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Abstract - The LRAD-MMSE-SIC-SE-SD (Lattice Reduction 
Aided Detection - Minimum Mean Squared Error-Successive 
Interference Cancellation - Schnorr Euchner - Sphere Decoder) 
detection scheme that introduces a trade-off between performance 
and computational complexity is proposed for Multiple-Input 
Multiple-Output (MIMO) in this paper. The Lenstra-Lenstra-
Lovász (LLL) algorithm is employed to orthogonalise the channel 
matrix by transforming the signal space of the received signal into 
an equivalent reduced signal space. A novel Lattice Reduction 
aided SE-SD probing for the Closest Lattice Point in the 
transformed reduced signal space is hereby proposed. 
Correspondingly, the computational complexity of the proposed 
LRAD-MMSE-SIC-SE-SD detection scheme is independent of the 
constellation size while it is polynomial with reference to the 
number of antennas, and signal-to-noise-ratio (SNR). 
Performance results of the detection scheme indicate that SD 
complexity is significantly reduced at only marginal performance 
penalty. 
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I. INTRODUCTION 

A substantial number of researches have established that the 
Multiple-Input Multiple–Output (MIMO) antenna technology 
will continue to be of enormous significance to wireless 
communication systems, playing a very important role in 
improving the data throughput in modern wireless 
communication systems. [1-4]. It has been demonstrated in [5] 
that MIMO techniques, which have been widely studied due to 
their advantages over single antenna systems, can functionally 
improve link reliability without sacrificing bandwidth 
efficiency and transmit power. However, the major drawback 
of MIMO is the increased complexity of the detector scheme 
due to non-orthogonality of MIMO channels [6-7].  

Linear detectors are popularly known for their 
significantly reduced complexity. However, the reduced 
complexity is achieved at strong performance penalty [8-13]. 
Non-linear detectors including sequential detectors yield better 
performance compared to linear detection schemes at the 
expense of one or more, or a combination of the following 
problems: error propagation, performance degradation, 
increased computational complexity or increased processing 
delay [13]. To overcome these problems, a trade-off between 
performance, and one or more of these issues has to be made. 

Although the Maximum Likelihood (ML) detector 

yields an optimal solution to the MIMO detection problem, it 
cannot be implemented in practice as its computational 
complexity increases exponentially with the number of transmit 
and receive antennas, and with the constellation size. The 
Sphere Decoder (SD), a near–optimal method, can be used to 
solve this detection problem as it searches for lattice points 
confined in a hyper-sphere around the received point. SD based 
algorithms have been shown to be more efficient in estimating 
an ML solution [14-20]. However, superior performance of the 
SD is achieved at the detriment of its variable Non-
deterministic Polynomial time (NP) hard complexity [17], 
when the initial radius is too large. On the other hand, a small 
initial radius leads to decoding failure.  

Interestingly, the Depth-First-Search (DFS) SD-based 
algorithm is proposed as an optimal solution in [21, 22]. 
However, the problem associated with the proposed Depth-
First-Search Schnorr Euchner - Sphere Decoder (DFS SE-SD) 
is linked with the equation: 

