 2013) on snapshots from the six
hydrodynamic simulations described above, with the
exception of the catalogs from the SWIFT-EAGLE
simulations, which were generated using the halo finder
VELOCIRAPTOR (Cañas et al. 2019; Elahi et al. 2019).

3.2. GNNs

The methods described in this section closely follow those
presented in Shao et al. (2022a) to infer Ωm. We emphasize the
key changes that we implement in this work are as follows: (1)
using only the summation operator as the aggregation function
and (2) reducing the depth and width of the GNN architecture
with constrained hyperparameter optimization. These steps
decrease the complexity of the model and allow for easier
interpretation of the learned relations.

3.2.1. Model Input: Halo Graphs

The input of the GNN is a graph defined as =  ,( ),
where  is the set of nodes, and  is the set of edges. The nodes
represent the halos (or galaxies), and an edge is created
between two nodes if their distance is smaller than the linking
radius, rlink. This property is considered a hyperparameter that
we optimize during training, as we explain later. Thus, two
nodes Î i j, are referred to as neighbors if they are connected
via an edge, Î i j,( ) . As in Shao et al. (2022a), we do not
consider self-loops and account for periodic boundary condi-
tions when computing distances and angles between nodes.
The nodes and the edges can have different properties

associated with them, which we denote as vi
n( ) and eij

n( ),
respectively. The architecture of the GNN models may consist
of multiple layers that take a graph as the input and outputs an
updated graph. For this reason, we denote the node and edge
features at the n th layer with the superscript n.
The initial node feature, represented by vi

0( ), that we use is
the halo velocity modulus, V. Since the velocities are defined
with respect to the simulation box, the node features preserve
Galilean invariance. The edge features between nodes i and j at
the nth layer are represented by eij

n( ), and they contain
information about the spatial distribution of halos. To ensure
that the model preserves the rotational and translational
invariance of the data, we use the following vector for the
edge features:

a b g=e , , 2ij ij ij
0 [ ] ( )( )

where

a =
-
-

-

-
r c
r c

r c

r c
, 3ij

i

i

j

j∣ ∣
·

∣ ∣
( )
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Figure 1. This is a schematic of our methodology, which is explained in Section 3. We begin by constructing a graph from a halo catalog using halo positions and
velocity moduli. We then feed the graphs to a GNN and train it to perform parameter inference for Ωm. After training the model, we use symbolic regression to extract
the equations from each component of the GNN architecture. Finally, we assemble the equations into one expression and use it to predict Ωm from halos and galaxies
of various N-body and hydrodynamic simulations.
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b =
-
-

r c
r c

d

d
, 4ij

i

i

ij

ij∣ ∣
·

∣ ∣
( )

g =
d

r
, 5ij

ij

link

∣ ∣
( )

with dij= ri− rj being the relative distance between the nodes i
and j, and c is the centroid of the halo and/or galaxy
distribution. αij defines the angle between the positions of node
i and its neighbor node j, while βij describes the angle between
positions of node i and the separation between nodes i and j.
Note that we have normalized the distance, dij, by dividing it
with the linking radius, rlink, to have dimensionless edge
features. We refer the reader to Villanueva-Domingo &
Villaescusa-Navarro (2022) for more details on this
construction.

3.2.2. Architecture

The architecture of our GNN model closely follows
COSMOGRAPHNET18 (Villanueva-Domingo 2022), presented
in Villanueva-Domingo & Villaescusa-Navarro (2022) and
used in Shao et al. (2022a). However, our model only includes
one message-passing layer and a final aggregation layer. We
arrived at this architecture by experimenting with different
numbers of hidden layers to optimize the simplicity of the
model while maintaining the precision and accuracy of its
predictions. We explain this in more details in Section 3.2.3.

In the message-passing layer, information from the input
node and edge features are encoded with multilayer perceptrons
(MLP) and recursively exchanged and aggregated between
each node’s neighbors and edges. Afterwards, the node and
edge features are updated. This creates hidden feature vectors
that are ultimately used to predict the target parameter. For this
reason, we denote the edge and node features that are input to
the message-passing layer (the initial halo properties) with the
superscript (0) and the output (hidden) features by the message-
passing layer with the superscript (1).

For our compressed GNN, we restricted to two hidden
features for each node and edge because the number of hidden
features scales in proportion to the number of analytic
expressions needed to approximate the network, as we explain
later.

For the message-passing layer, the input of the edge model is
the initial features of the node i, the neighboring node j, and
their shared edge. In this case, the initial node features are V as
defined in Section 2, and the initial edge features are e(0) as
defined in Equation (2). This information is passed through an
MLP, denoted by f e, and the outputs are the updated hidden
edge features:

f=e v v e, , . 6ij
e

i j
1 0 0 0([ ]) ( )( ) ( ) ( ) ( )

This hidden edge feature, along with the initial node feature of
node i, is then passed to the node model, where another MLP,
denoted by f v, outputs the hidden node features:

åf=
Î

⎛

⎝
⎜

⎡

⎣
⎢

⎤

⎦
⎥

⎞

⎠
⎟



v v e, . 7i
v

i
j

1 0 1

i

( )( ) ( ) ( )

Here, we use a permutationally invariant aggregation function
—the summation—to aggregate the node features of the
neighbor nodes Î j i that are connected to node i. In Shao
et al. (2022a), the aggregation function used was a concatena-
tion of the maximum, summation, and mean operators. In this
work, we reduce this function to just the summation to decrease
the complexity of the learned relations. This choice is
motivated by the fact that the summation can serve as a proxy
for the other two operators. Using only one aggregation
operator as opposed to three decreases the number of hidden
channels by a factor of 3 and thus reduces the number of
equations we find for our model.
The final layer in the architecture aggregates the hidden node

features output by the message-passing layer to make the
prediction y:

åf=
Î

⎛

⎝
⎜

⎡

⎣
⎢

⎤

⎦
⎥

⎞

⎠
⎟



y v , 8u

i
i

1 ( )( )

where å Îi operates over all nodes in the graph, and f u is
another MLP that extracts the target information.

3.2.3. Training Procedure

We train and test the models using graphs constructed from
halo catalogs of the Gadget simulations. For each simulation,
we construct 10 catalogs using the procedure described in
Section 3.1 to marginalize over the halo number density. Once
trained, the model is tested using catalogs from all simulations.
For Gadget, we split the simulations into training (80%),
validation (10%), and testing (10%) data sets before creating
halo catalogs for each simulation. For the other codes, we use
the entirety of the data set for testing.
We standardize the values of input node features as

m
d

=
-

x
x

, 9˜ ( )

where μ and δ denote the mean and standard deviation of the
feature x. However, we explain in later sections that the value
of δ must be tuned for when evaluating the symbolic equations.
We also normalize the values of the target cosmological
parameter, Ωm:

W =
W - W
W - W

min

max min
, 10m

m m

m m

¯ ( )
( ) ( )

( )

where the minimum and maximum values of the ranges of Ωm

are listed in Equation (1).
As we did in Shao et al. (2022a), we train the GNN to

perform likelihood-free inference, so the output of the model is
y= [μi, σi], where μi is the posterior mean, and σi is the
posterior standard deviation of Ωm. To achieve this, we employ
the following loss function:

å

å

q m

q m s

= -

+ - -

Î

Î

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

 log

log 11

j
i j i j

j
i j i j i j

batch
, ,

2

batch
, ,

2
,

2

2

( )

(( ) ) ( )
18 https://github.com/PabloVD/CosmoGraphNet
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where the sums are performed over the halo catalogs in the
batch. Further details on this can be found in Jeffrey & Wandelt
(2020), Villaescusa-Navarro et al. (2022).

Our model is implemented in PyTorch (Paszke et al. 2019),
PyTorch Geometric (Elahi & Lenssen 2019). We use the
AdamW optimizer (Loshchilov & Hutter 2017) with beta
values equal to 0.9 and 0.999. We train the network using a
batch size of 8 for 500 epochs. The hyperparameters for our
model are as follows: (1) the learning rate, (2) the weight
decay, and (3) the linking radius. We use the OPTUNA code
(Angulo & Hahn 2019) to perform Bayesian optimization and
find the best value of these hyperparameters for each model. As
mentioned earlier, we aim to reduce the depth and width of our
GNN architecture to obtain a compressed network, so we
restrict to only one layer and two hidden neurons. For each
model, we run 100 trials, where each trial consists of training
the model using selected values of the hyperparameters. We
perform the optimization of the hyperparameters required to
achieve the lowest validation loss possible and use early
stopping to save only the model with a minimum validation
error.

3.3. Symbolic Regression

While neural networks can provide precise and accurate
approximations of complex relations in the data, interpreting
them is often challenging because they employ a large number
of parameters to make predictions. Therefore, it is desirable to
extract mathematical expressions that characterize, or approx-
imate, the relation learned by the neural network because it is
easier to understand the physics of the found relationships in
such forms. Moreover, analytic equations have been found to
generalize better, than neural networks, to data with character-
istics not presented in the training set, which can give us more
robust predictions and possibly illuminate fundamental proper-
ties of the model (Shao et al. 2022b).

