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Abstract—Ambient assisted living (AAL) systems aim to im-
prove the safety, comfort, and quality of life for the populations
with specific attention given to prolonging personal independence
during later stages of life. Human activity recognition (HAR)
plays a crucial role in enabling AAL systems to recognise and un-
derstand human actions. Multi-view human activity recognition
(MV-HAR) techniques are particularly useful for AAL systems
as they can use information from multiple sensors to capture
different perspectives of human activities and can help to improve
the robustness and accuracy of activity recognition.

In this work, we propose a lightweight activity recognition
pipeline that utilizes skeleton data from multiple perspectives to
combine the advantages of both approaches and thereby enhance
an assistive robot’s perception of human activity. The pipeline
includes data sampling, input data type, and representation and
classification methods. Our method modifies a classic LeNet
classification model (M-LeNet) and uses a Vision Transformer
(ViT) for the classification task. Experimental evaluation on a
multi-perspective dataset of human activities in the home (RH-
HAR-SK) compares the performance of these two models and
indicates that combining camera views can improve recognition
accuracy. Furthermore, our pipeline provides a more efficient
and scalable solution in the AAL context, where bandwidth and
computing resources are often limited.

Index Terms—classification, Multi-view, Skeleton-based, Activ-
ity Recognition Pipeline, Assistive Robot

I. INTRODUCTION

Multi-view human activity recognition (MV-HAR) is an
extension of traditional HAR in which multiple views or
perspectives of activity are used to improve recognition per-
formance. This is thought to be beneficial due to ability to
provide an undisturbed view of a dynamic activity. In indoor
environments, this can be achieved by using multiple cameras
or sensors to capture different views of the same activity and
then fusing the information provided by different views to
achieve a more robust and accurate recognition.

The process of MV-HAR typically involves capturing video
or sensor data, pre-processing the data to extract features,
and then using machine learning algorithms to classify the
activities. A lightweight pipeline is important for real-time
and resource-constrained applications, such as those on mo-
bile devices like robots, where computational efficiency and
low power consumption are key requirements. Additionally,
lightweight pipelines can enable more widespread deployment
of activity recognition technology, such as in smart homes or

smart cities, where large numbers of cameras or sensors need
to be integrated.

For assistive living systems, using a lightweight MV-HAR
pipeline can provide a more complete and accurate under-
standing of the activities performed by residents, including
older adults or people with disabilities. This can enable
the development of more effective and personalized support
services, such as fall detection and home security, and also
supports principles of prevention and pro-active care.

In this work, we modify a classic LeNet [12] classification
model, termed as M-LeNet for the HAR task. To contrast, we
also use the Vision Transformer [8] (ViT) for the classification
task, and compare the results between both models. Besides,
several parts of the HAR pipeline like input data type, data
sampling, and representation and classification methods have
been modified.

With this work, we therefore present:
Development of a lightweight HAR pipeline: Data
sampling, input data type, and representation and
classification.
Comparison of camera views: model execution in
support of an experiment to find the performance of
individual views and their combination for M-LeNet
and ViT.

II. RELATED WORK

A. Skeleton-based Methods

Based on the spatial and temporal nature of human activity,
different methods have emerged. Sequence models like Re-
current Neural Network (RNN) [13] or Long Short Term
Memory (LSTM) influence the sequentially of input skeleton
data as time series. Convolutional Neural Network (CNN)
based models [15] have great potential in spatial information
compared to RNN models. The other successful methods
are Graph Neural network based (GNN) [25], [16] which
represent spatial and temporal information by the human
skeleton’s natural topological graph structure. Spatio-Temporal
Graph Convolutional Network (ST-GCN) [25] is the first
model in this category that notices harmony in spatial and
temporal data that allows for combining spatial structures with
time-series while still benefitting from a convolutional neural
network.



Besides, transformer models have been engaged in HAR
tasks to gain competitive outcomes. They can be used to
capture long-range dependencies between regions of an image,
allowing the model to better express understand the relation-
ships between objects and their context [8]. Some of them
rely on modified GCN models [19], [26] and others [21] are
purely transformer based.

B. Skeleton-based HAR Leader board analysis

The investigation of skeleton-based action recognition re-
veals that NTU-RGB+D [24], NTU-RGB+D 120 [14],
and Kinetics-skeleton [11] datasets are trending nowadays.
Table I illustrates these datasets’ top-ranked skeletal model
performances. The rank number, model’s accuracy, and year
of publication have been provided to show the diversity of
ML models and their sometimes varying behavior in different
datasets.