 𝑹𝑺𝑫𝑵𝑳 𝟏
′ 𝐲𝑵𝑳 𝟏|𝑵𝑳 

𝒓𝑵𝑳 𝟏,𝑵𝑳 𝟏
𝒙𝑵𝑳 𝟏

 𝑹𝑺𝑫𝑵𝑳 𝟏
′ 𝐲𝑵𝑳 𝟏|𝑵𝑳 

𝒓𝑵𝑳 𝟏,𝑵𝑳 𝟏
.                    1   

where 𝐲𝑵𝑳 𝟏|𝑵𝑳 is the received signal conditioned to the already 
estimated symbol 𝒙𝑵𝑳 , 𝑹𝑺𝑫′is the new radius conditioned to 
initial sphere radius 𝑹𝑺𝑫 . 𝑁  is the number of rows in 𝑹  which 
is a 𝑁  𝑁  upper triangular matrix, where represents the 
number of transmit antenna. ⌈. ⌉ and ⌊.⌋  denote the rounding up 
and rounding  down (quantisation) operations respectively. 
If 𝑟  ,  ≪ 1, the initial radius conditioned on the initial 
radius increases drastically, thus, the number of the hypotheses 
𝑥  rises exponentially with the increase in search radius 
leading to NP-hard complexity of the SD. In [14-16], the K-Best 
algorithm, also known as the Breadth-First Search (BFS), was 
also proposed to provide a sub-optimal solution to the MIMO 
detection problem. Here, K denotes the number of stored 
hypotheses 𝑥 , also referred to as nodes or lattice points at 
each layer during the tree search detection process. Although 
this technique yields a near-optimal solution to the MIMO 
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detection problem; the key issue is the reduction of the size K 
in order to achieve reasonably lower complexity. 

The main contribution of this paper is to design an SD 
detection scheme that introduces a trade-off between 
performance, error propagation and complexity. Firstly, a novel 
Lattice Reduction Aided detection - Minimum Mean Squared 
Error-Successive Interference Cancellation (LRAD-MMSE-
SIC) detection scheme is proposed. Secondly, the proposed 
scheme is then extended to the SD to reduce the search domain 
of the DFS based SD algorithm. The resulting reduced structure 
will be referred to as the LRAD-MMSE-SIC-SE-SD. 
Simulation and performance results prove that its 
computational complexity is independent of the constellation 
size while it is polynomial with respect to the number of 
antennas and the signal-to-noise ratio (SNR).  

The rest of the paper is organised as follows: Section II 
describes the system model. Section III depicts the proposed 
novel SD-based MIMO detection algorithm. Section IV 
provides simulation results while Section V and VI analyses the 
computational complexity and, concludes the effects of the 
results, respectively. 

II.    SYSTEM MODEL 

The detection scheme for a symmetric MIMO system with 𝑁  
transmit and 𝑁  receive antennas (𝑁 𝑁  ) is designed in this 
section. Fig.1 depicts the envisaged/designed MIMO system 
transmission model. At the transmitter, data is de-multiplexed 
into 𝑁  data sub-streams also referred to as layers. These sub-
streams are encoded by the Low Density Parity Check (LDPC) 
encoder and then interleaved bitwise by the inter-leaver before 
being mapped by the modulator M onto a 𝑁 1 - complex 
valued transmit signal vector 𝐱  of M-QAM symbols. The 
symbols are transmitted by the 𝑁   transmit antennas 
simultaneously in parallel over the flat fading channel, where 
M is the constellations size. For this design model, 4-QAM and 
64-QAM modulation schemes is used. 
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 Fig. 1.   MIMO system transmission model. 

 

At the receiver, for simplicity, the received 𝑁 1 will 
be expressed by the following linear model 

                                  𝐲 𝐇𝐱 𝐧                                       (2) 

where 𝐧 denotes the AWGN noise of variance 𝜎  observed at 
the receiver. The average transmit power of each antenna will 
be normalized to 1, i.e. 𝐸 𝐱𝐱 𝐈  and 𝐸 𝐧𝐧 𝜎 𝐈 . 𝐇 
is the 𝑁 𝑁 channel matrix whose elements are uncorrelated 
complex Gaussian fading gains with unit variance. In this 
design, a flat fading environment is assumed where the channel 
matrix H is constant over a time frame T and changes 
independently from frame to frame. It is also assumed that the 

channel matrix 𝐇  is perfectly known at the receiver. The 
 𝑁 𝑁  complex valued system model in (1) can be 
decomposed into its 𝑚 𝑛 real-valued equivalent model which 
can be written as: 
 

