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Abstract 

The negative impact of the Increasing air pollution on the global economy, quality of life 

of humans and health of animals and plants has been enormous. Several works of literature, 

reports and news around the world have highlighted the risk posed by the ever-increasing 

air pollution and the threat to the lives of vulnerable groups such as children, the elderly, 

and people with respiratory and cardiovascular problems. The closest to home among all 

the air pollutants are the Traffic-Related Air Pollutants (TRAP), and they contribute the 

most to the risk posed to global health. This emphasises the urgency of the need for a highly 

accurate air pollution prediction model. Researchers have been able to achieve significant 

performance gain in predicting many of the pollutants except for the TRAP such as CO 

and NO which reported the worse prediction performance in many studies. CO and NO 

have been among the major pollutants of concern globally as they are linked to critical 

health hazards. Based on the established urgency of improving the accuracy of pollution 

prediction models, we collect recent data for six months and at high granularity in terms of 

time and location. The data is pre-processed and used to develop a Machine Learning (ML) 

based air pollution prediction model with high granularity and accuracy while focusing on 

traffic-related air pollutants CO and NO. Using the benchmarks r2 and RMSE score, our 

ML models outperformed that of the studies reported in the literature for the prediction of 

TRAPs. This in part is due to the high data granularity we considered in terms of time and 

location. 

1. INTRODUCTION 

The United Nations (UN) reported that in 2050, the urban area is expected to be habiting 

about 68% of the world population (UN DESA, 2018). This alone will impact negatively 

on the air quality of major cities around the world if nothing is done to reduce the impact 

of rural-to-urban migration. The reports by the World Health Organization (WHO) 

elaborated how air pollution causes about seven million annual death around the world, 

while the air quality in above 80% of the urban areas is worse than the WHO guideline 

(WHO, 2014). The majority of those currently affected by this worsening situation is the 

vulnerable group which include children, the elderly, and people with respiratory and 

cardiovascular problems. Records show that in recent years, air pollution accounts for 1 

out of 8 deaths globally (WHO, 2014). This highlights the importance and urgency of the 

need for a highly accurate air pollution prediction model. 
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Air pollution arises due to the increase in the proportion of pollutants in the form of 

particles and inhabitable gasses in the atmosphere of an area. The increase in air pollution 

sometimes could be due to human activities in the case of traffic, industry or home-related 

pollution. While other times it could be due to biological or environmental activities such 

as the case of pollutants like ozone (O3), pollen, dust. Air pollutants of various nature have 

been linked to critical health challenges such as cardiovascular diseases, pulmonary 

disease, acute respiratory infection and increased risk of lung cancer (Gul & Khan, 2020). 

Pollutants such as Nitrogen Dioxide (NO2), Sulphur Dioxide (SO2), Ozone are medically 

proven to irritate the airways of the lungs, increasing the symptoms of those suffering from 

lung diseases. Fine particles are seen to find their way deep into the lungs where they can 

cause inflammation and a worse condition of heart and lung diseases. Carbon Monoxide 

(CO) inhibits the absorption of oxygen by the blood (Department for Environment, 2021). 

This condition alone can lead to a shortage of oxygen supply to the heart and most likely 

death. Agriculturally, the yield of crops has been affected by the increasing concentration 

of Ozone in the atmosphere (Gul & Khan, 2020).  

Researchers (such as Martínez-España et al., 2018; Tao et al., 2019; Zhang & Ding, 2017; 

Zhao et al., 2016) have been able to achieve significant performance gain in predicting 

many of the pollutants except for the traffic-related air pollutants (TRAP) such as CO and 

NO which reported the worse prediction performance in many studies (Rybarczyk & 

Zalakeviciute, 2018). CO and NO have been among the major pollutants of concern 

globally as they are linked to various health hazards. Worsening the situation are the 

particulate matters (PM) which are getting into the limelight recently. An increase in 

exposure to TRAPs, PM2.5 and black carbon has been linked to the risk of asthma across 

childhood up to twelve years of age and a decreased cognitive function in older men 

(Bowatte et al., 2015; Power Melinda C. et al., 2011). The magnitude increases with age 

and the pattern is more prominent with PM2.5. Other evidence shows that TRAP is also 

associated with eczema and hay fever (Bowatte et al., 2015). Many of these health hazards 

have been the driving force for governments around the world to redesign policies to reduce 

the impact of TRAPs on the environment. Despite government efforts, pollution is yet to 

reduce to a significant low. Hence, the need to be aware of where and when pollution is 

high. So, individuals and organizations can be well equipped to make an informed decision 

about pollution in their respective environments. 