The PoseC3D [9] method has the highest accuracy in two
datasets (Kinetics-Skeleton and NTU-RGB+D) and stands at
rank nine in one other. In addition, a different variation of
PoseC3D, RGB + Pose, has ranked five in kinetics skeleton
and one in two others.

Considering the available contribution number, NTU
RGB+D has the highest with 85, followed by NTU RGB+D
120 with 38, and then Kinetics-skeleton with 18. In Table I,
the top ten models in terms of accuracy in almost all datasets
have been considered. Kinetics-skeleton is the base dataset
for sorting the models ranks. Given that not all models are
applied in all three datasets, comparable results are not always
available. the total number of models is 21.

The range of accuracy are not the same in all datasets. The
highest performance in Kinetics-Skeleton dataset belongs to
PoseC3D (w.HRNet 2D skeleton) with 47.7%, following that
by almost 9% difference, the 2s-AGCN+TEM [18] model
accuracy is 38.36%. Ironically, the rest of the models’ accuracy
was distributed in 1%, from 38.4% for DualHead-Net [6],
the 3rd rank, to 37.4% for ST-TR-agcn [19] , the 10th
rank. However, the total accuracy range of ranks in two other
datasets is like a uniform distribution. Low difference, 0.7%
for NTU RGB+D and 3%, for NTU RGB+D 120. However,
based on this evidence, it is unreliable to say that a method
is superior by considering its rank in just one dataset. For
example, EfficientGCN-B4 [22] model stands in the third
stage on the leader board for NTU RGB+D 120 dataset, but
its rank in NTU RGB+D is 22. Likewise, PoseC3D (w. HRNet
2D skeleton), which has outstanding results in the Kinetics-
skeleton dataset, and the highest accuracy in NTU RGB+D,
stands in stage nine in the leader board for NTU RGB+D
120 dataset. However, another variant of PoseC3D (RGB +
Pose) has conspicuous accuracy in NTU RGB+D 120 (95.3%)
dataset and high accuracy in two others.

On the other hand, models like CTR-GCN [7], Skeletal
GNN [28], 2s-AGCN+TEM [18], DualHead-Net, AngNet-
JA + BA + JBA + VJBA [20], MS-G3D [16], CGCN [27],
has reasonable accuracy because they stand in top rank in two
or all datasets, respectively.

TABLE I: Results of Skeleton-based HAR leader board in
three datasets.

Model Kinetics-Skeleton NTU-RGB+D NTU-RGB+D120
PoseC3D(Pose) 1 , 47.7% , 2021 1, 97.1%, 2021 9, 86.9%, 2021
PoseC3D(P+RGB) 5 , 38% , 2021 1, 97.0%, 2021 1, 95.3%, 2021
CTR-GCN NA 2, 96.8%, 2021 2, 89.9%, 2021
EfficientGCN-B4 NA 22, 95.7%, 2021 3, 88.3%, 2021
Skeletal GNN NA 3, 96.7%, 2021 7, 87.5%, 2021
PA-ResGCN-B19 NA 17, 96%, 2021 8, 87.3%, 2020
Ensemble-top5 NA NA 9, 87.22%, 2020
2s-AGCN+TEM 2 , 38.6%, 2020 NA NA
4s Shift-GCN NA 6, 96.5%, 2020 13, 85.9%, 2020
DualHead-Net 3, 38.4%, 2021 4, 96.6%, 2021 4, 88.2%, 2021
AngNet-JA NA 7, 96.4%,2021 5, 88.2%, 2021
DSTA-Net NA 8, 96.4% 2020 11, 86.6%, 2020
Sym-GNN NA 10, 96.4%, 2019 NA
MS-G3D 4, 38%, 2020 NA NA
Dynamic GCN 6, 37.9%, 2020 17, 96%, 2020 NA
MS-AAGCN 7, 37.8%, 2019 13, 96.2%, 2019 NA
CGCN 8, 37.5%, 2020 9, 96.4%, 2020 NA
JB-AAGCN 9, 37.4%, 2019 17, 96%, 2019 NA
ST-TR-agcn 10, 37.4, 2020 15, 96.1%, 2020 17, 82.7%, 2020

Three values in datasets’ row define the Rank , Accuracy, and Year of
publication respectively.