For this purpose, we first train a symbolic regression
algorithm designed to approximate functions with analytic
formulae. We then modify the expressions using reasoning
based on physical principles—such as that the model should
preserve rotational and translational symmetries of the data—to
improve the interpretability of the equations and reduce their
complexity. In this section, we describe the symbolic
regression algorithm we use and the procedure for fitting
functions to components of the learned GNN.

We use the package PYSR (Cranmer 2023) to train a
symbolic regression algorithm with the ability to fit mathema-
tical formulas to the learn GNN relations. This package
implements genetic programming, which searches for the
optimal analytic expression creating combinations between the
sets of given operators and input variables. The found
expressions of each so-called generation are evaluated, and
the most accurate ones survive to the next generation.
Throughout this iterative process, mutations and crossovers
take place to explore the entire equation space and find an
accurate expression.

However, a key limitation of symbolic regression is that its
tractability and accuracy are restricted to low-dimensional
spaces of input data. To circumvent this, we limit the size of the
latent space produced by the GNN, as described in
Section 3.2.2. Using the learned parameters and relations from
the low-dimensional GNN architecture, we search for equations
that characterize the model by approximating the individual

MLPs used in the node model, edge model, and final layer
described in Equations (6), (7), and (8), respectively. We
emphasize that, since there is only one message-passing layer,
we only need to approximate one node model MLP and one
edge model MLP. Moreover, for each of the node and edge
models, we search for two equations because there are two
hidden features. The data and procedure used to obtain these
equations are described below.

1. Approximating edge model. To approximate the edge
model, we train a symbolic regressor to map from the
input variables, xe, to the target variables, ye, defined as
follows:

a b g=x v v, , , , ; 12e
i j ij ij ij

0 0( ) ( )( ) ( )

=y e e, . 13e
1

1
2

1( ) ( )( ) ( )

The input variables are the initial features of the nodes
and their neighbors, as well as the initial edge features as
described in Section 3.2.1. The corresponding target
variables are the edge features of the MLP in the edge
model defined in Equation (6). Since the GNN employs
only two hidden features for each message-passing layer,
we denote the first component of the edge feature as e1

1( )

and the second component as e2
1( ). To obtain this data, we

randomly select 10 (xe, ye) pairs from each graph in the
training set. This selection is done to ensure that we have
a representative sample of the training set without using
every node pair of all graphs, which would result in too
large of a data set.

2. Approximating node model. Similarly, to approximate the
node model, the input variables, xn, and the target
variables, yn, of the symbolic regressor, are as follows:

å å=
Î Î

⎛

⎝
⎜

⎞

⎠
⎟

 

x v e e, , ; 14n
i

j j

0
1

1
2

1

i i

( )( ) ( ) ( )

= +y v v v, . 15n
1

1
1

1
2

1( ) ( )( ) ( ) ( )

As seen above, the inputs are the initial node feature and
the neighborhood-wise sums of the hidden edge features
because the output of the edge model is aggregated using
the summation operator before being passed onto the
node model. The corresponding target variables are the
hidden node features of the MLP in the node model
defined in Equation (7). We denote the first and second
hidden node features as v1

1( ) and v2
1( ), respectively.

However, instead of directly finding an equation for the
second node feature, v2

1( ), we instead search for a formula
for the sum +v v1

1
2

1( ) ( ). This is because we find that the
change of variables allows us to obtain more accurate
approximations than with the original target variable.
Ultimately, to obtain the expression of v2

1( ), we subtract
from it v1

1( ). To obtain this data, we randomly sample 10
(xn, yn) pairs from each graph in the training set as we did
with the edge model data.

3. Approximating final MLP. Lastly, to approximate the
MLP in the final aggregation layer, the input and target
variables are as follows:

å å=
Î Î

⎜ ⎟
⎛

⎝

⎞

⎠ 

x v v, ; 16u

i i
1

1
2

1 ( )( ) ( )
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m=y . 17u
i ( )

Here, the inputs are the graph-wise sums of the hidden
node features because the output of the node model is
aggregated using the summation operator before being
passed onto the final MLP. The corresponding target is
the mean posterior. We do not attempt to find an
expression for the posterior standard deviation as it is
solely a component of the parameter inference methodol-
ogy and does not contribute to additional physical
understanding. We obtain this data from each graph in
the training set. Note that this time there is no need to
select a subsample of nodes from each graph because x u

and y u are global properties of the graph, so we can use
every graph in the training set.

In each of the above approximation steps, the symbolic
regression algorithm searches for analytic expressions that can
map from the given input variables to the desired target. For the
training, the regressor is allowed to employ the binary
operators “ADD,” “SUB,” “MULT,” “DIV,” “POW”

19; and the
unary operators “1/X” (the inverse of a variable), “ABS,” “LOG,”
“LOG10,” “SQRT.” We employ a standard mean squared error
(MSE) loss function to optimize the fitting defined as

å= -
=N

y yMSE
1

, 18
i

N

1
true pred

2( ) ( )

where ypred denotes the predicted value of the target variable,
and ytrue is the corresponding true value. The model was trained
for 100,000 trials with a batch size of 64.

During training, the algorithm outputs a list of equations
found by the regressor. For each equation, PYSR provides three
values to quantify the fit of the equation: its complexity, MSE,
and score. The complexity of the equation takes into account
the number of operators, constants, and variables used. The
MSE and the complexity are combined into an overall metric
that gives the equation’s score, akin to Occam’s Razor
(Cranmer 2023). Specifically, the algorithm sorts the found
equations from the least to the most complex, and for each
equation, it computes the fractional decrease in MSE relative to
the next (more complex) equation. The score is maximized if
this fractional decrease is large. We evaluate several candidate
equations on a test set for each hidden feature before selecting
one that optimizes the trade-off between complexity and
accuracy with these metrics in mind. We note that we have
experimented with manipulating the inputs to the symbolic
regressor, such as using sums and differences of the velocity
moduli of the halo and its neighbor as the input variables, but
the regressor struggled to output high-accuracy expressions.
We have also tried to restrict the complexity of the symbolic
expression outputs, but this significantly reduced the precision
of the predictions.

3.4. Performance Metrics

For the graph i, with the true value of the considered
parameter ytruth,i, our models output the posterior mean, yinfer,i,
and standard deviation σi. To evaluate the accuracy and
precision of our models, we follow Villanueva-Domingo &

Villaescusa-Navarro (2022), Shao et al. (2022a), and employ
four different metrics:

1. the mean relative error, ò, defined as

å=
-


N

y y

y

1
, 19

i

N
i i

i

truth, infer,

truth,

∣ ∣
( )

where N is the number of halo catalogs in the test set;
2. the coefficient of determination, R2, defined as

å
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3. the root mean squared error, RMSE, defined as

å= -
=N

y yRMSE
1

; 21
i

N

i
1

truth, infer
2( ) ( )

4. the Chi squared, χ2, defined as

åc
s

=
-

=N

y y1
. 22

i

N

i

2

1

truth,i infer,i
2

2

( )
( )

Note that a value of χ2 that is close to one suggests that
the standard deviations are accurately predicted. On the
other hand, a larger or lower value indicates that the
uncertainties are underestimated or overestimated,
respectively.

Note that the sums in all expressions above run over the
graphs in the test set.

4. Results

In this section, we present the results we obtain from training
the GNN model. We then show the analytic approximations
that were found using symbolic regression.

4.1. GNN Results

We first train a GNN with a single message-passing layer
and fix the number of hidden features to two. Using Bayesian
optimization of the hyperparameters, we find that the optimal
linking radius is ∼1.35 h−1 Mpc, which describes the char-
acteristic length scale of the model. When we evaluate the
trained model on a test set of Gadget simulations, we find that it
is able to attain very accurate predictions of Ωm with a mean
relative error of 6% and a χ2 of 1.37. This indicates that both
the posterior mean and standard deviations are accurately
inferred. These results are depicted in the left panel of Figure 2.
Hence, we see that the accuracy of the model is not
significantly compromised by the reduction in the dimensions
of its latent space with respect to the model used in Shao et al.
(2022a), which was ∼5.6%. In the following two sections, we
present the results for testing the equations on halos from the
six different N-body simulations and four hydrodynamic
simulations. We then present the predictions for the model
tested on galaxies from six different hydrodynamic simulation
suites.