In the efforts to achieve an accurate pollution prediction, researchers (such as Martínez-

España et al., 2018; Tao et al., 2019; Zhang & Ding, 2017; Zhao et al., 2016) have applied 

various methodologies on diverse sets of data. Due to the effectiveness of Machine 

Learning (ML) algorithms in solving many prediction problems in research and industry, 

researchers have been focusing largely on using various ML algorithms (Zhang & Ding, 

2017). As deterministic models struggle to capture the relationships between variables that 

affect pollution, researchers have been pushed to considering various ML algorithms 

ranging from the classical ML algorithms such as Support Vector Machine (SVM), Linear 

Regression (LR) and the sophisticated ML algorithms like Deep-Neural Network (DNN), 
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and Extreme Machine Learning (Iskandaryan et al., 2020; Rybarczyk & Zalakeviciute, 

2018). 

Diverse approaches have been used so far to achieve optimal accuracy in the prediction of 

pollution. Different combinations of data such as Meteorological, Traffic and Air Quality 

data have been used in the prediction of TRAPs, but less attention is paid to the granularity 

of the dataset used in terms of time and location. In the course of finding an optimally 

performing prediction model, researchers have trained various ML algorithms on different 

combinations of data (Masih, 2019). In most of the literature studied by (Iskandaryan et 

al., 2020; Rybarczyk & Zalakeviciute, 2018), relatively good performance was recorded 

for air pollutants such as O3, PM10, PM2.5 and SO2, while many of the models reported 

performed worse for TRAPs CO and NO with an average r2 score of 0.76 and 0.78 

respectively for the prediction models reported. Therefore, the situation has risen to a level 

of urgency due to the high risk associated with TRAPs and the low level of prediction 

accuracy reported so far against them. 

Based on the established urgency of improving the accuracy of pollution prediction models, 

this research aims to study pollution prediction models reported in the literature and 

develop an air pollution prediction model with high granularity and accuracy while 

focusing on TRAPs CO and NO. The focus of our model development will be on improving 

the performance of the ML predictive model by increasing the granularity of the dataset 

used in terms of time and location. This will hopefully, broaden the focus of the research 

community on the need to focus on data granularity in the prediction of TRAPs. 

2. LITERATURE REVIEW 

Several research efforts have been contributed to predicting TRAPs using ML algorithms 

and different combinations of data. From the literature surveyed, the prediction of NO has 

received more research contribution than CO in recent years. The time-series approach 

implemented in (Li et al., 2017) used a three-step optimized process on a combination of 

datasets of traffic, meteorology, population density and elevation. To predict NO and NOx 

concentration, they used an Ensemble Learning algorithm to reduce the uncertainty of the 

prediction. The complex approach earned a good predictive performance for locations with 

high density while other locations saw a less accurate prediction performance. 

(Araki et al., 2018) developed a spatiotemporal model based on land use to represent 

relationships between pollutants and land. To estimate the concentration levels of  NO2, 

the study compared two algorithms - Land Use Random Forest (LURF) and Land Use 

Regression (LUR). Their work used a dataset recorded over four years in the Amagasaki 

region of Japan. The study also used datasets of the population, emission intensities, 

meteorology, satellite-derived NO2, and time variables. The study was able to show the 

relationship between land use and pollutants, but the accuracy of the models recorded is 

slightly lower than the benchmark reported in related literature. 