To summarise, although the number of skeleton-based hu-
man activity recognition methods and their variation is in-
creasing, there is still room for improvements for models to
be applied in challenging datasets like Kinetics-Skeleton. The
comparison reveals that dataset details have a direct effect on
the ML model accuracy. For example, kinetic-skeleton data
is collected from youtube videos and includes uncontrolled
environment, and the NTU RGB+D videos were captured in a
controlled environment. Top accuracy for the kinetic is almost
50% fewer than others. Besides, this review illustrates that the
same model may not perform as well in a different dataset.

On the other hand, developing a comprehensive and real-
world activity recognition is demanding, particularly given
the nature of some Deep-Learning (DL) approaches, which
require extensive data and significant processing power e.g.
CPU and GPU nodes. This results in a lack of comprehensive
benchmarks [3] for evaluating the performance of activity
recognition algorithms. One approach to solve this problem
is dataset specialization, in which elements such as theme,
activity, task, and subject adhere to a specific idea. In this
work, we aim to apply HAR in the AAL context using a
skeleton-based and multi-view dataset.

C. Multi-view HAR

Recent research in MV-HAR with skeleton models in indoor
environments has focused on developing methods that can ef-
fectively utilize the temporal and spatial information provided
by skeleton data. Methods such as deep neural networks [5],
convolutional neural networks [24], recurrent neural networks,
and attention-based models [4] have been proposed to improve
the robustness and accuracy of the recognition system.

In MV-HAR systems, a lightweight machine learning ap-
proach is essential for providing real-time and resource-
constrained applications like robots. A low computational cost,
fewer training parameters, and a more efficient algorithm en-
able the system to be more practical for long-term deployment



in assistive living scenarios. However, focusing on the number
of training parameters of the existing skeleton-based models
shows that many methods are not computationally effective.
For example, considering some single-view high-accuracy
models in the Table I, PoseC3D [9] in different variation has
2m to 8m parameters and 2s-AGCN+TEM [18] has 6.94m
parameters. Expanding the comparison to the multi-view, this
could indicate models with significantly more parameters.

III. LIGHTWEIGHT MV-HAR PIPELINE

The process of recognizing human activity via a skeleton-
based multi-view approach typically encompasses the ac-
quisition or loading of video data, the extraction of joint
information, and the generation of skeleton data. Subsequently,
a machine learning algorithm is employed to classify the
recorded actions. The utilization of a lightweight pipeline in
this context allows for the integration of cameras in robotic
and AAL systems, enabling their effective operation in a
variety of scenarios. As depicted in Figure 1, our proposed
methodology for Multi-View Human Activity Recognition
(MV-HAR) emphasizes the central concept of leveraging mul-
tiple camera viewpoints to enhance the recognition of activities
via a lightweight pipeline. The pipeline started with data
collection from different views, followed by pose extraction
and preprocessing. Then, the prepared tensor file feeds the
training model.

A. Input Data

In a parallel work, we have developed the RH-HAR-
SK [1] dataset on the top of a RGB dataset [2]. This is
a non-generative multi-view skeleton-based human activity
recognition dataset that includes fourteen daily actions [walk-
ing, bending, sitting down, standing up, cleaning, reaching,
drinking, opening can, closing can, carrying object, lifting
object, putting down object, stairs climbing up, stairs climbing
down] captured in an indoor typical British house. A robot-
view camera, two wall-mounted cameras (Front-view and
Back-view), and an omnidirectional view (Omni-view) camera
capture the activities synchronously. However, analysis of that
dataset reveals that the Omni-view data has low accuracy in the
skeleton-based method, and it has consequently been omitted,
then our method has been applied on three other views.

B. Pose extraction

The utilization of RGB cameras due to their simplicity,
affordability, and accessibility in conjunction with a high-
performance pose extraction method applied to RGB data,
results in improved human body skeleton extraction. In RH-
HAR-SK dataset, a pretrained HRNet model as described in
[23] is utilized to extract poses from videos. This model has
been trained on the COCO keypoint detection dataset [10]
and the MPII Human Pose dataset [17].