19 The listed operators perform addition, subtraction, multiplication, and
division. “POW” takes the power of X to the input variable, where X is any
number.
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4.1.1. Halos

We first find that the model is robust to different N-body
codes despite being trained on halo catalogs from only the
Gadget simulations, agreeing with the results discussed in

Shao et al. (2022a). The simulations we use for this test are
Abacus, Ramses, PKDGrav3, Enzo, and CUBEP3M, which
share the same cosmology and initial conditions but employ
different numerical methods, as described in Section 2. As
shown in the top panel of Figure 3, the model obtains similar

Figure 2. This figure compares the accuracies of the GNN model with the analytic formulae obtained from symbolic regression and the modified equations using
physical principles. Left: we first train a GNN with a compressed latent space representation to perform likelihood-free inference for the cosmological parameter Ωm

with halo catalogs containing the positions and velocity moduli of the halos. Evidently, the model is able to achieve very high accuracy with a mean relative error of
only ∼6.4% when evaluated on the test set of Gadget simulations. Despite its reduced dimensionality, this accuracy is comparable to the model found in Shao et al.
(2022a). Right: we then use symbolic regression to extract analytic expressions for each MLP in the message-passing and final aggregation layers of the GNN. After
modifying them to reduce their complexity and to preserve the symmetries of the model, we evaluate the expressions on the Gadget test set. As shown, the expressions
are able to maintain the accuracy of the GNN, with an error of only ∼6.7%, indicating that the equations are close approximations for the learned GNN relations.

Figure 3. Top: we train a GNN model with a compressed latent space to perform likelihood-free inference for the cosmological parameter Ωm. The inputs to the model are
halo catalogs from Gadget that only carry information about halo positions and peculiar velocity moduli. Once trained, we test the model on halo catalogs from different N-
body and hydrodynamic simulations as indicated in the legend. We note that simulations of the same type, either N-body or hydrodynamic, are run with the same initial
conditions, cosmology (and fiducial astrophysics for the hydrodynamic simulations). For each simulation, we generate 5 catalogs. Each halo catalog contains all halos with
masses above Nmp, where mp is the particle mass, and N can be 100, 200, 300, 400, or 500 (see legend). The y-axis represents the difference between the truth and the
inference. As can be seen, this model exhibits surprising extrapolation properties and is robust to all simulation codes despite only containing one message-passing layer and
two latent features. Bottom: same as above but for the analytic equations obtained using symbolic regression and modified to preserve rotational and translational symmetries
in the data, as described in Section 3.3. As can be seen, the formulae maintain the robustness of the GNN model and achieve a very similar accuracy compared to the GNN.
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constraints on Ωm for these simulations. The corresponding
percent errors are shown in Figure 4. We present more detailed
results of this test in Appendix A, where the figures depict the
accuracies of the model when tested on 50 catalogs of different
cosmologies from each simulation code, see Figure 7.

Moreover, the model is robust to different hydrodynamic codes.
When tested on halo catalogs from the IllustrisTNG, SIMBA,
Astrid, and Magneticum simulations, the GNN is able to achieve
similar precision and accuracy compared to the predictions for the
N-body codes, as seen in the top panel of Figure 3. This
demonstrates that the model is robust even to hydrodynamics,
varying astrophysical parameters, and different subgrid physics
models. This agrees with the results from Shao et al. (2022a) and
shows that, even with a reduced latent space dimensionality, the
model could possibly still be learning a fundamental relation
between the halo properties and Ωm. However, note that by
reducing the size of the latent space the precision of the
predictions decreases slightly, which is expected.

Another test that we performed to gauge the extent of the
robustness of the GNN is evaluating our model on halos
generated using a halo finder that is different (SUBFIND) from
the one used during training (ROCKSTAR). We find that the
model is able to extrapolate to these halos, and we present the
details of this test in Figure 10in Appendix B.

4.1.2. Galaxies

We also asked if the network would extrapolate to galaxy
distributions after being trained on only the positions and

velocities of N-body halos. Hence, we test the GNN on galaxy
catalogs from the following hydrodynamic simulations: Astrid,
IlustrisTNG, Magneticum, SB28, SIMBA, and SWIFT-
EAGLE. As per the halo catalogs employed in the previous
sections, the galaxy catalogs used to perform the following
tests contain the galaxy positions and velocity moduli.
We find that the GNN is unable to accurately predict Ωm for

all galaxy catalogs of each simulation. We include the results in
Figure 11 of Appendix C. This is not surprising given that the
GNN was trained on N-body simulations and hence was not
given any information regarding the intricate astrophysical and
baryonic processes in galaxy distributions. Moreover, the halo–
galaxy connection is known to be a complex and challenging
relation (Moster et al. 2018; Behroozi et al. 2019).

4.2. Analytic Approximations

Here, we present the equations extracted from the trained
GNN model using the symbolic regression method explained in
Section 3.3. The formulae for each of the hidden edge and node
features, as well as for the predicted posterior mean from the
final MLP, are listed in Table 1. The listed RMSE values are
computed by individually replacing the corresponding comp-
onent in the GNN architecture with each expression while
keeping all other components of the GNN unchanged and
evaluating them on halo catalogs of the Gadget test set. The
computed RMSE values are used to gauge the error that each
approximate equation introduces.

Figure 4. These bar plots follow the same format as Figure 3 except we plot the percent error on the y-axes, defined as the ratio of the absolute difference between the
truth and predicted to the truth. The five bars of each color represent the different catalogs created for each simulation and are ordered based on the minimum mass
thresholds used to construct that catalog, following the same order presented in Figure 3. We note that, while the percent errors obtained by the analytic expressions for
certain simulations, such as CubeP3M, appear seemingly larger compared to the other codes, this disparity in one simulation does not reflect the accuracy of the
equations because we have performed tests on hundreds of simulations from each code and obtained similar accuracies for them (see Figure 8.)
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It is important to note that the variables vi and vj in the
equations represent the initial edge features or velocity moduli.
As explained in Section 3.2.3, these variables were normalized
by the mean and standard deviation of the velocity modulus for
the halos from the training set to ensure that all terms in the
equations are dimensionless. Hence, the velocity modulus
terms in the equations are = m

d
-vi

vi , and = m
d
-

vj
vj , where

μ= 189 km s−1 is a fixed value that was the computed mean
velocity modulus for all halos in the training set, and δ is
treated as a free parameter. For testing on halo catalogs, we set
δ= 129 km s−1, which is equal to the value used during
training and was the standard deviation computed for all halos
in the training set. On the other hand, for testing on galaxy
catalogs, we tune δ to fit to each hydrodynamic simulation set
as listed in Section 2 because we find that using the value
δ= 129 km s−1 leads to inaccurate predictions. This is not
surprising given that this value was computed for N-body
halos, which would not be expected to extrapolate to galaxies.
Hence, it is possible that tuning it for different simulations can
account for the halo–galaxy bias. We discuss this in more detail
in Section 4.2.2.

We also note that the presented edge equations were
modified to include terms that depend only on the relative
velocity moduli of the halos and their neighbors. This was done
to simplify the equations and improve their interpretability.
Moreover, including only the relative velocity modulus as
opposed to arbitrary linear combinations of vi and vj (see
equations in Table 2) enforces the symmetry between the
information from the velocity of a halo and its neighbor.
Furthermore, as described in Section 2, the halo velocity
moduli that appear in all the equations are defined with respect
to the simulation box, implying that the equations also preserve
Galilean invariance. We note that this modification improves
the accuracy of the equations compared to the original
expressions found by the symbolic regression algorithm. We
include more details on this result, as well as the original
equations found by the symbolic regression algorithm, in

Appendix D. In the following discussions, we only refer to the
modified equations.
The accuracy of the equations when evaluated on the halo

catalogs of the Gadget simulations is shown in the right panel
of Figure 2. As can be seen, these analytic approximations
achieve similar mean relative error (6.7%) and RMSE
(2.6× 10−2) as the GNN, suggesting that they are accurate
representations of the trained network. We emphasize that our
analytic formula predicts the posterior mean while the error
bars (posterior standard deviation) are obtained from the GNN
discussed in Section 4.1.
In the following two sections, we present the results for

testing the equations on halos from the six different N-body
simulations and four distinct hydrodynamic simulation codes,
as well as galaxies from six different hydrodynamic simula-
tion sets.