Seven Regression models are used in (Hu et al., 2017) to predict CO concentrations in 

Sidney, Australia. The models were trained on about ten years of data recorded through 15 
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stations. Comparison of the several models' performance suggested that the best of the 

prediction are provided by the Support Vector Regression (SVR), Decision Tree 

Regression (DTR), and Random Forest Regression (RFR). Their field validation also 

showed that SVR has the highest spatial resolution estimation and better identifies 

boundaries of the polluted area than the other regression models. Despite the large size of 

the dataset used, the performance improvement is not far from the state-of-the-art. 

Many of the research contributed in literature so far developed predictive models using 

data with low granularity in terms of time and location. Hence, this research explores the 

benefit of using more granular data in training predictive models to improve the predictive 

performance of the TRAPs predictive model. 

3. RESEARCH METHODS 

As deterministic models have proved less efficient in the prediction of air pollutants, and 

ML shows the more promising result as reported in the literature. This research intends to 

apply ML in solving the accuracy challenge identified. Hence we implemented the full 

length of the ML pipeline, starting from Data pre-processing, Algorithm selection, Model 

training/validation/testing, Model evaluation. Every stage of the ML pipeline is 

implemented using the Python programming language (van Rossum & Drake, 1995).  

3.1 Data 

The availability, volume and quality of data is a major factor to consider while applying 

ML in solving a problem. To ensure high-quality data and selection of an optimal 

combination of dataset and Variable, we documented the stages of Data collection, Data 

merging, Variable selection. The data collected and used for the model development is to 

the location granularity of Latitude and Longitude, while the time granularity is to hourly. 

3.1.1 Data collection 

For this research, the focus is on ensuring high granularity and accuracy of our model 

prediction. Hence, we collected meteorological (weather) data, air quality (AQ) data and 

traffic data for 338 postcodes spread around the United Kingdom (UK). For this research, 

we used merged data for the 6 months starting from 01:00 am, 1st of December 2020, till 

00:00 1st of June 2021. 

3.1.1.1 Meteorological Data 

The meteorological data collected is the weather data for each of the 338 UK postcodes 

identified for this research. These data are been sourced through the Open Weather Map 

API (Weather API - OpenWeatherMap). The API response is in a JSON object format, 

while the data is saved directly to the CSV file format for easy access. 

3.1.1.2 Air Quality Data 

The advent of the Internet-of-Things (IoT) has made the recording of Air Quality data 

easier. The air quality data used in this research is sourced via 338 IoT sensors stationed 

across the UK. The sensors record data for several pollutants (such as NO2, PM10, SO2, 

FINE, O3, PM1, PM2.5, TSP, CO, NO) every hour. Each of the sensors does not record 

readings for all the pollutants. Hence, the recordings for various pollutants were collated 
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from several sensors. Despite the air quality data having records for other pollutants, this 

research focuses mainly on TRAPs such as Carbon monoxide (CO) and Nitrogen Oxide 

(NO). 

3.1.1.3 Traffic Data 

The process of getting the traffic data has been challenging as several sources does not 

have it readily available while many of the sources do not have the data recorded hourly 

nor at the level of granularity needed. Hence, for this research, we sourced traffic data 

through the TomTom traffic flow API (TomTom Developer Portal | Maps APIs and SDKs 

for Location Applications), analysed the data and merge them to achieve the level of 

granularity desired. This data is analysed and averaged to derive an hourly average of every 

day of the week. This is achieved by eliminating the data recorded for the period 

immediately after the COVID-19 lockdown was eased in the UK (between the 8th of March 

2021 and the 22nd of March 2021). The elimination was done due to the spike in the traffic 

situation across the UK roads during the stated period. This ensures that the irregularity in 

the traffic data within this period does not distort the whole traffic data collected. 

3.1.2 Data merging 

Data merging is necessary to ensure we have all the data required for the ML pipeline in a 

single data repository. The Meteorological, Air Quality and Traffic data were merged using 

the location (Latitude and Longitude), Day and Time Variables. This ensures that the 

location granularity considered is to the level of Latitude and Longitude, and the time 

granularity considered is hourly. 

3.1.3 Variable selection 

The Meteorological, Air Quality and Traffic data collected are made up of numerous 

Variables, which only a few of them are of significance to the ML model development. 