     ℜ 𝐲
ℑ 𝐲          ℜ 𝐇

ℑ 𝐇  ℑ 𝐇
ℜ 𝐇

ℜ 𝐱
ℑ 𝐱       ℜ 𝐧

ℑ 𝐧                      (3) 

where 𝑚 2𝑁  and 𝑛 2𝑁   are the dimensions of the real 

valued channel matrix, ℜ 𝐲
ℑ 𝐲  and ℜ 𝐧

ℑ 𝐧  are 2𝑁 1 vectors, 
ℜ 𝐇
ℑ 𝐇  ℑ 𝐇

ℜ 𝐇 is a 2𝑁 2𝑁  channel matrix and  ℜ 𝐱
ℑ 𝐱  is a 

2𝑁 1 vector. The corresponding dimensions of the received, 
noise and transmit vectors are given by 𝐲 ∈ ℝ , 𝐧 ∈ ℝ  and 
𝐱 ∈ 𝜒  respectively. 𝜒  denotes the finite set of real-valued 
transmit signals. The finite set 𝜒, generated using an M-QAM 
modulation scheme, is given by: 

                     𝜒 𝑥, 𝑥,⋯ √𝐌 𝑥                      (4) 

where √𝐌 denotes the modulation index of the corresponding 
real-valued QAM modulator while the power normalization 

factor 𝑥
𝐌  

 is used for normalizing the power of the 

complex valued transmit signals. In this design, it is chosen in 
such a manner that the transmit power is normalized to 1. Each 
noiseless received signal is viewed as a point of infinite lattice 
spanned by H in the proposed design.  

III.  MIMO DETECTION SCHEMES 

To recover the received signal, MIMO detection 
schemes are used to search for the received point located in the 
lattice generated by 𝐇. The optimum ML detector performs an 
exhaustive search over the uncut set of transmit signals, 𝐱 ∈
𝜒 , and decides in favor of the transmit signal  𝐱 , that 
minimizes the Euclidian distance to the receive vector 𝐲 and 
can be expressed as: 

               𝐱 arg min
𝐱∈

 ‖𝒚 𝐇𝐱‖        (5) 

However, the brute force ML detection is not feasible for larger 
number of transmit antennas or higher order modulation 
schemes as the computational effort is of order 𝐌 . A feasible 
alternative is the SD, which restricts the search space to a sphere 
of radius 𝑅 . Nevertheless, the computational complexity is still 
high in comparison to simple, but suboptimal Successive 
Interference Cancellation (SIC) [21].  

Notably, in this paper, a less complex SD detection 
scheme based on the hybrid LRAD-MMSE-SIC is proposed. It 
is well known that the MMSE yields an ML solution in 
perfectly orthogonal channels. Unfortunately, practical MIMO 
channels are non-orthogonal. In order to improve the 
performance of MMSE in practical non-orthogonal MIMO 
channels, the LRAD is proposed to transform the channel 
matrix 𝐇 into a near-orthogonal channel matrix 𝐇.  

However, 𝐇 is still not perfectly orthogonal. It has been 
shown in [13], [17] that the SIC detector is capable of achieving 
further improved performance compared to MMSE detector in 
non-orthogonal or near-orthogonal MIMO channels. The SIC 
detector achieves performance improvements by successively 
cancelling out the interference due to adjacent signal layers 
starting with the influence of the largest signal first, until the 
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signal with the smallest power is detected. To yield improved 
performance, the ordered SIC detection is thus proposed in this 
design. First, an overview of the LRAD detection scheme is 
provided in the next sub-section, and then a detailed description 
of the proposed SD is explained. 