4.2.1. Halos

We first test the robustness of the analytic equations by
evaluating them on halos of the different N-body simulations,
as we did with the GNN. We find the analytic formulae to be

Table 1
This Table Lists the Analytic Formulae Obtained Using Symbolic Regression for Each Component of the Learned GNN Model: The Edge Model, Node Model, and

the MLP in the Final Aggregation Layer

GNN Component Formula RMSE

Edge Model: e1
1( ) 1.32|vi − vj + 0.21| + 0.12(vi − vj) − 0.12(γij + βij − 1.73) 0.03

Edge Model: e2
1( ) |1.62(vi − vj) + 0.45| + 1.98(vi − vj) + 0.55 0.04

Node Model: v1
1( )

+å +åÎ Î 1.21 0.77 0.12v e e3.29i j j j j1
1

2
1

( )
( ) ( )

0.02

Node Model: +v v1
1

2
1( ) ( )

- +å +å - -Î Î 0.78 log 0.16 1.45e e v0.41 1.05j j j j i2 1( ) 0.03

Final MLP: mWm ´ - å + å +

å + å -

-
Î Î

Î Î
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1
1

· (
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( ) ( )
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0.03

Notes. The last column lists the RMSE values of the analytic expressions when they are individually substituted into the GNN architecture. This evaluation is done by
replacing the corresponding MLP in the edge model, node model, or final aggregation layer with the symbolic approximation while keeping all other components of
the GNN unchanged. When these approximations replace all components of the GNN architecture, the RMSE of the predictions is 0.026, as shown in Figure 2. We
note that the edge equations have been modified based on physical motivations to preserve the symmetries of the data. Specifically, we modified the edge equations to
depend only on relative velocity moduli vi − vj, rather than individual halo velocity modulus terms. This is done to enforce the parity between the information from the
velocity of a halo and its neighbor. Compared to the predictions shown in Figure 12, we see that using these modified equations improves the overall accuracy of the
predictions. The way to use these equations is as follows. First, given a halo and/or galaxy catalog, a mathematical graph is constructed by considering the halos and/
or galaxies as nodes and linking nodes by edges if their distance is smaller than rlink = 1.35 h−1 Mpc (see Section 3.2.1 for details). Second, the feature of node i is
defined as


m d= -v vi i(∣ ∣ ) , where


vi∣ ∣ is the velocity modulus of halo and/or galaxy i, μ = 189 km s−1, and δ is a free parameter with units of kilometers per second

that needs to be adjusted for galaxy catalogs (see Section 4.2.2 and Table 2 for more details). Third, the edge features βij and γij between nodes i and j are computed
using Equations (4) and (5), respectively. Fourth, the updated edge features of the graph are computed using the below first two equations. Fifth, the updated node
features are computed using the below third and fourth equations. Finally, from the updated graph, we can estimate Ωm by using the below fifth equation.

Table 2
Optimized Values of the Free Parameter, δ, Used in the Analytic Expressions

Simulation δ Simulation δ

N-body codes 129.2 SB28 100.0
ASTRID 126.5 SIMBA 122.5
Illustris-TNG 99.6 SWIFT-EAGLE 114.5
Magneticum 147.2 … …

Notes. We list the values for the six different hydrodynamic sets, ASTRID,
Illustris-TNG, Magneticum, SB28, SIMBA, and SWIFT-EAGLE. These
values were obtained using linear least squares optimization with SCIPY-

OPTIMIZE as described in Section 4.2.2 to achieve robustness across various
simulation codes. We also include the δ used for testing on N-body halos for
comparison.
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accurate across all simulations, with predictions of comparable
mean relative errors as depicted in the lower panel of Figure 3.
We note that, in some cases, the analytic expressions are able to
extrapolate better than the GNN due to their known improved
generalization abilities (e.g., see Shao et al. 2022b). For
instance, certain numerical artifacts that appear in the
predictions made by the GNN for boundary cases, such as
halo catalogs generated with 100 or 500 minimum particle
thresholds, are not present in the predictions made by the
analytic expressions. We elaborate on this in Appendix A
where we present results for testing the model on simulations of
different cosmologies for various N-body codes, as shown in
Figure 7. Again, this suggests that the found formulae might
represent fundamental relations between the halo properties and
the cosmological parameter, Ωm, as they are not affected by the
additional astrophysical processes such as gas cooling and
AGN feedback. Similar to the GNN, we perform a second
robustness test using halo catalogs generated with SUBFIND
and find that the equations reach comparable accuracies. See
Appendix B for more details and plots. For all these tests, the
depicted errorbars are represent the inferred posterior standard
deviation values obtained by the GNN model trained on the
halo catalogs since we do not find an expression for this value,
as discussed in Section 3.3.

4.2.2. Galaxies

We also test the equations on galaxy catalogs from the six
hydrodynamic simulation suites: Astrid, IlustrisTNG, Magne-
ticum, SB28, SIMBA, and SWIFT-EAGLE. We emphasize
that this is not a trivial task as the GNN and the corresponding
equations were trained using dark matter halos from N-body
simulations that do not contain any information about the
intergalactic dynamics or baryonic processes present in
hydrodynamic simulations. There is also a complex galaxy–
halo connection, which can, for instance, be reflected in the
relative abundances of halos and galaxies where larger halos
can contain multiple galaxies while smaller halos may not
contain any. These biases can possibly leave a significant
imprint in the relations between the relative position and
velocity terms of the equations found for halos. For these tests,
we follow the definitions of galaxies and stellar mass thresholds
discussed in Section 3.1 in constructing the galaxy catalogs
where we include both central and satellite galaxies.

We present the results for evaluating the equations on galaxy
catalogs from the different hydrodynamic simulations in
Figure 5. Each panel is labeled with the corresponding
simulation suite. For simplicity, we present the predictions
for only the galaxy catalogs generated with the stellar mass
threshold of 4×m* for a fixed m* denoting the mass of an
individual stellar particle as described in Section 3.1. However,
we find that the equations are able to perform with similar
accuracies for catalogs constructed with different mass cuts,
which we discuss further in Appendix E. Moreover, since the
simulations from the SWIFT-EAGLE suite are run with the
same value of Ωm, we plot the difference between the true
(Ωm= 0.3) and the predicted values on the y-axis for these
catalogs. We note that the presented errorbars for all
simulations are the inferred posterior standard deviation values
obtained by the model trained and tested on galaxy catalogs
discussed in de Santi et al. (2023), since the equations predict
only the first moment of the posterior for Ωm (see Section 3.3).
To quantify the error of the predictions made by the analytic
equations and the estimated uncertainties, we compute the
listed validation statistics.
There are are several important features to note for

evaluating the equations on galaxy catalogs from the different
hydrodynamic simulations. First, for each simulation, we tune
the parameter δ to improve the accuracy of the predictions. As
discussed in Section 4.2, this parameter appears in the equation
as a normalization of the velocity modulus terms vi and vj, and
its value varies for different hydrodynamic simulations when
testing on galaxies. We tune this normalization because we
noticed that, using the original value δ= 129 km s−1, the
standard deviation of the velocity moduli for all halos in the
training set resulted in predictions that deviated from the truth
in terms of a slope and bias, which varies for each simulation.
Thus, in Table 3, we list the values of δ that we optimize for
each simulation using nonlinear least squares with SCIPY-
OPTIMIZE20 for the catalogs constructed using the 4×m*
stellar mass threshold. We also compare these found values
with the δ used to evaluate on halo catalogs in the table and in
later discussions.
Second, after tuning this parameter, we find that the

equations are able to predict Ωm with mean relative errors of
15.35% for ASTRID, 12.85% for Illustris-TNG, 6.89% for
Magneticum, 16.17% for SB28, 8.50% for SIMBA, and 4.08%

Table 3
This Table Follows the Format of Table 1 and Lists the Original Analytic Formulas Found by the Symbolic Regression Algorithm

GNN Component Formula RMSE

Edge Model: e1
1( ) 1.32|1.05vi − vj + 0.21| − 0.12vj − 0.12(γij + βij − 1.73) 0.028

Edge Model: e2
1( ) |1.53(vi − 1.06vj) + 0.45| + 1.93(vi − 1.02vj) + 0.55 0.035

Node Model: v1
1( )

+å +åÎ Î 1.21 0.77 0.12v e e3.29i j j j j1
1

2
1

( )
( ) ( )

0.02

Node Model: +v v1
1

2
1( ) ( )

- +å +å - -Î Î 0.78 log 0.16 1.45e e v0.41 1.05j j j j i2 1( ) 0.03

Final MLP: μ ´ ´ - å + å +
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-
Î Î

Î Î
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Notes. The key difference is that the edge model equations originally obtained by the algorithm depend on terms vi and vj, which are the individual halo velocity
moduli. As in the equations discussed in Section 4.2. the velocities used in the equations here have also been normalized to aid the model training and to ensure that

they are dimensionless: = m
d
-vi

vi , =
m

d

-
vj

vj . For testing these equations on halo catalogs, we use the fixed values μ = 189 km s−1, and δ = 129 km s−1 computed

from the mean and standard deviation of the velocity moduli for all halos in the training set. The accuracies of these equations are shown in Figure 12.