Hence, irrelevant variables of the data were discarded while the relevant Variables are used 

for the model development. While the Location, Date and Time variables were used for 

data merging only, they were discarded after the data marging. Presented in Table 1 below 

are the variables selected for the model development. 

 

Table 1: Selected variables for model development 

Data Variable Unit Type 

Location 
Latitude   

Longitude   

Date Date   

Time Time Hour  

Meteorological 

Absolute Temperature oc 

Independent 

Feels-Like oc 

Pressure Hg 

Humidity % 

Minimum Temperature oF 

Maximum Temperature oF 

Wind Speed km/h 
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Wind Degree degree 

Cloud okta 

Rainfall mm 

Traffic 

Current Travel Speed km/h 

Free Flow Travel Speed km/h 

The ratio of Current Travel 

Speed and Free Flow Travel 

Speed 

 

Current Travel Time Seconds 

Free Flow Travel Time Seconds 

The ratio of Current Travel Time 

and Free Flow Travel Time 
 

Data Confidence  

Road Closure 0,1,2,3,4 

Air Quality 
CO µg/m3 Dependent 

NO µg/m3 Dependent 

 

The variables of the meteorological data and the traffic data are used as the independent 

variables, while the variables of the air quality data are used as the dependent variables. 

3.2 Model development 

When the data has been prepared, the next stage in the ML pipeline is model development. 

This involves algorithm selection, model training, validation and testing. The ML model 

development is done using the Scikit-Learn Python Package (Pedregosa et al., 2012).  

3.2.1 Algorithm selection 

Following the study by (Iskandaryan et al., 2020; Rybarczyk & Zalakeviciute, 2018), 10 

well performing ML algorithms reported in the literature were selected to be trained using 

the merged dataset. The 10 ML algorithms are trained using their respective default 

parameters that are defined as the most promising by the designers of each algorithm. No 

hyperparameter tuning is done to enable a fair comparison of the performance of the 

algorithm. The algorithms considered are Extra Trees Regressor, Histogram-Based 

Gradient Boosting Regressor, Light Gradient Boosted Machine (LGBM) Regressor, 

eXtreme Gradient Boosting (XGB) Regressor, Random Forest Regressor, Bagging 

Regressor, Nu Support Vector Regression (NuSVR), Support Vector Regression (SVR), 

Gradient Boosting Regressor, K-Neighbors Regressor. 

3.2.2 Training and validation 

At the training stage, each of the selected ML algorithms is fitted using the merged data to 

create a model which can be used for TRAPs CO and NO prediction. The training is 

conducted by using a portion of the merged data, while the other portion is used for the 

model testing after it has been trained. Hence, the merged data is split randomly, as 70% is 

used for the training and validation. The 10-fold cross-validation was done to ensure that 

the performance of the trained model is accurately recorded. 

3.2.3 Testing 

Testing the trained model is an important stage of the model development process. This 

will enable researchers to evaluate the performance of the trained model. To enable 
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accurate recording of the performance of the model, the other 30% of the merged data is 

used for testing. The models are used to predict the values of each of the dependent 

variables, the predicted values are compared with the true values. The differences are 

recorded for each of the true values in the dataset to enable further analysis. 

4. MAIN DISCUSSION 

The training, validation and testing of the model are not complete unless the result of the 

testing has been evaluated. This will enable deduction to be derived about the performance 

of the model. 

4.1 Result evaluation 

The prediction performance of the trained models is measured using the benchmark 

performance measure reported in similar literature. This will ease the comparison of 

performance with other similar research works. The prediction performance of each of the 

trained models is measured using R-Squared (r2) and Root Mean Square Error (RMSE). 

4.1.1 CO 

The predictive model performance for each of the ML algorithms trained for the prediction 

of CO is shown in Table 2. 