A. Lattice Reduction Aided Detection Schemes 

In this design, the columns 𝒉  of the real-valued channel 
matrix 𝐇  where 1 𝑙 2𝑁  are regarded as the basis of a 
lattice spanned by the channel matrix 𝐇 is adopted. It is also 
assumed that the possible transmit vectors are given the 𝑁 -
dimensional infinite integer space ℤ . First, the estimate of the 
transmitted symbols are mapped to the appropriate QAM 
decision regions by performing scaling and shifting operation 
of the received signal in accordance to the LRAD principles as 
follows: 𝐱

𝐱
𝟏 /2 , where 𝑑  is the minimum distance 

between QAM constellation points and 𝟏  denotes an all-ones 
(𝑁 1)-dimensional vector. Next, the MIMO channel matrix 
𝐇  is transformed into an effective near-orthogonal channel 
matrix 𝐇 which yields an effective equivalent received signal 
model. This is achieved by using Lenstra-Lenstra-Lovasz 
(LLL) algorithm that decomposes 𝐇 into 𝐇 𝐇𝐓  where 𝐓 is 
an 2𝑁 2𝑁  unimodular matrix [18], i.e., 𝐓  contains only 
integer entries and the determinant is det (𝐓) = 1 and 𝐓  is the 
inverse of the matrix 𝐓. Mathematically, it is accepted that the 
inverse of a unimodular matrix always exist and contains only 
integer values, i.e.,𝐓 ∈ ℤ  𝑚 2𝑁 . Thus, the effective 
transformed channel matrix 𝐇 which generates the same lattice 
as 𝐇 is given by:   

                                       𝐇 𝐇𝐓            (6) 

Finally, to further reduce the complexity of the proposed 
system, the channel matrix can be decomposed using QR 
decomposition [19], as 𝐇 𝐐𝐑 , where the 𝑁 𝑁  matrix 
𝐐 𝒒 ,𝒒 ,⋯ ,𝒒 ,  consists of orthogonal columns of unit 
length (𝐐 𝐑 𝐈 ). 𝐑  is the upper triangular matrix which 
consists of elements 𝑟 ,  where 1 𝑖, 𝑗 𝑁 .  Thus, each 
column vector 𝐡  of the channel matrix H is given by 𝐡
∑ 𝑟 , 𝒒  where 𝑘 1 𝑘 𝑁  is a counter. Here, the vector 
𝒒  denotes the direction of 𝐡  perpendicular to the space 
spanned by 𝒒 ,𝒒 ,⋯ ,𝒒  and 𝑟 ,  describes the corresponding 
length of  𝐡 . Additionally,  𝑟 , 𝒒 𝐡  is the length of the 
projection of 𝐡  onto  𝒒 .The premise behind the LRAD 
technique is to transform a given basis H into a much better 
conditioned new basis  𝐇 with vectors of shortest length or, 
equivalently, into a basis consisting of near-orthogonal basis 
vectors. Likewise, the transformed channel matrix  𝐇  can be 
decomposed to 𝐇 𝐐𝐑  in order to perform ordered SIC 
detection, where QR is the transformed QR decomposition. The 
design description for the proposed MIMO detection scheme is 
provided in the next section. 

B. LRAD-MMSE-SIC-SE-SD System Description 

A detailed description of the proposed LRAD-MMSE-

SIC-SE-SD MIMO detector is provided in this section. Fig. 2 
shows the block diagram of the proposed detection scheme. 
This consists of five main blocks namely LLL Algorithm, 
LRAD Pre-processing, MMSE-SIC, the SE-SD and the 
Decision circuit. Each of the blocks addresses one or more of 
the issues mentioned in Section I. The LRAD linear detection  

First, the LLL and LRAD Pre-processing blocks addresses 
the problems associated with the ill-conditioned and non-
orthogonality of the channel matrix 𝐇. The LLL algorithm in 
the LRAD pre-processor generates 𝐓 and 𝐓  which are used 
to transform the channel matrix 𝐇 and the transmit vector 𝐱 into 
the 𝐳 domain as: 

                          𝐇 𝐇𝐓  ,  𝐳 𝐓 𝐱                     (7) 

The transformed receive signal vector can then be rewritten as: 

                  𝐲 𝐇𝐱 𝐧 𝐇𝐓𝐓 𝐱 𝐧 𝐇𝒛 𝐧                (8) 

Note that 𝐇𝐱 and 𝐇𝒛 describe the same point in a lattice. 
The only difference is that the LLL-reduced channel matrix 𝐇 
is much better conditioned and near-orthogonal than the 
original channel matrix 𝐇. The condition of 𝐇 determines the 
noise amplification, hence the solution based on 𝐇 outperforms 
that based on  𝐇 . This solution does not only lead to 
performance gain of the overall system, but also reduces the 
computational complexity of the overall proposed LRAD-
MMSE-SIC-SE-SD detector. 