20 https://docs.scipy.org/doc/scipy/reference/optimize.html
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for SWIFT-EAGLE, across the four stellar mass thresholds.
Evidently, the predictions for the galaxy catalogs from
ASTRID, SB28, and Illustris-TNG exhibit significantly larger
error than those for the halo catalogs. This can be explained by
two reasons. One, there are additional astrophysical processes
and dynamics present in the thousands of hydrodynamic
simulations that can interfere with the equations’ extrapolation
ability. Given that the equations can only encode information
regarding the gravitational interactions between halos from N-
body simulations, the effects of these various astrophysical
parameters may impede on the accuracy of the predictions.
Moreover, there are likely to be significantly more outliers for
simulations such as SB28, where we vary 28 cosmological and
astrophysical parameters at a time. This is also true for the
ASTRID simulations, which encompass a wider range of
galaxy properties and are able to encapsulate the variations
found in the other simulation suites. A more detailed discussion
of the wide range of characteristics in the ASTRID simulations

can be found in our companion papers, de Santi et al. (2023)
and in Y. Ni et al. (2023, in preparation).
Two, there is a large fraction of the galaxy catalogs that

contain galaxy number densities outside the scope of the halo
number densities seen by the GNN and equations during
training. For instance, the number of halos in catalogs from the
Gadget simulations used for training ranges from ∼1000 to
6,000. However, there are galaxy catalogs that contain fewer
than 500 galaxies at this stellar mass threshold. These outliers
are particularly dominant in the IllustrisTNG, Astrid, and SB28
simulations, which leads to underpredicted values of Ωm. This
effect can be seen in Figure 6, which contains the same plots as
Figure 5 but with each scatter-point colored according to the
galaxy number density that the catalog contains. The colorbars
accompanying each plot indicate the range of the galaxy
number densities present in the catalogs. As it can be seen, in
the catalogs with significantly lower (higher) galaxy number
densities compared to those seen in training, the value of Ωm is

Figure 5. We test the analytic equations that were trained for halo catalogs of N-body simulations on thousands of galaxies from 6 different hydrodynamic simulation
sets, Astrid, IllustrisTNG, Magneticum, SB28, Simba, and SWIFT-EAGLE, to predict the value of Ωm and plot the predicted against truth for each simulation. To
conserve space, we only present results for the tests performed on catalogs constructed with a stellar mass threshold of 4 × m* where m* is a fixed mass for an
individual stellar particle as described in Section 3.1, but we reach similar accuracies for catalogs constructed with other mass cuts. We also include only 50 randomly
selected catalogs for each simulation set for the clarity of the figures, but the reported metrics were computed for all simulations in the suites. Note that, for the bottom
right panel, which depicts the predictions for the SWIFT-EAGLE simulation set, we use simulations that are generated with the same value of Ωm = 0.3. Thus, we plot
the difference between the truth and the prediction on the y-axis for these catalogs. As depicted in Figure 6, a large fraction of the catalogs, particularly for the
ASTRID, IllustrisTNG, and SB28 simulations, contain galaxy number densities that are outside the range of the number densities exhibited by the halo catalogs used
during training of the network and equations. Hence, in this plot, we remove these outliers and find that the mean relative errors of the predictions significantly
decrease (see Figure 6 for comparison). These results exhibit a relatively high accuracy with mean errors that average around ò ∼ 9.4%, comparable to the accuracies
obtained by our companion paper de Santi et al. (2023) with model trained on galaxy properties. This further demonstrates the robustness of the equations as well as
their ability to use halo properties to extrapolate to galaxy distributions. This is a surprising result given the various astrophysical processes exhibited by the
hydrodynamic simulations and the complex mapping between galaxies and halos. We note that the presented errorbars for all simulations are the inferred posterior
standard deviation values obtained by the model trained and tested on galaxy catalogs discussed in de Santi et al. (2023), since the equations predict only the first
moment of the posterior.
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often underpredicted (overpredicted), which contributes to the
large scatter. On the other hand, if one removes these outliers,
the mean relative errors significantly decrease. Hence, Figure 5
depicts the results for only the catalogs with galaxy number
densities that fall within the range of (1000, 6000). Restricting
to these catalogs decreases the mean relative errors to the
following: 9.76% for Astrid, 10.34% for IllustrisTNG, 7.02%
for Magneticum, 12.24% for SB28, 8.29% for SIMBA, and
4.08% for SWIFT-EAGLE. Thus, we conclude that the
equations are able to extrapolate to galaxies with accuracies
that are comparable to those attained for the halo catalogs from
hydrodynamic simulations. These results are also comparable
to those obtained by our companion paper de Santi et al. (2023)
where we trained a model directly on galaxy properties. We
note that the effect of the number density being an
uninformative prior during the learning process can be
diminished by broadening the range of halo number densities
used to train the network and equations, but we leave this for
future work.

After accounting for the aforementioned details, we conclude
that the equations are able to accurately predict Ωm for galaxy
catalogs. We emphasize that the ability of the equations to achieve
a reasonable inference of Ωm, being trained on halo catalogs from
N− body codes, is a surprising result because it is expected that
baryonic effects will affect the abundance and clustering of
galaxies in a complex and unknown manner. This is particularly
astounding for simulations such as those from the SB28 suite that

covers a vast volume in parameter space with many regions not
covered by the training set (e.g., cosmological parameters like h,
ns, and Ωb). Furthermore, the equations work really well for
SWIFT-EAGLE catalogs that were created running a different
halo and/or subhalo finder than the one used for training.
Furthermore, the equations are robust to the nontrivial galaxy–
halo connection as they can map the information learned about the
halo position and velocity fields to those for galaxies. We
emphasize that, while the network was designed to be robust to
different halo masses by the marginalization procedure discussed
in Section 3.2.3, this does not explain the ability of the symbolic
expressions to be able to generalize to galaxies, and the
astrophysical effects were not foreseen by the design of the
marginalization procedure that made the model robust to different
halo masses. Hence, the ability of the equations to remain robust
to these variations provides strong indication that they may be
relying on fundamental relations in the galaxy and halo phase-
space distribution that encodes effective information on Ωm.
Another possibility is that the equations are extracting information
on scales unaffected by astrophysical dynamics. In the next
section, we explore possible interpretations of these equations in
more detail.

5. Discussion

Here, we discuss some speculative interpretations of the
found equations. We attempt to only explain the formulae for

Figure 6. This figure follows the format of Figure 5. Here, each scatterpoint (representing one galaxy catalog) is colored according to the number of galaxies the
catalog contains. The colorbar depicts the range of galaxy number density present in the catalogs for the corresponding stellar mass threshold of each column. As it can
be seen, a significant portion of the galaxy catalogs from simulations such as Astrid, Illustris-TNG, and SB28 contains much smaller or larger galaxy number densities
than the number densities seen during training, which were within the range of (1000, 6000). These catalogs account for the the relatively larger errors in these
predictions, which is expected because the halo number density acts as an uninformative prior during the training of the GNN and equations. When we omit these
outlier catalogs, we obtain smaller scatter in the results, as shown in Figure 5.
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the edge models because their functional forms are simpler than
those for the node models. The edge model also solely employs
physical information about the halo positions and velocity
moduli, so they are responsible for directly leveraging the
clustering and distribution of the halos. This aligns with the
analysis from Cranmer et al. (2019), where it was argued that
the relations used in the edge models of GNNs are analogous to
describing the force laws between pairs of particles in physical
systems. We will elaborate on how the edge equations found in
this work may also reflect the physical relations pertaining to
the halo and galaxy populations. The node model, on the other
hand, exhibits a more complex form because it introduces
nonlinearities to the formulae and makes use of information
pertaining to the aggregate features from all neighboring halos.
However, this should not suggest that the equations for the
node model contain information that is less important than
those for the edge model.

5.1. Relative Peculiar Velocity Modulus

In both edge model equations, e1
1( ) and e2

1( ), the information
regarding the velocities of the halos appear in terms in the form
of (vi− vj), which indicates that the model is taking advantage
of the relative velocity moduli of the halos and their neighbors.
This dependence also preserves the parity between the
information content of a halo and that of its neighbor. The
ability for the edge model in the GNN to employ relational
information between pairs of bodies of a system has been a
recognized advantage (Cranmer et al. 2019; Cranmer 2020)
toward understanding the physical principles underlying the
model predictions. We believe that, in this case, using the
relative velocities allows the models to gauge the local
gravitational forces where the relative velocity moduli between
two halos can serve as a proxy for the depth of the potential
wells in the bound system. This is reasonable since larger
relative speeds of interacting bodies can result from the
presence of stronger attractive forces between them. From this,
the model may be learning a representation of the masses of the
halos. An analogous discussion in Cen et al. (1994) reached
similar conclusions pertaining to the pairwise peculiar
velocities and speeds, which were found to have strong
dependence on Ωm at the same small scale as that used by the
models in this work (5 h−1 Mpc).

We also speculate that the presence of these terms reflects
the strong dependence of Ωm on the information available in
the cosmic velocity fields (Dekel 1994; Bernardeau et al.
1995). For instance, Bernardeau et al. (1995) discusses a
derived relation between the moments of the scalar field of the
peculiar velocity divergence and Ωm that is independent of the
biasing between the distribution of galaxies and the underlying
dark matter density field. It is possible that the found
expressions in this work reflect a similar relationship because
our models have been trained using the scalar halo velocity
modulus and demonstrate an accuracy that is not significantly
affected by the presence of astrophysical and baryonic effects.
We speculate that the network and equations may be correcting
for the nonlinearities of the galaxy velocity fields on smaller
scales by considering the galaxy distribution and number
densities. Specifically, the equations may be obtaining
stochastic velocities from the relative positions of galaxies
using the baryonic physics present in the hydrodynamic
simulations. This information, coupled with the input pairwise
velocity moduli, may then be used to compute the contribution

of the galaxy velocities from the bulk flows that trace the large-
scale structure of the Universe. Since the bulk flows are a
consequence of the mass continuity equation, which relates the
large-scale density and growth rate, the equations are able to
extract cosmological information on Ωm. A similar argument
was made in the formulation of the cosmic virial theorem from
Peebles (1976, 1980), which constructs a relation between the
mean square relative peculiar velocity computed for galaxy
pairs and the galaxy correlation functions. Hence, we
emphasize the importance of leveraging both the positions
and velocities of the halos and/or galaxies in the analytic
expressions. This aligns with previous findings that using only
the positions or only the velocities fails to achieve accurate
inference (Villanueva-Domingo et al. 2022). Our companion
paper, de Santi et al. (2023), also reaches similar conclusions
about the amount of information contained in the galaxy phase-
space. Moreover, we have found that introducing additional
halo properties such as the halo mass and maximum circular
velocity eliminates the generalization of the expressions to
various simulation codes (Shao et al. 2022a), which further
indicates the robustness of the information contained in
peculiar velocities for inferring Ωm.