C. Preprocessing

Following the extraction of the skeleton data, the data was
reshaped into a 3× 34× 34 tensor. In figure 1 the process of

Fig. 1: The MV-HAR pipeline, as described in detail in section
III begins with capturing video from multiple views (III-A) and
the extraction of skeletons from multiple viewpoints (III-B,
followed by the conversion of each viewpoint into a spatial-
temporal matrix (III-C). These matrices are subsequently com-
bined into a single tensor file, which is finally classified by
the modified LeNet model (III-D).

finding a single person from three cameras to make the tensor
file is shown. The first digit (3) refers to three cameras, and
the 34 × 34 dimension refers to 34 frames of skeleton data,
and two 17 columns. The first 17 columns belong to the X
value and the second half to the Y value. Random sampling
has been used to choose 34 frames for each video stream. The
three-channel matrix is illustrated as an RGB image in Figure
1, with each camera view being mapped to the red, green, and
blue channels.

Figure 2 illustrates three samples of two types input data,
the RGB in 2b and grayscale in 2a. The former refers to three
channels, each indicating a camera view and the latter a single-
view camera. Each 2D image depicts skeletons data frames in
an action. Subsequent to the extraction of skeletons from the
video stream and preparing the 2D image, two general machine



Layer Type I/O Chanel Kernel Size Stride Out Shape
Conv2D 3/10 (3× 3) (1× 1) (34× 34)
ReLU - - - -
MaxPool2D - (2× 2) (2× 2) (34× 34)
Dropout - - - -
Conv2D 10/20 (3× 3) (1× 1) (17× 17)
ReLU - - - -
MaxPool2D - (2× 2) (2× 2) (34× 34)
Dropout - - - -
FC Linear In: 980 Out: 500
ReLU - - - -
FC Linear In: 500 Out: 250
ReLU - - - -
FC Linear In: 250 Out: 14
LogSoftmax - - - -

TABLE II: Modified LeNet Network structure

learning models were applied as outlined below.

D. The Modified LeNet model

The base model that has been used in this experiment for
CNN-based machine learning model is LeNet [12]. This is
a simple convolution model for image representation that we
have modified as follows to use as the skeleton-based action
classification. Table II illustrates the structure of the Modified
CNN model. Two convolution layers are applied in this model,
which we test by two different configurations, 10 and 20
channels for the low parameter and 20 and 40 channels for
the high parameter configuration. The difference between the
original LeNet and this modified version is the number of
convolution layers (reduced from 3 to 2) and the kernel size
(reduced from 5 to 3). Two dropout layers have also been
added to avoid over-fitting. One more fully connected layer
was also added to increase the learning parameters.

E. Vision Transformers (ViT) Architecture

The other classification model used is the ViT [8]. In the
ViT architecture each input picture is divided into patches
of sub-images. Then by applying the positional encoding,
the model is trained. Each patch is considered a word and
projected to the features space. In figure 3 a random input
data with its patches and the ViT classification architecture is
shown. The process of preparing the input data for the ViT
and M-LeNet is the same.

F. Decentralised structure

Implementing multiple cameras with separate processors in
human-robot interactions offers numerous advantages. Extract-
ing and transmitting only the crucial skeleton information re-
duces the robot’s computational load, making it more efficient
and responsive in providing assistance. Figure 4 illustrates
the proposed concept of decentralized structure of the multi-
view camera with robotic agent. Two individual cameras refers
the front-view and back-view in our experiment. The mobile
robot with a camera is following the human to recognise it’s
activities.

The use of multiple cameras can enhances the accuracy of
the interaction, as the robot can take inputs from different an-
gles into account. This leads to a more human-like interaction,

Model Accuracy Params Views Poses Classes
M-Lenet 70% 0.6M ALL ALL 14
M-Lenet 77% 1M ALL ALL 14
ViT 71% 2.2M ALL ALL 14
M-Lenet 71% 0.6M R+B ALL 14
M-Lenet 70% 0.6M R+F ALL 14
M-Lenet 70% 0.6M B+F ALL 14
ViT 75% 2.1M R+F ALL 14
ViT 69% 2.1M B+F ALL 14
ViT 68% 2.1M R+B ALL 14
M-Lenet 70% 0.6M Robot ALL 14
M-Lenet 57% 0.6M Back ALL 14
M-Lenet 66% 0.6M Front ALL 14
ViT 72% 2.1M Robot ALL 14
ViT 61% 2.1M Back ALL 14
ViT 78% 2.1M Front ALL 14
M-Lenet 69% 0.32M ALL 0-15 14
M-Lenet 75% 1.2M ALL 0-15 14
ViT 74% 2.1M ALL 0-15 14
M-Lenet 69% 0.32M Robot 0-15 14
M-Lenet 58% 0.32M Back 0-15 14
M-Lenet 69% 0.32M Front 0-15 14
ViT 73% 2.1M Robot 0-15 14
ViT 61% 2.1M Back 0-15 14
ViT 77% 2.1M Front 0-15 14