Since 𝐱  belongs to the set  ℤ , 𝐳  also belong to  ℤ , 
where 𝑝 𝑁 . Therefore, 𝐱 and 𝒛 stem from the same set. The 
only difference here is that for M-QAM the lattice is finite and 
the domain of 𝐳 differs from 𝛘 . In other words, 𝐳 now resides 
in a much reduced lattice. Further reduction in complexity is 
achieved by sorted 𝐐 𝐑  decomposition of 𝐇. This leads to the 
generation of the estimate 𝒚 of the received signal 𝒚 with an 
ordered upper triangular matrix  𝐑. The modified signal 𝒚 is 
then further processed by the SE-SD which utilises 𝑅  
computed by the MMSE-SIC processor. In the SIC block, 
signal detection starts with the most reliable signal, i.e., the 
signal with the largest amplitude.  

Secondly, with the transformed received signal, the 
MMSE-SIC Pre-processing block generates a reliable initial 
radius 𝑅  to be utilised in the SE-SD. The MMSE filter 
𝐆 𝐇 𝐇 σ 𝐓𝐓 𝐇  is applied to improve the 
accuracy of the estimate 𝐳 , of 𝒛. Applying the MMSE-
filter 𝐆  to the lattice-reduced system yields  𝐳  as 
follows: 

𝐳 𝐆 𝐲 𝐇 𝐇 σ 𝐓𝐓 𝐇  𝐲       (9) 

The output 𝐳  of the MMSE-SIC detector is 
equivalent to multiplying the original MMSE-SIC estimate 
𝐱  by𝐓 , the inverse of the unimodular matrix 𝐓, that 
is: 

                    𝐳 𝐓 𝐱                    (10) 
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Fig.  2.   Proposed LRAD-MMSE-SIC-SE-SD block diagram. 

 
 

The estimate 𝐳  can be remapped to a lattice point 
𝐇𝐳   to yield: 

        𝐲 𝐇𝐳                         (11) 

The initial SE-SD radius can thus be modelled by: 

                      𝑅 𝑅 ‖𝐲 𝐲‖       (12) 

The initial radius 𝑅  is fed into the input of the SE-SD. This is 
then processed using the SE-SD algorithm to yield 𝐳. The SE-
SD estimate can be recovered by multiplying 𝐳  by the 
unimodular matrix 𝐓 as follows: 

                            𝐱 𝐓𝐳                    (13) 

This is fed into the decision circuit which finally generates the 
estimate  𝐱  of the received signal  𝐱 . To prevent error 
propagation in the MMSE-SIC pre-processing unit, the LDPC 
error corrected estimate  𝐱  is feedback via the LRAD post-
processing unit where it is transformed into the z-domain as 
follows: 

             𝐳𝑴𝑳 𝐓 𝟏𝐱      (14) 

The effect of this feedback does not only ensure that error 
propagation is effectively arrested, but it also ensures that the 
overall performance of the system improves significantly. 

IV.    SIMULATION, PERFORMANCE RESULTS AND DISCUSSION 

The simulations and the discussions of performance 
results for the proposed LRAD-MMSE-SIC-SE-SD detection 
strategy are presented in this section.  