5.2. Velocity Normalization

Here we also discuss the implications of tuning the
normalization of the velocity modulus terms, δ, for galaxies
from each simulation set. Previous findings in Juszkiewicz
et al. (1999, 2000) indicate that the halo–galaxy distribution
bias can induce biases in pairwise velocity statistics defined
using the radial separation between galaxies. Thus, we
speculate that the normalization of the velocity modulus terms
vi and vj in our equations reflect a similar correction to account
for the fact that the spatial clustering of galaxies may not trace
that of the matter field. In that case, it would be expected for the
values of δ to differ for various galaxy populations. Since the
optimal value of δ varies across different hydrodynamic codes,
we hypothesize that this parameter relates the kinematics of the
galaxy velocities to their abundances. For instance, as seen in
Table 3, the value of δ is largest for the Magneticum
simulations, which have been found to contain significantly
higher galaxy number densities compared to the other codes
(de Santi et al. 2023). Consequently, the disparity in optimal δ
values can possibly reflect the variations in the abundances of
satellites in simulations of difference codes since the peculiar
motions of satellites are more sensitive to small-scale
dynamics, and their presence would thus contribute to a larger
spread in the dispersion of the peculiar velocity. On the other
hand, the mean galaxy number densities are smallest for
IllustrisTNG and SB28, which can explain why δ is smallest for
these two simulations (see Table 3). We leave for future work
to further investigate the role of δ in the context of galaxy
abundances, populations, and cosmological inference.

5.3. Spatial Distribution and Clustering

Next, we discuss the implications of halo clustering and
spatial distribution in the found edge equations. In the first edge
equation, e1, the presence of the terms β and γ reflects the
spatial distribution of the halos in the catalogs. Specifically, the
variable γä (0, 1] describes the distance between two halos
where its range is restricted due to its normalization by
the linking radius, rlink∼ 1.35 h−1 Mpc, as described in
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Section 3.2.1. Thus, a smaller γ would indicate a denser
distribution of halos. Meanwhile, the variable β ä [− 1, 1]
describes the angular orientation of a halo with respect to its
neighbor and can provide information about the shape of the
distribution, e.g., the filamentary structure of the cosmic web.
Both parameters are used by the model to learn about the
presence of large-scale structures such as superclusters and
filaments.

6. Conclusions

In this work, we have found an analytic expression that
approximates the relation employed by a GNN that was trained
to infer Ωm from dark mater halo catalogs. This was motivated
by the results of Shao et al. (2022a), which found that GNNs
are able to perform accurate field-level inference of Ωm using
halo catalogs from various N-body and hydrodynamic simula-
tions. These results imply that the found relation could be a
fundamental one as it is not affected by varying numerical
errors, astrophysical processes, subgrid physics, or even halo
definitions. This motivates us to gain a better understanding of
the learned relation by approximating it with symbolic
equations that are more physically interpretable than a neural
network.

To derive the analytic approximations, we followed a two-
step approach. We first simplified the model that was used in
the previous work to obtain a GNN with reduced latent space
dimensionality. The intention for this step was to maintain the
accuracy and precision of the model discussed in Shao et al.
(2022a) while building a less complex, and hence more easily
interpretable, architecture. We train our compressed model on
catalogs that only contain the positions and peculiar velocity
moduli of dark matter halos from N-body simulations. Next, we
trained a symbolic regressor to fit equations to each component
of the trained GNN (see Figure 1).

We summarize the main results of this work below:

1. We train a compressed GNN architecture composed of
only 1 message-passing layer and 2 hidden features on
halo catalogs from the Gadget N-body simulations. We
find that it is able to achieve precise constraints on Ωm

with a mean relative error of ò∼ 6.5%, similar to the
GNN model with larger latent space dimensionality as
discussed in Shao et al. (2022a), which achieved a mean
relative error of ò∼ 5.6%.

2. The compressed GNN model, trained on Gadget simula-
tions, is also robust across thousands of halo catalogs
generated from five different N-body codes—Abacus,
CUBEP3M, Enzo, PKDGrav3, Ramses—and four differ-
ent hydrodynamic codes that employ different galaxy
formation implementations—Astrid, IllustrisTNG, Mag-
neticum, SIMBA. This model reproduces the results of
Shao et al. (2022a) where the nontriviality of this
robustness was discussed.

3. We use symbolic regression to find equations that
approximate the different MLPs that our GNN model is
comprised of. These analytic equations can approximate
the learned relation between Ωm and the input halo
properties with a mean relative error of ò∼ 6.7% when
evaluated on halos from Gadget N-body simulations. We
then evaluate the equations on thousands of N-body and
hydrodynamic simulations run with the different codes
listed above. Thus, we demonstrate that the equations are

able to reproduce the preciseness and robustness of the
GNN, concluding that they are successful approximations
of the learned network.

4. We further find that the equations are able to extrapolate
better than the GNN in certain cases. Specifically, we test
on galaxy catalogs from six different hydrodynamic
simulation suites and find that while the equations are
able to predict the value of Ωm accurately while the GNN
is unable to. This is a surprising feat given that the
equations were trained only on halo properties from N-
body simulations and were not given any information
regarding the complex baryonic effects and astrophysical
feedback processes present in galaxy interactions. This
also demonstrates that the equations may be exploiting a
relation between positions, velocities, and Ωm that is
independent of the halo–galaxy connection.

5. To obtain good accuracies in the galaxy catalogs, we
need to tune one single free-parameter, δ, which is the
normalization of the velocity modulus terms used in the
analytic expressions. The value of δ appears to be
sensitive to the characteristics of the considered galaxy
population. We leave, for future work, studying its
physical role as well as the best strategy to constrain it—
such as fitting it using a subset of data, marginalizing
over its values, or others.

6. As in our companion paper de Santi et al. (2023), we find
some robustness to supersample covariance effects,
although further work is needed to properly assess it,
taking into account the setup we used to train our models.
Further details are presented in Appendix F.

7. We attempt to provide a physical interpretation of the
equations for the edge component of the GNN, which
could reflect physical laws and forces between interacting
objects represented by the nodes of the graph. Specifically,
the equations demonstrate an explicit dependence on the
pairwise velocity modulus and relative positions of halos
and/or galaxies at separation distances 1.35 h−1 Mpc.
These dependencies illustrate how the rotational and
translational symmetries present in the data are main-
tained and exploited by the model. Moreover, the dual
reliance on the spatial and velocity fields of the halos
indicates that there is robust information embedded in the
phase-space distribution of halos, perhaps reflecting some
underlying physical law like the continuity equation. We
draw speculative connections to past works that have
analyzed similar information in observational fields at the
same scales, such as the pairwise velocity and speed
statistics as analyzed in Cen et al. (1994), Juszkiewicz
et al. (1999, 2000), and the use of cosmic velocity fields
as seen in Dekel (1994), Bernardeau et al. (1995).

Finally, we briefly discuss the potential applications of our
methods to real data. First, we note that currently, GNNs with
large connectivity are unable to scale to simulations of large
volumes since they can only be feasibly trained on graphs of
fewer than ∼10,000 input nodes21 (halos or galaxies). Larger
input data would considerably reduce the training process’s
efficiency and become computationally prohibited regarding
the required memory. As outlined in the caption of Table 1, to
apply the found equations to galaxies, one would first need to
obtain the positions and velocity moduli of the galaxies and

21 We are using A100 GPUs with 40 Gb of RAM.
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compute the edge properties that are taken as inputs to the
equations. On the other hand, we note that the input variables
required for the equations are generally not observable. To
address this, we refer the reader to our companion paperde
Santi et al. (2023) where we have trained GNNs on the 3D
positions and 1D velocities of galaxies. These results indicate
that robust cosmological information can be extracted from
galaxy fields and are thus more applicable for observational
data. However, we also note that substantial further steps need
to be taken before adapting the above-mentioned procedures to
observed galaxies. This includes an investigation of the effects
of supersample covariance (which we show, in Appendix F,
can be at least partially accounted for by the models), error
propagation of the uncertainties in the input variables, and
selection biases that may appear in the data from specific
astrophysical probes of the galaxy properties. Since the goal of
this study was to probe the idea of implementing symbolic
regressors for GNN predictions rather than developing a model
to use with real data, we leave for the future to investigate these
various avenues. While there are many additional steps that
need to be taken, we emphasize that finding an analytical
universal equation will likely help us to further understand the
complex physics underlying the spatial and velocity distribu-
tions of galaxies, which can ultimately be useful for parameter
inference, one of the most important tasks for upcoming
cosmological surveys.