TABLE III: Results of ViT and M-LeNet classification meth-
ods on RH-HAR Skeleton dataset in different conditions.

which is crucial in assistive settings where the goal is to create
a seamless and intuitive experience, making the assistive robot
even more efficient in providing aid. Overall, this approach
significantly enhances the capabilities of assistive robots and
provides a better experience for those in need of assistance.

IV. RESULTS

This section compares the results of the M-LeNet and ViT
classification models in different conditions. Table III shows
the comparison results of parameters like accuracy, number
of total trainable parameters, different camera views, number
of skeleton positions, and classes.

These two models are applied to the RH-HAR-SK dataset,
including a synchronized three-view video stream. Table III
show the results of the models trained on full views, for all
14 classes, and all poses in the upper section and the lower
section show the same comparison with excluded ankle poses
(marked with 0-15 on poses column). The results show that the
overall accuracy is between 69 and 77 percent for all views
and 57 to 78 percent for single and double views. Among
them, the comparison of models with all poses and removed
ankles shows that for the ViT model, the accuracy moderately
increased by 3% in all views and remains the same in a single
view. In contrast, the M-LeNet model decreased by about
2% in both high and low parameters models. The difference
between these M-LeNet classifiers is the number of parameters
in linear layers, which one is double compared to the other.
The high parameter M-LeNet has higher accuracy.

In the last part of the lower and upper section, the details of
single view training models are shown. Interestingly, the ViT
model results follow the missed poses statistics in the RH-
HAR-SK work [1], in which the front and robot views have
fewer missed poses, and the highest accuracy among all views,



(a) Three samples of Single view of bending action. (b) Three samples of combined three views as a RGB image of bending

action

Fig. 2: Synchronized skeleton output from different views of bending action.

Fig. 3: The ViT classification Architecture Applied on one of
the RH-HAR-SK dataset’s sample [8]

Fig. 4: The decentralised structure of MV-HAR with Low
computational cost in the robot

and the back view is less accurate with more missed poses.
Moreover, the front-view accuracy is 78% in ViT model, and
robot-view accuracy is 70% in M-LeNet.

The double-view combination results are shown in the
second part of the upper section. Combinations of Front (F),
Back (B) and Robot (R) views are considerd for assessing their
impact on accuracy. The average accuracy of the double-view
in the ViT models is higher than the lowest accuracy in the
relevant single-view and less than the higher one, which means
that the accuracy of the view with a lower value increased. For
instance, the individual robot-view accuracy increased from

72% to 75% in combination with front-view and back-view
increased from 61% to 69% when fused with front-view. For
M-LeNet models, all single-view accuracy increased in the
combination of double-views.

The comparison of the upper section and lower one proves
that removing low confidence joints like the ankle joints does
not affect negatively even in ViT all-views model accuracy
increased by 3%. For M-LeNet and all single views, the
accuracy fluctuated about 1%.

An examination of the number of parameters in Table III
illustrates that the M-LeNet model exhibits a significantly
lower number of parameters in comparison to the ViT model.
Furthermore, the results of removing poses with lower ac-
curacy further contribute to the reduction in the model’s
parameters.

V. CONCLUSION

In this paper, we proposed a lightweight multi-view
skeleton-based human activity recognition (HAR) method for
enhancing ambient assisted living scenarios. The suggested
pipeline combines the advantages of both multi-view and
skeleton-based activity recognition by fusing information from
multiple RGB cameras to enhance the activity perception
of the AAL system. A modified LeNet classification model
and Vision Transformer were utilized for the classification
task. A performance assessment of the two models and their
variations on a publicly available dataset found that combining
camera views can improve recognition accuracy. Furthermore,
the proposed pipeline presents a more efficient and scalable
solution for ambient assisted living systems, thus providing a
potential for improving the safety, comfort and quality of life
for AAL users. Our findings indicate that multiple recognition
models, for example, M-LeNet and ViT could potentially be
selected automatically based on information found in the
scene, utilising the richness of captured data and information-
theoretic modelling, which we plan to develop this further in
future work.
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