A. System Model for Simulation. 

In this Section, two MIMO configurations were 
considered: 4x4 MIMO and 4x6 MIMO setups. Signals were 

transmitted in blocks of data over uncorrelated flat fading 
MIMO channels. A random information source was used to 
generate a stream of independent and identically distributed 
(i.i.d) information bits which were subsequently encoded using 
Low Density Parity Check codes of a code rate RC = 𝐾 𝑁 = 1/2, 
where K is the number of information bits and N ( =2K) is the 
sum of the information bits and parity check (redundant) bits. 
Note that the redundant bits constitute twice the information 
bits. The bit streams were then interleaved and divided into Nℂ 
blocks of Nt. The bit streams were further mapped into L bits, 
where L denotes the number of bits per modulated symbol, 
resulting in M = 2L different constellation points. 4-QAM and 
64-QAM modulation schemes were applied on each sub stream 
as representatives for the respective low and high spectral 
efficiency regimes. The constellation points were finally 
mapped onto a vector transmit symbol x ∈ℂ [N

t
 x 1]   whose 

components xt were taken from some complex signal ℂ. It was 
further assumed that the transmitter and receiver were perfectly 
synchronized in time and frequency. 

At the receiver, the proposed SD was used to detect the 
most likely vector x that was transmitted based on prior 
knowledge of 𝒚, H and the statistics of noise n where 𝒚 ∈ ℂ Nr 

x 1  is the received signal, H ∈ ℂ Nr X Nt  is the channel matrix, 
and n ∈ ℂ Nr x 1  is the receiver noise. The entries of  𝒚, H and n 
are zero-mean, circularly symmetric complex Gaussian random 
variables, and the entries h{i, j} of H are normalized to have 
unit variance. The average energy per transmit symbol is 
denoted by Es. The corresponding average energy per bit is 
denoted by Eb while the double-sided power spectral density of 
the complex noise (No/2 per real dimension) is denoted by No. 
The signal-to-noise ratio is thus given by SNR = Es / No. 
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B. Performance Results and Discussion. 

The Bit Error Rate (BER) performance results are 
presented for different modulation orders and different number 
of transmit and receive antenna configurations. The 
performance results for the proposed LRAD-MMSE- SIC-SE-
SD are evaluated by comparing them with the ML,  

 
(a) ½ rate LDPC Coded 4x4 MIMO System Setup. 

 
(b) Uncoded 4x4 MIMO System Setup. 

Fig. 3.   Performance results for (a) coded and, (b) uncoded 4x4 MIMO 
System Setup. 

LRAD-MMSE-SIC, and the MMSE-SIC detection 
schemes. The assumption made is that MIMO signals are 
transmitted through uncorrelated Rayleigh flat fading channels 
with the transmit power normalized to unit. Fig. 3 shows the 
BER results for ½ rate LDPC coded and uncoded 4x4 MIMO 
setups for the proposed LRAD-MMSE-SIC-SE-SD. 4-QAM 
and 64-QAM modulation schemes were applied on each sub 
stream as representatives for the respective low and high 
spectral efficiency regimes. 

It can be clearly seen that the proposed LRAD-MMSE-
SIC-SE-SD achieves substantial performance improvements in 
comparison with the LRAD-MMSE-SIC and MMSE-SIC 
detection schemes. The results in Fig. 3(a) show that the 
proposed LRAD-MMSE-SIC-SE-SD scheme achieves 
performance improvement of about 2dB and 3dB at a BER of 
10  for the cases of both coded and uncoded 4-QAM 
transmissions compared to the performance of the LRAD-
MMSE-SIC and MMSE-SIC detection schemes respectively. 

The performance improvement arises from the combination of 
the reduced search space introduced by the LRAD schemes and 
the optimal ordering due to the MMSE-SIC.  However, there is 
a marginal overall performance loss of the proposed LRAD-
MMSE-SIC-SE-SD compared to the ML although the 
performance is 1dB within that of the ML throughout the SNR 
regimes.  

 
(a) Uncoded 4x4 MIMO System Setup. 

 

 
(b) Uncoded 4x6 MIMO System Setup. 