7. Code Availability

The code used for this work is available at https://github.
com/HelenShao/halo_galaxy_GNNs/.
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Appendix A
Additional N-body and Hydrodynamic Simulations

In Section 4, we presented the performance of the GNN and
analytic expressions on the different N-body and hydrodynamic
simulations run with the same cosmologies and initial
conditions. Here, we present additional results demonstrating
the accuracy and robustness of both model predictions for both
Ωm and σ8 for different minimum halo particle thresholds. For
these plots, we evaluate the models on 50 simulations
containing different cosmologies and initial conditions for four
different N-body codes: Abacus, CUBEP3M, PKDGrav, and
Ramses (in Figure 8). We also test the models on 1000
simulations from two hydrodynamic codes, IllustrisTNG and
SIMBA, but plot the results for 50 randomly selected
simulations to conserve space (in Figure 9). As before, we
perform these tests using halo catalogs created with different
minimum halo particle thresholds as indicated in the plots.
Each of these plots depicts the predictions plotted against the
truth minus the inference.
As it can be seen, the GNN is able to infer Ωm accurately for

all N-body simulations with similar mean relative errors of
∼7%, and the analytic expressions have comparable accuracies
of ∼8% (see Figures 7 and 8).
For the hydrodynamic simulations IllustrisTNG and SIMBA,

we obtain concurring results where both the GNN and analytic
expressions are able to attain mean relative errors of ∼7%
(Figure 9). An interesting note is that the GNN predictions for
halo catalogs constructed with 100 or 500 minimum particle
thresholds exhibit tail biases due to the effects of the prior
distribution, as seen in the right panels of Figure 9. These
numerical artifacts are not present in the inferences made by the
analytic expressions due to their better known generalization
capabilities.
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Figure 7. We train a GNN with a low-dimensional latent space to infer Ωm from catalogs of the Gadget N-body simulations using the halo relative positions and
velocity moduli. We then evaluate this model on different N-body simulations, Abacus, CUBEP3M, PKDGrav3, and Ramses, using catalogs created with particle
thresholds indicated next to the plots. As can be seen, the model is able to extrapolate well to different N-body codes and is able to predict with similar accuracy
compared to that of the halo catalogs from Gadget.
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Figure 8. This follows the format as Figure 7 but for the analytic equations discussed in Section D. The equations were found using symbolic regression and modified
using physical principles to preserve the rotational and translational symmetries of the data. As can be seen, the equations maintain the accuracy and robustness
exhibited by the GNN in Figure 7, indicating that the formulae offer good approximations to the model.
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Appendix B
Robustness to Different Halo Finder: SUBFIND

In Section 4, we discussed the accuracy and robustness of
the GNN and analytic expressions when evaluated on
various simulation codes. Here, we present another test for

the robustness of these models where we evaluate the GNN
and the analytic approximations on halo catalogs generated
using a different halo finder (SUBFIND) than the one used for
training (ROCKSTAR). SUBFIND identifies halos by determin-
ing local peaks in the 3D density field and separating them
using saddle points. The overdense regions and their

Figure 9. Similar to Figures 7 and 8, we test the GNN and the analytic equations on halo catalogs generated from the SIMBA and IllustrisTNG hydrodynamic
simulations. For clarity, we plot the predictions for 50 randomly selected catalogs in each panel. It can be seen that both models remain robust to the additional
astrophysical effects present in these simulations, indicating that they are employing a possibly fundamental relation between the relevant halo properties and Ωm.
Moreover, the analytic equations are able to capture this as their accuracies for all hydrodynamic simulations, which are similar to those of the GNN.
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surroundings are then examined for subhalos, which are
gravitationally self-bound regimes. Those that are not bound
are attached to their neighboring overdensities with whom
they share saddle points. SUBFIND operates on all particle

types in the simulations, dark matter and baryonic alike
(Dolag et al. 2009).
To perform these tests, we consider the total mass of the halo

contained in a sphere with a mean density that is 200 times the

Figure 10. We trained a GNN using halo catalogs generated with the halo finder ROCKSTAR to infer Ωm, and approximated the learned model with analytic equations
using symbolic regression. The top plots show the accuracy of the model and the analytic approximations when evaluated on halo catalogs from the N-body Gadget
simulations using a different halo finder SUBFIND constructed with the varying minimum particle thresholds as described earlier. It is overall able to accurately
extrapolate to the different halo finder with ∼8% mean relative error across the different catalogs. On the other hand, while the analytic expressions have a slightly
larger error of ∼9%, they do not exhibit the noticeable biases present in the predictions from the GNN, demonstrating the known improved extrapolation properties of
analytic expressions over neural networks. The bottom plots depict the same test as above but for halo catalogs from the IllustrisTNG hydrodynamic simulations.
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mean density of the Universe at redshift z= 0. Same as the
previous tests, we construct halo catalogs with varying minimum
particle thresholds in the range of [100, 500], as explained in
Section 2.

First, we perform this test for the 1000 halo catalogs from the
N-body Gadget simulations. As it can be seen in the top plots of
Figure 10, both the GNN and the analytic expressions provide
accurate predictions of Ωm overall, with mean relative errors of
∼8.8% and ∼9.2%, respectively, across the different halo
catalogs. However, there are some interesting features to
emphasize. First, while the GNN predictions exhibit an offset
and a significant lower-tail bias for the halo catalog generated
with a minimum particle threshold of 100, this is a boundary
case considering the interval of the minimum particle thresh-
olds used to construct the catalogs. Moreover, the identification
of lower mass halos can vary across different halo finders, and
this can influence the predictions more strongly than the
presence of more massive halos, which are more likely to be
commonly identified in both halo finders. Second, it can be
seen that the analytic approximation demonstrates higher
accuracy for this boundary case, which is another indication
of the better extrapolation capabilities of analytic equations
over neural networks.

Likewise, we performed the same test with halo catalogs
from the IllustrisTNG hydrodynamic simulations. The results
for this are shown in the bottom plots of Figure 10. As it can be
seen, the mean relative errors are similar between the GNN and
the analytic expressions, averaging to be ∼9.5% across the
different halo catalogs. While these metrics indicate a slightly
decreased precision of the predictions, this can be attributed to
additional baryonic effects present. Nevertheless, the overall
accuracy further demonstrates the generalization ability of the
trained network as it is able to extrapolate to both additional
hydrodynamic simulations and varying halo definitions. This
agrees with the results discussed in Sections 4.2.2 and
Appendix C, where it was also found that both the network
and the symbolic approximations are able to obtain robust

predictions for catalogs generated from the SWIFT-EAGLE
simulations, which employ a different halo and/or subhalo
finder (VELOCIRAPTOR).

Appendix C
Additional Plots: Testing GNN on Galaxies

As discussed in Section 4.1.2, we trained a GNN on halo
catalogs and tested the learned network on galaxies from six
different hydrodynamic simulation suites: Astrid, IllustrisTNG,
Magneticum, SB28, Simba, and SWIFT-EAGLE. Here, we
present the results for these predictions. As it can be seen in
Figure 11, the GNN is unable to accurately predict the values of
Ωm as all the predictions exhibit a bias deviating from the true
values. This is common across all simulations, which is
expected given that there is a nontrivial connection between
halo and galaxy distributions. On the other hand, as explained
in Section 4.2.2, the analytic equations that approximate the
GNN can be tuned to avoid this error.
We believe that these biases are due to the effects of the

halo–galaxy connection in addition to the differences in the
abundance of galaxies found in the catalogs used for testing
and that of halos found in the training data set. As discussed in
Section 4.2.2, the network is unable to extrapolate to number
densities outside of the training range. In the case of galaxy
catalogs, as shown in Figure 6, there are many catalogs with
galaxy number densities that fall below the range of the halo
number densities seen during training (1000, 6000). However,
the underpredicted values of Ωm cannot be solely attributed to
the abundance of galaxies. As discussed in our companion
paper, de Santi et al. (2023), the full range of galaxy number
densities is exhibited for all values of Ωm. Hence, there is no
strong correlation between Ωm and the number of galaxies in
each catalog. This agreement further demonstrates that the
biases present in the network predictions are attributed to the
intrinsic characteristics of the galaxy population.
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Figure 11. This plot shows the predictions of the GNN trained on halo catalogs from Gadget N-body simulations being tested on galaxies from six different
hydrodynamic simulations as listed for each row. To construct the galaxy catalogs, we follow the procedure discussed in Section 3.1 and use four different stellar mass
thresholds, which are labeled for each column. For clarity, we plot the predictions for 50 randomly selected catalogs in each panel. As can be seen, the GNN is unable
to accurately predict the values of Ωm as all the predictions exhibit a bias deviating from the true values. This is common across all simulations, which is expected
given that there is a nontrivial connection between halo and galaxy distributions. However, as explained in Section 4.2.2, the analytic equations that approximate the
GNN can be easily tuned to avoid this error.
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Appendix D
Original Symbolic Regression Equations

In Section D, we presented the equations obtained by the
symbolic regression algorithm that were then modified based
on motivations of physical principles. Here, in Table 2, we
present the equations originally found by the symbolic
regression algorithm that we trained following the procedure
described in Section 3.3. Note that the edge equations found by
the algorithm contained dependencies on the individual
velocity modulus of halos in the form of linear combinations of
vi and vj. These terms break the parity between a halo and its
neighbor. Moreover, we adapted terms that explicitly reflect
differences between the velocity moduli due to the known
statistics between pairwise velocities and Ωm,

We also show the accuracy of these equations when
evaluated on halo catalogs from the Gadget test set simulations
in Figure 12. As it can be seen, these formulas are able to
achieve a mean relative error of ∼7.1%, which is slightly
higher than the error of the modified equations, possibly
indicating that the imposed symmetries offer an important
constraint on the predictions and play a significant role in
achieving accurate inferences (see Figure 2).