Table 2: Performance measure of ML Algorithms on predicting CO 

Model Adjusted R-Squared R-Squared RMSE 

ExtraTreesRegressor 0.786 0.789 0.099 

HistGradientBoostingRegressor 0.753 0.758 0.107 

LGBMRegressor 0.750 0.755 0.107 

XGBRegressor 0.749 0.754 0.108 

RandomForestRegressor 0.740 0.745 0.110 

BaggingRegressor 0.705 0.711 0.117 

NuSVR 0.687 0.693 0.121 

SVR 0.671 0.678 0.124 

GradientBoostingRegressor 0.662 0.669 0.125 

KNeighborsRegressor 0.613 0.621 0.134 

The performance measure revealed that the Extra Trees Regressor recorded the best 

performance (r2 = 0.789, RMSE=0.099) when compared with the other ML algorithms 

trained on the same data.  

4.1.2 NO 

The prediction of NO took a different turn as the models performed differently when 

compared with their respective performance for CO. 

Table 3: Performance measure of ML Algorithms on predicting NO 

Model Adjusted R-Squared R-Squared RMSE 

HistGradientBoostingRegressor 0.522 0.526 7.061 

LGBMRegressor 0.511 0.514 7.148 
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ExtraTreesRegressor 0.507 0.511 7.171 

XGBRegressor 0.485 0.489 7.329 

RandomForestRegressor 0.476 0.480 7.394 

BaggingRegressor 0.421 0.426 7.774 

KNeighborsRegressor 0.349 0.355 8.238 

GradientBoostingRegressor 0.336 0.341 8.329 

NuSVR 0.163 0.169 9.349 

SVR 0.132 0.139 9.521 

The performance of the models measured using the r2 and the RMSE is presented in 

Table 3. As seen in the performance recorded, the models performed differently from the 

performance recorded for CO. This reveals that some ML algorithms are more suitable 

for CO prediction while they are not for the prediction of NO. Here, the Hist Gradient 

Boosting Regressor poses the best performance (r2 = 0.526, RMSE=7.061). 

4.2 Training time 

The training time for the models reveals how long it takes each of the ML algorithms to 

learn through the data presented to it. The length of the training time and the performance 

of the algorithm is always a concern to ML model developers. 

4.2.1 CO 

The training time for each of the ML algorithms trained on the CO data is shown in 

Figure 1. 

 

Figure 1: Training time of ML Algorithms on predicting CO 

The K-Neighbors Regressor has the least training time with the worse performance, while 

the Extra Trees Regressor poses the best performance, but a less encouraging training 

time. The LGBM Regressor has shown a promising balance between the model training 

time and predictive performance. 
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4.2.2 NO 

Figure 2 shows the training time for each of the ML algorithms for the prediction of NO. 

 

Figure 2: Training time of ML Algorithms on predicting NO 

As seen in the training time for CO, the ML algorithm K-Neighbors Regressor also takes 

the least time to train on NO dataset while its performance is nothing close to the best 

performing ML algorithm in this category. While the Hist Gradient Boosting Regressor 

poses the best performance for the prediction of NO, the training time is high. Hence, the 

LGBM Regressor has a balanced trade-off between the training time and predictive 

performance. 

5. CONCLUSIONS AND RECOMMENDATIONS  

Traffic-Related Air Pollutants (TRAPs) has been linked to many severe health and 

economic risks globally. Despite the efforts of research, predictive models have not been 

able to achieve high performance in forecasting the TRAPs. This research focused on 

predicting TRAPs such as CO and NO with high accuracy and data granularity. The ML 

models are developed using high data granularity in terms of time and location. This 

enables better performance of the model and ensures the forecast is more localized. The 

performance of our ML models is evaluated using the commonly used benchmarks score 

r2 and RMSE, to enable easy comparison of predictive performance. The models developed 

outperformed the study reported in the literature for the prediction of TRAPs. Future work 

is envisaged to enable the discovery of more high performing ML algorithms in the 

prediction of TRAPs. Another open area of research is to perform the hyper-parameter 

tuning of each ML algorithms in the discovery of more promising parameters for each of 

the algorithms considered. We also aim to use more recent data that will reflect the post-

COVID-19 UK lockdown traffic situation and to ensure better predictive accuracy. 
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