Fig. 4.   Performance results for proposed LRAD-MMSE-SIC-SE-SD 

The performance loss comes with a benefit of 
significantly reduced computational complexity. A similar 
trend in BER performance is also observed for the cases of 
both coded and uncoded 64-QAM although there is a 
modulation efficiency improvement penalty of about 6dB 
decrease in performance at a BER of 10  compared to the case 
of the 4-QAM. The proposed scheme is about 2dB and 8dB 
better than the LRAD-MMSE-SIC and MMSE-SIC schemes 
respectively at a BER of 10   for the uncoded case shown in 
Fig. 3(b). 

The benefit of equipping both the transmitter and the 
receiver is demonstrated in Fig. 4. This is demonstrated by 
comparing the BER results for uncoded 4x4 MIMO setup and 
4x6 MIMO setup where 4-QAM and 64-QAM modulation 
schemes are applied on each sub stream. Again, the proposed 
LRAD-MMSE-SIC-SE-SD achieves substantial performance 
improvements in comparison to the LRAD-MMSE-SIC and 
MMSE-SIC detection schemes. 
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As can be clearly seen in Fig. 4, the proposed LRAD-
MMSE-SIC-SE-SD benefits substantially from reduced error 
probability on the first layer by equipping the receiver with 
more antennas (6 antennas in this case compared to 4 antennas 
in Fig. 3). It can also be clearly seen that low order modulation 
schemes perform better than higher order modulation schemes 
at the cost of bandwidth inefficiency. These results demonstrate 
that equipping the transmitter and the receiver with more 
antennas in conjunction with higher order modulation schemes 
can be attractive where high data rates are the main target of the 
wireless communication system.  

V.      COMPUTATIONAL COMPLEXITY ANALYSIS 

The goal of the MIMO detector is to solve the Closest 
Lattice Point Search (CLPS) problem as efficiently as possible 
with minimum computational complexity. However, the ML 
performs an exhaustive search which is impractical for real-
time systems. Fortunately, the emergence of the SD has restored 
the lost hope for high data rate MIMO systems. This section 
investigates the complexity aspects of the proposed LRAD-
MMSE-SIC-SE-SD for MIMO systems. The complexity 
analysis focuses on uncoded MIMO transmission, i.e., hard 
output detection.  

So far, most of the available results on the complexity 
for sphere detection have focused on the average behavior [20-
23], and complexity exponents at moderately high SNR [21]. It 
is stated in [24], that the SD has a considerably higher worst 
case, but lower average complexity than other tree search based 
detection algorithms.  

In this paper, the average complexity of the proposed 
LRAD-MMSE-SIC-SE-SD is investigated by estimating the 
number of arithmetic operations conducted to yield an estimate 
of the ML solution. This is then compared to the enumeration 
techniques in [25].  For a brute force search (ML detection), the 
maximum number of arithmetic operations 𝐴  required to 
compute an exhaustive ML solution is 𝐴 ∑ 𝜒 . To make 
a fair comparison, the number of each addition, multiplication, 
and extraction of a square-root will be counted as one operation 
as proposed in [25]. The upper limit for the original Fincke-
Pohst (FP) is used as a figure of merit or yardstick against which 
the complexity of the proposed LRAD-MMSE-SIC-SE-SD is 
measured and is given by [24]: 

 2𝑚 3𝑚 5𝑚  𝑚 12𝑚 7   

               2 √𝑑 𝑡 1
⌊ ⌋

1                   (15)                 

where  𝑚 𝑁 , 𝑑  is the sphere radius and 𝑡
max 𝑟 , ,⋯ , 𝑟 ,  while that in [26] require cubic O 𝑚  
computations. 

For a 4x4 MIMO with a 64-QAM constellation, the 
upper bound number of arithmetic operations used in 
simulations is 𝐴 10000. Fig. 5 shows the average value of 
the arithmetic operations 𝐴  for the proposed LRAD-MMSE-
SIC-SE-SD plotted against SNR. According to the results 
obtained to date in the literature, the expected complexity of FP-
SD is only polynomial in the problem size for a wide range of 

SNRs [21, 26-28]. However, it was proven in [28, 29] that there 
exists a lower bound exponent on the complexity of the FP-SD.   