Figure 12. This plot shows the predictions of the original equations found by
the symbolic regression algorithm evaluated on the halo catalogs of the Gadget
test set. As can be seen, while it achieves similar accuracy to the GNN model,
with a mean relative error of 7.1%, it is not as accurate as the modified
expressions, which had an error of 6.6%. See Figure 2.
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Appendix E
Varying Stellar Mass Thresholds

In this section, we discuss the results for testing the analytic
equations discussed in Section 4.2 on galaxy catalogs
constructed with different minimum stellar mass thresholds:
N×m* for N ä {3, 4, 5, 6} where m* is a fixed mass for a
single stellar particle. As explained in Section 3.1, the use of
different mass cuts during training of the model and equations
enables the models to marginalize over the halo and/or galaxy
number densities found in each simulation due to different halo
and/or galaxy mass functions. Here, we test whether the
equations are robust to this using the simulations from
ASTRID and SWIFT-EAGLE. To do this, we use the same δ

values optimized for catalogs of the single mass threshold
4×m* as discussed in Section 4.2.2.
First, we present the results for ASTIRD, which are shown in

Figure 13. As it can be seen, the accuracies of the equations are
not largely affected by the different mass thresholds used, as
expected. Second, we perform these tests for galaxy catalogs
from SWIFT-EAGLE, as shown in Figure 14. Here, we explain
the apparent trend of increasing scatter in the predicted Ωm

values as the stellar mass threshold increases with the fact that
all the SWIFT-EAGLE simulations were run with the same
random seed. Hence, the predictions should be considered as
highly correlated, which causes the small bias for the catalog
with a larger stellar mass threshold for a fixed δ value.

Figure 13. We evaluate the analytic equations discussed in Section 4.2 on galaxy catalogs from the Astrid simulation set constructed using four different minimum
stellar mass thresholds: N × m* for N ä {3, 4, 5, 6} where m* is a fixed mass for a single stellar particle. Each column is labeled with the corresponding mass cut. As
it can be seen, the accuracies of the equations are preserved for the different mass thresholds demonstrating that the model has marginalized over the number density of
galaxies.

Figure 14. We evaluate the analytic equations discussed in Section 4.2 on galaxy catalogs from the SWIFT-EAGLE simulation set constructed using four different
minimum stellar mass thresholds: N × m* for N ä {3, 4, 5, 6} where m* is a fixed mass for a single stellar particle. Each column is labeled with the corresponding
mass cut. We note that, since the SWIFT-EAGLE simulations were generated using the same initial random seed, there is a high correlation between the galaxy
catalogs of the different stellar mass thresholds for this simulation set that is responsible for the trend of decreasing accuracy as the stellar mass threshold increases.
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Appendix F
Testing with Supersample Covariance

Here we demonstrate that the analytic equations discussed in
Section 4.2 are robust to the effects of supersample covariance.
Quantifying how the analytic equations behave in response to
supersample covariance is a critical step toward being able to
apply them to the observational data from surveys that are
sampled with finite volume. This is because, in galaxy surveys,
the short-wavelength modes that contain information on the
nonlinear dynamics are coupled to long-wavelength, or super-
sample, modes that extend beyond the survey volume (Hu &
Kravtsov 2003; Hamilton et al. 2006; Takada & Hu 2013). This
results in sample variances that dominate the nonlinear regime
(Takada & Bridle 2007; Sato et al. 2009; Yu 2012; de Putter
et al. 2012). In the analysis that we have performed so far, we
have not taken into consideration this effect because we have
used simulations with periodic boundary conditions, which are
not influenced by background modes that extend outside the
simulation box.

To test for these effects, we evaluate the analytic equations
on galaxy catalogs constructed from -h Mpc25 1 3( ) subvo-
lumes randomly selected from the IllustrisTNG-300 simulation
to match the size of the simulation boxes used for training. As
described in Section 2.1.2, this simulation has a total volume of

-h Mpc205 1 3( ) and was run with the cosmology Ωm= 0.3089.
It is important to note that, unlike the simulations used for
training, we do not impose periodic boundary conditions on the

subvolumes used in this test in order to account for the
supersample modes.
We present the results of this test in the top panel of

Figure 15. Each plot in the figure depicts the differences
between the truth and predicted Ωm made by the analytic
equations for 100 randomly selected subvolumes. Following
the same procedure used to perform the previous tests on
galaxies, we construct four catalogs for each subvolume using
the stellar mass thresholds discussed in Section 3.1. Each
column is thus labeled with the corresponding stellar mass cut
used. We note that the predictions across all catalogs exhibit a
common offset from the truth, which we account for by
introducing to the final MLP equation an additive constant of
b=− 0.19 found using χ2 minimization. This common bias is
explained by the fact that the equations are being evaluated on
subvolumes that do not contain periodic boundary conditions
but were trained only on simulations that contain periodic
boundary conditions. After correcting for this, the analytic
expressions are able to achieve mean relative errors of ∼11.1%.
To confirm that this offset is indeed the consequence of the

removal of periodic boundary conditions, we evaluate the
analytic expressions on galaxy catalogs constructed from the 27
IllustrisTNG simulations of the CV set as described in
Section 2. These simulations were run with the same
cosmology of Ωm= 0.3. We present the results for these
simulations in the lower panel of Figure 15, which follow the
same format the one above. We find that the predictions for
these simulations possess the same offset found in the
IllustrisTNG-300 subvolumes. After correcting for this with

Figure 15. Top: we quantify the behavior of the analytic expressions, discussed in Section 4.2, in the presence of supersample covariance. We test the analytic
expressions on 100 -h25 Mpc1 3( )) subvolumes randomly selected from the IllustrisTNG-300 simulation without imposing periodic boundary conditions. The
simulation contains a total volume of -h205 Mpc1 3( )) and was run with a cosmology of Ωm = 0.308. The plots depict the difference between the true Ω value and the
predicted for the galaxy catalogs constructed using each of the four stellar mass thresholds as indicated at the top of each column. For all catalogs, the predictions are
corrected for their negative offset from the truth by introducing a bias in the analytic expression for the final MLP, b = − 0.19, which shifts all predictions upwards by
a constant. After adjusting for this common offset, the predictions exhibit mean relative errors of ∼11.1%, comparable to the predictions for galaxy catalogs from other
hydrodynamic simulation codes as discussed in Section 4.2.2. The common offset can be attributed to the fact that the equations were trained only on simulation
volumes of -h25 Mpc1 3( ) with periodic boundary conditions and are now being tested on simulations without such conditions. We confirm this reasoning with the
results shown in the bottom panel. Bottom: this panel follows the same format as the one above. We show that the analytic equations behave similarly when evaluated
on 27 IllustrisTNG simulations from the CV set (see Section 2) after removing periodic boundary conditions. These simulations were run with the same cosmology
Ωm = 0.308. All predictions for galaxy catalogs constructed from these simulations possess a negative offset equal to the one found for the predictions from
IllustrisTNG-300 subvolumes, which was adjusted for by introducing a bias to the final MLP equation: b = − 0.19. After doing so, the predictions exhibit only a mean
relative error of ∼2.2%. These results indicate that the analytic equations are able to account for the effects of supersample covariance if one simply shifts the
predictions by a constant bias, b, due to the presence of periodic boundary conditions in the training data.
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the bias parameter, b=− 0.19, in the analytic expressions, we
achieve mean relative errors of ∼2.2%. This indicates that the
offset in the predictions is attributed to the fact that the
equations were trained using periodic boundary conditions.
This result agrees with the findings of our companion paper, de
Santi et al. (2023), where a similar offset was found that is
common to all predictions made by a GNN model trained on
simulations with periodic boundary conditions and tested on
simulations without it. Hence, we conclude that the analytic
expressions are able to take into account the effects due to
supersample covariance, which is key for applying them to the
observational data from surveys that contain finite volume.
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