While this implies that the complexity of the FP-SD will 
always grow exponentially with the problem size, the rate of 
exponential growth depends strongly on the SNR as is depicted 
in Fig. 5. Here, the number of required arithmetic computations 
decreases substantially as the SNR is increased and the 
detection complexity eventually approaches that of linear 
suboptimal detectors, i.e., the detection complexity eventually 
approaches a constant value. Conversely, the number of 
arithmetic computations increases substantially as the SNR is 
decreased and the detection complexity eventually approaches 
that of a brute force search. The FP-SD complexity is also 
extremely sensitive to the choice of the search radius.  

The goal of a wireless communication system is 
delivering high data rates at minimum transmit power and at a 
much reduced detector complexity. 

 
Fig. 5.   Average arithmetic operations without statistical pruning. 

 

As can be seen in Fig. 5, the proposed LRAD-MMSE-
SIC-SE-SD can achieve the desired BER performance (see Fig. 
3 & Fig. 4) at much reduced complexity within the whole range 
of the SNR regime (0-30dB) compared to the ML and original 
FP-SD for both cases of 4-QAM and 64-QAM transmissions.  

The reduction in complexity of the proposed LRAD-
MMSE-SIC-SE-SD is partly attributed to the MMSE-SIC pre-
processing with layer ordering and partly due to the reduced 
search domain introduced by the LRAD scheme.  

The complexity of the proposed LRAD-MMSE-SIC-
SE-SD can be further reduced by applying statistical tree 
pruning, particularly in the low SNR regime.  Fig. 6 illustrates 
that the proposed LRAD-MMSE-SIC-SE-SD algorithm solves 
the CLPS problem far more efficiently than the original FP-SD 
with the application of statistical tree pruning, particularly in 
the low to medium SNR regime, and for the case of higher order 
modulation. The complexity of the proposed LRAD-MMSE-
SIC-SE-SD can be reduced by several orders of magnitude for 
64-QAM transmission at SNRs below 10dB. The average 
complexity of the proposed LRAD-MMSE-SIC-SE-SD can be 
reduced by a factor of about 30 in the low SNR regime for the 
case of 64-QAM transmission as can be clearly seen in Fig. 6. 
However, the reduction in complexity is not noticeable for the 
case of 4-QAM transmission. 
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 The average complexity of the original FP-SD 
becomes largely independent of the operating SNR by 
employing LRAD-MMSE-SIC based pre-processing. A 
reduction of 80-90% compared to a FP-SD without tree pruning 
can be achieved. However, the complexity reduction is 
achieved at the expense of performance loss over the whole 
BER range arising from the sub optimality due to statistical tree 
pruning. Overall, the complexity for both the LRAD-MMSE-
SIC-SE-SD and the LRAD-MMSE-SIC-FP-SD is much lower 
than the ML for both cases of 4-QAM and 64-QAM 
transmissions. Based on these results in Fig. 5 and Fig. 6, it can 
be concluded that the proposed SE-SD with LRAD-MMSE-SIC 
pre-processing is the most attractive option for solving the 
CLPS problem, i.e., the best option for solving the ML detection 
problem.   

 
Fig. 6.   Average arithmetic operations with statistical pruning. 

VI. CONCLUSION 

The LRAD-MMSE-SIC-SE-SD detection scheme 
which introduces a trade-off between performance and 
complexity was designed and presented in this paper. The 
reduction in complexity mainly results from the transformation 
of the channel matrix into a near-orthogonal channel and Sorted 
QR Decomposition (SQRD). As a result, low computational 
complexity is generated independent of constellation size and 
the number of antennas. Hence, this novel SD detection scheme 
is more efficient and applicable for MIMO in 5G mobile 
communication systems. 
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